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order of magnitude estimates using information gathered from detailed examinationof available data. A skilled and knowledgeable chemical kineticist is usually needed,and the results obtained are expected to be valid only in some limited domain of initialand operating conditions, for a limited interval of time. Usually the obtained reac-tions are not elementary reactions and actually represent groups of reactions lumpedtogether. This makes the reduced model more accurate, but the physical meaning ofthe elementary reactions may be lost.Sensitivity analysis has often been used for the purpose of obtaining informationto develop a reduced order mechanism. In many cases, this approach has been suc-cessful [24, 9, 5]. However for some systems, sensitivity analysis may be misleading.De�ning as parameters the rate constants of the chemical reactions, sensitivity anal-ysis determines the change in the species concentration for small perturbations of therate constants. If a reaction is slow and unimportant, it can be identi�ed in this way.However, sensitivity analysis may also single out fast reactions which are importantand therefore should not be deleted. To see how this can happen, consider for exam-ple determining the sensitivity with respect to perturbation of the parameters �1; �2,of the following linear sti� di�erential equationy0 = (�1 + �2)y � (�1 + �2) f(t) + g(t)�2 !+ g0(t)�2 + f 0(t); y(0) = g(0)�2 + f(0) (1)where j�1j; j�2j >> 0. This problem has solution y = f(t) + g(t)=�2. Let si =dy=d�i; i = 1; 2. Then the sensitivities satisfys01 = (�1 + �2)s1 +  y �  f(t) + g(t)�2 !! ; s1(0) = 0s02 = (�1 + �2)s1 +  y �  f(t) + g(t)�2 !!+ (�1 + �2)g(t)�22 � g0(t)�22 ; s2(0) = �g(0)�22 :Let �1 = �1000, �2 = +10. The solution for s1 is s1 = 0. If the term (reaction)corresponding to �1 is deleted from the original system, the reduced system will beunstable. We note that sensitivity is not giving the `wrong answer' in this example.Instead, it is giving the correct answer but to the wrong question. Sensitivity tellsus the change in the solution corresponding to a small change in the parameter. Bydeleting the term corresponding to �1, we are making a large change in that param-eter. Also, sensitivity tells us only the change in the solution to the original systemcorresponding to a small change in the parameter. It may not yield enough informa-tion about the sensitivity of neighboring solutions with respect to the parameter toguarantee stability of the reduced system. See also [1, 6].The problem of obtaining a reduced model for the chemical kinetics problem hasbeen considered by a number of authors. In an interesting series of papers [17, 16],Lam et al. have proposed the Computational Singular Perturbation (CSP) method forautomatically determining appropriate simpli�ed kinetics models. The CSP method2



identi�es the fast and slow modes as the system advances in time. The reduced ordermodel at any given time is solvable by explicit time-stepping methods because thefast modes have been identi�ed and approximated by algebraic constraints, leavingonly the slower modes in the di�erential system.Another approach has recently been taken by Maas and Pope [19]: the slow man-ifold approach. The aim is to �nd a reduced system with a much smaller number ofvariables and equations than the original system. If it is possible to describe a sys-tem with a very small number of variables, then one can use a table look-up schemeto model the chemistry in complicated combustion processes like turbulence. Themethod employs an analysis of the eigenvalues and eigenvectors of a local linearizedsystem to identify the fast and slow modes and obtain a reduced system. In contrastto other reduced mechanisms, this method does not provide simple or closed-formexpressions for the chemical kinetics. Thus it is primarily useful in the context oftable-lookup as described above.Yet another method is described by Vajda, Valko and Turanyi [25]. This methodalso employs an eigenvalue-eigenvector analysis of the local linear problem.A great deal of work has been done on developing reduced-order models for lineardi�erential systems, see [12, 13] and the references therein. These methods alsoproceed by identifying the large modes and constructing a reduced order model basedon the subspace de�ned by these large modes. Stability of the reduced-order modelis an important consideration.Chemical mechanisms are su�ciently nonlinear that a global approach may bewarranted. When nonlinear e�ects are important, with current methods based on alinear methodology, it is up to the chemist to be alert to the possibility of secondarynonlinear e�ects in the mechanism leading to parameter interactions, and to uncovertheir causes on the basis of available chemical knowledge [25]. Methods based onlocal linear analysis can be helpful in pointing out a potential problem, but it stillrequires a chemist to solve it. This report describes our work to develop a global,nonlinear approach which has the potential to automatically �nd a reduced-ordermechanism which inherits the stability and captures the nonlinear behavior of theoriginal system in the regime of interest, with a system of equations which has somephysical relevance and interpretation and which would usually need to change only afew times during the course of a given problem.2 Principles of the new algorithmOur objective has been to develop a numerical method for model reduction of chemicalkinetics which could produce a reduced model with the following properties:1. The reduced-order model accurately models those properties of the originalsystem which are of interest, over the given problem domain.3



2. The reduced-order model inherits the stability properties of the original system.3. The reduced-order model is simpler and much cheaper to evaluate than theoriginal system.4. Nonlinear behavior should be preserved by the reduced-order model.5. The reduced-order model makes physical sense and potentially o�ers some phys-ical insight.We expect to be able to use this reduced order model over a range of operatingconditions which are nearby to the conditions for which it is developed. It is notreasonable for this class of problems to seek a reduced order model which is valid overall possible operating conditions. To see why this is true, consider for example chem-ical kinetics at two very di�erent temperatures. Then it may be that a completelydi�erent set of reactions is important in the two systems.Given n chemical species yi and N reactions Fi(y), the original ODE system isgiven by y0 = g(y) = NXr=1SrFr(y); (2)where Sr 2 <n are the stoichiometric coe�cients for reaction Fr. Typically N >> nbecause it is hard to know in advance which reactions will be important. The objectiveis to choose some (very small) subset of the reactions to use in the mechanism so thatthe behavior of the reduced system is as close as possible to that of the originalsystem, given a range of operating conditions.If S is the matrix whose columns are the stoichiometric vectors, S 2 <n�N , andF 2 <n is the vector of nonlinear reaction terms, then the original system can bewritten more compactly as y0 = SF (y): (3)The reduced system is given by z0 = SDF (z); (4)where D 2 <N�N is a diagonal matrix whose diagonal elements di are either 1 or0 (depending on whether or not reaction i is selected for the reduced mechanism).Then the problem of �nding the reduced mechanism can be written as a constrainedoptimization min jjy � zjjsubject toy0 = SF (y); y(0) = y0z0 = SDF (z); z(0) = y0; 0 � t � b (5)NXi=1 di = k; (6)4



