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Abstract. Scalable computing will, over the next few years, become
the normal form of computing. In this paper we present a unified frame-
work, based on the BSP model, which aims to serve as a foundation for
this evolutionary development. A number of important techniques, tools
and methodologies for the design of sequential algorithms and programs
have been developed over the past few decades. In the transition from se-
quential to scalable computing we will find that new requirements such
as universality and predictable performance will necessitate significant
changes of emphasis in these areas. Programs for scalable computing,
in addition to being fully portable, will have to be efficiently universal,
offering high performance, in a predictable way, on any general purpose
parallel architecture. The BSP model provides a discipline for the design
of scalable programs of this kind. We outline the approach and discuss
some of the issues involved.

1 Introduction

For fifty years, sequential computing has been the normal form of computing.
From the early proposal of von Neumann [5] to the present day, sequential com-
puting has grown relentlessly, embracing new technologies as they have emerged
and discarding them whenever something better came along. Today it is a huge
global industry. The two parts of that industry, hardware and software, are quite
different. Most sequential hardware has a life span of a few years. New technolo-
gies continually offer new ways of realising the same basic design in a form which
is cheaper, more powerful, or both. In contrast, sequential software systems of-
ten take many years to develop, and are expected to last for a very long time,
preferably for ever.

The key reason for the spectacular success of sequential computing has been
the widespread, almost universal, adoption of the basic model proposed by von
Neumann. To see why this happened it is necessary to go back further, to the
work of Turing [20]. In his theoretical studies, Turing demonstrated that a single
general purpose sequential machine could be designed which would be capable
of efficiently performing any computation which could be performed by a spe-
cial purpose sequential machine. Stated more concisely, he demonstrated that
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efficient universality was achievable for sequential computations. Around 1944,
von Neumann produced his proposal for a general purpose sequential computer
which captured the principles of Turing’s work in a practical design. The design,
which has come to be known as the “von Neumann computer”, has served as the
basic model for almost all sequential computers produced from the late 1940s to
the present time. The stability and universality provided by the von Neumann
model has permitted and encouraged the development of high level languages
and compilers. These, in turn, have created a large and diverse software industry
producing portable applications software which will run with high performance
on any sequential computer.

For sequential computing, the von Neumann model has given the two parts
of the computing industry what they require to succeed. The hardware industry
is provided with a focus for its technological innovation, and the confidence that,
since the model is stable, software companies will find that the time and effort
involved in developing software can be justified. The software industry meanwhile
sees the stability of the model as providing a basis for the high level, cost-effective
development of applications software, and also providing a guarantee that the
software thus produced will not become obsolete with the next technological
change.

Since the earliest days of sequential computing it has been clear that, sooner
or later, sequential computing would be superseded by parallel computing. This
has not yet happened, despite the availability of numerous parallel machines
and the insatiable demand for increased computing power. In this paper we will
argue that the evolution to parallel computing can now take place, and will do
so over the next few years. We will show that all of the essential requirements
for such a transition can now be satisfied. In particular, we will present the BSP
model and will argue that it can play a unifying role analogous to that which the
von Neumann model has played in the development of sequential computing.

2 Architectures

Parallel computing is not new. For many years, academic research groups and,
more recently, companies, have been producing parallel computers and trying
to persuade people to write parallel software for them. On most of the early
parallel systems, the global communications networks were very poor and scal-
able performance could only be achieved by designing algorithms and programs
which carefully exploited the particular architectural features of the machine.
Besides being tedious and time consuming in most cases, this approach typically
produced software which could not be easily adapted to run on other machines.

Over the last few years the situation has improved. For a variety of tech-
nological and economic reasons, the various classes of parallel computer in use
(distributed memory machines, shared memory multiprocessors, clusters of work-
stations) have become more and more alike. The economic advantages of using
standard commodity components has been a major factor in this convergence.
Other influential factors have been the need to efficiently support a global ad-



dress space on distributed memory machines for ease of programming, and the
need to replace buses by networks to achieve scalability in shared memory multi-
processors. These various pressures have acted to produce a rapid and significant
evolutionary restructuring of the parallel computing industry.

There is now a growing consensus that for a combination of technological,
commercial, and software reasons, we will see a steady evolution over the next
few years towards a “standard” architectural model for scalable parallel comput-
ing. It is likely to consist of a collection of (workstation-like) processor-memory
pairs connected by a communications network which can be used to efficiently
support a global address space. Both message passing and shared memory pro-
gramming styles will be efficiently supported on these architectures. As with
all such successful models, there will be plenty of scope for the use of different
designs and technologies to realise such systems in different forms depending on
the cost and performance requirements sought.

