
Scalable ComputingW F McCollProgramming Research Group, Oxford University Computing Laboratory, WolfsonBuilding, Parks Road, Oxford OX1 3QD, EnglandAbstract. Scalable computing will, over the next few years, becomethe normal form of computing. In this paper we present a uni�ed frame-work, based on the BSP model, which aims to serve as a foundation forthis evolutionary development. A number of important techniques, toolsand methodologies for the design of sequential algorithms and programshave been developed over the past few decades. In the transition from se-quential to scalable computing we will �nd that new requirements suchas universality and predictable performance will necessitate signi�cantchanges of emphasis in these areas. Programs for scalable computing,in addition to being fully portable, will have to be e�ciently universal,o�ering high performance, in a predictable way, on any general purposeparallel architecture. The BSP model provides a discipline for the designof scalable programs of this kind. We outline the approach and discusssome of the issues involved.1 IntroductionFor �fty years, sequential computing has been the normal form of computing.From the early proposal of von Neumann [5] to the present day, sequential com-puting has grown relentlessly, embracing new technologies as they have emergedand discarding them whenever something better came along. Today it is a hugeglobal industry. The two parts of that industry, hardware and software, are quitedi�erent. Most sequential hardware has a life span of a few years. New technolo-gies continually o�er new ways of realising the same basic design in a form whichis cheaper, more powerful, or both. In contrast, sequential software systems of-ten take many years to develop, and are expected to last for a very long time,preferably for ever.The key reason for the spectacular success of sequential computing has beenthe widespread, almost universal, adoption of the basic model proposed by vonNeumann. To see why this happened it is necessary to go back further, to thework of Turing [20]. In his theoretical studies, Turing demonstrated that a singlegeneral purpose sequential machine could be designed which would be capableof e�ciently performing any computation which could be performed by a spe-cial purpose sequential machine. Stated more concisely, he demonstrated that? To appear in LNCS Volume 1000. J. van Leeuwen (Editor). Springer-Verlag (1995).This work was supported in part by ESPRIT Basic Research Project 9072 - GEPP-COM (Foundations of General Purpose Parallel Computing).

e�cient universality was achievable for sequential computations. Around 1944,von Neumann produced his proposal for a general purpose sequential computerwhich captured the principles of Turing's work in a practical design. The design,which has come to be known as the \von Neumann computer", has served as thebasic model for almost all sequential computers produced from the late 1940s tothe present time. The stability and universality provided by the von Neumannmodel has permitted and encouraged the development of high level languagesand compilers. These, in turn, have created a large and diverse software industryproducing portable applications software which will run with high performanceon any sequential computer.For sequential computing, the von Neumann model has given the two partsof the computing industry what they require to succeed. The hardware industryis provided with a focus for its technological innovation, and the con�dence that,since the model is stable, software companies will �nd that the time and e�ortinvolved in developing software can be justi�ed. The software industry meanwhilesees the stability of the model as providing a basis for the high level, cost-e�ectivedevelopment of applications software, and also providing a guarantee that thesoftware thus produced will not become obsolete with the next technologicalchange.Since the earliest days of sequential computing it has been clear that, sooneror later, sequential computing would be superseded by parallel computing. Thishas not yet happened, despite the availability of numerous parallel machinesand the insatiable demand for increased computing power. In this paper we willargue that the evolution to parallel computing can now take place, and will doso over the next few years. We will show that all of the essential requirementsfor such a transition can now be satis�ed. In particular, we will present the BSPmodel and will argue that it can play a unifying role analogous to that which thevon Neumann model has played in the development of sequential computing.2 ArchitecturesParallel computing is not new. For many years, academic research groups and,more recently, companies, have been producing parallel computers and tryingto persuade people to write parallel software for them. On most of the earlyparallel systems, the global communications networks were very poor and scal-able performance could only be achieved by designing algorithms and programswhich carefully exploited the particular architectural features of the machine.Besides being tedious and time consuming in most cases, this approach typicallyproduced software which could not be easily adapted to run on other machines.Over the last few years the situation has improved. For a variety of tech-nological and economic reasons, the various classes of parallel computer in use(distributed memory machines, shared memory multiprocessors, clusters of work-stations) have become more and more alike. The economic advantages of usingstandard commodity components has been a major factor in this convergence.Other in
uential factors have been the need to e�ciently support a global ad-