where the minimum is over d1; :::; dN , each di can take the value 0 or 1, and k << N .Currently in our approach the number k of reactions for the reduced mechanism ischosen by the user. If it is important to be sure that the reduced model is validover a range of operating conditions, one should add additional constraints and thecorresponding variables which are the di�erential equations for the original modeland for the reduced order model, but with di�erent initial conditions. By posing thisproblem directly as an optimization, there is also a natural measure for the error dueto the reduced order model. We note that the norm should be weighted accordingto user tolerances for relative and absolute errors. In some situations it may bedesirable to minimize over some other measure of the error; our methodology caneasily accommodate such a modi�cation.3 Solving the integer programming problemIt would appear that solving the discrete optimization problem (6) directly couldbe very costly. Note that there are almost no mature methods for nonlinear integerprogramming problems without convex or polynomial properties, which is the casefor (6). Also, note that it may not be necessary to �nd the absolute minimum; anyreduced mechanism for which jjy� zjj is small enough would meet our needs. To �nda near-minimum, we consider solving the continuous optimization problemmin jjy � zjjsubject toy0 = SF (y); y(0) = y0z0 = SDF (z); z(0) = y0; 0 � t � b;NXi=1 di = k (7)In some cases, the results of the continuous optimization problem (7) are of interestdirectly (for example, if the rate constants aren't known precisely). If it is the solutionto the discrete problem (6) which is of interest, the continuous solution needs to berounded to integer values.A scheme which approximates the solution to a discrete problem via a continuousalgorithm has been used successfully by Hendrickson and Leland [14] for examplein multidimensional load balancing for parallel computation. Their general approachapplied to our problem would be: �rst solve the continuous problem, then set those diwhich are greater than some threshold to 1 and the rest to 0, and possibly iterate withthis as the initial guess. In our problem, we have to take a strict threshold becausethe problem is highly nonlinear and the objective is very sensitive to the parametervalues. If we just round the results to 0 or 1 after some number of iterations, theinteger solution may be much less satisfactory than the continuous solution. A rough5



round-o� can result in an integer solution which is far away from a local optimumand may not be very useful for further iterations.3.1 Reformulating the optimization problemTo ensure a small approximation error which is caused by rounding the continuoussolutions to integers, some modi�cations to the optimization problem (7) need to bemade. An approach we have found e�ective is to impose a nonlinear constraint on theoriginal optimization problem. A penalty function method as described in [3] can beused but in practice we found the sequential quadratic programming(SQP) methodof SNOPT [11] is more e�cient when the nonlinear equality constraint is relaxed,i.e. replaced by an inequality constraint. In this paper, we give the numerical resultsobtained using the SQP method with the inequality constraint.The SQP methods are a class of optimization methods that solve a quadratic pro-gramming subproblem at each iteration. Each QP subproblem minimizes a quadraticmodel of a certain modi�ed Lagrangian function subject to linearized constraints. Amerit function is used to select the best step size along each search direction. For anoverview of SQP methods, see for example [7].Using the SQP method, the optimization problem is formulated bymin jjy � zjjsubject toy0 = SF (y); y(0) = y0z0 = SDF (z); z(0) = y0; 0 � t � b;k1 � NXi=1 di � k2;g(d1; � � � ; dN) � r (8)where g(d1; � � � ; dN) is a nonlinear function which, when equal to 0, forces the di totake integer values. In (8), r is a positive number which acts as the relaxation ofthe nonlinear constraint and k1; k2 are two integers which are used to relax the linearconstraint because only approximate solutions are needed.Di�erent kinds of nonlinear constraints can be used. The one we are currentlyusing is from [8] g = NXi=1(di � d2i )� = 0; (9)where � � 2 is some parameter which controls the shape of the normalized, sym-metrical Beta-function integrand. The gradients of the constraint are zero at integerpoints di = 0 or di = 1 for i = 1; � � � ; n. In our numerical experiments, � is taken tobe 2. 6



