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Toward Wisdom From Failure
Lessons From Neuroprotective Stroke Trials and

New Therapeutic Directions

David J. Gladstone, BSc, MD; Sandra E. Black, MD, FRCPC; Antoine M. Hakim, MD, PhD, FRCPC;
for the Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery

Background—Neuroprotective drugs for acute stroke have appeared to work in animals, only to fail when tested in
humans. With the failure of so many clinical trials, the future of neuroprotective drug development is in jeopardy.
Current hypotheses and methodologies must continue to be reevaluated, and new strategies need to be explored.

Summary of Review—In part 1, we review key challenges and complexities in translational stroke research by focusing
on the “disconnect” in the way that neuroprotective agents have traditionally been assessed in clinical trials compared
with animal models. In preclinical studies, determination of neuroprotection has relied heavily on assessment of infarct
volume measurements (instead of functional outcomes), short-term (instead of long-term) end points, transient (instead
of permanent) ischemia models, short (instead of extended) time windows for drug administration, and protection of
cerebral gray matter (instead of both gray and white matter). Clinical trials have often been limited by inappropriately
long time windows, insufficient statistical power, insensitive outcome measures, inclusion of protocol violators, failure
to target specific stroke subtypes, and failure to target the ischemic penumbra. In part 2, we explore new concepts in
ischemic pathophysiology that should encourage us also to think beyond the hyperacute phase of ischemia and consider
the design of trials that use multiagent therapy and exploit the capacity of the brain for neuroplasticity and repair.

Conclusions—By recognizing the strengths and limitations of animal models of stroke and the shortcomings of previous
clinical trials, we hope to move translational research forward for the development of new therapies for the acute and
subacute stages after stroke. (Stroke. 2002;33:2123-2136.)
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Neuroprotection for Stroke: A Fantasy
Invented by Basic Scientists?

The quest for effective stroke treatments remains an urgent
priority. A stroke occurs every 53 seconds in North
America,1 and by 2020, cerebrovascular disease is proj-
ected to become the fourth-leading burden of disease
worldwide, after heart disease, depression, and motor
vehicle collisions.2 According to the summary of historical
trends in clinical stroke trials by Kidwell et al,3 the 20th
century saw the publication of 178 controlled trials of
acute stroke therapies in the English-language literature,
yet only a few produced “positive” results: the Neurolog-
ical Institute of Neurological Disorders and Stroke
(NINDS) rt-PA trial,4 Prolyse in Acute Cerebral Throm-
boembolism (PROACT II),5 a low-molecular-weight hep-
arin trial,6 and most recently a trial of ancrod.7 The
successful translation of these “vascular approaches” from
the animal laboratory to the hospital emergency room has

demonstrated that stroke is a treatable disorder in the
hyperacute stage and has provided optimism that addi-
tional therapies to improve stroke outcome will be possible
in the future.

In contrast, neuroprotective drugs that aim to salvage
ischemic tissue, limit infarct size, prolong the time window
for reperfusion therapy, or minimize postischemic reperfu-
sion injury or inflammation have shown great promise in
preclinical testing but disappointment in clinical trials.8–10 Of
�49 neuroprotective agents studied in �114 stroke trials,
none has proven successful clinically.3 Similarly, neuropro-
tective therapy has been unsuccessful in clinical trials of head
trauma.11–14 With the failure of so many trials, some clini-
cians may ask, “Is neuroprotective stroke therapy just a
fantasy invented by basic scientists?” Will it ever play a
clinical role? The answer is unclear. It must be acknowledged
that neuroprotection may never be effective for promoting
functional recovery after brain injury in humans. However, a
lack of evidence of efficacy does not necessarily mean a lack
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of efficacy. Because of problems in basic science experiments
and in clinical trial design, the evidence against neuroprotec-
tion is not conclusive, as is discussed below.

The purpose of this article is to provide clinicians and
investigators with an up-to-date summary of the complex
issues involved in translating stroke-related research from
bench to bedside and to argue that experience from recent
trials can provide important lessons that can be translated
from the bedside back to the bench. Part 1 reviews pitfalls
that have arisen in the development of neuroprotective
therapies and reinforces recent recommendations regarding
preclinical and clinical evaluation of new drugs.15,16 Part 2
highlights emerging concepts in ischemic pathophysiology
that should encourage us to think beyond the hyperacute
phase of ischemia and consider the design of trials that use
multiagent therapy and exploit the capacity of the brain for
neuroplasticity and repair.

Part 1: Reconciling the Results of Negative
Stroke Trials

Reasons for the failure of so many neuroprotective agents in
clinical trials, despite their apparent benefit in animal (mostly
rodent) models, have been the subject of intense discussion
recently.15–31 It is becoming clear that existing animal models
of focal cerebral ischemia are an imperfect representation of
human stroke and may be relevant only to a minority of
human stroke types.32 Neff33 reminds us that the lissence-
phalic brain of a rat is about the size of a lacunar infarct in
humans, and some humans have infarcts the size of an entire
rat. In addition, despite significant similarities between the
rodent and human genomes, the differences that do exist are
sufficient to remind us that conclusions reached regarding
genomic and proteomic characteristics in rodent studies may
not apply to human stroke.

Neuroanatomical, pathophysiological, pharmacokinetic,
and genetic differences between rodents and humans notwith-
standing, there has been a fundamental “disconnect” in the
way that the efficacy of putative neuroprotective agents has
been assessed in animal studies compared with clinical trials.
The dramatic rise in the number of stroke trials over the past
several decades has been accompanied by an improving, yet
still highly variable, quality in study design.3,34 Some trials
could not have been expected to succeed because of concep-
tual or methodological flaws. Perhaps we have abandoned
efficacious treatments prematurely on the basis of results of
flawed trials. Other trials have been criticized, in retrospect,
for proceeding on the basis of insufficient evidence of
efficacy in preclinical studies (eg, only 50% of published
animal studies were in favor of nimodipine).35 Other studies,
still, have raised safety concerns because of drug toxicity, a
danger of accelerating research by combining phase II and
phase III trials.36–38

In this section, we highlight 9 pitfalls that have arisen in
trying to extrapolate from animals to humans in the investi-
gation of neuroprotective therapy. By understanding how
animal models may be made more relevant to human stroke
and how the design of clinical trials may be improved, we can
move forward translational research for the development of
stroke therapies.