dress space on distributed memory machines for ease of programming, and theneed to replace buses by networks to achieve scalability in shared memory multi-processors. These various pressures have acted to produce a rapid and signi�cantevolutionary restructuring of the parallel computing industry.There is now a growing consensus that for a combination of technological,commercial, and software reasons, we will see a steady evolution over the nextfew years towards a \standard" architectural model for scalable parallel comput-ing. It is likely to consist of a collection of (workstation-like) processor-memorypairs connected by a communications network which can be used to e�cientlysupport a global address space. Both message passing and shared memory pro-gramming styles will be e�ciently supported on these architectures. As withall such successful models, there will be plenty of scope for the use of di�erentdesigns and technologies to realise such systems in di�erent forms depending onthe cost and performance requirements sought.The simplest, cheapest, and probably the most common architectures will bebased on clusters of personal computers. The next Intel microprocessor, currentlyreferred to as the P6, will be the �rst high volume, commodity microprocessorfor the personal computer market with hardware support for multiprocessing.In a couple of years, very low cost multiprocessor personal computers will beavailable, along with very low cost networking technologies and software allow-ing these to be assembled into clusters for high performance computing. At theother end of the spectrum, there will continue to be a small group of compa-nies producing very large, very powerful and very expensive parallel systems forthose who require those computing resources. At present, a good example of acompany operating in this end of the market is Cray Research. The CRAY T3Dis a very powerful distributed memory architecture based on the DEC Alphamicroprocessor. In addition to o�ering extremely high bandwidth global com-munications, it has several specialised hardware mechanisms which enable it toe�ciently support parallel programs which execute in a global address space [2].The mechanisms include hardware barrier synchronisation and direct remotememory access. The latter permits each processor to get a value directly fromany remote memory location in the machine, and to put a value directly inany remote memory location. This is done in a way which avoids the perfor-mance penalties normally incurred in executing such operations on a distributedmemory architecture, due to processor synchronisation and other unnecessaryactivities in the low level systems software. The companies which compete atthe top end of the market will, as today, focus their attention not only on highlyoptimised architectural design, but also on new, and perhaps expensive, tech-nologies which can o�er increased performance. For example, some might useoptical technologies to achieve more e�cient global communications than couldbe achieved with VLSI systems.The implementation of a global address space on a distributed memory archi-tecture requires an e�cient mechanism for the distributed routing of put and getrequests, and of the replies to get requests, through the network of processors.A number of e�cient routing and memory management techniques have been

developed for this problem, see e.g. [13, 21, 22]. Consider the problem of packetrouting on a p-processor network. Let an h-relation denote a routing problemwhere each processor has at most h packets to send to various processors in thenetwork, and where each processor is also due to receive at most h packets fromother processors. Here, a packet is one word of information, such as e.g. a realnumber or an integer. Using two-phase randomised routing one can, for example,show that every (log p)-relation can be realised on a p processor hypercube inO(log p) steps. In [9] a simple and practical randomised method of routing h-relations on an optical communications system is described. The optical systemis physically realistic and the method requires only O(h + log p log log p) steps.In [18] a simple and very e�cient protocol for routing h-relations using only thetotal-exchange primitive is described.The process of architectural convergence which was described above bringswith it the hope that we can, over the next few years, establish scalable parallelcomputing as the normal form of computing, and begin to see the growth ofa large and diverse global software industry for scalable computing similar tothat which currently exists for sequential computing. The main goal of thatindustry will be to produce scalable software which will run unchanged, andwith high performance, on any architecture, from a cheap multiprocessor PCto a large parallel supercomputer. The next major step towards this goal isto develop a foundation for the architecture independent programming of thisemerging range of scalable parallel systems. The BSP approach described in thispaper provides just such a foundation. It o�ers the prospect of achieving bothscalable parallel performance and architecture independent parallel software, andprovides a framework which permits the performance of parallel and distributedsystems to be analysed and predicted in a precise way.3 The BSP ModelIn architectural terms, the BSP model is essentially the standard model de-scribed above. A bulk synchronous parallel (BSP) computer [13, 21] consists ofa set of processor-memory pairs, a global communications network, and a mech-anism for the e�cient barrier synchronisation of the processors. There are nospecialised broadcasting or combining facilities, although these can be e�cientlyrealised in software where required [23]. The model also does not deal directlywith issues such as input-output or the use of vector units, although it can beeasily extended to do so. If we de�ne a time step to be the time required for asingle local operation, i.e. a basic operation (such as addition or multiplication)on locally held data values, then the performance of any BSP computer canbe characterised by three parameters: p = number of processors; l = numberof time steps for barrier synchronisation; g = (total number of local operationsperformed by all processors in one second)/(total number of words delivered bythe communications network in one second). [There is also, of course, a fourthparameter, the number of time steps per second. However, since the other pa-rameters are normalised with respect to that one, it can be ignored in the design