3.2 Choosing the initial valuesThe continuous optimization code we are using can �nd only local optimal solutionsfor nonlinear programming problems. The chances of �nding a global optimum areusually increased by choosing a starting point that is \su�ciently close" [11]. Thereare several ways to choose the initial guess. One way is to utilize chemical insight toguess a group of important reactions and set their corresponding di to 1 and the restto 0. Another way is to use the greedy method to �nd an initial guess.In the greedy method, the reactions are deleted from the original model one byone; each time, we drop the reaction which causes the smallest error between theoriginal model and the current reduced model, under the given norm. Then all thereactions are ranked according to the order that they are deleted from the model. Theinitial guess is obtained by retaining the set of the most important reactions underthe greedy criterion. The number of these reactions can be equal to the number ofreactions we want to keep. The greedy method can in fact result in very good initialguesses, as we have observed in our preliminary experiments. The problem with thisapproach is that when we are dealing with very large reaction models, the cost of�nding a greedy guess can be very high; it is of order O(N2).Instead of using the greedy method, we can just compute the error caused bydeleting a single reaction from the original model and then order all the reactionsaccording to their corresponding errors, with the one that causes the smallest errorconsidered to be the most unimportant reaction. If only a small number of reactionsare to be deleted from the model, this method can be used to generate the initialguess. However, when a large number of reactions are to be deleted from the model,the initial guess generated by this method is not reliable. On the other hand, thismethod can be used to identify the most important reactions. Using this method,we pre-select those reactions whose absence will cause extremely large errors. Pre-selecting the most important reactions can avoid some di�culties we will explain indetail in Section 6. Optimization is then done over the remaining reactions. Similarly,those reactions that cause extremely small errors can be pre-deleted, which works wellaccording to our numerical tests. This not only reduces the number of variables in theoptimization problem but also makes the optimization problem easier to solve sinceit eliminates some bad near-integer points in the search region where no reactionactually happens and the errors are very large but the gradients of the objective arevery small, though they are not necessarily local minimum or maximum points. Thiscan be observed from the formulation of the objective, when some di's are at 0 andmany species have near-zero concentration. A post-recovery process described latercan be used to recover the reactions that have been pre-deleted but can actuallyreduce the error signi�cantly.The simplest way to generate an initial guess is to set all the parameters to 1.This can be done when the model consists of a large number of reactions and we needto reduce it to a relatively small size. In this case, the two methods mentioned beforeare not appropriate and if we don't have any chemical insight of the model, we have7



no other choice. Starting from all parameters equal to 1 is in fact a good choice insome situations as we will see later.3.3 One-step or multi-step optimization with sensitivity pa-rameter reducingUsing the initial values obtained above, with some reactions having already beenpre-selected or pre-deleted, we can let the optimizer reduce the number of remainingreactions to the number we need in one step. Initially, the bounds on all the pa-rameters are set to 0 and 1, i.e., all the parameters are sensitivity variables. Sincethe sensitivity analysis is expensive and for a large model, the number of sensitivityvariables can be very large, we adopt a sensitivity variable reducing approach duringthe optimization process.The approach works as follows. At the beginning of the optimization, every pa-rameter is considered as a sensitivity variable. After a su�cient number of iterationsof the optimization process, some of these parameters will be near 0 and remain smallin the later iterations. We make an assumption that these parameters won't increasemuch and set both their lower and upper bounds to 0. A strict threshold must betaken to avoid deleting a reaction too early. The other parameters are set to 1 ortake the previous value, and the optimization process is restarted. At this time, theparameters which are set to 0 will not be considered as sensitivity variables anymore.In this way, the number of sensitivity variables is monotonically decreasing and theoptimization process is less expensive in later iterations. Since in a model, somereactions are much less important compared to others, they can be picked out �rstin a relatively small number of iterations by the optimizer, though each iteration isexpensive. As these reactions are deleted, the optimizer can concentrate on those re-actions that are similar to each other in importance. Thus, each subsequent iterationof the optimizer will be less expensive and the number of iterations can be increasedto allow better resolution.The one-step optimization approach can be used if the number of reactions in theoriginal model and the required number of reactions of the reduced model do notdi�er too much. In this case, since the initial guess with all the parameters set to1 is an optimal solution for the problem of reducing 0 reactions, it will be easier forthe optimizer to �nd a new optimal solution for the problem of reducing M reactionswith M << N [23]. In this paper, we tested only the one-step approach since themodels we used are not very large, i.e., not more than 200 reactions.In case the number of reactions of the original model N is very large and alsothe number M of reactions to be deleted is close to N , we can take a multi-stepoptimization approach to help the optimizer converge to an optimal solution. Theapproach works as a series of one-step optimizations with a relatively small Mi ineach step. Each step takes the result of the previous one as initial guess and setsthe lower and upper bounds to 0 for those parameters deleted in the previous steps,8



similar to the one-step approach. Though this scheme may take more iterations thanthe one-step approach, we hope it can give a better solution.For systems which have an even larger number of reactions, grouping of the re-actions can help. The reactions in the original mechanism can be divided randomlyinto a number of groups, each containing several reactions, to reduce the number ofsensitivity parameters. The optimization process described before can then be ap-plied to these groups to get a reduced number of groups. The number of the reducedgroups should usually be greater than the number of reactions we want to keep in thereduced mechanism, in order to allow each reaction in the �nal reduced mechanismthe chance to be kept eventually. The implicit assumption of the grouping approachis that the reactions in the original mechanism di�er greatly in their importance. Inother words a group of reactions that are not important will not have as much e�ecton the mechanism as a single reaction which is important. Otherwise, a group ofsecondary reactions may be considered as more important than a group which con-tains only one important reaction. Thus the important reactions may be lost duringthe process and we may eventually arrive at a set of secondary important reactions.However our assumption is usually true when the number of reactions in the originalmechanism is very large and only a small fraction of reactions can be kept. Thisgrouping process can repeated several times to reduce the original mechanism to adesired size.The grouping approach can reduce the computational work drastically. This canbe seen from the following example. Suppose we want to reduce a full mechanismof M � 2N reactions to a mechanism of M=2 reactions. At the �st step, we dividethese reactions into M groups, each containing 2n reactions, and try to select M=2groups to keep. Let's suppose the number of species to be K, then the size of thesensitivity analysis problem to be solved is about KM . At the second step, thenumber of reactions remaining will be M � 2N�1. We again divide them into Mgroups and try to keep M=2 groups. The group size is half as large as before but thesize of the sensitivity problem is still K �M . We can repeat this process N timesto reduce the number of reactions to M=2. If we suppose that at each step, theoptimizer needs the same number of integrations of the ODE system, say L times,and the time for each integration is proportional to the size of the system, then thetime for the whole process is about LKMN . If no grouping is used, then the timewill be about LKM � 2N . Even though the actual time for one integration of thesensitivity system will not increase linearly with the number of sensitivity equations,the di�erence between these two approaches can still di�er dramatically. Anotheradvantage of grouping is that the time spent on each step is much less than if nogrouping is used, even when N is not very large. This makes it easier to monitor theperformance of the optimizer.
9



