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Abstract

In this preliminary report we describe an optimization-based approach for
reduction of the number of reactions in chemical kinetics models. Numerical
results for several reaction mechanisms are given, and future plans are outlined.

1 Introduction

The kinetics of a detailed chemically reacting system can potentially be very complex.
Although the chemist may be interested in only a few species, the reaction model
almost always involves a much larger number of species. Some of those species are
referred to as radicals. These are very reactive species (usually of low concentration)
which can be important intermediaries in the reaction scheme. A large number of
elementary reactions can occur among the species; some of these reactions are fast
and some are slow. The aim of simplified kinetics modeling is to derive the simplest
reaction system which retains the essential features of the full system.

The conventional technique [26, 20, 21] is to systematically apply the so-called
steady-state approximation to the appropriate radicals, the partial-equilibrium ap-
proximation to the fast reactions, and to ignore the very slow (and therefore unim-
portant) reactions. The investigator is responsible for identifying the appropriate
radicals, the fast elementary reactions and the very slow ones, by making intelligent

*This work was partially supported by DOE contract number DE-F602-92ER25130, by Exxon
Research and Engineering Co., and by the Minnesota Supercomputer Institute.



order of magnitude estimates using information gathered from detailed examination
of available data. A skilled and knowledgeable chemical kineticist is usually needed,
and the results obtained are expected to be valid only in some limited domain of initial
and operating conditions, for a limited interval of time. Usually the obtained reac-
tions are not elementary reactions and actually represent groups of reactions lumped
together. This makes the reduced model more accurate, but the physical meaning of
the elementary reactions may be lost.

Sensitivity analysis has often been used for the purpose of obtaining information
to develop a reduced order mechanism. In many cases, this approach has been suc-
cessful [24, 9, 5]. However for some systems, sensitivity analysis may be misleading.
Defining as parameters the rate constants of the chemical reactions, sensitivity anal-
ysis determines the change in the species concentration for small perturbations of the
rate constants. If a reaction is slow and unimportant, it can be identified in this way.
However, sensitivity analysis may also single out fast reactions which are important
and therefore should not be deleted. To see how this can happen, consider for exam-
ple determining the sensitivity with respect to perturbation of the parameters Ay, Ay,
of the following linear stiff differential equation
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where |A1],|Aa] >> 0. This problem has solution y = f(t) + g(t)/Ay. Let s; =
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Let Ay = —1000, Ay = +10. The solution for s; is s; = 0. If the term (reaction)

corresponding to A; is deleted from the original system, the reduced system will be
unstable. We note that sensitivity is not giving the ‘wrong answer’ in this example.
Instead, it is giving the correct answer but to the wrong question. Sensitivity tells
us the change in the solution corresponding to a small change in the parameter. By
deleting the term corresponding to A;, we are making a large change in that param-
eter. Also, sensitivity tells us only the change in the solution to the original system
corresponding to a small change in the parameter. It may not yield enough informa-
tion about the sensitivity of neighboring solutions with respect to the parameter to
guarantee stability of the reduced system. See also [1, 6].

The problem of obtaining a reduced model for the chemical kinetics problem has
been considered by a number of authors. In an interesting series of papers [17, 16],
Lam et al. have proposed the Computational Singular Perturbation (CSP) method for
automatically determining appropriate simplified kinetics models. The CSP method



identifies the fast and slow modes as the system advances in time. The reduced order
model at any given time is solvable by explicit time-stepping methods because the
fast modes have been identified and approximated by algebraic constraints, leaving
only the slower modes in the differential system.

Another approach has recently been taken by Maas and Pope [19]: the slow man-
ifold approach. The aim is to find a reduced system with a much smaller number of
variables and equations than the original system. If it is possible to describe a sys-
tem with a very small number of variables, then one can use a table look-up scheme
to model the chemistry in complicated combustion processes like turbulence. The
method employs an analysis of the eigenvalues and eigenvectors of a local linearized
system to identify the fast and slow modes and obtain a reduced system. In contrast
to other reduced mechanisms, this method does not provide simple or closed-form
expressions for the chemical kinetics. Thus it is primarily useful in the context of
table-lookup as described above.

Yet another method is described by Vajda, Valko and Turanyi [25]. This method
also employs an eigenvalue-eigenvector analysis of the local linear problem.

A great deal of work has been done on developing reduced-order models for linear
differential systems, see [12, 13| and the references therein. These methods also
proceed by identifying the large modes and constructing a reduced order model based
on the subspace defined by these large modes. Stability of the reduced-order model
is an important consideration.

Chemical mechanisms are sufficiently nonlinear that a global approach may be
warranted. When nonlinear effects are important, with current methods based on a
linear methodology, it is up to the chemist to be alert to the possibility of secondary
nonlinear effects in the mechanism leading to parameter interactions, and to uncover
their causes on the basis of available chemical knowledge [25]. Methods based on
local linear analysis can be helpful in pointing out a potential problem, but it still
requires a chemist to solve it. This report describes our work to develop a global,
nonlinear approach which has the potential to automatically find a reduced-order
mechanism which inherits the stability and captures the nonlinear behavior of the
original system in the regime of interest, with a system of equations which has some
physical relevance and interpretation and which would usually need to change only a
few times during the course of a given problem.

2 Principles of the new algorithm

Our objective has been to develop a numerical method for model reduction of chemical
kinetics which could produce a reduced model with the following properties:

1. The reduced-order model accurately models those properties of the original
system which are of interest, over the given problem domain.