Pitfall 1: Preclinical Studies Have Used Very Short
Time Windows for Drug Administration, Whereas
Clinical Trials Allow Longer Time Windows
Most neuroprotective studies in animals have relied on drug
administration either before the ischemic insult or very soon
after the onset of ischemia.39,40 In contrast, time windows for
entry in acute stroke neuroprotective trials have been longer
and highly variable; in studies published between 1995 and
1999, the median time to entry was12 hours (range, 4 hours
to 12 days), with a median time to treatment of 14 hours.3

None of the published neuroprotective trials has used a
3-hour window.3,16 Treatment within 3 hours would be
expected to have a greater chance of efficacy because more
patients would be expected to have potentially reversible
ischemic tissue.40–42 The effects of neuroprotective agents in
the laboratory are even more time dependent than
thrombolytics, leading Jonas et al19 to summarize the failure
of neuroprotective trials as a matter of “too little, too late.”
Certain “failed” drugs could potentially have clinical value if
given at earlier time periods (within 2 hours after ischemia or
prophylactically).19

On the other hand, Baron et al43,44 and Fisher et al45

emphasize that we need not stipulate a fixed time limit for
neuroprotective therapy because the duration of the ischemic
penumbra is highly individualized. For example, PET studies
suggest that the window of opportunity may be extended in
some patients46; in 1 study, about one third of patients still
had evidence of penumbra when assessed at 5 to 18 hours
(mean, 10 hours) after stroke onset.44 The PROACT II results
further support the fact that salvageable tissue is present up to
6 hours after onset in some patients.5 The rate of progression
of the penumbra from reversible to irreversible ischemic
injury is dependent on many factors and may be accelerated
in the presence of poor collateral circulation, hyperglycemia,
and other exacerbating factors.45

Putative neuroprotective drugs should not be advanced into
clinical stroke trials until preclinical studies have investigated
their effects when administered many hours, not minutes,
after ischemia. Clinical trialists must aim for the shortest
possible door-to-needle times, particularly given the tendency
that physicians have of “waiting until the last minute” of the
time window to treat, regardless of when the patient arrives at
hospital.47 The NINDS rt-PA study showed that enrollment
within 3 hours can be achieved, although 17 324 patients
were screened to recruit the 624 subjects eligible for the
study, with most excluded because of the time window.4 With
increasing public awareness of this issue and improvements
in regional organization of stroke services and stroke teams,
response times are improving, and at some centers, �25% of
patients are reaching hospital within 3 hours.48 Clinical trial
protocols should enforce benchmarks for door-to-needle
times and stratify patients by time of treatment with appro-
priate power calculations. If the long time windows are a
major reason for the lack of efficacy of neuroprotective
therapy in human trials, then the investigation of agents given
prophylactically (eg, before surgical procedures with an
increased risk of ischemic cerebrovascular events)49–52 or by
paramedics in the field (a phase I trial is already underway)
may provide the necessary “proof-of-principle” data that are
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much needed as long as a strict target population can be
defined by preplanned posthoc analysis.

Pitfall 2: Preclinical Studies Target the Ischemic
Penumbra, Whereas Clinical Trials Do Not
As Fisher,45 Baron,53 and others54 have emphasized, the target
of current neuroprotective therapy is the penumbra, ischemic
tissue that is functionally impaired but whose damage is
potentially reversible.55,56 If reversible ischemic tissue is not
present at the time of treatment, then neuroprotective therapy
cannot be expected to work. Perhaps we have discarded some
agents prematurely because clinical trials have not been
selective enough in targeting patients with evidence of
penumbra. Future trials may need to use stricter entry criteria
to target not just cortical strokes but specifically those with a
sufficient volume of penumbra.16,45

Patients with potentially salvageable penumbra tissue may
be identified by functional neuroimaging.44,45,53,57–59 Accord-
ing to PET studies by Heiss et al57 performed in patients
within 3 hours of acute stroke, the penumbra made up 18%
(range, 8% to 34%) of the final infarct volume; 70% (range,
51% to 92%) was already critically hypoperfused, and 12% (2
to 25%) was sufficiently perfused. Although such observa-
tions imply that on average neuroprotective therapy may be
able to salvage only a relatively small fraction of an infarct
(supporting the rationale for combination reperfusion-
neuroprotective studies), some patients can be identified with
larger volumes of penumbra.46,60 A recent PET study sug-
gested that 45% of the final infarct (and in some patients, up
to 85%) remained viable for up to 12 hours.60,61

With MRI, a perfusion-diffusion mismatch (perfusion ab-
normality greater than diffusion abnormality) can be identi-
fied in �70% of patients studied within 6 hours of stroke
onset and may indicate salvageable tissue.62,63 Some trials are
now using MRI criteria to improve patient selection64 (eg, a
trial of sipatrigine currently underway requires a perfusion-
diffusion mismatch at baseline of at least 30%65). Dynamic
CT perfusion imaging also provides promise as a method of
acute stroke imaging that may allow rapid identification of
tissue compartments perfused within predetermined blood
flow thresholds.66

In the absence of perfusion imaging, a mismatch between
the clinical deficit and imaging findings has been suggested
as a way to optimize patient selection (ie, severe clinical
deficit with limited early lesion on diffusion-weighted MRI
or CT).54 A prediction formula that incorporates the time
elapsed, National Institutes of Health Stroke Scale (NIHSS)
score, and diffusion-weighted MRI lesion has recently been
validated.67 The Alberta Stroke Program Early CT Score, a
10-point score quantifying the signs of early infarction, also
aims to improve patient selection.68,69

Therefore, in future trials, there should be a major effort to
improve patient selection through the use of imaging criteria,
in combination with other descriptors, (1) to select candidates
who are expected to benefit from treatment, ie, those who
have perfusion abnormality greater than diffusion abnormal-
ity, and (2) to exclude inappropriate patients, ie, those with
lacunes or large infarcts with no perfusion-diffusion mis-
match.44,54,70,71 If imaging analysis cannot be performed

online in the acute stage in time for decision making, the
scans should be analyzed by prespecified criteria as soon as
possible to select the target population; patients with no
evidence of penumbra posthoc should then be excluded from
an efficacy analysis.