4 Implementation and numerical resultsIn our implementation, the continuous optimization is done via DASOPT, a code forparameter estimation and optimal control of di�erential-algebraic systems which iscurrently under development [22]. This code solves the class of problemsfind u(t) and x(t) for t0 � t � tf (10)to minimize J = Z tft0 L(x(t); u(t); t)dt + V (x(tf)) (11)subject to f(t; x(t); x0(t); u(t)) = 0 (12)g(t; x(t); u(t)) � 0: (13)In the above, x is the state time history vector, u is the control time history vector,t0 is the initial time, and tf is the �nal time. The DAE (12) de�nes the dynamics ofthe system and the inequalities (13) are additional constraints.The optimal control problem is solved using nonlinear programming (NP) tech-niques. The problem is �rst discretized along the time domain, resulting in a discrete-time optimal control problem with �nitely many unknown variables, or equivalently, aconstrained NP problem. The DAEs are solved via DASPKSO [4, 18] over each subin-terval. Continuity conditions between the subintervals are expressed as constraints inthe optimization problem. The derivatives for the optimization are computed via theDAE sensitivity code DASPKSO [18]. Thus the sensitivity calculation is a part of thisapproach. However, there is an important di�erence between the proposed methodand sensitivity analysis alone. During the optimization, the sensitivities for each iter-ation are computed by perturbing the rate constants around some value, determinedby the optimization method, which could be closer to zero than to the nominal valueof the rate constant. Thus the information is available to decide more reliably whethera reaction could be deleted from the mechanism. The resulting optimization problemis solved via SNOPT [11]. This software can solve optimization problems with verylarge, sparse Hessian matrices. SNOPT uses the sequential quadratic programming(SQP) method to update the Quasi-Newton approximation of the reduced Hessian,which greatly reduces the matrix size, especially in optimal control problems thatpreserve many active constraints at each iteration.In the present formulation of our problem, the control parameters are constantsin the time interval under consideration, and (12) is an ODE. The vector �eld of theODE is formed by using Chemkin [15]. An additional equation which �nds the normfor the objective function is added to the system formed by Chemkinu0 = KXk=1(yk � zk)2: (14)10



The reduced model depends not only on the norm but also on the initial concentra-tions of the species and the initial temperature and pressure. Since we use the massfractions of the chemical species, yi is between 0 and 1. As the number of speciesin a chemical mechanism increases, the mass fractions of most species are very smallwhile temperature is usually very high. In our test mechanisms, temperatures are ofthe scale 103. To balance the e�ects of the species and temperature in the objectivefunction, we scale up the mass fractions of the species in the objective function. Inthe numerical result of this report, the scale-up for the species is taken to be 103,which makes the total e�ect of the species comparable to that of the temperature.The error of the reduced model is compared to the norm of the error which resultswhen all the reactions are deleted. The time interval is important in our problem.Since chemical mechanisms are often highly sti�, they can reach a steady state veryfast. Taking a long time interval will give slow reactions more importance. A shorttime interval will catch the fast reactions, i.e., catch the sti�ness. In this preliminaryreport, we have taken short time intervals. In this situation, the error will usually besmall because it's an integral over the time interval taken. We also scale up the normaccording to the integration interval. This results in a better scaling for the objectivefunction and its gradients; thus the optimizer can perform better. In this report, thescale-up for the norm is taken as the reciprocal of the time interval.The residual functions for the sensitivity equations, and the Jacobian matrix re-quired by DASPKSO are supplied by ADIFOR [2], an automatic di�erentiation tool.Numerical results of the SQP method for three chemical mechanisms are givenbelow. In our computations, the parameters are associated with the reactions in theinput �le for Chemkin. If the original �le contains reversible reactions, then eachparameter is associated with a reversible reaction. If forward and backward reactionsare input separately, then each forward and and backward reaction is associated witha parameter. A detailed description of the corresponding chemical mechanisms aregiven in the Appendix, as well as the reduced mechanisms which we obtained.4.1 Example 1: 6-reaction ozone mechanismUsing the methods proposed in this report, we reduced this very small mechanismto 3 reactions in the time interval [0; 1:0]. By observing the iteration process of theoptimizer, we �nd that reactions 1 and 3 are always picked by the optimizer but itencounters di�culty when deciding which of the other ones it should pick: 4 or 6.This suggests that reactions 4 and 6 are similar in their e�ect to the original system.Picking either one of them results in similar total errors. We reduced further thesystem to 2 reactions. This time the optimizer gave the answer as 1 and 3, whichwe can almost guess from the previous process. The trajectories of temperature andof the species with a signi�cant amount of mass fraction are shown in Figures 1-3.These results are very similar to that of 3 reactions which are not presented here. Wecan see from these �gures that there is a time delay in the ignition for the reduced11