2. The reduced-order model inherits the stability properties of the original system.

3. The reduced-order model is simpler and much cheaper to evaluate than the
original system.

4. Nonlinear behavior should be preserved by the reduced-order model.

5. The reduced-order model makes physical sense and potentially offers some phys-
ical insight.

We expect to be able to use this reduced order model over a range of operating
conditions which are nearby to the conditions for which it is developed. It is not
reasonable for this class of problems to seek a reduced order model which is valid over
all possible operating conditions. To see why this is true, consider for example chem-
ical kinetics at two very different temperatures. Then it may be that a completely
different set of reactions is important in the two systems.

Given n chemical species y; and N reactions F;(y), the original ODE system is
given by

V=0 =3 S, F ) @

where S, € R" are the stoichiometric coefficients for reaction F,. Typically N >>n
because it is hard to know in advance which reactions will be important. The objective
is to choose some (very small) subset of the reactions to use in the mechanism so that
the behavior of the reduced system is as close as possible to that of the original
system, given a range of operating conditions.
If S is the matrix whose columns are the stoichiometric vectors, S € R"*" and

F € R" is the vector of nonlinear reaction terms, then the original system can be
written more compactly as

y = SF(y) (3)
The reduced system is given by

2= SDF(z), (4)

where D € R¥*N is a diagonal matrix whose diagonal elements d; are either 1 or
0 (depending on whether or not reaction i is selected for the reduced mechanism).
Then the problem of finding the reduced mechanism can be written as a constrained
optimization

min ||y — z||
subject to
y'=SF(y), y(0) =y
2 =8SDF(z), 2z(0)=y,, 0<t<b (5)
i=1



where the minimum is over dy, ..., dy, each d; can take the value 0 or 1, and £ << N.
Currently in our approach the number k of reactions for the reduced mechanism is
chosen by the user. If it is important to be sure that the reduced model is valid
over a range of operating conditions, one should add additional constraints and the
corresponding variables which are the differential equations for the original model
and for the reduced order model, but with different initial conditions. By posing this
problem directly as an optimization, there is also a natural measure for the error due
to the reduced order model. We note that the norm should be weighted according
to user tolerances for relative and absolute errors. In some situations it may be
desirable to minimize over some other measure of the error; our methodology can
easily accommodate such a modification.

3 Solving the integer programming problem

It would appear that solving the discrete optimization problem (6) directly could
be very costly. Note that there are almost no mature methods for nonlinear integer
programming problems without convex or polynomial properties, which is the case
for (6). Also, note that it may not be necessary to find the absolute minimum; any
reduced mechanism for which ||y — z|| is small enough would meet our needs. To find
a near-minimum, we consider solving the continuous optimization problem

min - [ly — 2|
subject to

y'=SF(y), y(0)=uyo
2 =8DF(z), 2(0)=1y, 0<t<b,

d; =k (7)
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In some cases, the results of the continuous optimization problem (7) are of interest
directly (for example, if the rate constants aren’t known precisely). If it is the solution
to the discrete problem (6) which is of interest, the continuous solution needs to be
rounded to integer values.

A scheme which approximates the solution to a discrete problem via a continuous
algorithm has been used successfully by Hendrickson and Leland [14] for example
in multidimensional load balancing for parallel computation. Their general approach
applied to our problem would be: first solve the continuous problem, then set those d;
which are greater than some threshold to 1 and the rest to 0, and possibly iterate with
this as the initial guess. In our problem, we have to take a strict threshold because
the problem is highly nonlinear and the objective is very sensitive to the parameter
values. If we just round the results to 0 or 1 after some number of iterations, the
integer solution may be much less satisfactory than the continuous solution. A rough



round-off can result in an integer solution which is far away from a local optimum
and may not be very useful for further iterations.

3.1 Reformulating the optimization problem

To ensure a small approximation error which is caused by rounding the continuous
solutions to integers, some modifications to the optimization problem (7) need to be
made. An approach we have found effective is to impose a nonlinear constraint on the
original optimization problem. A penalty function method as described in [3] can be
used but in practice we found the sequential quadratic programming(SQP) method
of SNOPT [11] is more efficient when the nonlinear equality constraint is relaxed,
i.e. replaced by an inequality constraint. In this paper, we give the numerical results
obtained using the SQP method with the inequality constraint.

The SQP methods are a class of optimization methods that solve a quadratic pro-
gramming subproblem at each iteration. Each QP subproblem minimizes a quadratic
model of a certain modified Lagrangian function subject to linearized constraints. A
merit function is used to select the best step size along each search direction. For an
overview of SQP methods, see for example [7].

Using the SQP method, the optimization problem is formulated by

min  [ly — 2|
subject to

y'=SF(y), y(0)=uyo
2 =SDF(z), 2(0)=vyy, 0<t<b,

N
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g(dy,-+-,dy) <1 (8)

where g(dy,---,dy) is a nonlinear function which, when equal to 0, forces the d; to
take integer values. In (8), r is a positive number which acts as the relaxation of
the nonlinear constraint and kq, ks are two integers which are used to relax the linear
constraint because only approximate solutions are needed.

Different kinds of nonlinear constraints can be used. The one we are currently

using is from [§]
N

9= &)’ =0, ©
i=1
where > 2 is some parameter which controls the shape of the normalized, sym-
metrical Beta-function integrand. The gradients of the constraint are zero at integer
points d; =0 or d; =1 for ¢ = 1,---,n. In our numerical experiments, [ is taken to
be 2.