The simplest, cheapest, and probably the most common architectures will be
based on clusters of personal computers. The next Intel microprocessor, currently
referred to as the P6, will be the first high volume, commodity microprocessor
for the personal computer market with hardware support for multiprocessing.
In a couple of years, very low cost multiprocessor personal computers will be
available, along with very low cost networking technologies and software allow-
ing these to be assembled into clusters for high performance computing. At the
other end of the spectrum, there will continue to be a small group of compa-
nies producing very large, very powerful and very expensive parallel systems for
those who require those computing resources. At present, a good example of a
company operating in this end of the market is Cray Research. The CRAY T3D
is a very powerful distributed memory architecture based on the DEC Alpha
microprocessor. In addition to offering extremely high bandwidth global com-
munications, it has several specialised hardware mechanisms which enable it to
efficiently support parallel programs which execute in a global address space [2].
The mechanisms include hardware barrier synchronisation and direct remote
memory access. The latter permits each processor to get a value directly from
any remote memory location in the machine, and to put a value directly in
any remote memory location. This is done in a way which avoids the perfor-
mance penalties normally incurred in executing such operations on a distributed
memory architecture, due to processor synchronisation and other unnecessary
activities in the low level systems software. The companies which compete at
the top end of the market will, as today, focus their attention not only on highly
optimised architectural design, but also on new, and perhaps expensive, tech-
nologies which can offer increased performance. For example, some might use
optical technologies to achieve more efficient global communications than could
be achieved with VLSI systems.

The implementation of a global address space on a distributed memory archi-
tecture requires an efficient mechanism for the distributed routing of put and get
requests, and of the replies to get requests, through the network of processors.
A number of efficient routing and memory management techniques have been



developed for this problem, see e.g. [13, 21, 22]. Consider the problem of packet
routing on a p-processor network. Let an h-relation denote a routing problem
where each processor has at most h packets to send to various processors in the
network, and where each processor is also due to receive at most h packets from
other processors. Here, a packet is one word of information, such as e.g. a real
number or an integer. Using two-phase randomised routing one can, for example,
show that every (log p)-relation can be realised on a p processor hypercube in
O(log p) steps. In [9] a simple and practical randomised method of routing h-
relations on an optical communications system is described. The optical system
is physically realistic and the method requires only O(h + logploglog p) steps.
In [18] a simple and very efficient protocol for routing h-relations using only the
total-exchange primitive is described.

The process of architectural convergence which was described above brings
with it the hope that we can, over the next few years, establish scalable parallel
computing as the normal form of computing, and begin to see the growth of
a large and diverse global software industry for scalable computing similar to
that which currently exists for sequential computing. The main goal of that
industry will be to produce scalable software which will run unchanged, and
with high performance, on any architecture, from a cheap multiprocessor PC
to a large parallel supercomputer. The next major step towards this goal is
to develop a foundation for the architecture independent programming of this
emerging range of scalable parallel systems. The BSP approach described in this
paper provides just such a foundation. It offers the prospect of achieving both
scalable parallel performance and architecture independent parallel software, and
provides a framework which permits the performance of parallel and distributed
systems to be analysed and predicted in a precise way.

3 The BSP Model

In architectural terms, the BSP model is essentially the standard model de-
scribed above. A bulk synchronous parallel (BSP) computer [13, 21] consists of
a set of processor-memory pairs, a global communications network, and a mech-
anism for the efficient barrier synchronisation of the processors. There are no
specialised broadcasting or combining facilities, although these can be efficiently
realised in software where required [23]. The model also does not deal directly
with issues such as input-output or the use of vector units, although it can be
easily extended to do so. If we define a time step to be the time required for a
single local operation, i.e. a basic operation (such as addition or multiplication)
on locally held data values, then the performance of any BSP computer can
be characterised by three parameters: p = number of processors; | = number
of time steps for barrier synchronisation; g = (total number of local operations
performed by all processors in one second)/(total number of words delivered by
the communications network in one second). [There is also, of course, a fourth
parameter, the number of time steps per second. However, since the other pa-
rameters are normalised with respect to that one, it can be ignored in the design



of algorithms and programs.|

The parameter | corresponds to the network latency. The parameter g cor-
responds to the frequency with which remote memory accesses can be made
without affecting the total time for the computation; in a machine with a higher
value of g one must make remote memory accesses less frequently. More formally,
g is related to the time required to realise h-relations in a situation of continuous
message traffic; g is the value such that an h-relation can be performed in h - g
time steps. Any scalable parallel system can be regarded as a BSP computer,
and can be benchmarked accordingly to determine its BSP parameters | and
g. The BSP model is therefore not prescriptive in terms of the physical archi-
tectures to which it applies. Every scalable architecture can be viewed by an
algorithm designer or programmer as simply a point (p,l, g) in the space of all
BSP machines.

