
Finding All Justifications of OWL DL
Entailments

Aditya Kalyanpur1, Bijan Parsia2, Matthew Horridge2, and Evren Sirin3

1 IBM Watson Research Center, 19 Skyline Drive, Hawthorne NY 10532, USA
adityakal@us.ibm.com

2 School of Computer Science, University of Manchester, UK
{bparsia,matthew.horridge}@cs.man.ac.uk
3 Clark & Parsia LLC, Washington DC, USA

evren@clarkparsia.com

Abstract. Finding the justifications of an entailment (that is, all the
minimal set of axioms sufficient to produce an entailment) has emerged as
a key inference service for the Web Ontology Language (OWL). Justifica-
tions are essential for debugging unsatisfiable classes and contradictions.
The availability of justifications as explanations of entailments improves
the understandability of large and complex ontologies. In this paper, we
present several algorithms for computing all the justifications of an en-
tailment in an OWL-DL Ontology and show, by an empirical evaluation,
that even a reasoner independent approach works well on real ontologies.

Keywords: OWL Ontology Explanation, Debugging, Justifications.

1 Introduction

Since OWL became a W3C standard, there has been a notable increase in the
number of people that are attempting to build, extend and use ontologies. To
some extent, the provision of editing environments, visualization tools and rea-
soners has helped catalyse this. In traditional ontology editing environments,
users are typically able to create ontologies and use reasoners to compute un-
satisfiable classes, subsumption hierarchies and types for individuals. However,
as ontologies have begun to be used in real world applications, and a broader
audience of users and developers have been introduced to Ontology Engineering,
it has become evident that there is a significant demand for editing environments
which provide more sophisticated services.

In particular, the generation of explanations, or justifications, for inferences
computed by a reasoner is now recognized as highly desirable functionality for
both ontology development and ontology reuse. A clear demonstration of the
need for practical explanation services manifested itself in the observations of
the switching of users from Protege 3.2 [1] to Swoop [2] purely for the benefits
of automatic explanation facilities [3].

As an example of explanation of entailments using Swoop, see Figure 1.
The left part of the Figure shows a justification for the entailed subsumption

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 267–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

268 A. Kalyanpur et al.

Fig. 1. Justifications in GALEN and Wine

Tears � SecretedSubstance in the medical ontology GALEN1. The right part of
the Figure shows a justification for why a CorbansPrivateBinSauvignonBlanc is
entailed to be an instance of the concept FullBodiedWine in the Wine2 Ontology.
Both GALEN and Wine are expressive OWL-DL ontologies with non-trivial en-
tailments, and understanding how these entailments arise becomes much easier
using Swoop’s UI for displaying justifications (i.e., axioms responsible for the
inference).

In general, the algorithms for finding justifications come in two flavors: Black-
box and Glass-box :

– Black-box (reasoner independent) algorithms use the reasoner solely as a sub-
routine and the internals of the reasoner do not need to be modified. The
reasoner behaves as a “Black-box” that typically accepts as input, an ontol-
ogy and a specific entailment test, and returns an affirmative or a negative
answer, depending on whether the entailment holds in the ontology. In order
to obtain justifications, the algorithm selects the appropriate inputs to the
reasoner and interprets its output accordingly. While Black-box algorithms
typically require many satisfiability tests, they can be easily and robustly
implemented – they only rely on the availability of a sound and complete
reasoner for the logic in question, and thus can be implemented on reasoners
based on techniques other than tableaux, such as resolution.

– Glass-box (reasoner dependent) algorithms are built on existing tableau-
based decision procedures for expressive Description Logics. Their imple-
mentation requires a thorough and non-trivial modification of the internals
of the reasoner. For a tableau based system, these involve some form of
tracing through the tableau. Tracing techniques have been used to find all
justifications for the description logic (DL) ALC [4] and also single justifica-
tions with rather low overhead for SHIF (in our previous work [5]).

