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Abstract 

In this paper, it is proved that Lin et al.'s scheme that tried to strengthen the Hill cipher 

against the known-plaintext attack has several security flaws and is vulnerable to the chosen-

ciphertext attack. This paper also introduces a secure and efficient symmetric cryptosystem 

based on affine transformation. The proposed cryptosystem includes an encryption algorithm 

that is an improved variant of the Affine Hill cipher, and two cryptographic protocols that are 

introduced for the proposed cryptosystem.  

1. Introduction 

 The Hill cipher was invented in 1929 by Lester S. Hill [1, 2]. It is a famous polygram and 

classical ciphering algorithm based on matrix transformation that its attributes, including its 

cryptanalysis are described in some cryptographic textbooks [3, 4]. Although susceptibility of 

the Hill cipher to cryptanalysis has rendered it unusable in practice, it still serves an important 

pedagogical role in both cryptology and linear algebra. The Hill cipher is a block cipher that 

has several advantages such as disguising letter frequencies of the plaintext, its simplicity 

because of using matrix multiplication and inversion for encryption and decryption, and its 

high speed and high throughput [5] but it is vulnerable to the known-plaintext attack [6].  

 Several researchers tried to improve the security of the Hill cipher. Yeh et al. [7] used two 

co-prime base numbers that are securely shared between the participants but their scheme is 

not efficient and requires many manipulations. Saeednia [8] tried to make the Hill cipher 

secure using some random permutations of columns and rows of the key matrix but it is 

proved that his cryptosystem is vulnerable to the known-plaintext attack [9], the same 

vulnerability of the original Hill cipher. Ismail et al. [5] tried to improve the Hill cipher's 

security by introduction of an initial vector that multiplies successively by some orders of the 

key matrix to produce the corresponding key of each block but it has several inherent security 

problems [10]. Lin et al. [9] claimed that taking some random numbers and using a one-way 

hash function thwarts the known-plaintext attack to the Hill cipher but their scheme is not so 
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efficient and in this paper, we prove that it is vulnerable to the chosen-ciphertext attack due to 

a great security flaw in the underlying protocol of their scheme. 

 The main contribution of this paper is to introduce a secure cryptosystem that is a variant 

of the Affine Hill cipher, which overcomes all of its security drawbacks. Our proposed 

cryptosystem includes an encryption algorithm for which two secure cryptographic protocols 

are introduced. The first one is a two-pass protocol that is a variant of the Hughes key-

exchange protocol [11] and includes an authentication step to thwart the man-in-the-middle 

attack. The second protocol is one-pass and is suitable whenever both of participants are not 

online. The encryption core of the proposed cryptosystem has the same structure of the Affine 

Hill cipher but its internal manipulations are different from the previously proposed schemes. 

Although HMAC is usually used for the purpose of authentication, we utilize it in the 

encryption core of our proposed cryptosystem and for extracting the corresponding random 

number of each block in a hash chain. This has been accomplished due to the inherent 

advantage of HMAC over ordinary hash functions, and to give more randomization to the 

linear structure of the Affine Hill cipher, especially when the output of HMAC can be 

considered as a random number.  

 The rest of this paper is organized as follows. Section 2 briefly introduces the Hill cipher. 

Section 3 is devoted to Lin et al.'s scheme [9] and its cryptanalysis. The proposed 

cryptosystem and its attributes, including evaluation of its computational costs is presented in 

Section 4. A key generation algorithm for the proposed cryptosystem is described in Section 

5, and Section 6 concludes the paper. 

2. The Hill Cipher 

 In the Hill cipher, the ciphertext is obtained from the plaintext by means of a linear 

transformation. The plaintext row vector X is encrypted as )(mod mXKY   in which Y is 

the ciphertext row vector, K is an nn  key matrix where mijk  , m  is ring of integers 

modulo m, and m is a natural number that is greater than one. The encryption procedure 

proceeds with encoding the resulted ciphertext row vector into alphabets of the main 

plaintext. The ciphertext Y is decrypted as )(mod m1YKX  .  