of algorithms and programs.]The parameter l corresponds to the network latency. The parameter g cor-responds to the frequency with which remote memory accesses can be madewithout a�ecting the total time for the computation; in a machine with a highervalue of g one must make remote memory accesses less frequently. More formally,g is related to the time required to realise h-relations in a situation of continuousmessage tra�c; g is the value such that an h-relation can be performed in h � gtime steps. Any scalable parallel system can be regarded as a BSP computer,and can be benchmarked accordingly to determine its BSP parameters l andg. The BSP model is therefore not prescriptive in terms of the physical archi-tectures to which it applies. Every scalable architecture can be viewed by analgorithm designer or programmer as simply a point (p; l; g) in the space of allBSP machines.The use of the parameters l and g to characterise the communications per-formance of the BSP computer contrasts sharply with the way in which commu-nications performance is described for most distributed memory architectureson the market today. A major feature of the BSP model is that it lifts consid-erations of network performance from the local level to the global level. We arethus no longer particularly interested in whether the network is a 2D array, abutter
y or a hypercube, or whether it is implemented in VLSI or in some opti-cal technology. Our interest is in global parameters of the network, such as l andg, which describe its ability to support remote memory accesses in a uniformlye�cient manner.In the design and implementation of a BSP computer, the values of l and gwhich can be achieved will depend on the capabilities of the available technologyand the amount of money that one is willing to spend on the communicationsnetwork. As the computational performance of machines continues to grow, wewill �nd that to keep l and g low it will be necessary to continually increase ourinvestment in the communications hardware as a percentage of the total costof the machine. In asymptotic terms, the values of l and g one might expectfor various p processor networks are: ring [l = O(p); g = O(p)], 2D array [l =O(p1=2); g = O(p1=2)], butter
y [l = O(log p); g = O(log p)], hypercube [l =O(log p); g = O(1)]. These asymptotic estimates are based entirely on the degreeand diameter properties of the corresponding graph. In a practical setting, thechannel capacities, routing methods used, VLSI implementation etc. would alsohave a signi�cant impact on the actual values of l and g which could be achievedon a given machine. New optical technologies may o�er the prospect of furtherreductions in the values of l and g which can be achieved, by providing a moree�cient means of non-local communication than is possible with VLSI.For many of the current VLSI-based networks, the values of g and l are verysimilar. If we are interested in the problem of designing improved networks androuting methods which reduce g then perhaps the most obvious approach is toconcentrate instead on the alternative problem of reducing l. This strategy issuggested by the following simple reasoning: If messages are in the network fora shorter period of time then, given that the network capacity is �xed, it will be

possible to insert messages into the network more frequently. In the next sectionwe will see that, in many cases, the performance of a BSP computation is limitedmuch more by g than by l. This suggests that in future, when designing networksand routing methods it may be advantageous to accept a signi�cant increase inl in order to secure even a modest decrease in g. This raises a number of in-teresting architectural questions which have not yet been explored. The workin [18] contains some interesting initial ideas in this direction. It is also inter-esting to note that the characteristics of many optical communication systems(slow switching, very high bandwidth) are very compatible with this alternativeapproach.A BSP computer operates in the following way. A computation consists of asequence of S parallel supersteps s(i), 0 � i < S, where each superstep consistsof a sequence of steps, followed by a barrier synchronisation at which pointany remote memory accesses take e�ect. During a superstep, each processorcan perform a number of computation steps on values held locally at the startof the superstep, and send and receive a number of messages correspondingto remote get and put requests. The time for superstep s(i) is determined asfollows. Let the work w be the maximum number of local computation stepsexecuted by any processor during s(i), let hout be the maximum number ofmessages sent by any processor during s(i), and hin be the maximum number ofmessages received by any processor during s(i). The time for s(i) is then at mostw+maxfhout; hing � g+ l steps. The total time required for a BSP computationis easily obtained by adding the times for each of the S supersteps. This willproduce an expression of the form W +H � g+S � l where W;H; S will typicallybe functions of n and p. In designing an e�cient BSP algorithm or programfor a problem which can be solved sequentially in time T (n) our goal will, ingeneral, be to produce an algorithm requiring total time W +H � g+S � l whereW (n; p) = T (n)=p, H(n; p) and S(n; p) are as small as possible, and the rangeof values for p is as large as possible. In many cases, this will require that wecarefully arrange the data distribution so as to minimise the frequency of remotememory references.4 BSP Algorithm DesignTo illustrate a number of the important issues in BSP algorithm design we willconsider several computational problems involving matrices.4.1 Dense Matrix-Vector MultiplicationIn this section we consider the problem of multiplying an n�n matrix M by ann-element vector v on p processors, where M; v are both dense. In [3], the BSPcost of this problem, for both sparse and dense matrices, was theoretically andexperimentally analysed. The BSP algorithm which we now describe was shownthere. Its complexity is n2=p+ (n=p1=2) � g + l. [Throughout this paper we willomit the various small constant factors in such formulae.]