model.If we pre-select reactions 1 and 3 and let the optimizer pick the third importantreaction, it will easily �nd 2. We conjecture that this kind of problem may due tothe nonlinearity of the system.Reactions 1-3 yields a very good reduced model: there is almost no error, as shownin Figures 4-6. Reaction 2 seems to be controlling the ignition time. This suggests thata post-recovery process may be necessary to get the secondary important reactions like2 after the most important reactions (1 and 3) are found. This can be accomplishedby several approaches which we will show in Section 6.Since we are using the scaled L2 norm of the temperature and species mass frac-tions, the optimizer captures only the perturbations of species with signi�cant massfraction. To see the perturbations of species with very small mass fraction, we needto weight their corresponding terms in the L2 norm, which can be done if one is in-terested in the change of some speci�c species. The scale-up can be determined basedon the concentration of the species of interest. We just need to make the e�ect ofthese species in the objective comparable to that of temperature. For example, if theconcentration of a species is around 0.01 during the time interval under consideration,a scale-up of 105 is appropriate.4.2 Example 2: 20-reaction mechanismThis mechanism is similar to the example mechanism in [15] except that the elementN and all reactions in which it is involved are not included here. It describes constantpressure combustion for a hydrogen-oxygen mixture. One reduced model is givenby the �rst six elementary reactions of the original mechanism. The solution of thisreduced model matches the original model well on the time interval [0:0; 10�2] onwhich the optimization is done. Figures 7-10 show temperature and some of thespecies which change signi�cantly in the time interval considered. As the �guresmanifest, after a short ignition phase, the system reaches steady state and the massfractions of the species do not change much.4.3 Example 3: GRI MechanismGRI-Mech 1.2 is one of the optimized detailed chemical reaction mechanisms capableof the best representation of natural gas 
ames and ignition. Most of the reactionslisted in this mechanism have been studied one way or another in the laboratory.Thus the rate constant parameters mostly have more or less direct measurementsbehind them. The original GRI mechanism 1.2 [10] contains 177 reversible reactions.We reduced this mechanism to 78, 42 and 32 reactions on the time interval [0; 1]. The78-reaction reduced model is obtained by dividing the 177 reactions in the originalmodel into 59 groups and then selecting 26 from them. It models the steady state ofthe system very well, as shown in Figures 11-15.12



The groups are actually formed as follows. First a group size is chosen accordingto the number of reactions such that the number of groups is not too large, say, lessthan 100 but still larger than the number of reactions we want to keep in the �nalreduced mechanism. For this example, we took the group size to be 3, resulting in59 groups. The number of groups is taken as the step size when forming the groupsto ensure randomness. Actually, this may not be necessary since the possibility thatseveral most important reactions are in the same group won't cause any di�culty: thisjust reduces the number of groups that can contain those most important reactions.In this problem, reactions 1, 60 and 119 form the �rst group, reactions 2, 61, 120form the second group and so on. Since in the general case, we can not guaranteethat the number of reactions can be divided evenly by the group size, the last groupwill consist of the last several reactions in the original system.A reduced mechanism of 42 reactions was obtained by pre-selecting the 17 mostimportant reactions using the scanning method described earlier and optimizing overthe remaining reactions. The results are satisfactory, as shown in Figures 16-20,though the steady state of the original mechanism and that of the reduced mechanismare slightly di�erent.The smallest reduced mechanism we obtained so far without using the post re-covery process is a 32-reaction mechanism. This mechanism models the ignition timeand the steady state of the original mechanism well but it does not model the shapeof the trajectories very well, as shown in Figures 21-25. Numerical experiments showthat it is di�cult to reduce the number of reactions to below 30 without out using thepost recovery process if the steady state of the original mechanism is to be modeledaccurately. A smaller reduced model with 26 reactions is obtained using the combina-tion of discrete approach on species and the post recovery process on reactions whichwe will show in Section 6. Some small reduced models are listed in the Appendix B.5 Reducing the number of speciesIn many problems, reduction of the number of species is also important. Reductionof the number of species can reduce the number of ODEs to be solved and savecomputation time.As we are now reducing reactions directly, the species are \deleted" when all ofthe reactions in which they take part are deleted. Here, the deletion of a speciesjust means that its concentration won't change in the given time interval. It doesnot mean that those species are no longer taking part in the reactions, since some ofthe reactions involving those species not deleted are enhanced by them. To actuallydelete a species, we need to not only delete the reactions it takes part in but also itse�ect to those reactions enhanced by it. This makes the problem more complex forthe optimization, i.e., it introduces more nonlinearity to the optimization problem aswe can see later. So far, we have considered the deletion of a species by �xing itsconcentration and deleting all the reactions it takes part in.13



One way to do this is to adapt our general approach to reduce the number of speciesdirectly, i.e., to associate with each species a parameter and then do the optimization.Because the number of species is much smaller than the number of reactions, thesensitivity analysis for the parameters is less expensive. The optimization problemcan be formulated as:min jjy � zjjsubject toy0 = SF (y); y(0) = y0z0 = SDF (z); z(0) = y0; 0 � t � b;k1 � NXi=1 ei � k2;g(e1; � � � ; eN) � r (15)where ei's are parameters associated with species and g(e1; � � � ; eN) is a nonlinearfunction which, when equal to 0, forces the ei to take integer values. The di�erenceis that now the elements of the diagonal matrix D are computed bydi = �j2Riej (16)where Ri is the set of species which take part in reaction i. Thus when ej = 0 for somej 2 Ri, the reaction i is in fact deleted because di = 0. We see that this optimizationproblem is well de�ned when all the parameters take values of 0 or 1. Unfortunately,this formula, when ei's are allowed to take continuous values, is highly nonlinear. Therounding process is much more troublesome than in reducing the number of reactions.Numerical experiments demonstrate this. Even though the continuous problem givessolutions where the ei's are very close to 0 or 1 and the objective is very small, therounding process can destroy the solution, even when very strict thresholds are used.A better formulation of the problem needs to be found.Since as we mentioned before, the number of species is usually much less than thenumber of reactions, scanning on the species is much less expensive than scanningon the reactions. For example, the GRI model contains 177 reactions but only 32species. For larger mechanisms, the di�erence is even more signi�cant. The scanningon the species works as follows. We simply pick a species and delete all the reactionsthat it is involved in as a reactant or product, to arrive at a reduced mechanism.The solution of this mechanism is compared with that of the original mechanism toobtain the error caused by the \deletion" of this species. Repeating this process onall the species in the mechanism completes one scanning on the species. The resultof the scanning on the species is listed in Figure 26, where the species are numberedthe same way as in Figure 36. For the detailed GRI mechanism, please refer to [10].In this table, the temperatures are that of the reduced models at the end of thetime interval when only the corresponding species are deleted from the model. The14



