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ABSTRACT
Social network analysis (SNA) is now a commonly used tool
in criminal investigations, but evidence gathering and analy-
sis is often restricted by data privacy laws. We consider the
case where multiple investigators want to collaborate, but
do not yet have sufficient evidence that justifies a plaintext
data exchange. This paper proposes a solution for privacy-
preserving social network analysis where several investiga-
tors can collaborate without actually exchanging sensitive
private information. An investigator can request data from
other sites to augment his view without revealing personally
identifiable data. The investigator can compute important
metrics by means of a SNA on the subject while keeping the
entire social network unknown him.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications; D.4.6 [Operating Sys-

tems]: Security and Protection—Cryptographic controls

General Terms
Algorithms, Security

Keywords
Privacy, Social Network Analysis, Criminal Investigations,
Data Sharing

1. INTRODUCTION
In federated states or organization of states, such as the

European Union or the United States, a common approach
to organized crime is necessary. For this purpose, federal
law enforcement agencies, such as Europol or the FBI, have
been established. Nevertheless, data privacy laws or sim-
ply data governance concerns restrict supplying institutions
from sharing their data, unless there is a hard corroborat-
ing evidence on a case and subject under investigation. In
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particular, in the European Union [1], data privacy is re-
garded as a high social and political value and the dilemma
on how to generate evidence without violating privacy laws
is evident.

A common tool for the criminal investigator is social net-
work analysis. It graphically depicts the suspects and their
connections to other people or artifacts, such as telephone
numbers or bank accounts, and allows the computation of
certain metrics. Not all the facts composing the entire pic-
ture of a case may be known to one investigator. In partic-
ular, in pan-European organized crime, local police forces
may only be aware of a partial view of the picture, as the
case studies in the framework of the R4eGov project suggest
[25].

This necessitates data exchange between the institutions,
but European data privacy laws prohibits data exchange
without reasonable cause and in excessive amounts. There-
fore we propose a solution where the local investigator, or an
investigator at the superordinate institution has access to all
information, but without revealing sensitive or private de-
tails. This allows the investigator to still use SNA and profit
from its achievements without breaking individual privacy
rights or guidelines of other institutions.

Privacy-Preserving SNA has been suggested in the liter-
ature before, but we have found the solutions to be insuf-
ficient for the requirements of our scenario. In [15] a fully
anonymized version of the social network is computed. This
does not allow the investigator to track his suspect anymore
and he cannot gain additional information or collect evi-
dence about him. In [8] a special algorithm with privacy
preservation for computing a metric within a network to be
used as a recommendation value is proposed, but investiga-
tors are used to centrality metrics they are trained on, such
as betweeness and closeness [26].

This paper contributes an algorithm to compute the im-
portant centrality metrics of betweeness and closeness with-
out revealing personally identifying information and without
revealing the entire social network.

The algorithm, called “Compute Metrics”, provides higher
privacy guarantees, as it does not even reveal the entire the
social network (except its size), but still allows important
metrics to be computed about the subject. These metrics
allow the identification of the role the subject is playing
within the criminal organization [26].

The remainder of the paper is structured as follows: The
next Section reviews related work. This is followed by the
algorithm: Computing metrics without revealing the net-
work itself. The algorithm section is divided into building



blocks, protocol description and analysis. This is followed
by some remarks on practical implementations. The final
section presents the conclusions of this work.

2. RELATED WORK
SNA has been used for criminal investigations for a long

time [18, 23, 26]. Recent research [26] suggests using graph-
ical tools and investigates the impact of SNA. We can con-
clude that SNA is a widely accepted tool in criminal inves-
tigations.

Privacy-Preserving SNA has been first proposed by [15].
They compute an anonymized graph of the social network,
such that no one should be able to track their position in the
graph. They allow for certain modifications of the correct-
ness of the anonymized graph in order to prevent tracking
of one’s position. E.g. they may bound the number of in-
coming connections or apply similar restrictions.