For denseM and p � n, the standard n2 sequential algorithm can be adaptedto run on a p processor BSP machine as follows. The matrix elements are ini-tially distributed uniformly across the p processors, with each processor holdingan n=p1=2�n=p1=2 submatrix of M . [In [3] this is referred to as a \block-block"distribution.] The vectors u and v are also uniformly distributed across the ma-chine, with n=p elements of u, and n=p elements of v, allocated to each processor.In the �rst superstep, each processor gets the set of all n=p1=2 vector elements vjfor which it holds an mi;j . The cost of this step is (n=p1=2) � g+ l. In the secondsuperstep, each processor k computes uki = Pa�j<a+n=p1=2 mi;j � vj for each ofthe n=p1=2 subrows of M which it holds, and sends the partial sum uki to theprocessor which holds ui. The time required for this step is n2=p+(n=p1=2) �g+ l.In the third and �nal superstep, each processor computes the value of each ofits vector elements ui by adding the p1=2 values uki which it receives. The timerequired for this �nal step is n=p1=2 + l.An input-output complexity argument, similar to those in [1, 11], can be usedto show that for any BSP algorithmwhich computes u = M �v, ifW (n; p) = n2=pthen H(n; p) � n=p1=2. Noting that the n2 sequential computation cost is itselfoptimal we see that the above method is in a strong sense a best possible BSPalgorithm for this problem. It simultaneously achieves the optimal computationcost W (n; p) = n2=p, the optimal communication cost H(n; p) � g = (n=p1=2) � gand the optimal synchronisation cost S(n; p) � l = l. Other matrix distributions,such as the \block-grid" distribution [3], also give these bounds. [The block-griddistribution is de�ned as follows. Let PROC(r,c), 0 � r; c < p1=2, denote the pprocessors. The matrix elements mi;j , 0 � i; j < n, are uniformly distributedacross the processors, withmi;j allocated to PROC(i div (n/p1=2), j mod p1=2).]4.2 Matrix MultiplicationWe now consider the problem of multiplying two n� n dense matrices A;B onp processors. For p � n2, the standard n3 sequential algorithm can be adaptedto run on a p processor BSP machine as follows. Each processor computes an(n=p1=2) � (n=p1=2) submatrix of C = A � B. To do so it will require n2=p1=2elements from A and the same number from B. If A and B are both distributeduniformly across the p processors, with each processor holding n2=p of the ele-ments from each matrix, then the total time required for this algorithm will ben3=p+ (n2=p1=2) � g + l.We now describe a more e�cient BSP implementation of the standard n3algorithm, due to the author and L. G. Valiant. Its BSP complexity is n3=p +(n2=p2=3) � g + l. As in the previous algorithm we begin with A;B distributeduniformly but arbitrarily across the p processors. At the end of the computation,the n2 elements of C should also be distributed uniformly across the p proces-sors. Let s = n=p1=3 and A[i; j] denote the s � s submatrix of A consisting ofthe elements a{̂;|̂ where {̂ div s = i and |̂ div s = j. De�ne B[i; j] and C[i; j]similarly. Then we have C[i; j] = P0�k<p1=3 A[i; k] � B[k; j]. Let PROC(i,j,k),0 � i; j; k < p1=3, denote the p processors.

In the �rst superstep each processor PROC(i,j,k) gets the set of elements inA[i; j] and those in B[j; k]. The cost of this step is (n2=p2=3) �g+ l. In the secondsuperstep PROC(i,j,k) computes A[i; j]�B[j; k] and sends each one of the n2=p2=3resulting values to the unique processor which is responsible for computing thecorresponding value in C. The cost of this step is n3=p+(n2=p2=3) � g+ l. In the�nal superstep, each processor computes each of its n2=p elements of C by addingthe p1=3 values received for that element. The cost of this step is n2=p2=3 + l.An input-output complexity argument can also be used to show that for anyBSP implementation of the standard n3 sequential algorithm, if W (n; p) = n3=pthen H(n; p) � n2=p2=3. The above algorithm is therefore a best possible BSPimplementation of the standard n3 method in the sense that it simultaneouslyachieves the optimal values for W (n; p), H(n; p) and S(n; p).4.3 LU DecompositionMany static computations can be conveniently modelled by directed acyclicgraphs, where each node corresponds to some simple operation, and the arcscorrespond to inputs and outputs. Let Cn denote the directed acyclic graphwhich has n3 nodes vi;j;k , 0 � i; j; k < n, and arcs from vi;j;k to vi+1;j;k , vi;j+1;kand vi;j;k+1 where those nodes exist. In [14] it is shown that the LU decompo-sition of an n � n non-singular matrix A can be computed (without pivoting)using the following set of de�nitions: For all 0 � k � i; j < n,uk;k;k = ak;k;k�1li;j;k = ai;j;k�1=ui;j;k if j = k; and li;j�1;k otherwise:ui;j;k = ai;j;k�1 if i = k; and ui�1;j;k otherwise:ai;j;k = ai;j;k�1 � (li;j;k � ui;j;k)where ai;j;�1 = ai;j . These de�nitions can be directly translated into a directedacyclic graph which is a subgraph of Cn. Therefore, to produce a BSP algorithmfor LU decomposition it is su�cient to schedule Cn for a p processor BSP com-puter. We can do this by partitioning Cn into p3=2 subgraphs, each of which isisomorphic to Cn=p1=2 .Let s = n=p1=2 and C {̂;|̂;k̂, 0 � {̂; |̂; k̂ < p1=2, denote the subset of s3 nodesvi;j;k in Cn where i div s = {̂, j div s = |̂ and k div s = k̂. The following simpleschedule for Cn requires 3p1=2� 2 supersteps: During superstep s(t), each C {̂;|̂;k̂for which {̂ + |̂ + k̂ = t is computed by one of the p processors, with no two ofthem computed by the same processor. From the structure of Cn it is clear thatduring a superstep, each processor will receive n2=p values, send n2=p values,and perform n3=p3=2 computation steps. The total time required for the BSPimplementation of any computation which can be modelled by Cn, such as LUdecomposition, is therefore at most n3=p+ (n2=p1=2) � g + p1=2 � l.