For decryption to be possible, the key matrix K that is securely shared between the 

participants should be invertible or equivalently, it should satisfy 

1) ), (mod(det  gcd mmK  [6]. The value of modulus m in the original Hill cipher was 26 

but its value can be optionally selected. Actually, many of square matrices are not invertible 

over m . The keyspace of the Hill cipher is ),( mnGL  , the group of nn  matrices that are 



 

  

invertible over m . As it is proved in [12], when  i
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Thus, the probability of a randomly selected square matrix to be invertible is about one for 

any large prime modulus while it is almost zero for a composite modulus with many different 

prime divisors so the risk of determinant having common factors with the modulus can be 

reduced by taking a prime number as the modulus. Such selection also increases the keyspace 

of the cryptosystem since a prime modulus generates a larger keyspace than that of a 

composite modulus [12]. The keyspace also increases with increase in n, the rank of the key 

matrix, as it is apparent from (1). For the sake of increasing the keyspace and improving the 

security, we should increase the rank of the key matrix and choose a large enough prime 

number as the modulus but it may increase the running time and decrease the efficiency. This 

is a tradeoff between the security and efficiency. 

The security of the Hill cipher depends on confidentiality of the key matrix K and its rank 

n. When n is unknown and the modulus m is not too large, the opponent could simply try 

successive values of n until the key is found. If the guessed value of n was incorrect, the 

obtained key matrix would be disagreed with further pairs of plaintext and ciphertext. The 

most important security flaw of the Hill cipher is regarded to its vulnerability to the known-

plaintext attack since it can be broken by taking n distinct pairs of plaintext and ciphertext [6, 

7].  

The Affine Hill cipher is an extension to the Hill cipher that mixes it with a nonlinear 

affine transformation [6] so the encryption expression has the form of )(mod mVXKY  . 

In this paper, we extend this concept in the encryption core of our proposed cryptosystem.  

3. Cryptanalysis of Lin et al.'s Cryptosystem 

3.1. Lin et al.'s Scheme 

 The Lin et al.'s scheme [9] is depicted in Figure 1. Alice selects a random integer a in the 

range ma 0  where m can be a composite number. She concatenates a with other 

elements of K and computes )||...||||...||||||( 1211 nnij kkkkahb   in which )(xh  is a one-



 

  

way hash function and || denotes the concatenation. She picks up ijk  that is the thij  element 

of the key matrix K where )mod]
1
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row vector ]...[ 21 nvvvV  using the recursive expression mvhv tt mod)( 1 ,  

nt ,...,3,2  where mkhv ij mod)(1  . Alice encodes the plaintext into some row vectors 

]...[ 21 nxxxX  and encrypts them as )(mod mkij VXKY  . She finally sends 

the pairs of (Y, a) to Bob. On the other hand, Bob proceeds the same procedure with the 

clearly sent random number a and computes b, ijk  and V. He decrypts the received ciphertext 

as )(mod)( 11 mkij
  KVYX . It should be notified that the decryption expression in [9] 

was incorrect so it is modified in this paper. 

3.2. Vulnerability to Chosen-Ciphertext attack 

 The encryption expression of the Lin et al.'s scheme has the form of 

)(mod mC tttt VKXY   in which tC  is the corresponding ijk  for the tth block of data. 

Even if the attacker knows n pairs of ),( tt YX  in which nt ,...,1 , the key matrix K and 

parameters tC  and tV  are unknown. Lin et al. claimed that the known-plaintext attack cannot 

be accomplished on their scheme since n equations cannot be used for solving an unknown 

nn  matrix and 2n unknown parameters [9]. However, we show that their scheme is 

vulnerable to the chosen-ciphertext attack if the attacker chooses those equations that have the 

same unknown parameters tC  and tV . In this kind of attack, the cryptanalyst can choose 

different ciphertexts and has access to the corresponding plaintexts. He will try to deduce the 

key. Although this kind of attack is most relevant to public-key cryptosystems, it can also be 

effective against a symmetric algorithm [12]. 