3.2 Choosing the initial values

The continuous optimization code we are using can find only local optimal solutions
for nonlinear programming problems. The chances of finding a global optimum are
usually increased by choosing a starting point that is “sufficiently close” [11]. There
are several ways to choose the initial guess. One way is to utilize chemical insight to
guess a group of important reactions and set their corresponding d; to 1 and the rest
to 0. Another way is to use the greedy method to find an initial guess.

In the greedy method, the reactions are deleted from the original model one by
one; each time, we drop the reaction which causes the smallest error between the
original model and the current reduced model, under the given norm. Then all the
reactions are ranked according to the order that they are deleted from the model. The
initial guess is obtained by retaining the set of the most important reactions under
the greedy criterion. The number of these reactions can be equal to the number of
reactions we want to keep. The greedy method can in fact result in very good initial
guesses, as we have observed in our preliminary experiments. The problem with this
approach is that when we are dealing with very large reaction models, the cost of
finding a greedy guess can be very high; it is of order O(N?).

Instead of using the greedy method, we can just compute the error caused by
deleting a single reaction from the original model and then order all the reactions
according to their corresponding errors, with the one that causes the smallest error
considered to be the most unimportant reaction. If only a small number of reactions
are to be deleted from the model, this method can be used to generate the initial
guess. However, when a large number of reactions are to be deleted from the model,
the initial guess generated by this method is not reliable. On the other hand, this
method can be used to identify the most important reactions. Using this method,
we pre-select those reactions whose absence will cause extremely large errors. Pre-
selecting the most important reactions can avoid some difficulties we will explain in
detail in Section 6. Optimization is then done over the remaining reactions. Similarly,
those reactions that cause extremely small errors can be pre-deleted, which works well
according to our numerical tests. This not only reduces the number of variables in the
optimization problem but also makes the optimization problem easier to solve since
it eliminates some bad near-integer points in the search region where no reaction
actually happens and the errors are very large but the gradients of the objective are
very small, though they are not necessarily local minimum or maximum points. This
can be observed from the formulation of the objective, when some d;’s are at 0 and
many species have near-zero concentration. A post-recovery process described later
can be used to recover the reactions that have been pre-deleted but can actually
reduce the error significantly.

The simplest way to generate an initial guess is to set all the parameters to 1.
This can be done when the model consists of a large number of reactions and we need
to reduce it to a relatively small size. In this case, the two methods mentioned before
are not appropriate and if we don’t have any chemical insight of the model, we have



no other choice. Starting from all parameters equal to 1 is in fact a good choice in
some situations as we will see later.

3.3 One-step or multi-step optimization with sensitivity pa-
rameter reducing

Using the initial values obtained above, with some reactions having already been
pre-selected or pre-deleted, we can let the optimizer reduce the number of remaining
reactions to the number we need in one step. Initially, the bounds on all the pa-
rameters are set to 0 and 1, i.e., all the parameters are sensitivity variables. Since
the sensitivity analysis is expensive and for a large model, the number of sensitivity
variables can be very large, we adopt a sensitivity variable reducing approach during
the optimization process.

The approach works as follows. At the beginning of the optimization, every pa-
rameter is considered as a sensitivity variable. After a sufficient number of iterations
of the optimization process, some of these parameters will be near 0 and remain small
in the later iterations. We make an assumption that these parameters won’t increase
much and set both their lower and upper bounds to 0. A strict threshold must be
taken to avoid deleting a reaction too early. The other parameters are set to 1 or
take the previous value, and the optimization process is restarted. At this time, the
parameters which are set to 0 will not be considered as sensitivity variables anymore.
In this way, the number of sensitivity variables is monotonically decreasing and the
optimization process is less expensive in later iterations. Since in a model, some
reactions are much less important compared to others, they can be picked out first
in a relatively small number of iterations by the optimizer, though each iteration is
expensive. As these reactions are deleted, the optimizer can concentrate on those re-
actions that are similar to each other in importance. Thus, each subsequent iteration
of the optimizer will be less expensive and the number of iterations can be increased
to allow better resolution.

The one-step optimization approach can be used if the number of reactions in the
original model and the required number of reactions of the reduced model do not
differ too much. In this case, since the initial guess with all the parameters set to
1 is an optimal solution for the problem of reducing 0 reactions, it will be easier for
the optimizer to find a new optimal solution for the problem of reducing M reactions
with M << N [23]. In this paper, we tested only the one-step approach since the
models we used are not very large, i.e., not more than 200 reactions.

In case the number of reactions of the original model N is very large and also
the number M of reactions to be deleted is close to N, we can take a multi-step
optimization approach to help the optimizer converge to an optimal solution. The
approach works as a series of one-step optimizations with a relatively small M; in
each step. KEach step takes the result of the previous one as initial guess and sets
the lower and upper bounds to 0 for those parameters deleted in the previous steps,



similar to the one-step approach. Though this scheme may take more iterations than
the one-step approach, we hope it can give a better solution.