4.4 Solution of a Triangular Linear SystemLet A be an n�n non-singular, lower triangular matrix, and b be an n-elementvector. The linear system A � x = b can be solved by back substitution usingthe recurrence xi = (bi �P1�j<i ai;j � xj)=ai;i for 0 � i < n. As in the caseof LU decomposition, we can produce an e�cient BSP implementation of backsubstitution by realising the computation as a directed acyclic graph and thenscheduling the graph. Let Dn denote the directed acyclic graph which has n2nodes vi;j , 0 � i; j < n, and arcs from vi;j to vi+1;j and vi;j+1 where thosenodes exist. The back substitution recurrence above can be reformulated intothe following set of de�nitions: For all 0 � j � i < n,ti;i = (bi � ti;i�1)=ai;iti;j = ai;j � ri;j + ti;j�1 if i > jri;i = ti;iri;j = ri�1;j if i > jxi = ti;iwhere ti;�1 = 0. These de�nitions can be directly translated into a directedacyclic graph which is a subgraph of Dn. The graph Dn can be scheduled for ap processor BSP computer in a very similar manner to that used for Cn. In thiscase, we partition Dn into p2 subgraphs, each of which is isomorphic to Dn=p.Let s = n=p and C {̂;|̂, 0 � {̂; |̂ < p, denote the set of nodes vi;j in Dn wherei div s = {̂ and j div s = |̂. The following simple schedule for Dn requires 2p�1supersteps: During superstep s(t), each C {̂;|̂ for which {̂+ |̂ = t is computed byone of the p processors, with no two of them computed by the same processor.From the structure of Dn it is clear that during a superstep, each processor willreceive n=p values, send n=p values, and perform n2=p2 computation steps. Thetotal time required for the BSP implementation of any computation which can bemodelled by Dn, such as back substitution, is therefore at most n2=p+n �g+p � l.In some situations, using more processors in a BSP architecture will actuallyincrease the runtime. For example, consider a BSP architecture based on a ring,with l = g = p. The runtime of our BSP algorithm for the solution of an n� ntriangular linear system will be n2=p+np+ p2. This runtime is minimised whenp = n1=2. Increasing the number of processors beyond this value will increasethe runtime.4.5 Sparse Matrix-Vector MultiplicationWe now return to the problem of computing u = M � v. Our interest now is inthe case where the matrix M is sparse. Sparse matrix-vector multiplication isa problem of fundamental importance in scienti�c computing. It is at the heartof many supercomputing applications which use iterative methods to solve verylarge linear systems. To enable the multiplication to be performed repeatedlywith no additional data redistribution we require that the result vector u = M �vshould be distributed across the parallel machine in the same way as the input

vector v, i.e. the processor holding vi at the start of the computation shouldhold ui at the end of the computation.Let C(r; d) denote the adjacency matrix of the directed r-ary, d-dimensionalhypercube graph. The nodes of this graph form a d-dimensional grid of n = rdpoints which are numbered lexicographically. Each node has directed arcs toitself and to its immediate neighbours in each dimension. For the purposes ofdiscussion we will consider just four n�n sparse matrices. Three of the four areinstances of C(r; d). They are: 2D-MESH = C(n1=2; 2), 3D-MESH = C(n1=3; 3)and HYPERCUBE = C(2; logn). Matrices of this kind are often used to model�nite-di�erence operators in the solution of partial di�erential equations [3].The fourth matrix has a random structure in which each row and each columncontains four nonzeros. We will refer to it as the EXPANDER matrix. [Note.The value four is not particularly signi�cant. We could have chosen any smallinteger value greater than one.]The theoretical and experimental analysis in [3] shows that, compared withrandom data distributions, matrix-based distributions such as block-grid cano�er some reductions in the BSP communication cost H(n; p) of most sparsematrix-vector multiplication problems. It also shows that in many cases, muchmore signi�cant reductions in H(n; p) can be achieved by using a data distribu-tion based on an e�cient decomposition of the underlying graph. For example,the nodes of the 2D-MESH graph can be partitioned into p regions, each ofwhich corresponds to a 2D-MESH on n=p nodes. The corresponding data dis-tribution for matrix elements gives a BSP algorithm for u = M � v, where Mis the 2D-MESH matrix, with total cost n=p + (n1=2=p1=2) � g + l. The sameapproach, applied to the 3D-MESH matrix, gives a BSP algorithm with totalcost n=p + (n2=3=p2=3) � g + l and, applied to the HYPERCUBE matrix, givesa BSP algorithm with total cost (n logn)=p + ((n log p)=p) � g + l. In each casewe minimise the communication cost of the algorithm by partitioning the nodesof the graph into p equal sized subsets in a way which minimises the number ofarcs between di�erent subsets. Lower bounds on the e�ciency of such partitionscan be derived from known isoperimetric inequalities in graph theory, see e.g.[4]. For the EXPANDER matrix, the best upper bound which we have is thetrivial one, n=p+ (n=p) � g + l, which can be obtained by randomly distributingthe matrix elements. Techniques similar to those in [12] can be used to showthat for the EXPANDER matrix there is no partition of the nodes into p equalsized subsets which gives a value for H(n; p) which is less than the trivial n=p.Therefore, for the EXPANDER matrix, u = M � v is an inherently non-localproblem.5 BSP ProgrammingAlthough we have described the BSP computer as an architectural model, onecan also view bulk synchrony as a programming discipline. The essence of theBSP approach to parallel programming is the notion of the superstep, in which