In this paper, we present a practical two stage Black-box technique for effectively
finding all justifications for an entailment, and demonstrate its significance on a
set of expressive, realistic OWL Ontologies. In addition, we describe and evaluate
a faster hybrid solution that combines a Glass-box and Black-box approach to
computing all justifications.
1 http://www.cs.man.ac.uk/h̃orrocks/OWL/Ontologies/galen.owl
2 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

Finding All Justifications of OWL DL Entailments 269

1.1 Justification of Entailments

Informally, a justification is simply the precise set of axioms in an ontology
responsible for a particular entailment. For example, if an ontology O contains
concepts A, B, and A is inferred to be a subclass of B, i.e., O |= A � B, then
the justification for this concept subsumption entailment is simply the smallest
set of axioms in O responsible for it. It is important to realize that there may
be more that one justification for a given entailment in the ontology. If at least
one of the axioms in each of the justifications for an entailment is removed from
the ontology, then the corresponding entailment no longer holds.

Justifications are formally defined as follows:

Definition 1. (JUSTIFICATION)
Let O |= α where α is an axiom and O is a consistent ontology. A fragment
O′ ⊆ O is a justification for α in O, denoted by JUST(α, O), if O′ |= α, and
O′′ �|= α for every O′′ ⊂ O′.

We denote by ALL JUST(α, O) the set of all the justifications for α in O.
While our goal, in general, is to compute all justifications for any arbitrary

entailment in an OWL-DL ontology, we specifically focus on a particular type
of entailment – concept unsatisfiability. This is because an OWL-DL ontology
corresponds to a SHOIN (D) knowledge base, and [6] shows that for every
sentence (axiom or assertion) α entailed by a SHOIN (D) KB O, there is always
a class Cα that is unsatisfiable w.r.t O. Conversely, given any class C that is
unsatisfiable w.r.t. O, there is always a sentence αC that is entailed by O.

As an example, O |= A � B iff the class A�¬B is unsatisfiable in O. Thus, the
axioms responsible for the subsumption entailment O |= A � B are precisely
the same set of axioms responsible for the concept unsatisfiability entailment
O |= A � ¬B � ⊥. Consequently, given an OWL-DL Ontology (SHOIN (D)
KB), the problem of finding all justifications for an arbitrary entailment reduces
to the problem of finding all justifications for some unsatisfiable concept3.

Therefore, in the remainder of this paper, we shall restrict our attention,
without loss of generality, to the problem of finding all justifications for an
unsatisfiable concept w.r.t to a consistent SHOIN (D) KB.4

2 Finding Justifications

In this section, we investigate the problem of computing justifications. First,
we focus on the problem of finding one justification and then we discuss how
to compute all of them. For such a purpose, we explore and discuss different
techniques to tackle the problem. In any case, the process of finding justifications
3 [6] describes the translation of a particular SHOIN (D) entailment test to a concept

satisfiability check.
4 It should be emphasized that this reduction, in logics with nominals, such as

SHOIN , holds for all standard entailments, including ABox statements. Thus our
techniques extend to explaining inconsistent ontologies as well.

270 A. Kalyanpur et al.

for an entailment consists of transforming the entailment to an unsatisfiable class
(as described in the previous section) and then computing the justifications for
that unsatisfiable class.

2.1 Computing a Single Justification

A Black-box Technique. The intuition behind our black box approach is
simple: given a concept C unsatisfiable relative to O, add axioms from O to
a freshly generated ontology O′ until C is found unsatisfiable with respect to
O′. We then prune extraneous axioms in O′ until we arrive at a single minimal
justification. Thus, the algorithm consists of two stages: (i) “expand” O′ to find
a superset of a justification and (ii)“shrink” to find the final justification. Each
stage involves various satisfiability-check calls to the reasoner and the main aim
of optimizations should be minimizing the number of satisfiability tests.