For systems which have an even larger number of reactions, grouping of the re-
actions can help. The reactions in the original mechanism can be divided randomly
into a number of groups, each containing several reactions, to reduce the number of
sensitivity parameters. The optimization process described before can then be ap-
plied to these groups to get a reduced number of groups. The number of the reduced
groups should usually be greater than the number of reactions we want to keep in the
reduced mechanism, in order to allow each reaction in the final reduced mechanism
the chance to be kept eventually. The implicit assumption of the grouping approach
is that the reactions in the original mechanism differ greatly in their importance. In
other words a group of reactions that are not important will not have as much effect
on the mechanism as a single reaction which is important. Otherwise, a group of
secondary reactions may be considered as more important than a group which con-
tains only one important reaction. Thus the important reactions may be lost during
the process and we may eventually arrive at a set of secondary important reactions.
However our assumption is usually true when the number of reactions in the original
mechanism is very large and only a small fraction of reactions can be kept. This
grouping process can repeated several times to reduce the original mechanism to a
desired size.

The grouping approach can reduce the computational work drastically. This can
be seen from the following example. Suppose we want to reduce a full mechanism
of M % 2N reactions to a mechanism of M/2 reactions. At the fist step, we divide
these reactions into M groups, each containing 2" reactions, and try to select M /2
groups to keep. Let’s suppose the number of species to be K, then the size of the
sensitivity analysis problem to be solved is about KM. At the second step, the
number of reactions remaining will be M % 2¥~1. We again divide them into M
groups and try to keep M /2 groups. The group size is half as large as before but the
size of the sensitivity problem is still K * M. We can repeat this process N times
to reduce the number of reactions to M/2. If we suppose that at each step, the
optimizer needs the same number of integrations of the ODE system, say L times,
and the time for each integration is proportional to the size of the system, then the
time for the whole process is about LK M N. If no grouping is used, then the time
will be about LK M 2V, Even though the actual time for one integration of the
sensitivity system will not increase linearly with the number of sensitivity equations,
the difference between these two approaches can still differ dramatically. Another
advantage of grouping is that the time spent on each step is much less than if no
grouping is used, even when NN is not very large. This makes it easier to monitor the
performance of the optimizer.



4 Implementation and numerical results

In our implementation, the continuous optimization is done via DASOPT, a code for
parameter estimation and optimal control of differential-algebraic systems which is
currently under development [22]. This code solves the class of problems

find wu(t) and x(t) for ty <t <ty (10)

to minimize J = /t:fL(x(t),u(t),t)dt + V() (11)
subject to f(t,z(t),z'(t),u(t)) = 0 (12)
g(t,x(t), u(t)) = 0. (13)

In the above, x is the state time history vector, u is the control time history vector,
to is the initial time, and ¢/ is the final time. The DAE (12) defines the dynamics of
the system and the inequalities (13) are additional constraints.

The optimal control problem is solved using nonlinear programming (NP) tech-
niques. The problem is first discretized along the time domain, resulting in a discrete-
time optimal control problem with finitely many unknown variables, or equivalently, a
constrained NP problem. The DAEs are solved via DASPKSO [4, 18] over each subin-
terval. Continuity conditions between the subintervals are expressed as constraints in
the optimization problem. The derivatives for the optimization are computed via the
DAE sensitivity code DASPKSO [18]. Thus the sensitivity calculation is a part of this
approach. However, there is an important difference between the proposed method
and sensitivity analysis alone. During the optimization, the sensitivities for each iter-
ation are computed by perturbing the rate constants around some value, determined
by the optimization method, which could be closer to zero than to the nominal value
of the rate constant. Thus the information is available to decide more reliably whether
a reaction could be deleted from the mechanism. The resulting optimization problem
is solved via SNOPT [11]. This software can solve optimization problems with very
large, sparse Hessian matrices. SNOPT uses the sequential quadratic programming
(SQP) method to update the Quasi-Newton approximation of the reduced Hessian,
which greatly reduces the matrix size, especially in optimal control problems that
preserve many active constraints at each iteration.

In the present formulation of our problem, the control parameters are constants
in the time interval under consideration, and (12) is an ODE. The vector field of the
ODE is formed by using Chemkin [15]. An additional equation which finds the norm
for the objective function is added to the system formed by Chemkin

i (yr — 21)° (14)

k=1

10



The reduced model depends not only on the norm but also on the initial concentra-
tions of the species and the initial temperature and pressure. Since we use the mass
fractions of the chemical species, y; is between 0 and 1. As the number of species
in a chemical mechanism increases, the mass fractions of most species are very small
while temperature is usually very high. In our test mechanisms, temperatures are of
the scale 103. To balance the effects of the species and temperature in the objective
function, we scale up the mass fractions of the species in the objective function. In
the numerical result of this report, the scale-up for the species is taken to be 103,
which makes the total effect of the species comparable to that of the temperature.

The error of the reduced model is compared to the norm of the error which results
when all the reactions are deleted. The time interval is important in our problem.
Since chemical mechanisms are often highly stiff, they can reach a steady state very
fast. Taking a long time interval will give slow reactions more importance. A short
time interval will catch the fast reactions, i.e., catch the stiffness. In this preliminary
report, we have taken short time intervals. In this situation, the error will usually be
small because it’s an integral over the time interval taken. We also scale up the norm
according to the integration interval. This results in a better scaling for the objective
function and its gradients; thus the optimizer can perform better. In this report, the
scale-up for the norm is taken as the reciprocal of the time interval.

The residual functions for the sensitivity equations, and the Jacobian matrix re-
quired by DASPKSO are supplied by ADIFOR [2], an automatic differentiation tool.