communication and synchronisation are completely decoupled. A \BSP pro-gram" is simply one which proceeds in phases, with the necessary global com-munications taking place between the phases. This approach to parallel pro-gramming is applicable to all kinds of parallel architecture: distributed memoryarchitectures, shared memory multiprocessors, and networks of workstations.It provides a consistent, and very general, framework within which to developportable software for scalable computing.Since the early 1980s, message passing based on synchronised point-to-pointcommunication has been the dominant programming approach in the area of par-allel computing. What are the advantages of BSP programming over messagepassing? On heterogeneous parallel architectures, in which the individual nodesare quite varied, the answer is probably that there is not a lot to be gained fromthe BSP approach. On homogeneous distributed memory architectures with lowcapacity global communications, the two approaches will be broadly similar interms of the e�ciency which can be achieved. On shared memory architecturesand on modern distributed memory architectures with powerful global commu-nications, synchronised message passing is likely to be less e�cient than BSPprogramming, where communication and synchronisation are decoupled. Thiswill be especially true on those modern distributed memory architectures whichhave hardware support for non-blocking direct remote memory access (1-sidedcommunications). Message passing systems based on pairwise, rather than bar-rier, synchronisation also su�er from having no simple analytic cost model forperformance prediction, and no simple means of examining the global state of acomputation for debugging. Comparing it to message passing, the BSP approacho�ers (a) a higher level of abstraction for the programmer, (b) a cost model forperformance analysis and prediction which is simpler and compositional, and (c)more e�cient implementations on many machines.Some message passing systems provide primitives for various specialised com-munication patterns which arise frequently in message passing programs. Theseinclude broadcast, scatter, gather, complete exchange, reduction, scan etc. Thesestandard communication patterns also arise frequently in the design of BSP al-gorithms. It is important that such structured patterns can be convenientlyexpressed and e�ciently implemented in any BSP programming language, inaddition to the more primitive operations such as put and get which generatearbitrary and unstructured communication patterns. The e�cient implementa-tion of broadcasting and combining on a BSP architecture is discussed in [23].Data parallelism is an important niche within the �eld of scalable computing.A number of interesting programming languages and elegant theories have beendeveloped in support of the data parallel style of programming, see e.g. [19]. TheBSP approach, as outlined in this paper, aims to o�er a more
exible and generalstyle of programming than is provided by data parallelism. The two approachesare not, however, incompatible in any fundamental way. For some applications,the increased
exibility provided by the BSP approach may not be required andthe more limited data parallel style may o�er a more attractive and productivesetting for parallel software development, since it frees the programmer from

having to provide an explicit speci�cation of the various scheduling and memorymanagement aspects of the parallel computation. In such a situation, the BSPcost model can still play an extremely important role in terms of providing ananalytic framework for performance prediction of the data parallel program.In Figure 1 we give a pseudocode version of the BSP algorithm for densematrix-vector multiplication, where the data distribution is de�ned to be block-grid. For simplicity we assume that n is a multiple of p, and that p is a perfectsquare. The assumption of such an ideal match between problem size and ma-chine size is, of course, unrealistic in practice. It does however permit us to givea clear and concise description of the main points of the BSP algorithm and itsimplementation, without having to give all of the technical details required forthe general case. The various non-standard constructs used in the pseudocodeare informally described in Figure 2.Given integers ndivp, sqrtp.const p = sqrtp^2;const n = ndivp*p;const b = n/sqrtp;const side = 0 .. n-1;var amem : array [side,side] of real with blocksize [b,b];view A[i,j] = amem[i,b*(j mod sqrtp)+(j div sqrtp)];var vmem : array [side,(0 .. sqrtp)] of real with blocksize [ndivp,sqrtp+1];view v[i] = vmem[i,0];view vsums[i,j] = vmem[i,j];par for (i 0, b .. n-1 ; j 0 .. sqrtp-1)at A[i,j];const jgroup = j, j+sqrtp .. n-1;var t : real;get v[k] for k jgroup;seq for bi i .. i+b-1t := 0.0;seq for bj jgroupt := t+A[bi,bj]*v[bj];put t in vsums[bi,j+1];par for k 0, ndivp .. n-1at v[k];seq for w k .. k+ndivp-1v[w] := 0.0;seq for x 1 .. sqrtpv[w] := v[w]+vsums[w,x];Fig. 1. BSP pseudocode for an n� n matrix vector product on p processors.