 The vulnerability of Lin et al.'s scheme is that the values of b and V, and the choice of ijk  

depend on the value of a and their values do not differ for the same value of a. Although a is 

randomly selected, it is clearly sent over the communication link which enables the 

eavesdropper to easily see and use it for a chosen-ciphertext attack. The attack can take place 

as follows: When Alice sends the pairs of (Y, a) to Bob, Eve eavesdrops and saves them. The 

random number a will be repeated in some pairs of (Y, a) especially when dealing with a bulk 

of data. This will be strengthened with a small choice of the modulus. Eve chooses n+1 pairs 

of (Y, a) that have the same random number a. According to the chosen-ciphertext attack, she 

has access to the corresponding plaintext of the chosen ciphertexts. For example, she may 



 

  

have access to a cryptographic module that automatically performs decryption. Now, she has 

a set of equations as )(modmk tijt VKXY  , 1,...,1  nt  where tX  and tY  are the 

known parameters. She can easily derive the key matrix K using any of conventional methods 

described in the linear algebra. Although Lin et al. used the structure of the Affine Hill cipher, 

the row vector V can be easily eliminated from the pairs encrypted with the same random 

number so for such pairs, their scheme acts as the simple Hill cipher. 

3.3. Further defects 

 In addition to vulnerability of the Lin et al.'s scheme to the chosen-ciphertext attack, it 

involves other faults and weaknesses. For each block of plaintext, a different random number 

should be generated and it should be transmitted with its corresponding ciphertext. This can 

decrease the efficiency due to the repeated random number generations and increased 

bandwidth requirements. Another weakness of their scheme is that the modulus can be a 

composite number so the keyspace and subsequently, the notion of security will be decreased. 

The composite modulus may also make the decryption impossible. For decryption to be 

possible in their scheme, it is necessary to have 1),gcd( mkij  and 

1) ), (mod(det  gcd mmK . Such necessary conditions may fail especially when m is 

composite. If the modulus is a prime number p, the decryption will be failed only when ijk  is 

zero mod p. However, for a composite modulus m, the picked up ijk  with a fair probability 

has some common divisors with the modulus that makes the decryption impossible. 

4. The Proposed Cryptosystem 

 The proposed cryptosystem includes a ciphering core that is depicted in Figure 2 and has 

the same structure of the Affine Hill cipher. In order to give more randomization to the 

introduced scheme and to strengthen it against the common attacks, each block of data is 

encrypted using a random number. For avoiding multiple random number generations, only 

one random number is generated at the beginning of encryption and the corresponding 

random numbers of following data blocks are recursively generated using HMAC in a chain. 

The basic random number that is generated prior to encryption should be securely shared 

between the participants so it is necessary to introduce some cryptographic protocols. Figures 

3 and 4 depict two cryptographic protocols for the proposed cryptosystem in which the 

encryption and decryption procedures should be followed from Figure 2. The first introduced 

protocol called “A” is a two-pass protocol while the second protocol named “B” is one-pass. 

Protocol “A” is actually an improved variant of the Hughes key-exchange protocol [11] that is 



 

  

selected because of its simplicity and our reluctance to involve any trusted third party but the 

Hughes protocol is vulnerable to the man-in-the-middle attack so protocol “A” modifies it by 

introduction of an authentication step. Protocol “B” is a new one-pass protocol that is 

designed for the proposed cryptosystem. As a one-pass protocol, it does not have any 

authentication step but it is secure, does not reveal any secret information, and is suitable for 

situations where both of participants are not online.  

 The following steps briefly describe the proposed cryptosystem using protocol “A” in 

which p  is a large prime number, g is a primitive element of the multiplicative group *
p , 

and values of p  and g can be publicly available to anyone. As stated in Section 2, the 

modulus p is a large prime number.  