The use of the parameters [ and g to characterise the communications per-
formance of the BSP computer contrasts sharply with the way in which commu-
nications performance is described for most distributed memory architectures
on the market today. A major feature of the BSP model is that it lifts consid-
erations of network performance from the local level to the global level. We are
thus no longer particularly interested in whether the network is a 2D array, a
butterfly or a hypercube, or whether it is implemented in VLSI or in some opti-
cal technology. Our interest is in global parameters of the network, such as ! and
g, which describe its ability to support remote memory accesses in a uniformly
efficient manner.

In the design and implementation of a BSP computer, the values of [ and g
which can be achieved will depend on the capabilities of the available technology
and the amount of money that one is willing to spend on the communications
network. As the computational performance of machines continues to grow, we
will find that to keep | and g low it will be necessary to continually increase our
investment in the communications hardware as a percentage of the total cost
of the machine. In asymptotic terms, the values of [ and g one might expect
for various p processor networks are: ring [l = O(p),g = O(p)], 2D array [l =
O(p'/?),g = O(»'/?)], butterfly [I = O(logp),g = O(logp)], hypercube [I =
O(logp),g = O(1)]. These asymptotic estimates are based entirely on the degree
and diameter properties of the corresponding graph. In a practical setting, the
channel capacities, routing methods used, VLSI implementation etc. would also
have a significant impact on the actual values of I and g which could be achieved
on a given machine. New optical technologies may offer the prospect of further
reductions in the values of [ and g which can be achieved, by providing a more
efficient means of non-local communication than is possible with VLSI.

For many of the current VLSI-based networks, the values of g and [ are very
similar. If we are interested in the problem of designing improved networks and
routing methods which reduce g then perhaps the most obvious approach is to
concentrate instead on the alternative problem of reducing [. This strategy is
suggested by the following simple reasoning: If messages are in the network for
a shorter period of time then, given that the network capacity is fixed, it will be



possible to insert messages into the network more frequently. In the next section
we will see that, in many cases, the performance of a BSP computation is limited
much more by g than by [. This suggests that in future, when designing networks
and routing methods it may be advantageous to accept a significant increase in
I in order to secure even a modest decrease in g. This raises a number of in-
teresting architectural questions which have not yet been explored. The work
in [18] contains some interesting initial ideas in this direction. It is also inter-
esting to note that the characteristics of many optical communication systems
(slow switching, very high bandwidth) are very compatible with this alternative
approach.

A BSP computer operates in the following way. A computation consists of a
sequence of S parallel supersteps s(i), 0 < i < S, where each superstep consists
of a sequence of steps, followed by a barrier synchronisation at which point
any remote memory accesses take effect. During a superstep, each processor
can perform a number of computation steps on values held locally at the start
of the superstep, and send and receive a number of messages corresponding
to remote get and put requests. The time for superstep s(i) is determined as
follows. Let the work w be the maximum number of local computation steps
executed by any processor during s(i), let hoyt be the maximum number of
messages sent by any processor during s(i), and hi, be the maximum number of
messages received by any processor during s(7). The time for s(i) is then at most
w + max{hout, hin} - g + I steps. The total time required for a BSP computation
is easily obtained by adding the times for each of the S supersteps. This will
produce an expression of the form W + H - g+ S -1 where W, H, S will typically
be functions of n and p. In designing an efficient BSP algorithm or program
for a problem which can be solved sequentially in time T'(n) our goal will, in
general, be to produce an algorithm requiring total time W + H - g+ S - | where
W(n,p) = T'(n)/p, H(n,p) and S(n,p) are as small as possible, and the range
of values for p is as large as possible. In many cases, this will require that we
carefully arrange the data distribution so as to minimise the frequency of remote
memory references.

4 BSP Algorithm Design

To illustrate a number of the important issues in BSP algorithm design we will
consider several computational problems involving matrices.