Pitfall 3: Preclinical Studies Have Demonstrated
Protection of Gray Matter, Whereas Clinical
Trials Frequently Enroll Patients Without
Specifying Location of Damage
A particular concern is that preclinical neuroprotective stud-
ies have concentrated almost exclusively on the protection of
cerebral gray matter from ischemic injury; the effects of
neuroprotective therapy on cerebral white matter tracts are
largely unknown.23,72 The human brain contains a greater
proportion of white matter compared with the rat brain,72 and
the failure of some neuroprotective trials may be due to an
inability of certain agents to protect against axonal dam-
age.23,32,72 Approximately one third of human strokes are
small-vessel lacunes, yet adequate animal models of lacunar
stroke are lacking.32,72 Until such data are available, it may
not be reasonable to expect lacunes or subcortical white
matter infarcts to respond to neuroprotective therapy. The
pathophysiology of ischemic injury in white matter is differ-
ent than in gray matter, and treatment targets likely differ as
well.23,72,73 N-methyl-D-aspartate (NMDA) receptors, for ex-
ample, are preferentially located at synapses rather than
along axons.74,75 Blockade of sodium channels, calcium, or
alpha-amino-3-hydroxy-5-methyl-4-isoxasole-propionic acid
(AMPA) receptors (rather than blockade of glutamate-
mediated excitotoxicity) has been hypothesized to be more
important for white-matter protection.73,74 The NMDA antag-
onist MK-801 reduced cortical gray-matter injury but not the
amount of axonal damage after middle cerebral artery occlu-
sion in cats.76 Interestingly, however, a recent study showed
that axonal and myelin damage could be reduced in rats with
the NMDA antagonist CNS 1102 (Cerestat).74 More studies
like this that take into account both gray-matter and white-
matter pathophysiology are needed if we are to achieve “total
brain protection.”72 For now, only cortically based strokes
should be enrolled in neuroprotective trials, unless the agent
being tested is specifically designed to protect white matter
also.16 Diffusion-weighted MRI is beginning to be used in
some trials to select patients with cortical involvement and
exclude those with lacunar infarction.

Pitfall 4: Optimal Duration of Neuroprotectant
Administration Is Unknown
In recent trials, drug administration has varied from a single
injection to continuous infusions to multiple doses lasting up
to 3 months after stroke.77 Because acute treatment may only
delay but not prevent cell death, Dyker and Lees77 advocate
continuing neuroprotective therapy for at least the first 72
hours, if not longer. Prolonged elevation of excitatory amino
acids after stroke in some patients78,79 and MR spectroscopy
evidence suggesting ongoing neuronal loss over many days
after stroke80 support the concept of extended treatment. In
rats, longer-lasting neuroprotection was achieved when a
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glutamate antagonist was given for 1 week compared with
administration in only the acute phase.31

However, certain drugs may exert different or even oppo-
site actions, depending on the timing of administration.
NMDA antagonists, benzodiazepines, or barbiturates may be
beneficial if given early after ischemia but may have detri-
mental effects if given at later times.81–84 For example,
GABA-ergic agonists may be neuroprotective when given
acutely (a trial of diazepam within the first 3 days after stroke
is currently underway85), yet may impair recovery if admin-
istered at later stages after stroke.86 Additionally, neurite
outgrowth requires both NMDA and voltage-sensitive cal-
cium channel activation.87 Because neurite outgrowth is
likely an essential process during recovery, patients main-
tained on NMDA antagonists and voltage-sensitive calcium
channel blockers may suffer impaired recovery. The time
point at which the therapeutic transition from neuroprotection
to repair occurs merits further study.

Pitfall 5: Preclinical Studies Have Relied on Infarct
Size to Judge Therapeutic Efficacy, Whereas Clinical
Trials Rely on Behavioral Outcomes
Traditionally, animal studies have relied on reduction in
infarct size within the first few hours after stroke as the
primary measure of therapeutic efficacy. In contrast, clinical
trials judge efficacy by using neurological and/or functional
outcomes, not infarct volume, most often at 3 months after
stroke.3,34 As an example, preclinical studies of the antineu-
trophil adhesion agent Hu23F2G (LeukArrest) and the gly-
cine antagonist GV150526 (gabestinel; Glycine Antagonist in
Neuroprotection study)88 assessed infarct volume within
hours of occlusion, while patients were evaluated on day 28
or 90, respectively, for neurological and functional outcomes.
Such discrepancies suggest that reliance on infarct size
measurement alone in animals can be misleading as an
indicator of therapeutic efficacy.89,90 Histological end points
cannot tell whether surviving neurons are functional or
dysfunctional or will go on to die in a delayed fashion, and
they are less predictive of long-term histology than early
behavioral assessments.90 Moreover, some compounds [eg,
basic fibroblast growth factor (bFGF), osteogenic protein-1]
have been associated with functional improvement without
affecting infarct size in animals, suggesting that they act by
other mechanisms, eg, enhancement of neural repair, rather than
by neuroprotection.91,92

Therefore, assessment of therapeutic efficacy in preclinical
studies should require, in addition to infarct size, demonstra-
tion of benefit on functional measures of motor, sensory, or
cognitive deficits.89,93 Examples include tests of limb placing,
beam walking, grid walking, Rotorod performance, grip
strength, balance beam inclined plane performance, prehen-
sile traction, and cognition (eg, Morris water maze, radial
maze, 1-trial passive avoidance, T-maze retention test).89,90,94