1. Alice secretly selects a random integer x in 10  px  and computes 

)(mod0 pga x  . She encodes the plaintext message into some row vectors 

]...[ 21 nxxxX . For the tth block of data to be encrypted ( ,...2,1t ), she 

computes ta  with a recursive expression as )( 1'  tkt aHMACa  in which 

q
tnn akkkkk 2mod)||||...||||||( 1131211   is the required q-bits key of the deployed 

HMAC that is simply generated by taking q-bits from least significant bits of 

)||||...||||||( 1131211 tnn akkkk . If ta  is invertible mod p, i.e. )(mod0 pat  , she puts 

)(mod0 pav t . Otherwise, she puts 10 v . She produces the row vector 

]...[ 21 nvvvV  with the recursive expression as )(mod~
1 pavkv tiiji   for 

ni ,...,1  and 1)mod( 1   nvj i , in which 1
~
iv  is defined as 

   )2mod(2~ 2/
1

2/
1


  ii vv  where   1log 12  iv  denotes the bit-length of 1iv , 

 .  denotes the floor, and  .  indicates the ceiling. She then encrypts all the plaintext 

vectors as )(mod0 pv VXKY  . She repeats the procedure until all blocks of 

plaintext become encrypted.  

2. Bob secretly selects a random integer y in 10  py  and computes 

)(mod pgc y   and )(" cHMACd k  in which 

q
nnkkkkk 2mod)||...||||||( 131211 . He then sends the pair (c, d) to Alice. 

3. Alice receives the pair (c, d) and uses c to compute d as )(" cHMACd k  for verifying 

the received value of d. This authenticates Bob and ensures Alice that Bob is the other 

party since it is assumed that only Bob knows the elements of the key matrix. She sends 



 

  

Bob all the ciphertext vectors Y, produced in step 1 together with number 

)'(mod pce x . 

4. Bob computes )(mod1 pyu    and uses it for retrieving 0a  as )(mod0 pea u  . He 

uses 0a  for decrypting the ciphertext as )(mod)( 11
0 pv   KVYX , as it is depicted 

in Figure 2. 

 
 Description of protocol “B” is similar to that of protocol “A” and can be easily followed 

from Figure 4. 

4.1. Properties of the Proposed Scheme 

 The proposed cryptosystem neutralizes all the security drawbacks of the Hill cipher. It 

thwarts the known-plaintext attack with the same reasoning that was stated for the Lin et al.'s 

scheme. Choosing a large prime number p as the modulus has extremely enhanced the 

keyspace so the brute-force or equivalently, the ciphertext-only attack does not have any 

benefit for the attacker. The random number after a secure transmission is recursively 

encoded with HMAC so it differs for each block of plaintext. Moreover, the key of HMAC is 

another random number that is varying for each block of plaintext. The chosen-ciphertext and 

chosen-plaintext attacks are also thwarted since the random number 0a  that its knowledge is 

necessary to accomplish such attacks, is exchanged via a secure protocol. For the proposed 

cryptosystem, Eve cannot use the pairs (Y, a) for performing the chosen-ciphertext attack as it 

was the case for the Lin et al.'s scheme. Furthermore, protocol “A” includes an authentication 

step and prevents the man-in-the-middle attack so Mallory cannot impersonate Alice or Bob 

since he does not have the secret key matrix. 

 Utilizing HMAC in the proposed cryptosystem is to take advantage of the key matrix that 

is secretly shared between the involved participants and due to the advantages of HMAC over 

ordinary hash functions [13]. HMAC treats the hash function as a black box so the kind of its 

embedded hash function can be changed when necessary. HMAC executes in approximately 

the same time as its embedded hash function for long messages [14] but it provides further 

security [13, 15]. 

 The introduced expression for generating the elements of vector V as 

)(mod~
1 pavkv tiiji   and defining 1

~
iv  as    )2mod(2~ 2/

1
2/

1


  ii vv  takes 

advantages of ideas behind the MQV key-exchange protocols [16]. 1
~
iv  is simply computed 

by taking the least significant half in binary representation of 1iv  and its definition in this 

way will decrease the computational costs and consequently, increases the efficiency [16]. 



 

  

 The security of protocol “A” depends on the computational intractability of the Discrete 

Logarithm Problem (DLP) so certain considerations should be taken into account to assure its 

computational intractability. The security of exchanging the random number 0a  depends on 

difficulty of factoring numbers with the same size as p'. To thwart known attacks, the prime 

modulus p' should have at least 300 digits, and 1p  should have at least one large prime 

factor [6]. p' should also be a safe prime, i.e. it should be selected in a way that 2)1( p  

becomes a prime number too [17]. Theoretically, the parameter g that is used for generating 

0a  as )(mod0 pga x   should be a primitive element of the multiplicative group *
p , i.e. 

the powers of g should generate all the distinct integers from 1 to 1p  in some order [13]. 