While this provides strong privacy guarantees it does not
match the requirements of our scenario. An investigator in-
tends to gather additional information to his present view of
the social network. It is therefore unacceptable to anonymize
his view, but the goal is to augment it with additional in-
formation about the entire network.

Collaborative filtering is the process of collaboratively iden-
tifying “outstanding” information items. It is particularly
useful for recommender systems in e-commerce where out-
standing items corresponds to products likely to be bought.
It is related to SNA, since both compute metrics for vertices
in the network. Special collaborative filtering algorithms for
graphs have been proposed in [8, 9, 22], but the research on
SNA for criminal investigations [26] suggests that common
metrics the investigators are used to, such as betweeness and
closeness, are preferred.

Similarly a new algorithm for link analysis is proposed in
[12]. Link analysis is a special collaborative filtering tech-
nique for a network or a graph of vertices. As a criticism,
it applies here as well that practitioners prefer established
metrics. It is important to note here, that different metrics
require different protocols for computing them. In partic-
ular one can often optimize the performance of a privacy-
preserving protocol by picking a metric that is easy to com-
pute in a privacy-preserving manner, but that might be less
useful to the user. Our focus is clearly on maximizing the
added value to the investigator as an end-user of the system.

Privacy-Preserving SNA can be seen as a special case of
secure multi-party computation (SMC) which can solve any
distributed function privately. SMC has been suggested in
[27] for the two-party case. The first multi-party solution
have been suggested in [17] for the computational setting
and in [4] for the information-theoretic setting. Efficient
construction have been identified for different secret sharing
schemes [6, 7]. Nevertheless, as in [15] stated, a straight-
forward application of these techniques would result in an
unpractical protocol.

3. COMPUTING SNA METRICS
This protocol therefore computes the important SNA cen-

trality metrics of betweeness and closeness without revealing
the network. The betweeness centrality metric ranks vertices
by the number of shortest paths that run through them and
identifies vertices which connect strongly connected com-
ponents. Vertices with a high betweeness metric indicate a

gatekeeper functionality between two criminal organizations
[26]. Let σv(s, t) ∈ {0, 1} be the number of shortest paths
from s to t running through v. Betweeness is defined as

CB(v) =
∑

s, t ∈ V

s 6= t s 6= v t 6= v

σv(s, t)

(|V | − 1)(|V | − 2)

The closeness centrality metric ranks vertices by their dis-
tance to all other nodes. Vertices with a high closeness met-
ric indicate leadership in criminal organizations [26]. Let
δ(v, t) be the length of the shortest path from v to t in G.
Closeness is defined as

CC(v) =
∑

t ∈ V

v 6= t

|V | − 1

δ(v, t)

The “Compute Metrics” algorithm computes betweeness
and closeness without revealing the network structure.

3.1 Building Blocks
We use a commutative encryption scheme. In a commuta-

tive encryption scheme the order of encryption (with differ-
ent keys) does not matter. We denote the encryption with
Alice’s key as EA() and with Bob’s key as EB(). Then, in a
commutative encryption scheme, it holds that

EA(EB(x)) = EB(EA(x))

As we compare ciphertext, the encryption system cannot
be semantically secure, but may be secret key. A candi-
date encryption system with all these properties is Pohlig-
Hellman encryption [21]. Let En() denote the encryption
with all keys of the commutative encryption scheme, i.e.
En(x) = EX1

(EX2
(. . . EXn

(x))).
We also use a homomorphic, threshold encryption system.

Let E∗() denote encryption in this homomorphic, threshold
encryption system. We require the homomorphic property
to allow (modular) addition of the plaintexts. It then holds
that

E
∗(x)E∗(y) = E

∗(x + y)

From which by simple arithmetic it follows that

E
∗(x)y = E

∗(xy)

In a threshold encryption system the decryption key is
replaced by a distributed protocol. Only if t or more parties
collaborate they can perform a decryption. No coalition of
less than t parties can decrypt a ciphertext. We require a
collaboration of all parties, i.e. t = n (since we operate in
the semi-honest model and do not consider faults). Then a
ciphertext can only be decrypted if all parties collaborate.