These measurements are not equivalent in their reliability or
predictive value. For this reason, it is better to use a battery of
appropriate tests rather than a single measure. The staircase
test has been recommended because of its greater sensitivity
in detecting persisting deficits in forepaw dexterity months
after ischemia, unlike simpler sensorimotor tasks on which

animals can recover quickly.89,90 The bilateral sticky tape test
may be a useful indicator of poststroke neglect.94 Further
development, refinement, and standardization of reliable
functional assessments will continue to be a priority.89,90,94

Pitfall 6: Preclinical Studies Have Relied on Early
Outcomes, Whereas Clinical Trials Rely on
Late Assessments
Preclinical studies of neuroprotective drugs have rarely
shown that early therapeutic benefit, when it is achieved, has
a lasting impact. That is, of studies that have explored the
long-term results when a drug showed early favorable influ-
ence on histological outcome, most have concluded that the
early reduction in infarct volume does not persist if one
continues to observe the animal; ie, most therapeutic attempts
delay but do not arrest cell death.26,90,95 For example, the
NMDA antagonist MK-801 appeared neuroprotective at day
3, but at 4 weeks, there was no significant difference in infarct
size.95 Similarly, the cyclin-dependant kinase inhibitor fla-
vopiridol, AMPA antagonist NBQX, and N-type calcium
channel antagonist SNX-111 all appeared neuroprotective
histologically when assessed at 1 week, but this was not
sustained at 4 weeks.96,97

Such findings demonstrate that reliance on early end points
is not sufficient and can be misleading; assessments at
extended time points after ischemia are necessary to deter-
mine whether there is evidence of sustained neuroprotec-
tion.15,26,95 Indeed, histopathological studies in animals show
that infarcts evolve over time and may take many days to
months to acquire their final appearance.95,98,99 Late conse-
quences of ischemia (eg, inflammation) or slow death mech-
anisms that are unleashed (eg, apoptosis) may in part explain
such findings. Thus, if single-dose neuroprotective treatment
only postpones the evolution of an infarct, perhaps multidose,
extended treatments or combination therapy will be required
for optimal neuroprotection (see below).77,100

Pitfall 7: Experimental Stroke Models Are
Homogeneous, Whereas Human Stroke
Is Heterogeneous
Another problem confounding the evaluation of neuroprotec-
tive therapy is the tremendous variability of human stroke
types, recovery patterns, and associated clinical factors.
Preclinical studies usually involve middle cerebral artery
occlusion in young, healthy animals under anesthesia with
tightly controlled temperature, blood pressure, oxygenation,
and glucose levels (“interventional homeostasis”54).101 In
contrast, clinical trials often permit entry of multiple stroke
types (cortical, mixed cortical-subcortical, pure subcortical
white-matter strokes, and in some neuroprotective trials, both
ischemic and hemorrhagic stroke), and there is a lack of
standardized control over physiological parameters.54 Unlike
the animal model, stroke patients typically have a multitude
of associated variables that may affect prognosis,102–104 in-
cluding old age, comorbidities, polypharmacy, recurrent is-
chemia, poor collateral circulation, or prior strokes. Hyper-
glycemia and other metabolic prognostic markers105 may be
particularly important variables to control or adjust for in
future trials.106–108
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Instead of viewing stroke as a single disease entity, future
trials should more appropriately be directed only to specific
homogeneous stroke subtypes. Currently, of 178 published acute
stroke trials, only 2% specified a target stroke mechanism, and
35% specified a specific stroke territory.3 Although a lack of
specificity regarding stroke types in trial entry criteria may be
appropriate for thrombolysis (where the pathophysiologic target,
ie, clot, is similar regardless of stroke location, perhaps with the
exception of lacunes), this may not be appropriate in neuropro-
tective trials in which efficacy in some patients (eg, cortical
stroke), if present, could be diluted by the inclusion of other
stroke types (eg, subcortical strokes). Indeed, posthoc analysis of
some neuroprotective trials has suggested that a benefit may
exist for certain subgroups, eg, patients with large cortical stroke
[total anterior circulation stroke in the Clomethiazole Acute
Stroke Study (CLASS)].109,110 A follow-up study specifically
targeting these patients failed to validate this hypothesis, how-
ever, but it set a good example for how we should approach
future studies.111

Pitfall 8: Choice of Outcome Measures Can
Determine the Success of a Clinical Trial More
Than Actual Drug Efficacy
The choice of outcome measures in clinical trials is critical to
the success or failure of a putative therapeutic interven-
tion.16,34,54 However, there is a lack of agreement about the
most appropriate measures that should be used and about
what constitutes “recovery” or “favorable outcome.”34,112–114

For example, on the Barthel Index, cutoff points anywhere
between 50 to 95 of 100 have been used to define recovery.115

Kidwell et al3 showed that less than half of published acute
stroke trials used a validated outcome measure and that only
17% had a prespecified primary end point. In the review of 51
phase II and III acute stroke trials by Duncan et al,34 there
were 14 different impairment level measures, 11 different
activity (disability) measures, 8 miscellaneous scales, and
only 1 quality-of-life measure. If disability scales are used
(eg, Barthel Index, modified Rankin Scale), more patients
will be considered recovered; if impairment scales are used
(eg, NIHSS) fewer patients will be considered recovered.34

Table 1 shows how one’s impression of recovery is directly
dependent on the type of outcome measure chosen.