However, it actually does not have to be a primitive element. It just has to generate a large 

subgroup of the multiplicative group *
p  [11]. Random number generation is also an 

important issue for which certain considerations should be taken into account [18]. 

4.2. Computational Costs 

 In this section, the time complexity of the proposed scheme is evaluated. To have a fair 

comparison between the proposed cryptosystem and other schemes, only the computational 

costs of the ciphering core is considered and we neglect the required computations of the 

protocols. We also neglect the required computations for computing the inverse key matrix 

that is used for the decryption since it can be assumed that the key matrix and its inverse have 

been securely shared between the participants. Let EncT  and DecT  denote the running time for 

encryption and decryption of each block of data respectively. By considering the above-

mentioned eliminations, we have: 

HMACAddMulEnc TTnnTnnT  )1()2(~ 22     (3) 

InvHMACAddMulDec TTTnnTnnT  )1()2(~ 22    (4) 

in which HMACT  is the running time for the HMAC calculations, and MulT , AddT  and InvT  are 

the time needed for the modular multiplication, addition and inverse calculations respectively. 

HMACT  depends on the kind of embedded hash function that is used within HMAC. Total 

number of operations for the HMAC-SHA1 calculation is as: 

)2(1110321 kSHAHMAC nT       (5) 

while for the case of HMAC-MD5, it is: 

)2(744325 kMDHMAC nT       (6) 



 

  

in which 
512

kN
nk


  is the number of input blocks to the embedded hash function where N 

is the bit-length of the total message and k is the bit-length of extra-appended inner form of 

the key [19]. Each of MulT , AddT  and InvT  requires different number of operations. Let 

  1log2  p  denotes the bit-length of modulus p. Using the conventional methods, we 

have: 

)(OTAdd          (7) 

)( 2OTMul          (8) 

)( 3OTInv          (9) 

in which the big-O notation denotes the order of magnitude of the complexity [20]. There are 

many fast algorithms for the computations [18] but we consider the time complexity of the 

conventional methods since it corresponds with the worst situation. The computational costs 

of the proposed scheme for encrypting and decrypting each block of data can be simply 

estimated by substituting expressions (5-9) into (3) and (4). The running time for encryption 

and decryption of each block of data explicitly depends on   and n. Table 1 gives a 

comparison between the required number of operations for encrypting/decrypting each block 

of data in the proposed scheme and those of the other schemes. The required number of 

operations for encrypting each block of data using different schemes and for different rank 

values of the key matrix are depicted in Figure 5, where the plaintext and modulus are fixed 

and the deployed hash function is SHA-1. Regardless of the security advantages of the 

proposed scheme over the previously proposed schemes, Figure 5 explicitly exhibits its 

computational efficiency. 

 The total processing time for enciphering /deciphering the whole blocks of 

plaintext/ciphertext can be simply estimated by multiplying the running time of each block of 

data by the total number of blocks. The total number of blocks depends on the length of input 

data and the rank of the key matrix since the plaintext is divided into blocks of n letters. If the 

total plaintext has a length of L letters that is not a multiple of n, it should be padded until it 

becomes a multiple of n so the number of data blocks is 





n

L
. For a fixed data length, 

increasing n will decrease the number of data blocks and vice versa. The running time for 

encrypting the whole plaintexts is: 

 HMACAddMulEncTotal TTnnTnn
n

L
T 



 )1()2(~ 22

_   (10) 

While the running time for decrypting the whole ciphertexts will be: 



 

  

 InvHMACAddMulDecTotal TTTnnTnn
n

L
T 



 )1()2(~ 22

_  (11) 

 The computational costs of the proposed scheme for encrypting/decrypting all blocks of 

data is simply estimated by substituting expressions (5-9) into (10) and (11). Figure 6 depicts 

the effects of rank value of the key matrix on the total number of operations for encipherment 

of the whole plaintext that is obtained using (10) for 400L  and 29p . The size effects 

of the modulus p on the total number of operations for encipherment of the whole plaintext is 

also depicted in Figure 7 that is obtained using (10) for 400L  and 9n . It is noteworthy 

that the waves in Figure 6 are according to the introduced ceiling function in (10) while the 

steps in Figure 7 are due to logarithmic relationship between the modulus p and its bit-length 

 . The computational costs of the decryption can be easily evaluated in the same manner.  