Table 1. Black Box Algorithm to find a Single Justification

Algorithm: SINGLE JUST ALGBlack−Box

Input: Ontology O, Unsatisfiable concept C
Output: Ontology O’
(1) O′ ← ∅
(2)while (C is satisfiable w.r.t O’)
(3) select a set of axioms s ⊆ O/O′

(4) O′ ← O′ ∪ s
(5)perform fast pruning of O’ using a sliding window technique
(6)for each axiom k′ ∈ O′

(7) O′ ← O′ − {k′}
(8) if (C is satisfiable w.r.t. O′)
(9) O′ ← O′ ∪ {k′}

This algorithm, which we refer to as SINGLE JUST ALGBlack−Box(C, O),
shown in Table 1, is composed of two main parts: in the first loop, the algo-
rithm generates an empty ontology O′ and inserts into it axioms from O in
each iteration, until the input concept C becomes unsatisfiable w.r.t O′. In the
second loop, the algorithm removes an axiom from O′ in each iteration and
checks whether the concept C turns satisfiable w.r.t. O′, in which case the ax-
iom is reinserted into O′. The process continues until all axioms in O′ have been
tested.

In between the two loops, lies a key optimization stage of fast pruning of O’
that is output at the end of the first loop. The idea here is to use a window
of n axioms, slide this window across the axioms in O′, remove axioms from
O′ that lie within the window and determine if the concept is still unsatisfiable
in the new O′. If the concept turns satisfiable, we can conclude that at least
one of the n axioms removed from O′ is responsible for the unsatisfiability and
hence we insert the n axioms back into O′. However, if the concept still remains
unsatisfiable, we can conclude that all n axioms are irrelevant and we remove
them from O′.

Finding All Justifications of OWL DL Entailments 271

A Glass-box Technique. In our previous work [5], it was shown that for the
logic SHIF(D), the computational overhead of tracking axioms internally within
the tableau reasoner as they contribute to an inconsistency (a technique known
as ‘tableau tracing’) is negligible, especially for time. That is, a satisfiability test
while computing the justification (if the test is negative) is pragmatically as easy
as performing the satisfiability test alone. Thus, if you have tracing implemented
in your reasoner, it makes sense to use it, indeed, to leave it on in all but the
most resource intensive situations.

We have improved on our tracing solution described in [5] by extending it
to approximately cover SHOIN (D). We say “approximately” since the final
output of the tracing algorithm is not ensured to be the justification itself, but
may include a few extraneous axioms due to non-deterministic merge operations
caused by max-cardinality restrictions. These extraneous axioms are pruned out
using the same algorithm which is used in the final stage of the Black-Box
approach. In the remainder of this paper, we refer to our SHOIN (D)-extended
Glass-box tracing algorithm as SINGLE JUST ALGGlass−Box.

2.2 Computing All Justifications

Given an initial justification, we can use other techniques to compute the remain-
ing ones. A plausible one is to employ a variation of the classical Hitting Set Tree
(HST) algorithm [7]. This technique is both reasoner independent (Black-box)
and, perhaps surprisingly, practically effective.

A Black-box Approach Using Reiter’s HST. We first provide a short
background on Reiter’s HST Algorithm and then describe how it can be used to
compute all justifications.

Reiter’s general theory of diagnosis considers a system of components de-
scribed by a universal set U , and a set S ⊆ PU of conflict sets (each conflict set
is a subset of the system components responsible for the error), where P denotes
the powerset operator. The set T ⊆ U is a hitting set for S if each si ∈ S contains
at least one element of T , i.e. if si ∩ T �= ∅ for all 1 ≤ i ≤ n (in other words, T
‘hits’ or intersects each set in S).5. We say that T is a minimal hitting set for
S if T is a hitting set for S no T ′ ⊂ T is a hitting set for S. The Hitting Set
Problem with input S, U is to compute all the minimal hitting sets for S. The
problem is of interest to many kinds of diagnosis tasks and has found numerous
applications.

Given a collection S of conflict sets, Reiter’s algorithm constructs a labeled
tree called Hitting Set Tree (HST). Nodes in an HST are labeled with a set
s ∈ S, and edges are labeled with elements σ ∈

⋃
s∈S s. If H(v) is the set of edge

labels on the path from the root of the HST to the node v, then the label for v

5 The significance of a hitting set for the collection of conflict sets is that in order to
repair the system fully, at least one element in each of the conflict sets, i.e., its hitting
set, needs to be removed from the ontology. Moreover, to keep system changes to a
minimum, hitting sets should be as small as possible.