This variability in outcome assessment has made the stroke
literature appear confusing and at times conflicting. Indeed,
much of the controversy regarding the thrombolytic trials has
resulted from inconsistency in the definition of recovery and
differences in end points used among the various trials. In the
NINDS study,4 the benefit of tPA at 24 hours did not reach
statistical significance on the prespecified NIHSS end point.
However, posthoc analysis showed that if recovery is instead
defined as an NIHSS score of 0 to 2, a striking difference is
found: 24% of tPA-treated patients versus 5% of placebo-
treated patients are recovered at 24 hours.116 Moreover, the
24-hour outcome results would have been statistically signif-
icant on the predefined primary end point if the recently
published modified version of the NIHSS had been used
instead.117 Furthermore, in the European Cooperative Acute
Stroke Study (ECASS II), which used “favorable outcome” as
defined in the NINDS study (modified Rankin scale score of
0 or 1), the result was statistically negative.118 However,
when a different dichotomization that classifies outcome in
terms of self-care independence (Rankin score of 0 to 2) was
used, the study was positive.118

Thus, greater consensus and standardization in outcome
measures for acute stroke studies are needed, and this would
facilitate meta-analysis. It is recommended that future effi-
cacy trials incorporate outcome assessments that span the
spectrum of stroke recovery, ie, impairment, activity limita-
tions (disability), and participation restrictions (handicap).34

As suggested by Duncan et al,34 a single scale likely is
inadequate to capture recovery, and dichotomized outcomes
should be avoided; inclusion of extended/instrumental activ-
ities of daily living assessments, advanced mobility measures,
and quality-of-life assessments is recommended.34 Although
it may be appropriate in 3-hour thrombolysis trials to aim for
neurological cures (eg, NIHSS score 0 or 1) or functional
recovery (eg, modified Rankin score of 0 or 1), in trials of
neuroprotective agents or longer time windows, our expecta-
tions should be different. Grotta40 reminds us that we should
be aiming for neuronal protection, not neuronal “reincarna-
tion.” Therapeutic efficacy will likely be of a smaller mag-
nitude, one that may be captured only by using less stringent
criteria for recovery (eg, NIHSS �7 or modified Rankin
score of 0 to 2), or by measuring shifts in disability states.118a

A newer end point, neurological deterioration in hospital, has
been proposed for traumatic brain injury trials.119

Different measures of recovery may be necessary, depend-
ing on the severity of the stroke population under investiga-
tion (ie, mild, moderate, or severe), the particular type of
treatment being studied, or the specific neurological function
targeted by the intervention. For example, in a recent trial of
stem cell implantation for hemiparetic stroke patients,120 the
global neurologic deficit scales used (NIHSS and European
Stroke Scale) would not be expected to capture meaningful
change in motor impairment; instead, a motor-specific im-
pairment scale such as the Fugl-Meyer Stroke Assess-
ment121,122 might be more revealing given the location of the
target stroke in the subcortical basal ganglia region. As we
learn the limitations of existing scales, newer stroke-specific

TABLE 1. Influence of Outcome Measures on the Perception
of Recovery*

Outcome
Measure

Percent of Patients
Considered

Recovered,† %

Rankin 0–2 54

Rankin 0 or 1 24

Barthel �90 57

Barthel �75 40–50‡

Barthel �60 49–70‡

NIHSS 0 or 1 45

Fugl-Meyer �90 37

SF-36–PFI �75 28

SF-36–PFI indicates Short Form 36, physical functioning index.
*Data from the Kansas City Stroke Study (n�459), Duncan et al.113

†At 6 months after stroke.
‡From Duncan et al.34
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indexes incorporating quality-of-life measurements are being
developed; eg, the Stroke Impact Scale123 and SS-QOL124 are
intended to provide more comprehensive and more meaning-
ful outcomes from the patient’s perspective.124 Inclusion of
specific scales for aphasia, neglect, or apraxia may reveal
benefits in subgroups of patients that are not apparent on
global deficit rating scales. The concept of separate “motor-
Rankin” and “cognitive-Rankin” scales has been advocat-
ed.125 Stratification of patients in clinical trials by initial
stroke severity is important. The Orpington prognostic scale,
recently shown to have excellent predictive value for stroke
recovery, may have value for stratifying patients in treatment
trials.126 The optimal time for outcome assessment is debat-
able, 3 months after stroke (or earlier) according to some16

and 6 months according to others.34 In some studies, even if
a therapeutic effect on final outcome (ie, at 3 or 6 months)
cannot be demonstrated, it may be desirable to detect whether
the intervention was able to accelerate the rate of recovery.
Comparison of change scores (the difference between base-
line and final scores for each subject) may have the advantage
of minimizing interindividual variability in stroke severity
and recovery if reliable outcome measures are used.

Pitfall 9: Small Trials Are Trying to Answer
Questions That Only Large Trials Can Answer
Have some stroke trials been negative because of a lack of
efficacy or because of a lack of statistical power? To detect
efficacy of neuroprotective compounds, which are likely to
have small rather than large treatment effects, we need large
trials (thousands of patients, according to some experts) to
prevent type 2 statistical error.54,127 The mean sample size of
neuroprotective trials has been 186 (median, 69).3 Only 2% of
acute stroke efficacy trials have had sufficient statistical
power to demonstrate a 5% absolute clinical benefit, and only
7% of trials have been powered to detect a 10% benefit.3 The
use of “adaptive randomization” in future trials may reduce
sample size requirements.128 This Bayesian statistical tech-
nique, being used in a neuroprotective trial currently under-
way,129 aims to maximize the number of patients assigned to
the dose(s) that appear most efficacious; outcome data from
each patient provides feedback to the randomization com-
puter as the trial proceeds to optimize the chance that the
correct drug dose will be studied.54

Part 2: New Therapeutic Frontiers
Most trials to date have attempted to modulate the early
metabolic events in ischemia, particularly those involving
glutamate activation of the calcium cascade. With a growing
understanding of the pathophysiology of ischemic brain
injury in the acute phase of stroke, as well as progress in
understanding the mechanisms that underlie functional recov-
ery in the subacute stages, newer therapeutic strategies are
emerging.81,130–134 The concept of a single narrow time
window for intervention is being replaced by the potential for
multiple overlapping therapeutic windows and the possibility
of multiagent chemotherapy “cocktails” administered at se-
lected time periods after stroke (Table 2).130 In this section,
we discuss a few selected examples of strategies that may

form the basis for future trials, either alone or in combination
with traditional neuroprotective approaches.