The homomorphic, threshold encryption system is fur-
thermore public-key, i.e. any party can perform the encryp-
tion operation E∗() (by itself).

The ciphertexts are semantically secure, i.e. their cipher-
text reveals nothing about the plaintext. More precisely, the
ciphertexts are indistinguishable under chosen plaintext at-
tack (IND-CPA). This implies an important property of re-
randomization where an input ciphertext is modified, such
that it cannot be linked to its original anymore without mod-
ifying the plaintext. In our encryption system this is best



performed by “adding 0”: E∗(x)E∗(0) = Ê∗(x), but E∗(x)

and Ê∗(x) are unlinkable without the decryption key.
An encryption system satisfying all our requirements has

been described in [11], a variation of [20].

3.2 Protocol
In order to compute the two centrality metrics we need

to compute the shortest path between all pairs of vertices.
The shortest paths has been privately computed in [5], but
they assume that the graph is public and only the weights
are private. We need to keep the graph private as well.

We use the Floyd-Warshall algorithm [13] as basis for our
computation. The Floyd-Warshall algorithm computes the
all-pairs shortest path and is an example of dynamic pro-
gramming. Privacy-preserving dynamic programming has
been done in [3], but specifically for two parties while we
consider the multi-party setting.

The Floyd-Warshall algorithm proceeds as follows

for k:= 1 to n

for i:= 1 to n

for j:= 1 to n

M[i][j] = min(M[i][j], M[i][k] + M[k][j])

Initially the matrix M contains the edges E, i.e. M [i][j] = 1
if (vi, vj) ∈ E and M [i][j] = ∞ otherwise (M [i][i] = 0).
Intuitively the algorithm checks whether a shorter path from
vi to vj exists via vk. At the end of the algorithm the matrix
M contains the length of the shortest path from vi to vj at
its i, j-th position.

We keep the elements of the matrix M encrypted under
E∗(), such that no party individually has access to it. Every
participant Xi keeps a record of the current state of the ma-
trix, i.e. the encryptions of each element. They then need
to collaboratively engage in a “Minimum” protocol to com-
pute the new element of the matrix. All participants engage
in |V |3 of these “Minimum” protocols following the Floyd-
Warshall algorithm. One can use any multi-party “Mini-
mum” protocol from the literature, e.g. [10, 24]. In the full
version of the paper we propose a particularly fast protocol,
but omit details here for brevity.

3.2.1 Computing the Initial Matrix
The parties can now compute the iteration step of the

dynamic program, but the matrix M must be initialized
with the values from the set E of edges.

First, the participants must agree on a common set V

of vertices. The vertex labels must not reveal identifiable
information. Therefore, the participants must agree on an
anonymized version of V . The anonymization for v is com-
puted using En(v) by forwarding and encrypting the set of
edges of each participant. The participants compute the set
union of their anonymized local sets Vi. A set-union proto-
col does not reveal the overlaps in the input sets. Set-union
protocols can be found in the literature in [5, 14, 19]. We
propose a multi-party version of [5], since it uses a “Mini-
mum” as used above. The overall protocol proceeds as fol-
lows:

1. First compute the pseudonyms without revealing the
anonymized sets Vi. Note that the size of Vi is revealed.
This can be prevented by padding with random values.

(a) Each participant Xi encrypts his vertices vj ∈ Vi

by Ei() and E′

i(): Ei(E
′

i(vj)). He sends them to
participant Xi+1.

(b) Each participant Xi+1 doubly encrypts the re-
ceived and already encrypted vertices with Ei+1:
Ei+1(Ei(E

′

i(vj))). He sends the result to partici-
pant Xi+2.

(c) All participants Xi repeat step 1b n − 2 more
times, such that each participant X − i receives
his initial values as En(E′

i(vj)).