272 A. Kalyanpur et al.

Fig. 2. Finding all Justifications using HST: Each distinct node is outlined in a
rectangular box and represents a set in ALL JUST(C, O). Total number of satisfiability
tests is no. of distinct nodes (6) + nodes marked with ′√′ (11) = 17.

is any s ∈ S such that s ∩ H(v) = ∅, if such a set exists. If s is the label of v,
then for each element σ ∈ s, v has a successor w connected to v by an edge with
σ in its label. If the label of v is the empty set, then H(v) is a hitting set for S.

In our case, the universal set describing the system corresponds to the to-
tal set of axioms in the ontology, and a justification (for a particular concept
unsatisfiability) corresponds to a single conflict set. While Reiter’s algorithm is
typically used to find all minimal hitting sets given a collection of conflict sets, it
can also be used to dynamically find all conflict sets (justifications in our case),
given the duality of the algorithm.

The idea is that given an algorithm to find a single justification for concept
unsatisfiability, call it SINGLE JUST ALG (it could be either Black-box or Glass-
box based as described in the previous section), we find any one justification and
set it as the root node of the HST. We then remove each of the axioms in the
justification individually, thereby creating new branches of the HST, and find
new justifications along these branches on the fly (using SINGLE JUST ALG)
in the modified ontology. This process needs to be exhaustively done in order
to compute all justifications. The advantage of drawing parallels to Reiter’s
algorithm is that we can make use of all the optimizations presented in the
latter to speed up the search.

The following example illustrates the approach.
Consider an ontology O with ten axioms and some unsatisfiable concept C.

For the purpose of this example, we denote the axioms in O as natural num-
bers. We now show how to combine HST and SINGLE JUST ALG to compute
ALL JUST(C � ⊥, O). Figure 2 illustrates the whole process for our example.
We anticipate that the expected outcome is the following:

ALL JUST(C � ⊥, O) = {{1, 2, 3}, {1, 5}, {2, 3, 4}, {4, 7}, {3, 5, 6}, {2, 7}}.

Finding All Justifications of OWL DL Entailments 273

The algorithm starts by executing SINGLE JUST ALG(C,O) and let us assume
that we obtain the set S = {2, 3, 4} as an output. The next step is to initialize a
Hitting Set Tree T = (V, E, L) with S in the label of its root, i.e. V = {v0}, E =
∅, L(v0) = S. Then, it selects an arbitrary axiom in S, say 2, generates a new
node w with an empty label in the tree and a new edge 〈v0, w〉 with axiom 2 in
its label. Then, the algorithm invokes SINGLE JUST ALG with arguments C and
O − {2}. In this case, it obtains a new justification for C |= ⊥ w.r.t. O − {2},
say {1, 5}. We add this set to S and also insert it in the label of the new node w.

The algorithm repeats this process, namely removing an axiom and executing
the SINGLE JUST ALG algorithm to add a new node, until the concept turns
satisfiable, in which case we mark the new node with a checkmark ‘

√′.
There are two critical optimizations in Reiter’s HST algorithm that help re-

duce the number of calls to SINGLE JUST ALG:

– Early path termination: Once a hitting set path is found, any superset
of that path is guaranteed to be a hitting set as well, and thus no additional
satisfiability tests are needed for that path, as indicated by a ‘X ′ in the label
of the node. Moreover, if all possible paths starting with the current edge
path have been considered in a previous branch of the HST, the current
path can be terminated early. For example, in Figure 2, the first path in the
right-most branch of the root node is 4,3 and is terminated early since the
algorithm has already considered all possible paths (hitting sets) containing
axioms {3,4} in an earlier branch.

– Justification reuse: If the current edge path in any branch of the HST does
not intersect with a previously found justification, then that justification is
directly added as the new node to the branch. This is because the edge path
represents axioms removed from the ontology, and if none of these removed
axioms are present in a particular justification, that justification is guaran-
teed to exist in the ontology. Thus, we do not need to call SINGLE JUST ALG
again to re-compute this justification. In Figure 2, oval-bordered nodes of the
HST represent reused justifications.

Using the above optimizations, the total no. of calls to SINGLE JUST ALG, as
shown in Figure 2, is reduced from 47 (in the exhaustive case) to only 17.

When the HST is fully built, the distinct nodes of the tree collectively repre-
sent the complete set of justifications of the unsatisfiable concept.