Delayed Neuronal Death After Ischemia: A Role
for Antiapoptotic Therapy?
Observations of delayed neuronal death after ischemia have
suggested the possibility of an “apoptosis-necrosis” contin-
uum. Depending on the degree and duration of ischemia,
brain cells may die by an ionic cascade, rapidly (necrotic cell
death), or by a molecular cascade, slowly (apoptotic cell
death).131,132,135–137 At one end of the spectrum, severe focal
ischemia produces infarction through excitotoxic necrosis
usually evident in rats by 6 hours and maximal at 24 hours. At
the other end of the spectrum, when ischemia is mild and
short lasting, the resulting cell death may be apoptotic; ie,
neurons appear to be spared initially but later go on to die
slowly.138 For example, after transient focal ischemia in rats
Du et al138 found no infarction at 24 hours; however, by 3
days, a small infarct had developed, and remarkably by 14
days, the infarct had progressed to the same volume as that
induced by severe ischemia. Although excitotoxic necrosis is
considered the predominant mechanism of ischemic cell

TABLE 2. Possible Stroke Treatment Options for the Future:
Evolving Time Windows and Combination Therapy Approaches

Prestroke

Prophylactic neuroprotection for high-risk patients?

Minutes to hours after stroke

Acute reperfusion therapies

Intravenous thrombolysis

Intra-arterial thrombolysis

Combined intravenous/intra-arterial thrombolysis

Mechanical reperfusion techniques

Minutes, hours, or days after stroke

Neuroprotective therapy: chemotherapy cocktail of agents targeting
different aspects of the ischemic cascade, perhaps administered
sequentially at various time points after stroke

Antinecrotic agents

Antiadhesion/anti-inflammatory agents

Antiapoptotic agents

Combined thrombolysis and neuroprotective therapy

Tight control of glucose, perhaps insulin administration

Tight control of temperature, perhaps antipyretic administration, perhaps
hypothermia

Days, weeks, or months after stroke

Restorative treatments targeting specific deficits, eg, gait retraining, arm
function

Pharmacotherapy coupled closely with rehabilitation (rehabilitation
pharmacology)?

Growth factors coupled with rehabilitation?

Stem cell therapy coupled with rehabilitation?

Gene therapy?

Ongoing

Avoidance of “detrimental” drugs

Secondary stroke prevention therapies, including combination
antithrombotic agents
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death in most cases, apoptosis may occur in penumbral
neurons that escape excitotoxic death.132 Importantly, if
necrosis is attenuated by therapy (ie, by reperfusion or
antiexcitotoxic agents), then apoptosis may be unmasked or
even promoted.132,136,138,139

For these reasons, it is short-sighted to continue only with
antinecrosis therapies without taking into account the role
that apoptosis may play in ischemic cell death. Antiapoptotic
agents (eg, cycloheximide, caspase inhibitors) have shown
neuroprotective effects in animals in terms of both infarct
volume reduction and functional improvement. Furthermore,
the neuroprotection appears long lasting.140,141 The therapeu-
tic window for antiapoptotic neuroprotection is longer than
that for most other neuroprotective agents (eg, 9 hours for the
caspase inhibitor ZVAD-fmk and zDEVD-fmk after brief
ischemia and up to 12 hours if combined with an NMDA
antagonist).142 The role of apoptosis in human stroke, how-
ever, and the clinical relevance of antiapoptotic therapy are
not yet known and await further investigation. If further
studies confirm the occurrence of apoptosis in the penumbra
region, then cerebral blood flow measurement may become a
clinically accessible surrogate marker for this outcome.

The Need for Polytherapy
On the basis of the complexity of events in cerebral ischemia
and the disappointing results from single-agent trials, it may
not be realistic to expect that 1 neuroprotective drug will have
lasting benefit. Rather, effective neuroprotection may require
“rational” polytherapy that combines drugs with different
mechanisms of action, perhaps administered at different
poststroke intervals, to maximize efficacy and/or extend the
window for reperfusion, minimize reperfusion injury or
hemorrhage, or inhibit delayed cell death.16,130,143,144 Further-
more, because the failure of several neuroprotective trials has
been attributed to dose-limiting toxicity,145 combination ther-
apy may permit lower doses of each agent and minimize
adverse effects. Combinations with nonpharmacological
(physiological) neuroprotective strategies such as hypother-
mia, insulin, and blood pressure control should also be
subjected to clinical trials.103,146

Combined thrombolysis-neuroprotective approaches have
shown promise in animal studies and are beginning to be
investigated in clinical trials. For example, synergistic effects
have been demonstrated in animals when thrombolysis is
combined with citicoline,147 an AMPA antagonist,148 an
NMDA antagonist,149 or other agents.150,151 Administration of
antileukocytic adhesion antibodies has been shown to extend
the therapeutic window for thrombolysis.152,153 Recently, 2
trials have demonstrated the feasibility and safety of intrave-
nous tPA treatment followed by neuroprotectant administra-
tion: the CLASS-T trial of clomethiazole154 and a study of
lubeluzole.155

In animals, synergy has been demonstrated by the combi-
nation of 2 neuroprotective agents with different actions;
some examples include the NMDA antagonist MK-801 in
combination with a GABA agonist,156–158 a free radical
scavenger,159 a calcium antagonist,160 citicoline,161 or
bFGF.162 Similarly, synergy has been observed with the
combination of the antioxidant tirilazad and magne-

sium,163,164 the combination of 2 different antioxidants,165 and
citicoline combined with bFGF.166