(d) Each participant decrypts the received vertices
with D′

i() resulting in En(vj). Note that due to
the commutative encryption the order of encryp-
tion does not matter.

2. Second compute the set-union of the anonymized ver-
tices.

(a) Each participant Xi sorts his list of anonymized
vertices En(vj) in ascending order of the cipher-
text.

(b) Each participant Xi encrypts his minimum ele-
ment En(v1) with E∗() and sends E∗(En(v1)) to
X1. He indicates the special element ⊥, if he has
no more pseudonyms.

(c) All participants Xi engage in the “Minimum” pro-
tocol for the inputs as described above.

(d) All participants Xi commonly decrypt the result
En(vγ). Each participant that has the pseudonym
En(vγ) in his list, removes it from this list.

(e) They repeat steps 2b till 2d until all participants’
lists are empty. Participants whose lists are empty
use a top element E∗(⊤) outside of the domain of
anonymized vertices as input. If this element ⊤ is
computed as the minimum element the protocol
ends, as now all lists are empty.

Each participant now holds the set V of anonymized ver-
tices En(v) and knows the pseudonyms for his vertices v.
He can then compute the anonymized set Ei of his edges
(En(v), En(v′)). The participants must now compute the
matrix M . The rows and columns of M each correspond
to an anonymized vertex En(v). Each participants sorts
the set V in lexicographically ascending order of the cipher-
texts. All elements of M can then be initialized with ∞
(M [i][i] = 0). Now each participant must set the values
of M corresponding to his edges (En(v), En(v′)) to 1. To
achieve this they can run this protocol:

1. Participant X1 prepares the initial matrix M with

M [i][j] = E
∗(∞)∀i, j ∈ {1, . . . , |V |}

M [i][i] = E
∗(0)∀i ∈ {1, . . . , |V |}

2. Participant Xk (k = 1) replaces the entries for edges
in M with E∗(1).

M [i][j] = E
∗(1)∀(i, j) ∈ Ek

He rerandomizes all ciphertexts and sends the result
to Xk+1.

3. Each participant Xk (k = 2, . . . , n) performs step 2.



4. Each participant Xk (k = 1, . . . , n − 2) keeps a record
of the matrix M and forwards it to Xk+1.

The algorithm is correct, since all edges in E will be set
and duplicates are not noticed, since no participant knows
whether he replaces a 1 or a ∞ with his 1.

The participants have then successfully initialized the ma-
trix M and can run the dynamic program of the Floyd-
Warshall algorithm. They compute the minimum for each
loop iteration by choosing the corresponding matrix element
and homomorphically computing the sum of the other two
elements. In the end, they will end up with an encrypted
version of the matrix M that has plaintexts of the length of
the shortest paths between all pairs of vertices.

3.2.2 Computing the Metrics
So far we have computed the shortest-path matrix in the

Floyd-Warshall algorithm, but our goal is to compute the
centrality metrics of closeness and betweeness for one ver-
tex, a suspect. Let X1 be the investigator who has a sus-
pect he wants query in the matrix. The other participants
X2, . . . , Xn should not learn which is the queried vertex.
They can do so using the following protocols.

3.2.2.1 Closeness.
Let vs be the vertex for which intelligence is gathered.

The investigator X1 selects the row s for vertex vs in M

and computes

cc =
m∏

i=1

M [s][i] = E
∗(

m∑

i=1

δs,i)

X1 rerandomizes cc to c′c and distributes it to all partici-
pants. All participants jointly decrypt c′c and X1 can com-
pute

CC(vs) =
|V | − 1

D∗(c′c)

3.2.2.2 Betweeness.
Betweeness is more complicated to compute. X1 needs

to calculate the number of shortest paths through vs. He
keeps a second matrix T of size |V |×|V |. All entries of T are
encrypted with E∗(), just as those of M . He initializes the
matrix T at the beginning of the “Compute SNA Metrics”
protocol as follows