var A : array [(1 .. c*r),(1 .. d*s)] of real with blocksize [r,s];Declares a two-dimensional array A of size c � r � d � s, in which theelements of A are to be partitioned into c � d contiguous blocks, each ofsize r � s. The storage for each complete block will be allocated on asingle processor-memory pair, i.e. a block will not be split across two ormore memory modules. The arrangement of the various complete blockswill be made so as to uniformly distribute them across the set of memorymodules in the machine.get v[i] for i 1 .. m;Get a local copy of the variables v[1]; v[2]; : : : ; v[m] for use in the oper-ations of the next superstep. If variable v[i] is already held locally thenthe get v[i] operation has no e�ect. [There is an implicit barrier syn-chronisation after any sequence of get statements.] Within a superstep,any attempt to access a value which is not held locally will result in arun-time error.put u in v;Put the value of the local variable u in the remote variable v. [This remotewrite will be completed by the end of the current superstep.]at v; Execute this parallel thread on the processor-memory pair to which thevariable v has been allocated. The inclusion of an at declaration in athread is optional.Fig. 2. Notations used in the BSP pseudocode.6 BSP Programming LanguagesWe noted above that the BSP model was not prescriptive in terms of the phys-ical architectures to which it applies. It is also not prescriptive in terms of theprogramming languages and programming styles to which it applies. In this sec-tion we brie
y describe a number of the programming languages and librarieswhich are currently available to support BSP programming, and some which arecurrently under development.The PVM message passing library [8] is widely implemented and widely used.The MPI message passing interface [16] is more elaborate. It supports block-ing and non-blocking point-to-point communication and a number of collectivecommunications (broadcast, scatter, gather, reduction etc.). Although neither ofthese libraries is directly aimed at supporting BSP programming, they can beused for that purpose.The Oxford BSP Library [17] consists of a set of subroutines which can becalled from standard sequential languages such as Fortran and C. The core of

the Library consists of just six routines: bsp start, bsp finish, bsp sstep,bsp sstep end, bsp fetch and bsp store. The �rst two are for process man-agement, the next two are for barrier synchronisation, and the last two are forcommunication. Higher level operations such as broadcast and reduction are alsoavailable. The Library supports a static SPMD style of BSP programming. Ithas been implemented on a large number of machines and is being used by agrowing community of applications developers to produce source codes which rununchanged and e�ciently on a wide variety of parallel and distributed systems.Generic versions of the Library are freely available by ftp to run on any homoge-neous parallel UNIX machine with at least one of: PVM, PARMACS, TCP/IP,or System V Shared Memory primitives. Highly optimised native implementa-tions have been produced for the IBM SP1/SP2, the SGI Power Challenge, theCRAY T3D and other machines. Some preliminary benchmarking studies havealso been carried out for these systems, to estimate the values of l and g whicha programmer using the native implementation should expect.GPL is a new programming language for scalable computing. It is being de-veloped at Oxford by the author and Quentin Miller as part of ESPRIT Project9072 - GEPPCOM (Foundations of General Purpose Parallel Computing). The�rst prototype compiler is currently operational. A preliminary description ofsome of the ideas behind this work can be found in [15]. The language is de-signed to permit the e�cient, high level programming of static and dynamic BSPcomputations, and to permit the performance of those programs to be accuratelyanalysed and predicted. The notations used in the pseudocode example aboveare similar in style to those of GPL. The language is procedural, explicitly par-allel and strongly-typed. It allows the programmer to explicitly control schedul-ing, synchronisation, memory management, combining and other properties ofa program which may be crucial to achieving e�cient, scalable and predictableperformance while retaining portability. For example, if run on a BSP architec-ture, the program will have access to constants G, P and L corresponding tothe BSP parameters of the machine. The program can use these to optimisethe computation. In a multiuser system, the constants might be supplied by theoperating system at run time. [At some point in the future of BSP computingit may also become customary for applications programs to assist in optimisingresource allocation on multiuser multiprocessors by indicating to the operatingsystem the p, g and l resources that it could e�ciently utilise (or cope with!).For example, the dense matrix-vector multiplication code in the previous sectionmight contain a declaration indicating pmax = n, gmax = n=p1=2 and lmax = n2=pin some way.] As with any language for high performance programming, a keyrequirement of the GPL language and its implementations is that there shouldbe an accurate cost model which will be applicable to any implementation of thelanguage. With a reliable cost model of this kind, the programmer will be able tomake appropriate design decisions to achieve the highest possible performance.Split-C [7] is a parallel extension of C which supports e�cient access to aglobal address space on current distributed memory architectures. Like GPL, itaims to support careful engineering and optimisation of portable parallel pro-