Synergistic effects on infarct size and therapeutic window
have also been found in animals through the use of antiexci-
totoxic agents in combination with antiapoptotic agents, eg,
the NMDA antagonist dextrorphan plus the protein synthesis
inhibitor cyclohexamide,167 or MK 801 with the caspase
inhibitor ZVAD-fmk.168 Caspase inhibitors given with bFGF
extended the therapeutic window and lowered the required
doses for neuroprotection.169

Beyond Neuroprotection: Exploiting the Repair
Mechanisms of the Brain
The poststroke recovery period (days, weeks, and months
after stroke) represents another target for more active thera-
peutic development. Our preoccupation with hyperacute and
acute intervention, while critically important, should not lead
us to neglect the testing of “restorative” interventions that
might enhance recovery in the subacute and chronic stages
after stroke.81,170 Unlike neuroprotective therapy that targets
ischemic tissue and aims to limit infarct size, “recovery-
enhancing drugs” and other novel interventions for stroke aim
to promote functional recovery after a completed stroke by
stimulating repair mechanisms.

The Changing Milieu of the Brain After Stroke
Within minutes of ischemia, a loss of dendritic spines can be
observed at excitatory synapses; reestablishment of dendritic
spine synapses in surviving neurons can occur rapidly and
represents a potential substrate for functional recovery.171

Ischemic cortical injury induces the expression of growth
factors in peri-infarct regions, and behavioral recovery is
accompanied by increased dendritic branching and synapto-
genesis that peaks 2 to 4 weeks after stroke in the rat.172,173

Mechanisms of neuroplasticity postulated to underlie recov-
ery include unmasking of latent connections, redundancy that
allows recruitment of alternate parallel pathways to take over
lost functions, axonal sprouting from surviving neurons with
formation of new synapses, and possibly even
neurogenesis.134,174–176a

Intracisternal administration of bFGF beginning 24 hours
after stroke or osteogenic protein-1 beginning 3 days after
stroke promoted recovery in animals without affecting infarct
size and stimulated new neuronal sprouting and synapse
formation.91,92,177,178 Clinical trials of bFGF administered
within 6 hours have been underway, but 1 trial was termi-
nated early because of safety concerns.179,180

Proteins that are normally expressed in the developing
brain and suppressed in the adult brain become upregulated in
response to ischemia; stroke “recapitulates ontogeny,” as
summarized by Cramer and Chopp.181 Cell-cycle genes are
re-expressed in response to ischemia; ie, neurons are acti-
vated to “divide,” but they are hard wired not to. Activation
of the cell cycle cascade results in cell death, and interrupting
this cascade results in cell survival.182 This may be another
fruitful therapeutic avenue in ischemia. Stem cell therapy is
being investigated for enhancement of stroke recovery. There
are suggestions in the literature that bone marrow stromal
cells or umbilical cord blood cells injected intravenously or
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intra-arterially in rats can migrate toward the infarct, stimu-
late growth factors, and promote functional recovery.183–185

Recently, human experimentation has begun with a phase I
trial of transplantation of cultured neuronal cells into basal
ganglia infarcts in stroke patients.120 A great deal more
animal work is needed to provide a firmer basis for
intervention.

Remapping and Rehabilitation
Cortical reorganization after stroke is promoted by rehabili-
tation and an enriched environment.134,186,187 Nudo et al188,189

showed that in monkeys who do not receive rehabilitative
training after a small focal injury in the hand motor cortical
region, the surrounding intact cortical representation under-
goes shrinkage; however, with repetitive training in the form
of motor skill acquisition, behavioral recovery is promoted,
and the cortical hand representation is maintained or ex-
panded. Thus, physical therapy may derive its effectiveness
from “teaching” the brain to learn. Improved recovery in
humans may be achieved with increased intensity of rehabil-
itation (more hours and greater frequency of therapy).190 Such
dose-response effects suggest the concept that “more is
better” applies to stroke recovery. One intensive physical
therapy regimen that is gaining popularity is “forced use” or
constraint-induced movement therapy, which can be applied
if the weak arm has enough strength to at least move against
gravity.191 In this protocol, the unaffected arm is constrained
in a sling, forcing the patient to use the affected arm as much
as possible in meaningful daily activities. The aim is to
minimize the development of learned helplessness resulting
from overreliance on the “good arm.” Based on reported
success in chronic stroke patients, this therapy is now under
investigation in multicenter trials as a rehabilitation interven-
tion in the earlier stages after stroke. Bilateral arm use
assisted by passive movement may enhance activation in the
peri-infarct region of a stroke192 and may have a role in early
rehabilitation. Body weight–supported treadmill training is a
promising technique being investigated to promote recovery
of ambulation after stroke.193

Pharmacological Manipulation After Stroke
Recovery after stroke may also be modulated pharmacolog-
ically.81,178,194–196 Accumulating evidence suggests that the
recovery process is dynamic and vulnerable to neurotransmit-
ter modulation.82 For example, pharmacological studies in
animals have emphasized the importance of central noradren-
ergic transmission in mediating some forms of recovery after
focal cortical injury. Drugs augmenting noradrenergic activ-
ity (eg, dextroamphetamine) enhance functional recovery
when coupled with symptom-relevant experience, whereas
drugs decreasing noradrenergic activity impair recovery and
can reinstate deficits after recovery has taken place.197–200

(For a review of additional studies, see Reference 170.)
Similar findings have been demonstrated for other classes of
drugs and may relate to their ability to facilitate (or impair)
long-term potentiation.82,201 Histologically, dextroamphet-
amine administration after cortical infarction in rats has been
associated with upregulation of neural sprouting and synap-
togenesis in the peri-infarct cortex and contralesional cortex,
correlating with behavioral recovery.202,203 In animal models,

chronic amphetamine administration, coupled with another
stimulus, has been shown to increase cortical responsiveness
possibly through upregulation of CREB, a protein transcrip-
tion factor, and induction of genes mediating other molecular
changes.204 Experiments from Leonardo Cohen’s laboratory
investigating the effects of various drugs on cortical plasticity
have shown that dextroamphetamine administration facili-
tates the induction, magnitude, and retention of use-
dependent plasticity in humans during performance of a
motor training task.205