5. Key Generation 

 The key matrix should be randomly generated. It should be nonsingular to be invertible in 

the Galois field )( pGF  and it should satisfy the condition 1) ), (mod gcd(det ppK  as it 

was stated in Section 2. Taking a matrix inversion over a Galois field may be a tedious task. 

The square matrix R is assumed as an inverse of the square matrix K if and only if 

IR.KK.R  )(mod)(mod pp  where I is an nn  identity matrix. The inverse key 

matrix can be calculated using the Gaussian elimination method [3]. The total number of 

operations for the Gauss-Jordan matrix inversion algorithm is of )( 3n  [21]. However, a fast 

algorithm is presented in [7] that generates an nn  pseudo-random square matrix and its 

inverse over the Galois field )( pGF  with some simple and fast manipulations. First, K and 

R matrices are initialized with the identity matrix I. The algorithm then proceeds with the 

following loop: 

For nq :1  do  

      )(mod pqK.HK   , )(mod pq .RGR      (12) 

in which qH  is the qth row elementary matrix and qG is its corresponding inverse row 

elementary matrix [7]. One can use the former for encryption and the latter for decryption or 

vice versa. 

6. Conclusions 

 In this paper, it is proved that Lin et al.'s scheme [9] that tried to strengthen the Hill cipher 

against the known-plaintext attack includes some flaws and is vulnerable to the chosen-



 

  

ciphertext attack. A symmetric cryptosystem that is actually a variant of the Affine Hill cipher 

is also introduced. The introduced cryptosystem includes a ciphering core that has an outer 

structure similar to the Affine Hill cipher but its inner manipulations are different. Each block 

of data is actually encrypted using a different random number that is generated via 

employment of a chained HMAC. Two cryptographic protocols are also introduced. The first 

one is a two-pass protocol for which we have modified the Hughes key-exchange protocol, 

and includes an authentication step to thwart the man-in-the-middle attack. The other protocol 

is one-pass and is suitable when both of participants are not online. The proposed 

cryptosystem and its underlying protocols thwart the known-plaintext, chosen-ciphertext, 

chosen-plaintext, and man-in-the-middle attacks. The keyspace has been greatly enhanced 

since the modulus is a prime number. The ciphertext-only attack is also thwarted due to the 

increased keyspace of the cryptosystem.  
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Table 1. Computational costs of different schemes for 

encryption/decryption of each block of data 
Different Schemes Operation MulT  AddT  InvT  HashT  

Original Hill Cipher 
Encryption 2n  nn 2  - - 

Decryption 2n  nn 2  - - 

Affine Hill Cipher 
Encryption 2n  2n  - - 

Decryption 2n  2n  - - 

Lin et al.'s Scheme [9] 
Encryption 32  nn  42 n  - 1n  

Decryption 32  nn  42 n  1 1n  

Our Proposed Scheme 
Encryption nn 22   12  nn  - 1 

Decryption nn 22   12  nn  1 1 

 
 
 
 
 
 
 
 

 
Fig. 1. The corrected Lin et al.’s scheme [9] 

 
 



 

  

 
Fig. 2. Encryption core of the proposed cryptosystem 

 
 
 

 
Fig. 3. A two-pass protocol for the proposed cryptosystem (Protocol ‘A’) 

 
 
 

 
Fig. 4. A one-pass protocol for the proposed cryptosystem (Protocol ‘B’) 



 

  

 

 
Fig. 5. Required number of operations for encrypting each block of data 

for different rank values when the modulus p is fixed (p=29) 
 
 
 
 

 
Fig. 6. Required number of operations for encrypting a plaintext of 
L=400 letters for different rank values when the modulus p is fixed 

(p=29) 



 

  

 

Fig. 7. Required number of operations for encrypting a plaintext of 
L=400 letters for different modulo p when the rank value n is fixed (n=9) 