Numerical results of the SQP method for three chemical mechanisms are given
below. In our computations, the parameters are associated with the reactions in the
input file for Chemkin. If the original file contains reversible reactions, then each
parameter is associated with a reversible reaction. If forward and backward reactions
are input separately, then each forward and and backward reaction is associated with
a parameter. A detailed description of the corresponding chemical mechanisms are
given in the Appendix, as well as the reduced mechanisms which we obtained.

4.1 Example 1: 6-reaction ozone mechanism

Using the methods proposed in this report, we reduced this very small mechanism
to 3 reactions in the time interval [0, 1.0]. By observing the iteration process of the
optimizer, we find that reactions 1 and 3 are always picked by the optimizer but it
encounters difficulty when deciding which of the other ones it should pick: 4 or 6.
This suggests that reactions 4 and 6 are similar in their effect to the original system.
Picking either one of them results in similar total errors. We reduced further the
system to 2 reactions. This time the optimizer gave the answer as 1 and 3, which
we can almost guess from the previous process. The trajectories of temperature and
of the species with a significant amount of mass fraction are shown in Figures 1-3.
These results are very similar to that of 3 reactions which are not presented here. We
can see from these figures that there is a time delay in the ignition for the reduced
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model.

If we pre-select reactions 1 and 3 and let the optimizer pick the third important
reaction, it will easily find 2. We conjecture that this kind of problem may due to
the nonlinearity of the system.

Reactions 1-3 yields a very good reduced model: there is almost no error, as shown
in Figures 4-6. Reaction 2 seems to be controlling the ignition time. This suggests that
a post-recovery process may be necessary to get the secondary important reactions like
2 after the most important reactions (1 and 3) are found. This can be accomplished
by several approaches which we will show in Section 6.

Since we are using the scaled L, norm of the temperature and species mass frac-
tions, the optimizer captures only the perturbations of species with significant mass
fraction. To see the perturbations of species with very small mass fraction, we need
to weight their corresponding terms in the Ly norm, which can be done if one is in-
terested in the change of some specific species. The scale-up can be determined based
on the concentration of the species of interest. We just need to make the effect of
these species in the objective comparable to that of temperature. For example, if the
concentration of a species is around 0.01 during the time interval under consideration,
a scale-up of 10° is appropriate.

4.2 Example 2: 20-reaction mechanism

This mechanism is similar to the example mechanism in [15] except that the element
N and all reactions in which it is involved are not included here. It describes constant
pressure combustion for a hydrogen-oxygen mixture. One reduced model is given
by the first six elementary reactions of the original mechanism. The solution of this
reduced model matches the original model well on the time interval [0.0,107%] on
which the optimization is done. Figures 7-10 show temperature and some of the
species which change significantly in the time interval considered. As the figures
manifest, after a short ignition phase, the system reaches steady state and the mass
fractions of the species do not change much.

4.3 Example 3: GRI Mechanism

GRI-Mech 1.2 is one of the optimized detailed chemical reaction mechanisms capable
of the best representation of natural gas flames and ignition. Most of the reactions
listed in this mechanism have been studied one way or another in the laboratory.
Thus the rate constant parameters mostly have more or less direct measurements
behind them. The original GRI mechanism 1.2 [10] contains 177 reversible reactions.
We reduced this mechanism to 78, 42 and 32 reactions on the time interval [0, 1]. The
78-reaction reduced model is obtained by dividing the 177 reactions in the original
model into 59 groups and then selecting 26 from them. It models the steady state of
the system very well, as shown in Figures 11-15.
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The groups are actually formed as follows. First a group size is chosen according
to the number of reactions such that the number of groups is not too large, say, less
than 100 but still larger than the number of reactions we want to keep in the final
reduced mechanism. For this example, we took the group size to be 3, resulting in
59 groups. The number of groups is taken as the step size when forming the groups
to ensure randomness. Actually, this may not be necessary since the possibility that
several most important reactions are in the same group won’t cause any difficulty: this
just reduces the number of groups that can contain those most important reactions.
In this problem, reactions 1, 60 and 119 form the first group, reactions 2, 61, 120
form the second group and so on. Since in the general case, we can not guarantee
that the number of reactions can be divided evenly by the group size, the last group
will consist of the last several reactions in the original system.

A reduced mechanism of 42 reactions was obtained by pre-selecting the 17 most
important reactions using the scanning method described earlier and optimizing over
the remaining reactions. The results are satisfactory, as shown in Figures 16-20,
though the steady state of the original mechanism and that of the reduced mechanism
are slightly different.

The smallest reduced mechanism we obtained so far without using the post re-
covery process is a 32-reaction mechanism. This mechanism models the ignition time
and the steady state of the original mechanism well but it does not model the shape
of the trajectories very well, as shown in Figures 21-25. Numerical experiments show
that it is difficult to reduce the number of reactions to below 30 without out using the
post recovery process if the steady state of the original mechanism is to be modeled
accurately. A smaller reduced model with 26 reactions is obtained using the combina-
tion of discrete approach on species and the post recovery process on reactions which
we will show in Section 6. Some small reduced models are listed in the Appendix B.

5 Reducing the number of species

In many problems, reduction of the number of species is also important. Reduction
of the number of species can reduce the number of ODEs to be solved and save
computation time.