`Reactions Remaining' column gives the sizes of the reduced models when only thecorresponding species is \deleted" from the model. Since the starting temperature is1000, we can see from the list that deletion of a single species from the set of f4-7,13-18, 20g will let nothing happen physically since the temperature is not increasedand also the error is very large. Deleting more of them gives similar results. Sowe expect that these 11 species will have to be kept. Species 1-3, which cause thetemperature of the reduced model to be higher than that of the original model, alsocause the next largest error. Adding them into this set makes the steady state ofthe reduced system model the original system very well but the ignition time is notmodeled very well, as Figure 27 shows. Note that keeping a species does not meanto keep all the reactions in which it is involved, though deleting a species does meanto delete all the reactions it takes part in.An interesting result is that when species 25-27 are also included, the reducedmodel has almost no error. This reduced model has only 67 reactions. The �guresfor this reduced model are not given since they are the same as the original model.This result of the scanning on the species suggests that scanning on species maybe a better choice than scanning on the reactions. A modi�ed approach can worklike this: �rst the species are scanned and a reduced model which causes almost noerror is found. This is much less expensive than scanning the reactions �rst. Thenthe reduced model is scanned a second time on reactions to produce a model whichcauses almost no error. This reduced model is then fed to the optimizer for furtherreduction. The work of the optimization is thus reduced considerably and also it canwork more e�ciently if further reduction is possible. Figure 28 shows the temperatureof a 38-reaction reduced model which is obtained from scanning on the reactions ofthe 67-reaction model and no optimization. The reduced model results in almostno error and leaves very little space for the optimizer for further reduction, as ournumerical experiments demonstrate. Figures for species are not given here becausethey are also the same as that of the original mechanism. The 16-species and 38reaction model is listed in the Appendix. Note that species are not actually deletedfrom the model; instead, their concentrations are �xed. So they still appear in thespecies list of the input �le to Chemkin.6 Post recovery process and pre-selection of im-portant reactionsEven though we are taking strict thresholds, the step that rounds to an integer solu-tion can still cause problems. A post recovery process is needed to improve the resultas shown in Example 1. Our numerical experiments show that in some extreme cases,a threshold as small as 0.001 can fail to give a satisfactory integer solution. Thesefailures are due to the high degree of nonlinearity of the optimization problem andthe huge di�erence in the reaction rate constants. The reason for the �rst di�culty15



is obvious. The reason for the second di�culty can be illustrated by the followingexample.Consider the following scalar ODEy0 = �(�1 + �2)y; y(0) = 1:0where �1 >> �2 > 0. We hope to use the optimization method to select one termwhich can approximate the original system best. The parameterized system isz0 = �(d1�1 + d2�2)z:Reducing the system to one term requires solving the optimization problem withconstraint d1 + d2 = 1. The correct integer solution should be d1 = 1; d2 = 0.For simplicity, we take the error norm asZ t10 (z(t)� y(t))dt:When (d1�1+d2�2)t1 and (�1+�2)t1 are large enough, exponential terms in the errorcan be neglected and the error can be approximated by1=(d1�1 + d2�2)� 1=(�1 + �2):The derivatives of the error norm with respect to d1 and d2 are��1(d1�1 + d2�2)�2 and � �2(d1�1 + d2�2)�2:When d1 << d2 < 1 but d21�1 >> 1, the gradient to d1 can be small and theoptimizer may prematurely declare the current d1; d2 to be the optimal solution whenthe optimality tolerance is not very strict, thus the rounding process gives a wronganswer as it takes d2 = 1; d1 = 0.To solve this problem, a post recovery process is needed to improve the result.This can be done in several ways:� use the optimization method to pick several more reactions� perform a sensitivity analysis at 0 of the reactions rounded to 0 to �nd thosereactions that have an extremely large negative derivative value� use the greedy method to �nd the deleted reactions that improve the objectivefunction mostThe 3-reaction reduced model for Example 3 is obtained via the �rst approach. Wehave also used the second approach to obtain a 26-reaction reduced model for Example3, which is reduced from the 17-species, 38-reaction reduced model in Section 5. We�rst try to reduce the 38-reaction model to 19 reactions. After a rounding process16