Definition of the Algorithm. The main component of the algorithm, which
we refer to as ALL JUST ALG, is the recursive procedure SEARCH HST, that
effectively traverses a hitting set tree. The algorithm proceeds using a seed jus-
tification which is obtained by the SINGLE JUST ALGalgorithm. This seed is
then used to construct a Hitting Set Tree (HST), which ultimately yields all
justifications.

The correctness and completeness of the algorithm is given by Theorem 1.

Theorem 1. Let C be unsatisfiable concept w.r.t O. Then, ALL JUST ALG(C, O)
= ALL JUST(C, O).

274 A. Kalyanpur et al.

ALL JUST ALG(C, O)
Input: Concept C and ontology O
Output: Set S of justifications
(1) Globals: S ← HS ← ∅
(2) just ← SINGLE JUST ALG(C, O)
(3) S ← S ∪ {just}
(4) α ← select some i ∈ just
(5) path ← ∅
(6) SEARCH-HST(C, O \ {α}, α, path)
(7) return S

SEARCH-HST(C, O, α, path)
Input: C and O
α is the axiom that was removed
path is a set of axioms
Output: none — modifies globals S, HS
(1)

if path ∪ {α} ⊆ h for some h ∈ HS
(2) or there exists a prefix-path p for some h ∈ HS s.t.

p=path
(3) return (i.e., early path termination)
(4) if there exists just ∈ S s.t. path ∩ just = ∅
(5) new-just ← just (i.e., justifications reuse)
(6) else
(7) new-just ← SINGLE JUST ALG(C, O)
(8) if new-just 	= ∅ (i.e., C is satisfiable relative to O)
(9) S ← S ∪ {new-just}
(10) new-path ← path ∪ {α}
(11) foreach β ∈ new-just
(12) SEARCH-HST(C,O \ {β}, β, new-path)
(13) else
(14) HS ← HS ∪ path

Proof 1. (⊆): Let S ∈ ALL JUST ALG(C, O), then S belongs to the label of
some non-leaf node w in the HST generated by the algorithm. In this case, L(w) ∈
ALL JUST(C, O′), for some O′ ⊆ O. Therefore, S ∈ ALL JUST(C, O).

(⊇): We prove by contradiction. Suppose there exists a setM ∈ALL JUST(C, O),
but M /∈ ALL JUST ALG(C, O). In this case, M does not coincide with the label
of any node in the HST. Let v0 be the root of the tree, with L(vo) = {α1, ..., αn}.
As a direct consequence of the completeness of Reiter’s search strategy, the algo-
rithm generates all the minimal Hitting Sets containing αi for each i ∈ {1, .., n}.
Every minimal hitting set U is s.t. U ∩ M �= ∅. This follows from the fact that
in order to get rid of an entailment, at least one element from each of its jus-
tifications must be removed from the ontology, and hence the hitting set must
intersect each justification. This implies that αi ∈ M for 1 ≤ i ≤ n, and there-
fore, L(v0) ⊆ M . However, since L(v0) ∈ ALL JUST(C, O) and L(v0) ⊆ M , then
M /∈ ALL JUST(C, O), as it is a superset of an existing justification.

Finding All Justifications of OWL DL Entailments 275

Alternate Glass-box Approach to Computing All Justifications. While
the Glass-box approach (tableau tracing) mentioned in Section 2.1 is used to find
a single justification of an unsatisfiable concept, extending it to compute all the
justifications is not straightforward. This is because computing all justifications
amounts to saturating the completion graph generated by the DL reasoner (when
testing the concept satisfiability) in order to explore all possible clashes. This,
in effect, requires us to “turn off” many of the key optimizations in the reasoner.
Since the excellent performance of current OWL reasoners critically depends
on these optimization techniques, having to disable them renders this technique
(currently) impractical. The optimizations (such as early clash detection or back-
jumping) need to be reworked (if possible) to handle the fact that finding a single
clash is no longer useful (in that it stops the search). For this reason our approach
to finding all justifications uses the SEARCH HSTalgorithm in combination with
the SINGLE JUST ALGBlack−Box or SINGLE JUST ALGGlass−Box algorithm.