As we are now reducing reactions directly, the species are “deleted” when all of
the reactions in which they take part are deleted. Here, the deletion of a species
just means that its concentration won’t change in the given time interval. It does
not mean that those species are no longer taking part in the reactions, since some of
the reactions involving those species not deleted are enhanced by them. To actually
delete a species, we need to not only delete the reactions it takes part in but also its
effect to those reactions enhanced by it. This makes the problem more complex for
the optimization, i.e., it introduces more nonlinearity to the optimization problem as
we can see later. So far, we have considered the deletion of a species by fixing its
concentration and deleting all the reactions it takes part in.
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One way to do this is to adapt our general approach to reduce the number of species
directly, i.e., to associate with each species a parameter and then do the optimization.
Because the number of species is much smaller than the number of reactions, the
sensitivity analysis for the parameters is less expensive. The optimization problem
can be formulated as:

min ||y — 2|
subject to

y'=5F(y), y(0) =1y
2 =SDF(z), 2(0)=vyy, 0<t<b,

N
kl S Zei S k?a
=1

gley,---,en) <r (15)

where e;’s are parameters associated with species and g(eq,---,ey) is a nonlinear
function which, when equal to 0, forces the e; to take integer values. The difference
is that now the elements of the diagonal matrix D are computed by

di = jer,e; (16)

where R; is the set of species which take part in reaction 7. Thus when e; = 0 for some
j € R;, the reaction i is in fact deleted because d; = 0. We see that this optimization
problem is well defined when all the parameters take values of 0 or 1. Unfortunately,
this formula, when e;’s are allowed to take continuous values, is highly nonlinear. The
rounding process is much more troublesome than in reducing the number of reactions.
Numerical experiments demonstrate this. Even though the continuous problem gives
solutions where the e;’s are very close to 0 or 1 and the objective is very small, the
rounding process can destroy the solution, even when very strict thresholds are used.
A better formulation of the problem needs to be found.

Since as we mentioned before, the number of species is usually much less than the
number of reactions, scanning on the species is much less expensive than scanning
on the reactions. For example, the GRI model contains 177 reactions but only 32
species. For larger mechanisms, the difference is even more significant. The scanning
on the species works as follows. We simply pick a species and delete all the reactions
that it is involved in as a reactant or product, to arrive at a reduced mechanism.
The solution of this mechanism is compared with that of the original mechanism to
obtain the error caused by the “deletion” of this species. Repeating this process on
all the species in the mechanism completes one scanning on the species. The result
of the scanning on the species is listed in Figure 26, where the species are numbered
the same way as in Figure 36. For the detailed GRI mechanism, please refer to [10].

In this table, the temperatures are that of the reduced models at the end of the
time interval when only the corresponding species are deleted from the model. The
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‘Reactions Remaining’ column gives the sizes of the reduced models when only the
corresponding species is “deleted” from the model. Since the starting temperature is
1000, we can see from the list that deletion of a single species from the set of {4-7,
13-18, 20} will let nothing happen physically since the temperature is not increased
and also the error is very large. Deleting more of them gives similar results. So
we expect that these 11 species will have to be kept. Species 1-3, which cause the
temperature of the reduced model to be higher than that of the original model, also
cause the next largest error. Adding them into this set makes the steady state of
the reduced system model the original system very well but the ignition time is not
modeled very well, as Figure 27 shows. Note that keeping a species does not mean
to keep all the reactions in which it is involved, though deleting a species does mean
to delete all the reactions it takes part in.

An interesting result is that when species 25-27 are also included, the reduced
model has almost no error. This reduced model has only 67 reactions. The figures
for this reduced model are not given since they are the same as the original model.

This result of the scanning on the species suggests that scanning on species may
be a better choice than scanning on the reactions. A modified approach can work
like this: first the species are scanned and a reduced model which causes almost no
error is found. This is much less expensive than scanning the reactions first. Then
the reduced model is scanned a second time on reactions to produce a model which
causes almost no error. This reduced model is then fed to the optimizer for further
reduction. The work of the optimization is thus reduced considerably and also it can
work more efficiently if further reduction is possible. Figure 28 shows the temperature
of a 38-reaction reduced model which is obtained from scanning on the reactions of
the 67-reaction model and no optimization. The reduced model results in almost
no error and leaves very little space for the optimizer for further reduction, as our
numerical experiments demonstrate. Figures for species are not given here because
they are also the same as that of the original mechanism. The 16-species and 38
reaction model is listed in the Appendix. Note that species are not actually deleted
from the model; instead, their concentrations are fixed. So they still appear in the
species list of the input file to Chemkin.

6 Post recovery process and pre-selection of im-
portant reactions

Even though we are taking strict thresholds, the step that rounds to an integer solu-
tion can still cause problems. A post recovery process is needed to improve the result
as shown in Example 1. Our numerical experiments show that in some extreme cases,
a threshold as small as 0.001 can fail to give a satisfactory integer solution. These
failures are due to the high degree of nonlinearity of the optimization problem and
the huge difference in the reaction rate constants. The reason for the first difficulty
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is obvious. The reason for the second difficulty can be illustrated by the following
example.
Consider the following scalar ODE

y'=—(M+ Ay, y(0)=10

where A; >> Ay > 0. We hope to use the optimization method to select one term
which can approximate the original system best. The parameterized system is

Z’ == _(dl)\l + dg)\g)z.