with threshold 0.03, an integer solution which keeps 19 reactions is obtained but itgives a poor objective. We then use sensitivity analysis to recover the 6 reactionswhich have the largest negative derivatives, to obtain this 26-reaction reduced modelwhich is actually better than the larger models we obtained before. The results areshown in Figures 29-33.Due to the very large scale di�erence in the reaction rate constants, some reactionsare much more important than others. These most important reactions can be pre-included in the reduced model. This not only saves computation time but can alsoavoid some numerical di�culties. In fact, there are some small subsets of reactions ofthe original mechanism which allow no physical reactions to happen and can result invery large objective values. However, the gradients of the objective can be very smallfor these subsets of reactions. The reason is that these subsets of reactions lack morethan one key reaction to allow the physical reaction to happen. So the objective isnot sensitive to the perturbation in each single parameter. These subsets of reactionsare bad local minimums and should be avoided. This is done by pre-selecting themost important reactions. Thus pre-selecting the most important reactions can helpthe convergence of the optimizer.Some subsets of reactions that just lack one key reaction to allow the physicalreaction to happen can be very sensisitive to small perturbations in species con-centrations and reaction constants of the key reaction. The dynamical systems ofthese subsets of reactions can have very ill conditioned Jacobian matrices and moreseriously, extremely large scale di�erences in the sensitivity variables. We have en-countered examples with a di�erence in the scale of the sensitivity variables as largeas 10�100 and 10+50. Actually the sensitivity to the key reaction is extremely large,i.e., a very small perturbation of the reaction constant from 0 can let the physicalreaction happen and thus reduce the error norm drastically. However, some otherreactions may not be so important; a small perturbation to each one of these reactionconstants from 0 will not cause the physical reaction to happen, and thus the sen-sitivity to these reaction constants are almost 0. As we have no prior knowledge ofthe scaling of the sensitivity variables, scaling can be a very serious problem withouta technique to do automatic scaling. Pre-selecting the most important reactions canalleviate this di�culty.7 Future workBesides the problems we mentioned before, we plan to systematically test the algo-rithm proposed here and use the approach to reduce large chemical kinetics mecha-nisms.An important issue in this model reduction problem is how to decide whether agiven reduced mechanism is acceptable. In our scheme, this means �nding an appro-priate measure for the distance between the original and the reduced mechanism. Thismay di�er depending on what the reduced mechanism is to be used for. Techniques17
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Appendix A: Figures for Numerical Experiments
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Fig 4. 3-Reaction ReducedMechanism for Example 1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Time

O
2

78−Reaction

Reduced mechanism

Original mechanism

Fig 11. 78-Reaction ReducedMechanism for Example 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Time

H
2O

78−Reaction

Reduced mechanism

Original mechanismFig 12. 78-Reaction ReducedMechanism for Example 3
22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time

C
H

4
78−Reaction

Reduced mechanism

Original mechanism

Fig 13. 78-Reaction ReducedMechanism for Example 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Time

C
O

2

78−Reaction

Reduced mechanism

Original mechanismFig 14. 78-Reaction ReducedMechanism for Example 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Time

T
em

pe
ra

tu
re

78−Reaction

Reduced mechanism

Original mechanismFig 15. 78-Reaction ReducedMechanism for Example 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Time

O
2

42−Reaction

Original mechanism

Reduced mechanismFig 16. 42-Reaction ReducedMechanism for Example 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Time

H
2O

42−Reaction

Reduced mechanism

Original mechanismFig 17. 42-Reaction ReducedMechanism for Example 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time

C
H

4

42−Reaction

Original mechanism

Reduced mechanism
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Fig 22. 32-Reaction ReducedMechanism for Example 3
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Fig 24. 32-Reaction ReducedMechanism for Example 3
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Fig 27. Reduced Model of 14 Speciesand 55 Reactions for Example 3
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Fig 29. Reduced Model of 17 Speciesand 26 Reactions for Example 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Time

H
2O

17−Species 26−Reaction Reduced Model

Original Mechanism

Reduced Mechanism

Fig 30. Reduced Model of 17 Speciesand 26 Reactions for Example 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time

C
H

4

17−Species 26−Reaction Reduced Model

Original Mechanism

Reduced Mechanism

Fig 31. Reduced Model of 17 Speciesand 26 Reactions for Example 3
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                         Species No.       Temperature                Error            Reactions Remaining
                                1                    2563.846             327129.140                147
                                2                    2578.462             145312.066                93
                                3                    2548.987             566965.623                140
                                4                    999.9999             1673740.07                148
                                5                    1000.195             1673394.24                119
                                6                    1000.299             1673278.93                149
                                7                    1040.797             1642273.18                150
                                8                    2540.034             5276.86882                167
                                9                    2540.034             0.00010808                172
                                10                   2540.034             0.00365596                161
                                11                   2540.034             780.640676                154
                                12                   2540.034             899.774282                156
                                13                   1000.000             1673739.91                140
                                14                   1000.000             1673740.02                162
                                15                   1031.249             1638600.76                144
                                16                   2205.987             88755.8553                169
                                17                   1009.929             1660079.89                153
                                18                   1000.464             1673008.16                149
                                19                   2540.034             1403.02205                164
                                20                   1206.514             1534933.98                162
                                21                   2540.034             7138.21136                165
                                22                   2540.034             0.00004374                169
                                23                   2540.034             0.37952949                159
                                24                   2540.034             4218.68781                166
                                25                   2540.034             114146.134                165
                                26                   2540.034             75320.4101                166
                                27                   2540.034             662120.500                170
                                28                   2540.034             0.01016712                165
                                29                   2540.034             0.01770426                167
                                30                   2540.034             0.00000011                175
                                31                   2540.034             0.00000000                177
                                32                   2540.034             0.00000000                177

Fig 26. Results of the Scanning on Species for Example 327



Appendix B: Chemical Mechanisms
                          −−−−−−−−−−−−−−−−−−−−
                          ELEMENTS     ATOMIC
                          CONSIDERED   WEIGHT
                          −−−−−−−−−−−−−−−−−−−−
                           1. O       15.9994    
                          −−−−−−−−−−−−−−−−−−−−
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                          C
                       P  H
                       H  A
                       A  R
 SPECIES               S  G  MOLECULAR  TEMPERATURE  ELEMENT COUNT
 CONSIDERED            E  E  WEIGHT     LOW    HIGH  O  
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   1. O                G  0   15.99940   300   5000   1
   2. O2               G  0   31.99880   300   5000   2
   3. O3               G  0   47.99820   300   5000   3
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                                                      (k = A T**b exp(−E/RT))
      REACTIONS CONSIDERED                              A        b        E