3 Implementation and Evaluation

3.1 Implementation Details

We implemented SINGLE JUST ALGBlack−Box and ALL JUST ALG using the lat-
est version of the OWL API.6 This version has excellent support for manipulating
axioms and has fairly direct, low level wrappers for Pellet 1.4[8], and FaCT++
1.1.7[9]. Such access is important for our experiments since the overhead of a
remote access protocol can easily dominate processing time. 7

Implementation of SINGLE JUST ALGBlack−Box. A critical piece in the
“expand” stage of the SINGLE JUST ALGBlack−Box algorithm is selecting which
axioms to copy over from O into O′. In our implementation, we run a loop that
starts by inserting the concept definition axioms into O′ and slowly expands O′
to include axioms of structurally connected concepts, roles, and individuals (i.e.,
axioms which share terms in their signature). We vary the pace with which the
fragment O′ is expanded, initially considering few axioms to keep the size of O′
bounded, and later allowing a large number of axioms into O′ (at each iteration
of the loop) if the concept continues to remain satisfiable in O′.

In the fast pruning stage of SINGLE JUST ALGBlack−Box, we start with win-
dow size n being either one tenth of the size of the number of axioms to prune
or just ten (whichever is greater). As pruning is repeated, we shrink the window
size by some factor (currently, by 0.5). Pruning continues until the window size

6 http://sourceforge.net/projects/owlapi
7 We did not test with Racer Pro (http://www.racer-systems.com/) since, as of this

writing, we only had DIG access to Racer Pro from the new OWL API and the
overhead of DIG was proving unworkable. Given that Racer Pro often does better
than the other reasoners and is usually in the rough ball park for normal reasoning,
it is safe to extrapolate our results.

276 A. Kalyanpur et al.

Table 2. Sample OWL Data used in our experiments. C=Classes, P=Properties,
and I=Individuals in the ontology. Entailed are all the non-explicit subsumptions,
including unsatisfiabilities, found during classification. These ontologies are available
upon request.

Ontology Expressivity Axioms C/P/I Entailed Domain
1. Generations ALCIF 335 22/4/0 24 Family tree
2. DOLCE-Lite SHOIN (D) 1417 200/299/39 3 Foundational
3. Economy ALH(D) 1704 338/53/481 51 Mid-level
4. MadCow ALCHOIN (D) 105 54/17/13 32 Tutorial
5. Tambis SHIN 800 395/ 100/ 0 65 Biological science
6. Sweet-JPL ALCHO(D) 3833 1537/ 121/ 150 183 Earthscience
7. Chemical ALCH(D) 254 48/20/0 43 Chemical elements
8. Transport ALH(D) 2051 444/93/183 52 Mid-level
9. MyGrid SHOIN 8179 550/69/13 297 Bioinformatics services
10. University SIOF(D) 169 30/12/4 23 Training
11. AminoAcids ALCF 2077 47/5/3 64 Classifies proteins
12. Sequence Ontology ALEHI+ 1754 1248/17/9 179 The OBO (xp) sequence
13. Gene Ontology ALEHI+ 1759 759/16/0 100 The OBO (xp) gene
14. MGED Ontology ALEF(D) 236 236/88/0 100 Microarray experiment

is 1 (i.e. equivalent to slow pruning), or until the size of the candidate justifica-
tion stays constant between each round of pruning. Thereafter, slow pruning is
performed until the candidate justification is verified as minimal.

Implementation of ALL JUST ALG. We implemented one additional opti-
mization in the SEARCH HST procedure to speed up the search. Since early
path termination in the algorithm relies on the presence of previously detected
hitting sets, it makes sense to find hitting sets as soon as possible during the
Reiter search. Since a hitting set is basically a set that intersects all justifica-
tions, chances of getting a hitting set earlier in the search are higher if you give
a higher priority to exploring axioms that are common to many justifications.
For this purpose, we order axioms in a justification based on the commonality
(or frequency) of the axiom across all the justifications currently found.