Reducing the system to one term requires solving the optimization problem with
constraint d; + dy = 1. The correct integer solution should be d; = 1,dy; = 0.
For simplicity, we take the error norm as

[0 — oy,

When (d1 A\ +daXo)t; and (A + Ag)t; are large enough, exponential terms in the error
can be neglected and the error can be approximated by

1/(di A + daXs) — 1/(A1 + Aa).
The derivatives of the error norm with respect to d; and d are
_)\l(dl)\l + dg)\2)72 and — )\Q(dl)\l + dg)\2)72.

When d; << dy < 1 but d%)\l >> 1, the gradient to d; can be small and the
optimizer may prematurely declare the current d;, d> to be the optimal solution when
the optimality tolerance is not very strict, thus the rounding process gives a wrong
answer as it takes dy = 1,d; = 0.

To solve this problem, a post recovery process is needed to improve the result.
This can be done in several ways:

e use the optimization method to pick several more reactions

e perform a sensitivity analysis at 0 of the reactions rounded to 0 to find those
reactions that have an extremely large negative derivative value

e use the greedy method to find the deleted reactions that improve the objective
function most

The 3-reaction reduced model for Example 3 is obtained via the first approach. We
have also used the second approach to obtain a 26-reaction reduced model for Example
3, which is reduced from the 17-species, 38-reaction reduced model in Section 5. We
first try to reduce the 38-reaction model to 19 reactions. After a rounding process
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with threshold 0.03, an integer solution which keeps 19 reactions is obtained but it
gives a poor objective. We then use sensitivity analysis to recover the 6 reactions
which have the largest negative derivatives, to obtain this 26-reaction reduced model
which is actually better than the larger models we obtained before. The results are
shown in Figures 29-33.

Due to the very large scale difference in the reaction rate constants, some reactions
are much more important than others. These most important reactions can be pre-
included in the reduced model. This not only saves computation time but can also
avoid some numerical difficulties. In fact, there are some small subsets of reactions of
the original mechanism which allow no physical reactions to happen and can result in
very large objective values. However, the gradients of the objective can be very small
for these subsets of reactions. The reason is that these subsets of reactions lack more
than one key reaction to allow the physical reaction to happen. So the objective is
not sensitive to the perturbation in each single parameter. These subsets of reactions
are bad local minimums and should be avoided. This is done by pre-selecting the
most important reactions. Thus pre-selecting the most important reactions can help
the convergence of the optimizer.

Some subsets of reactions that just lack one key reaction to allow the physical
reaction to happen can be very sensisitive to small perturbations in species con-
centrations and reaction constants of the key reaction. The dynamical systems of
these subsets of reactions can have very ill conditioned Jacobian matrices and more
seriously, extremely large scale differences in the sensitivity variables. We have en-
countered examples with a difference in the scale of the sensitivity variables as large
as 107'% and 107, Actually the sensitivity to the key reaction is extremely large,
i.e., a very small perturbation of the reaction constant from 0 can let the physical
reaction happen and thus reduce the error norm drastically. However, some other
reactions may not be so important; a small perturbation to each one of these reaction
constants from 0 will not cause the physical reaction to happen, and thus the sen-
sitivity to these reaction constants are almost 0. As we have no prior knowledge of
the scaling of the sensitivity variables, scaling can be a very serious problem without
a technique to do automatic scaling. Pre-selecting the most important reactions can
alleviate this difficulty.

7 Future work

Besides the problems we mentioned before, we plan to systematically test the algo-
rithm proposed here and use the approach to reduce large chemical kinetics mecha-
nisms.

An important issue in this model reduction problem is how to decide whether a
given reduced mechanism is acceptable. In our scheme, this means finding an appro-
priate measure for the distance between the original and the reduced mechanism. This
may differ depending on what the reduced mechanism is to be used for. Techniques
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for translating the requirements specified by the chemists to an appropriate measure
will be needed. There are many situations where the L, norm does not appear to be
an appropriate measure, and even in situations where it is a good measure, scaling
of the variables is critical. In some problems, it is the “shape” of the solution that
is important. For example, a small shift in the time axis may be acceptable in the
reduced mechanism.

As the reduced mechanisms are obtained under some specific initial conditions of
the system, another important question is what is the range of the initial conditions
under which the reduced mechanism is a good model. This seems to be a very difficult
problem.
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Appendix A: Figures for Numerical Experiments
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Species No.

O©Coo~NOUAWNPE

Temperature
2563.846
2578.462
2548.987
999.9999
1000.195
1000.299
1040.797
2540.034
2540.034

2540.034
2540.034
2540.034
1000.000
1000.000
1031.249
2205.987
1009.929
1000.464
2540.034
1206.514
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034
2540.034

Error
327129.140
145312.066
566965.623
1673740.07
1673394.24
1673278.93
1642273.18
5276.86882
0.00010808

0.00365596
780.640676
899.774282
1673739.91
1673740.02
1638600.76
88755.8553
1660079.89
1673008.16
1403.02205
1534933.98
7138.21136
0.00004374
0.37952949
4218.68781
114146.134
75320.4101
662120.500
0.01016712
0.01770426
0.00000011
0.00000000
0.00000000
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140
148
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149
150
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140
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165
166
170
165
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Fig 26. Results of the Scanning on Species for Example 3
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Appendix B: Chemical Mechanisms