T [s][j] = E
∗(1) ∀j 6= s

T [i][j] = E
∗(0) otherwise

In each “Minimum” protocol for M [i][j] in the Floyd-Warshall
algorithm he augments the messages with the corresponding
elements of T , i.e. in the message field for M [i][j] he adds an-
other field T [i][j] and in the message field for M [i][k]+M [k[j]
he add a field T [i][k] + T [k][j]. He computes the addition
of the plaintexts by the multiplication of the ciphertexts
due their homomorphic property and the ciphertexts are
re-randomized by all other parties, such that X1 cannot
track the entries. After each “Minimum” protocol he up-
dates T [i][j] with the value from the field in the minimum
index γ.

At the end of the Floyd-Warshall algorithm T [i][j] ∈ 0, 1
indicates with a 1 if the path from vi to vj is via vs. From

the computation of T [i][j] during the iteration it follows that
it is an invariant of the algorithm that T [i][j] equals the
number of times the path from vi to vj crosses vs as an
intermediary (i.e. all except the destination) vertex. Since
the Floyd-Warshall algorithm computes the shortest path at
its completion, no path can cross vs more than one time in
the final matrix T .

After the completion of the Floyd-Warshall algorithm X1

computes

cb =
∏

i=1,...,s−1,s+1,...,m

∏

i=1,...,s−1,s+1,...,m

T [i][j]

= E
∗(

∑

i=1,...,s−1,s+1,...,m

∑

i=1,...,s−1,s+1,...,m

σi,j)

Participant X1 rerandomizes cb to c′b and distributes it to
all participants. All participants jointly decrypt c′b and X1

can compute

CB(vs) =
D∗(c′b)

(|V | − 1)(|V | − 2)

3.3 Analysis
The “Compute SNA Metrics” protocol operates in the

semi-honest setting. We strongly argue that this is appro-
priate for our application, since we are concerned with coop-
erating police organizations and officers whose main concern
is protecting the privacy of the suspects and keeping practi-
cal data governance. That is, the organizations are inclined
to follow the protocol, since their objective is not only the
outcome of the collaborations, but also the process of data
privacy protection. Since interest in collaboration can be
assumed, the organizations could simply exchange data by
bypassing the protocol, if they were not interested in data
protection.

The proof of security is standard and follows the method-
ology of [16] by giving a simulator for the views of the par-
ticipants. No information about the graph G except the
centrality metrics is leaked. This follows from the correct
implementation of the functionality, i.e. the function imple-
mented by the “Compute SNA Metrics” protocol is to just
compute the two metrics, closeness and betweeness, for one
vertex in question. The “Compute SNA Metrics” protocol
therefore offers a high degree of privacy, but it limits the
result of the computation.

4. IMPLEMENTATION ISSUES

4.1 Synonyms
Encryption is sensitive to spelling and capitalization mis-

takes. Therefore a person with two almost identical syn-
onyms results in two very different ciphertexts and therefore
vertices. This is a known problem and can be solved existing
software solutions [2]. Such solutions provide unique identi-
fiers by expanding names into all possible synonyms. Note
that, there exists privacy-preserving extensions to these tech-
nologies using cryptographic hashing, but they do not ex-
tend to SNA as required in our case.

5. CONCLUSION
Social Network Analysis is becoming an important tool

for investigators, but all the necessary information is often



distributed over a number of sites. Privacy legislation and
data governance concerns prohibit freely sharing the infor-
mation.

We have presented a protocol that allow the selective dis-
closure of information for Social Network Analysis. It only
discloses the results of Social Network Analysis: two im-
portant centrality metrics. It thereby allows an investigator
to gather intelligence on a suspect by querying remote data
sources without disclosing even anonymized data.

This shows that Social Network Analysis can be used in
a privacy-preserving manner by investigators. We present
this information to European authorities in the context of
the R4eGov project and hope it will serve both, the security
of the people and the privacy necessary for freedom in the
European Union.
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