Our test data consists of 14 publicly available OWL ontologies that varied
greatly in size, complexity, number of interesting entailments, and expressivity.
See Table 2 for details. We classified each ontology to determine the unsatis-
fiable classes and the inferred atomic subsumptions. Since unsatisfiable classes
and atomic subsumptions are the standard entailments exposed by ontology de-
velopment environments, these are the natural explananda of interest. Note that
185 of the entailments are detecting unsatisfiable classes, whereas the remaining
587 represent “coherent” subsumptions. This is a bit distorted as several of the
ontologies have “deliberate” bugs for tutorial purposes. But Chemical, e.g., is a
production ontology, wherein (in this version) there are 37 unsatisfiable classes.

Since our sample reasoners do not handle precisely the same logic (FaCT++
has difficulty with certain datatypes), for the cross reasoner test we stripped out
the problematic axioms. Since these constructs were not particularly heavily or
complexly used, this seems harmless for the purpose of establishing the feasibility
of these techniques.

All experiments have been performed on a MacBook Pro (Intel) 2.16 GHz
Intel Core Due, with 2GB RAM, and 1.5GB (max) memory allotted to Java.

Finding All Justifications of OWL DL Entailments 277

3.2 Experimental Results

First, we recorded the base classification time for each reasoner on all the ontolo-
gies (Fig. 3a). Then, for each entailment, we compared the performance of gener-
ating a single justification (Fig. 3b), and then all justifications (Fig. 3c). In both
cases, Pellet and FaCT++ were used in the SINGLE JUST ALGBlack−Box algo-
rithm and Pellet with tableau tracing enabled for SINGLE JUST ALGGlass−Box.

The first striking thing to notice is that the time to compute a justifica-
tion for each entailment is in the sub second range on our setup. The second
thing to notice is the excellent performance of SINGLE JUST ALGGlass−Box –
in many cases (ontologies 4, 5, 6 for example) the time to compute a justifi-
cation was so small that it was difficult to measure (around 1 ms). It should
be noted that the times in Fig. 3b do not include the time to classify in the
first place, which is, of course, needed to find the entailments. But, it does show
that there is relatively little overhead for finding a single justification even with
SINGLE JUST ALGBlack−Box. We believe that these times are perfectly accept-
able for generating explanations on a practical basis in ontology development
environments. In such situations, ontologies have typically been classified and
users generate justifications on demand as they need them.

Similarly, as seen in Fig. 3c, the time to compute all justifications for all
entailments in these ontologies using both blackbox and glassbox implemen-
tations of SINGLE JUST ALG as input to ALL JUST is impressive. We are no
longer solidly in second and sub-second range across the board (ontologies 7, 9
and 14 have dramatically lengthened experiment times), but for a wide range of
purposes it is quite acceptable. Again, as would be expected from the results pre-
sented in Fig. 3b, ALL JUST with SINGLE JUST ALGGlass−Box generally beat
the black box technique (in certain cases by several orders of magnitude).

Fig. 3a. Times for each reasoner to Classify Ontologies

278 A. Kalyanpur et al.

Fig. 3b. Times to Compute Single Justifications

Fig. 3c. Times to Compute All Justifications

However, for ontology 14 (MGED), the reverse is true – ALL JUST fared worse
with SINGLE JUST ALGGlass−Box than with SINGLE JUST ALGBlack−Box, and,
in any case, the time required is much greater than the corresponding time re-
quire to compute a single justification. The reason for this discrepancy is that
in general, when computing a single justification using the blackbox technique,
the reasoner only has to operate on a small fragment of the ontology. However,
in the case of the glassbox approach a satisfiability check has to be performed
on the whole ontology – when axioms are added or removed from the ontology
this means that the satisfiability check must be rerun. While this does not pose

Finding All Justifications of OWL DL Entailments 279

Table 3. Found justification statistics. Notice some very large justifications and some
entailments with high numbers of justifications. In contrast, many ontologies had rel-
atively small and few justifications.