The concept of rehabilitation pharmacology, which dates
back �20 years,206 proposes that conventional physical,
occupational, or speech/language therapy might be aug-
mented if coupled with pharmacotherapy to enhance activity-
dependent plasticity.207 On the basis of small clinical studies
showing some promise,208–210 we are conducting a clinical
trial in Canada to investigate the effects on motor recovery of
dextroamphetamine versus placebo coupled with physiother-
apy after hemiparetic stroke,211 and in the United States, a
multicenter trial of amphetamine-facilitated recovery is un-
derway. A recently published study, however, showed no
benefit of amphetamine on motor recovery in a randomized,
controlled trial of 36 patients treated with intermittent doses
of drug coupled with physical therapy beginning 5 to 10 days
after stroke.212 However, racemic amphetamine 10 mg was
used instead of dextroamphetamine as in previous studies,
and their patients were older than in previous studies (average
age, 80 years). Stroke type and neuroimaging characteristics
that might influence recovery or treatment response (eg,
lesion size, location) were not reported, and patients with
moderate hemiparesis were not analyzed separately in com-
parison to those with severe hemiparesis. The effects of
dextroamphetamine coupled with speech/language therapy
are also being investigated in ongoing studies by Walker-
Batson et al213–215 and have shown some promise for enhanc-
ing aphasia recovery. Trials of other noradrenergic agonists
(methylphenidate, L-DOPS), levodopa, and fluoxetine have
been conducted recently and provide further proof of concept
for the strategy of poststroke rehabilitation pharmacotherapy.216–219

Goldstein et al195,220,221 have drawn attention to the obser-
vation that several drugs shown to be detrimental in the
laboratory are commonly prescribed to hospitalized patients
after stroke and head trauma and may have similar detrimen-
tal effects on recovery in humans. These include the antihy-
pertensives clonidine and prazosin (�-noradrenergic antago-
nists), haloperidol and other dopamine antagonists,
benzodiazepines, phenytoin, and phenobarbital.194,195 Retro-
spective reports suggest that exposure to such drugs is
associated with poorer motor recovery, independent of the
severity of initial deficit or comorbid conditions.222,223 Apha-
sia recovery may also be impaired by certain drugs.206,224 In
a prospective study of chronic stroke patients, administration
of increasing doses of a benzodiazepine reinstated previously
recovered focal deficits (hemiparesis, aphasia, neglect).86

Clinical rehabilitation trials are promising for many rea-
sons and may avoid some of the methodological obstacles
encountered in many acute stroke trials.125 (Table 3) Preclin-
ical studies of restorative therapies necessarily rely more on
behavioral outcomes and extended follow-up periods (weeks
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after stroke), making these animal models potentially more
relevant to the human condition than models of acute neuro-
protective therapy. Without the constraints of a narrow time
window, effective restorative therapies may be able to reach
many more patients than would qualify for acute treatment.
The challenge remains, however, to design these trials well,
select appropriate outcome measures, determine the clinically
important difference, and power the samples accordingly.

Conclusions
Researchers and clinicians must become more cognizant of
the pitfalls and paradoxes that have arisen in attempting to
translate the results of animal studies into clinical trials of
neuroprotective stroke therapy. Much needed recommenda-
tions to improve the quality of preclinical and clinical drug
development have been published recently by the Stroke
Therapy Academic Industry Roundtable (STAIR)15,16 and
others20 and should be followed. Preclinical evaluation of
therapeutic efficacy based solely on measuring infarct vol-
ume in the early phase is no longer adequate. Clinical trials
should be based on preclinical evidence demonstrating im-
proved functional outcomes at long-term end points measured
on standardized batteries of validated behavioral tests. As-
sessment of neuroprotection should rely more on delayed
time windows for drug administration, longer durations of
ischemia, and models that take into account the protection of
cerebral white matter in addition to gray matter.15,16,72 Ideally,
there should be converging evidence from �1 laboratory,
different stroke models, and �1 animal species.15

Previous neuroprotective trials have not been selective
enough in targeting homogeneous patients with cortical
stroke and evidence for the presence of ischemic penumbra.
Future trials need to use stricter entry criteria to target not just
cortical strokes but specifically those with a sufficient volume
of penumbra as determined by imaging. Although functional
imaging is currently restricted to specialized centers, we
urgently need proof of principle that neuroprotectives can
work in humans if administered to the appropriate patient
populations. Perfusion imaging with CT is worthy of further
investigation because of the availability and practicality of
CT for acute stroke imaging. With improved methods of
patient selection, it is anticipated that future treatments will
more appropriately be customized according to an individu-

al’s “penumbra window” rather than a rigid time window.
Patient selection should be “penumbra-specific” for acute
treatment interventions and “deficit-specific” for restorative/
rehabilitative interventions. Greater consensus on outcome
measures is needed because the choice of outcome measure
remains highly variable and can determine the success or
failure of a putative therapeutic agent.

If current neuroprotective approaches only delay rather
than arrest cell death, future strategies may require “rational”
polytherapy that combines drugs with different mechanisms
of action, perhaps administered at different poststroke inter-
vals and in combination with reperfusion strategies. The
concept of the therapeutic window is evolving from a single
rigid and narrow time period to multiple potential overlap-
ping and sequential windows, spanning minutes, hours, days,
weeks, and months after stroke. Although most trials have
concentrated on excitotoxicity, newer targets, including inhi-
bition of inflammatory reactions and apoptosis, are being
explored. The time point at which the therapeutic transition
from neuroprotection to repair occurs merits further study.

Stroke is a chronic condition, and we must not ignore
opportunities for therapeutic intervention in the subacute and
chronic stages. With a growing understanding of the mecha-
nisms that underlie recovery, research directed at enhance-
ment of neural repair and rehabilitation should be a high
priority.
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