ELEMENTS ATOMIC
CONSIDERED WEIGHT

1.0 15.9994

C

P H

H A

AR
SPECIES S G MOLECULAR TEMPERATURE ELEMENT COUNT
CONSIDERED E E WEIGHT LOW HIGH O
1.0 G 0 15.99940 300 5000 1
2.02 G 0 31.99880 300 5000 2
3.03 G 0 47.99820 300 5000 3

(k = A T**b exp(-E/RT))
REACTIONS CONSIDERED A b

1. 03+M=>02+0+M 4.31E+14 0.0 92790.0
02 Enhanced by 4.400E-01
o Enhanced by 4.400E-01
2. 02+0+M=>03+M 1.20E+13 0.0 -8110.0
02 Enhanced by 4.400E-01
(@] Enhanced by 4.400E-01
3. 03+0=>02+02 1.14E+13 0.0 19120.0
4. 02+02=>03+0 1.19E+13 0.0 420690.0
5. O+O+M=>02+M 1.38E+18 -1.0 1420.0
02 Enhanced by 4.400E-01
(0] Enhanced by 4.400E-01
6. 02+M=>0+0+M 2.75E+19 -1.0 496610.0
02 Enhanced by 4.400E-01
O Enhanced by 4.400E-01

NOTE: E units Joules/mol, A units mole-cm-sec-K

Initial Values of Mass Fractions and Temperture

AN
000
[S)

0.
2 0.
3 0.

= ©

Initial Temperture: 500K

Pressure is taken as one standard atomosphere.

Fig 34. 6-Reaction Ozone Mechanism: Example 1
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ELEMENTS ATOMIC
CONSIDERED WEIGHT

1.H 1.00797
2.0 15.9994
C
P H
HA
AR
SPECIES S G MOLECULAR TEMPERATURE ELEMENT COUNT
CONSIDERED E E WEIGHT LOW HIGH H O
1. H2 G 0 201594 300 5000 2 0O
2.H G 0 1.00797 300 5000 10
3.02 G 0 31.99880 300 5000 0 2
4.0 G 0 15.99940 300 5000 O 1
5. OH G 0 17.00737 300 5000 1 1
6. HO2 G 0 33.00677 300 5000 1 2
7.H202 G 0 34.01474 300 5000 2 2
8. H20 G 0 18.01534 300 5000 2 1

(k = A T**b exp(-E/RT))
A b

REACTIONS CONSIDERED E
1. H2+02=20H 1.70E+13 0.0 47780.0
2. OH+H2=H20+H 1.17E+09 1.3 3626.0
3. O+OH=02+H 4.00E+14 -0.5 0.0
4. O+H2=0OH+H 5.06E+04 2.7 6290.0
5. H+O2+M=HO2+M 3.61E+17 -0.7 0.0
H20 Enhanced by 1.860E+01
H2 Enhanced by 2.860E+00
6. OH+HO2=H20+02 7.50E+12 0.0 0.0
7. H+HO2=20H 1.40E+14 0.0 1073.0
8. O+HO2=02+0OH 1.40E+13 0.0 1073.0
9. 20H=0+H20 6.00E+08 1.3 0.0
10. H+H+M=H2+M 1.00E+18 -1.0 0.0
H20 Enhanced by 0.000E+00
H2 Enhanced by 0.000E+00
11. H+H+H2=H2+H2 9.20E+16 -0.6 0.0
12. H+H+H20=H2+H20 6.00E+19 -1.2 0.0
13. H+OH+M=H20+M 1.60E+22 -2.0 0.0
H20 Enhanced by 5.000E+00
14. H+O+M=0OH+M 6.20E+16 -0.6 0.0
H20 Enhanced by 5.000E+00
15. O+0+M=02+M 1.89E+13 0.0 -1788.0
16. H+HO2=H2+02 1.25E+13 0.0 0.0
17. HO2+HO2=H202+02 2.00E+12 0.0 0.0
18. H202+M=0OH+OH+M 1.30E+17 0.0 45500.0
19. H202+H=HO2+H2 1.60E+12 0.0 3800.0
20. H202+OH=H20+HO2 1.00E+13 0.0 1800.0

NOTE: A units mole-cm-sec-K, E units cal/mole

Initial Values of Mass Fractions and Temperture

1. H2 0.12
2.H 0.00
3.02 0.88
4.0 0.00
5.0H 0.00
6.HO2  0.00
7.H202 0.00
8.H20 0.00

Initial Temperture: 1000K

Pressure is taken as one standard atomosphere.

Fig 35. 20-Reaction Mechanism
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Initial Mass Fractions of Species and Temperture

1. H2 0.00

2. H 0.00
3.0 0.00

4. 02 0.18

5. OH 0.00
6. H20 0.00
7. HO2 0.00
8. H202  0.00
9. C 0.00
10. CH 0.00
11. CH2 0.00
12. CH2(S)  0.00
13.CH3 0.00
14. CH4 0.09
15.CO 0.00
16. CO2 0.00
17. HCO 0.00
18.CH20  0.00
19. CH20H  0.00
20.CH30  0.00
21.CH30OH  0.00
22.C2H 0.00
23.C2H2  0.00
24.C2H3  0.00
25.C2H4  0.00
26.C2H5  0.00
27.C2H6  0.00
28.HCCO  0.00
29.CH2CO  0.00
30. HCCOH  0.00

31. N2 0.64
32. AR 0.09

Initial Temperture: 1000K

Pressure is taken as one standard atomosphere.

Fig 36. Initial Values Used for Experiments on GRI Mechanism: Example 3
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