grams by providing a cost model for performance prediction. The language ex-tension is based on a small set of global access primitives and simple memorymanagement declarations which support both bulk synchronous and messagedriven styles of parallel programming.BSP-L [6] is an experimental BSP programming language under developmentat Harvard. The language is being used to explore the e�ectiveness of variousconstructs which might be added to conventional languages such as Fortranand C to support BSP programming. An important objective of this work is toreach a much better understanding of the issues involved in designing optimisingcompilers and e�cient run time systems for programming languages based onthe BSP model.7 ChallengesThe study of BSP program design has only recently begun. In contrast to se-quential computing, we do not yet have well developed techniques, tools andmethodologies for dealing with the speci�cation, re�nement, transformation, ver-i�cation, modularity, reusability, fault tolerance, and other important aspects ofBSP programs. Nor do we have a blueprint for the development of a high perfor-mance operating system for multiuser BSP computers. These, and many otherproblems, remain challenges for the future of scalable computing.References1. A Aggarwal, A K Chandra, and M Snir. Communication complexity of PRAMs.Theoretical Computer Science, 71:3{28, 1990.2. R H Arpaci, D E Culler, A Krishnamurthy, S G Steinberg, and K Yelick. Empir-ical evaluation of the CRAY-T3D: A compiler perspective. In Proc. 22nd AnnualInternational Symposium on Computer Architecture, June 1995.3. R H Bisseling and W F McColl. Scienti�c computing on bulk synchronous parallelarchitectures. Technical Report 836, Department of Mathematics, University ofUtrecht, December 1993. Short version appears in Proc. 13th IFIP World Com-puter Congress. Volume I (1994), B. Pehrson and I. Simon, Eds., Elsevier, pp.509-514.4. B Bollob�as. Random Graphs. Academic Press, 1985.5. A W Burks, H H Goldstine, and J von Neumann. Preliminary discussion of thelogical design of an electronic computing instrument. Part 1, Volume 1. The In-stitute of Advanced Study, Princeton, 1946. Report to the U.S. Army OrdnanceDepartment. First edition, 28 June 1946. Second edition, 2 September 1947. Alsoappears in Papers of John von Neumann on Computing and Computer Theory, WAspray and A Burks, editors. Volume 12 in the Charles Babbage Institute ReprintSeries for the History of Computing, MIT Press, 1987, 97-142.6. T Cheatham, A Fahmy, D C Stefanescu, and L G Valiant. Bulk synchronous par-allel computing - a paradigm for transportable software. In Proc. 28th HawaiiInternational Conference on System Science, January 1995.

7. D E Culler, A Dusseau, S C Goldstein, A Krishnamurthy, S Lumetta, T vonEicken, and K Yelick. Parallel programming in Split-C. In Proc. Supercomput-ing '93, pages 262{273, November 1993.8. A Geist, A Beguelin, J Dongarra, W Jiang, R Manchek, and V Sunderam. PVM:Parallel Virtual Machine - A Users' Guide and Tutorial for Networked ParallelComputing. MIT Press, Cambridge, MA, 1994.9. M Gereb-Graus and T Tsantilas. E�cient optical communication in parallel com-puters. In Proc. 4th Annual ACM Symposium on Parallel Algorithms and Archi-tectures, pages 41{48, 1992.10. A M Gibbons and P Spirakis, editors. Lectures on Parallel Computation, volume 4of Cambridge International Series on Parallel Computation. Cambridge UniversityPress, Cambridge, UK, 1993.11. J W Hong and H T Kung. I/O complexity: The red-blue pebble game. In Proc.13th Annual ACM Symposium on Theory of Computing, pages 326{333, 1981.12. G Manzini. Sparse matrix vector multiplication on distributed architectures:Lower bounds and average complexity results. Information Processing Letters,50(5):231{238, June 1994.13. W F McColl. General purpose parallel computing. In Gibbons and Spirakis [10],pages 337{391.14. W F McColl. Special purpose parallel computing. In Gibbons and Spirakis [10],pages 261{336.15. W F McColl. BSP programming. In G E Blelloch, K M Chandy, andS Jagannathan, editors, Speci�cation of Parallel Algorithms. Proc. DIMACS Work-shop, Princeton, May 9-11, 1994, volume 18 of DIMACS Series in Discrete Math-ematics and Theoretical Computer Science, pages 21{35. American MathematicalSociety, 1994.16. Message Passing Interface Forum. MPI: A message-passing interface standard.Technical report, May 1994.17. R Miller. A library for bulk-synchronous parallel programming. In Proc. BritishComputer Society Parallel Processing Specialist Group workshop on General Pur-pose Parallel Computing, December 1993. A revised and extended version ofthis paper is available by anonymous ftp from ftp.comlab.ox.ac.uk in directory/pub/Packages/BSP along with the Oxford BSP Library software distribution.18. S Rao, T Suel, T Tsantilas, and M Goudreau. E�cient communication using total-exchange. In Proc. 9th International Parallel Processing Symposium, 1995.19. D Skillicorn. Foundations of Parallel Programming, volume 6 of Cambridge Inter-national Series on Parallel Computation. Cambridge University Press, Cambridge,UK, 1994.20. A M Turing. On computable numbers, with an application to the Entschei-dungsproblem. Proceedings of the London Mathematical Society. Series 2, 42:230{265, 1936. Corrections, ibid., 43 (1937), 544-546.21. L G Valiant. A bridging model for parallel computation. Communications of theACM, 33(8):103{111, 1990.22. L G Valiant. General purpose parallel architectures. In J van Leeuwen, editor,Handbook of Theoretical Computer Science : Volume A, Algorithms and Complex-ity, pages 943{971. North Holland, 1990.23. L G Valiant. A combining mechanism for parallel computers. In F Meyer auf derHeide, B Monien, and A L Rosenberg, editors, Parallel Architectures and Their Ef-�cient Use. Proceedings of the First Heinz Nixdorf Symposium, Paderborn, Novem-ber 1992. LNCS Vol. 678, pages 1{10. Springer-Verlag, 1993.