   1. O3+M=>O2+O+M                                  4.31E+14    0.0    92790.0
         O2               Enhanced by    4.400E−01
         O                Enhanced by    4.400E−01
   2. O2+O+M=>O3+M                                  1.20E+13    0.0    −8110.0
         O2               Enhanced by    4.400E−01
         O                Enhanced by    4.400E−01
   3. O3+O=>O2+O2                                   1.14E+13    0.0    19120.0
   4. O2+O2=>O3+O                                   1.19E+13    0.0   420690.0
   5. O+O+M=>O2+M                                   1.38E+18   −1.0     1420.0
         O2               Enhanced by    4.400E−01
         O                Enhanced by    4.400E−01
   6. O2+M=>O+O+M                                   2.75E+19   −1.0   496610.0
         O2               Enhanced by    4.400E−01
         O                Enhanced by    4.400E−01

  NOTE: E units Joules/mol, A units mole−cm−sec−K

           Initial Values of Mass Fractions and Temperture
  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  1. O   0.0
  2. O2  0.9
  3. O3  0.1

  Initial Temperture: 500K

  Pressure is taken as one standard atomosphere. 

Fig 34. 6-Reaction Ozone Mechanism: Example 1
28



                          −−−−−−−−−−−−−−−−−−−−
                          ELEMENTS     ATOMIC
                          CONSIDERED   WEIGHT
                          −−−−−−−−−−−−−−−−−−−−
                           1. H       1.00797    
                           2. O       15.9994    
                          −−−−−−−−−−−−−−−−−−−−
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                          C
                       P  H
                       H  A
                       A  R
 SPECIES               S  G  MOLECULAR  TEMPERATURE  ELEMENT COUNT
 CONSIDERED            E  E  WEIGHT     LOW    HIGH  H  O  
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   1. H2               G  0    2.01594   300   5000   2  0
   2. H                G  0    1.00797   300   5000   1  0
   3. O2               G  0   31.99880   300   5000   0  2
   4. O                G  0   15.99940   300   5000   0  1
   5. OH               G  0   17.00737   300   5000   1  1
   6. HO2              G  0   33.00677   300   5000   1  2
   7. H2O2             G  0   34.01474   300   5000   2  2
   8. H2O              G  0   18.01534   300   5000   2  1
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                                                      (k = A T**b exp(−E/RT))
      REACTIONS CONSIDERED                              A        b        E

   1. H2+O2=2OH                                     1.70E+13    0.0    47780.0
   2. OH+H2=H2O+H                                   1.17E+09    1.3     3626.0
   3. O+OH=O2+H                                     4.00E+14   −0.5        0.0
   4. O+H2=OH+H                                     5.06E+04    2.7     6290.0
   5. H+O2+M=HO2+M                                  3.61E+17   −0.7        0.0
         H2O              Enhanced by    1.860E+01
         H2               Enhanced by    2.860E+00
   6. OH+HO2=H2O+O2                                 7.50E+12    0.0        0.0
   7. H+HO2=2OH                                     1.40E+14    0.0     1073.0
   8. O+HO2=O2+OH                                   1.40E+13    0.0     1073.0
   9. 2OH=O+H2O                                     6.00E+08    1.3        0.0
  10. H+H+M=H2+M                                    1.00E+18   −1.0        0.0
         H2O              Enhanced by    0.000E+00
         H2               Enhanced by    0.000E+00
  11. H+H+H2=H2+H2                                  9.20E+16   −0.6        0.0
  12. H+H+H2O=H2+H2O                                6.00E+19   −1.2        0.0
  13. H+OH+M=H2O+M                                  1.60E+22   −2.0        0.0
         H2O              Enhanced by    5.000E+00
  14. H+O+M=OH+M                                    6.20E+16   −0.6        0.0
         H2O              Enhanced by    5.000E+00
  15. O+O+M=O2+M                                    1.89E+13    0.0    −1788.0
  16. H+HO2=H2+O2                                   1.25E+13    0.0        0.0
  17. HO2+HO2=H2O2+O2                               2.00E+12    0.0        0.0
  18. H2O2+M=OH+OH+M                                1.30E+17    0.0    45500.0
  19. H2O2+H=HO2+H2                                 1.60E+12    0.0     3800.0
  20. H2O2+OH=H2O+HO2                               1.00E+13    0.0     1800.0

  NOTE:  A units mole−cm−sec−K, E units cal/mole

          Initial Values of Mass Fractions and Temperture
  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  1. H2       0.12             
  2. H        0.00       
  3. O2       0.88      
  4. O        0.00    
  5. OH       0.00  
  6. HO2      0.00 
  7. H2O2     0.00 
  8. H2O      0.00 

  Initial Temperture: 1000K
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 
  Pressure is taken as one standard atomosphere. 

Fig 35. 20-Reaction Mechanism: Example 229



           Initial Mass Fractions of Species and Temperture
  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  1.  H2          0.00     
  2.  H           0.00   
  3.  O           0.00  
  4.  O2          0.18    
  5.  OH          0.00 
  6.  H2O         0.00
  7.  HO2         0.00 
  8.  H2O2        0.00     
  9.  C           0.00    
  10. CH          0.00    
  11. CH2         0.00
  12. CH2(S)      0.00 
  13. CH3         0.00 
  14. CH4         0.09
  15. CO          0.00
  16. CO2         0.00   
  17. HCO         0.00
  18. CH2O        0.00  
  19. CH2OH       0.00
  20. CH3O        0.00     
  21. CH3OH       0.00     
  22. C2H         0.00 
  23. C2H2        0.00
  24. C2H3        0.00   
  25. C2H4        0.00     
  26. C2H5        0.00  
  27. C2H6        0.00
  28. HCCO        0.00  
  29. CH2CO       0.00 
  30. HCCOH       0.00    
  31. N2          0.64  
  32. AR          0.09

  Initial Temperture: 1000K
 
  Pressure is taken as one standard atomosphere.    

Fig 36. Initial Values Used for Experiments on GRI Mechanism: Example 330