No. of Justifications Justification Size
Onts Mean Max Mean Max
1 1.00 1 1.79 2
2 1.00 1 1.00 1
3 1.29 2 3.61 6
4 1.09 2 2.33 6
5 1.00 1 4.12 13
6 1.12 3 2.04 7
7 9.86 26 7.99 12
8 2.33 5 5.53 9
9 1.39 8 5.39 40
10 1.65 5 5.04 10
12 1.00 1 1.50 7
13 1.04 3 1.24 7
14 1.00 1 2.00 2

a problem for many of the ontologies used in these tests, the time for Pellet to
perform a satisfiability check on the MGED ontology was around 5 seconds –
with multiple satisfiability checks the overall effect was noticeable.

In summary, the rather high performance of the black box case is notable.
While typically beat by glass box justification generation, the total time generally
stayed in the sub second range – it is arguable this performance is more than
acceptable for use in ontology browsers and editors. From a pure performance
perspective, it suggests that glass box techniques might not be necessary even
as an optimization, at least in a wide range of cases. It should be noted that
these constant factors can significantly add up if one is finding justifications for
a large number of entailments (e.g., when caching a justification for each of the
entailments found during classification). However, for debugging and on demand
explanation it is clear that black box is sufficient for current ontologies, and has
the great advantage of reasoner independence.

4 Related Work

There has been a lot of recent work done in capturing justifications for incon-
sistent ontologies or unsatisfiable concepts in relatively inexpressive description
logic KBs using reasoner-dependent approaches. [10] describes a technique to
find minimal sets of axioms responsible for an entailment (in this case, minimal
inconsistent ABoxes) by labeling assertions, tracking labels through the tableau
expansion process and using the labels of the clashes to arrive at a solution. The
technique is limited to the logic ALCF . Similar ideas can be seen in [11], where
the motivation is debugging unsatisfiable concepts in the DICE terminology. [11]
formalizes the problem including the specification of terms such as the MUPS
(Minimal Unsatisfiability Preserving sub-TBox), which is the justification for the
unsatisfiability entailment. [11] also describes an algorithm, restricted to ALC
without general TBoxes, that relies on tableau saturation in order to find all

280 A. Kalyanpur et al.

the MUPS for an unsatisfiable ALC concept and later compares this approach
with a black-box implementation (in their system DION) not guaranteed to find
all MUPS in [4]. On the other hand, we focus on a much more expressive logic
OWL-DL (or SHOIN (D)), provide a general definition of justification for any
arbitrary OWL-DL entailment, present a sound, complete and highly optimized
Glass-box and Black-box solution to finding all justifications, and demonstrate
its feasibility on realistic expressive OWL-DL ontologies.

5 Conclusion

There is clearly room for further optimizations of all the algorithms presented
in this paper, e.g., using more sophisticated analytical techniques for axiom se-
lection in the ‘expand’ stage of the algorithm SINGLE JUST ALGBlack−Box. How-
ever, the overall message is clear: reasoner independent techniques for finding all
justifications for an OWL-DL entailment are practical. We believe our imple-
mentation could be easily deployed in current OWL editors to offer explanation
services that have been demonstrated to be useful [5] and are in high demand.
In our own experience, we find having justifications completely change the way
we work with ontologies for the enormously better. Indeed, we believe that no
respectable OWL environment need lack for explanation support.

References

1. Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M.: Creating
semantic web contents with Protégé-2000. IEEE Intelligent Systems (2001)

2. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop: A web
ontology editing browser. Journal of Web Semantics 4(2) (2006)

3. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.: Repairing unsatisfiable concepts in
owl ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
Springer, Heidelberg (2006)

4. Schlobach, S., Huang, C.R., Van-Harmelen, F.: Debugging incoherent terminolo-
gies. In: Journal of Automated Reasoning (JAL) (in press, 2007)

5. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. Journal of Web Semantics 3(4) (2005)

6. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description logic
satisfiability. In: International Semantic Web Conference (2003)

7. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

8. Sirin, E., Parsia, B.: Pellet system description. In: Description Logics (DL) (2004)
9. Horrocks, I.: FaCT and iFaCT. In: Description Logics (1999)

10. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms (Technical Report RR-93-20)

11. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of IJCAI 2003 (2003)

	Finding All Justifications of OWL DL Entailments
	Introduction
	Justification of Entailments

	Finding Justifications
	Computing a Single Justification
	Computing All Justifications

	Implementation and Evaluation
	Implementation Details
	Experimental Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