4.1 Dense Matrix-Vector Multiplication

In this section we consider the problem of multiplying an n X n matrix M by an
n-element vector v on p processors, where M, v are both dense. In [3], the BSP
cost of this problem, for both sparse and dense matrices, was theoretically and
experimentally analysed. The BSP algorithm which we now describe was shown
there. Its complexity is n?/p + (n/p'/?) - g + 1. [Throughout this paper we will
omit the various small constant factors in such formulae.]



For dense M and p < n, the standard n? sequential algorithm can be adapted
to run on a p processor BSP machine as follows. The matrix elements are ini-
tially distributed uniformly across the p processors, with each processor holding
an n/p'/? x n/p'/? submatrix of M. [In [3] this is referred to as a “block-block”
distribution.] The vectors u and v are also uniformly distributed across the ma-
chine, with n/p elements of u, and n/p elements of v, allocated to each processor.
In the first superstep, each processor gets the set of all n/p]/2 vector elements v;
for which it holds an m; ;. The cost of this step is (n/p'/?) - g + 1. In the second
superstep, each processor k computes u¥ = za<i<a+n/p1/2 m, j - v for each of

the n/p'/? subrows of M which it holds, and sends the partial sum u¥ to the
processor which holds u;. The time required for this step is n?/p+(n/p'/?)-g+1.
In the third and final superstep, each processor computes the value of each of
its vector elements u; by adding the p'/? values u® which it receives. The time
required for this final step is n/p'/? +1.

An input-output complexity argument, similar to those in [1, 11], can be used
to show that for any BSP algorithm which computes u = M-v, if W (n, p) = n*/p
then H(n,p) > n/p'/?. Noting that the n? sequential computation cost is itself
optimal we see that the above method is in a strong sense a best possible BSP
algorithm for this problem. It simultaneously achieves the optimal computation
cost W (n,p) = n?/p, the optimal communication cost H(n,p)-g = (n/p'/?)-g
and the optimal synchronisation cost S(n,p) -1 = I. Other matrix distributions,
such as the “block-grid” distribution [3], also give these bounds. [The block-grid
distribution is defined as follows. Let PROC(r,c), 0 < r,¢ < p'/?, denote the p
processors. The matrix elements m; ;, 0 < i,j < n, are uniformly distributed
across the processors, with m; ; allocated to PROC(i div (n/p'/?), jmod p'/?).]

4.2 Matrix Multiplication

We now consider the problem of multiplying two n x n dense matrices A, B on
p processors. For p < n?, the standard n® sequential algorithm can be adapted
to run on a p processor BSP machine as follows. Each processor computes an
(n/p'/?) x (n/p'/?) submatrix of C = A - B. To do so it will require n?/p'/?
elements from A and the same number from B. If A and B are both distributed
uniformly across the p processors, with each processor holding n?/p of the ele-
ments from each matrix, then the total time required for this algorithm will be
n®/p+ (n*/p'/?) - g +1.

We now describe a more efficient BSP implementation of the standard n?
algorithm, due to the author and L. G. Valiant. Its BSP complexity is n®/p +
(n?/p*/?) - g + 1. As in the previous algorithm we begin with A, B distributed
uniformly but arbitrarily across the p processors. At the end of the computation,
the n? elements of C' should also be distributed uniformly across the p proces-
sors. Let s = n/p'/? and A[i,j] denote the s x s submatrix of A consisting of
the elements a; ; where 7 div s = i and jdiv s = j. Define B[i, j] and C[i, j]
similarly. Then we have C[i,j] = ZOSk<p1/3 Ali, k] - Blk, j]. Let PROC(i,5,k),

0<i,j,k < p'/?, denote the p processors.



In the first superstep each processor PROC(i,j,k) gets the set of elements in
Ali, §] and those in B[j, k]. The cost of this step is (n?/p*/?)-g+1. In the second
superstep PROC(4,5,k) computes A[i, j]- B[, k] and sends each one of the n?/p?/3
resulting values to the unique processor which is responsible for computing the
corresponding value in C. The cost of this step is n®/p+ (n>/p*/?)- g +1. In the
final superstep, each processor computes each of its n? /p elements of C' by adding
the p'/? values received for that element. The cost of this step is n?/p*/? + 1.

An input-output complexity argument can also be used to show that for any
BSP implementation of the standard n® sequential algorithm, if W (n,p) = n®/p
then H(n,p) > n?/p?/?. The above algorithm is therefore a best possible BSP
implementation of the standard n® method in the sense that it simultaneously
achieves the optimal values for W (n, p), H(n,p) and S(n,p).

4.3 LU Decomposition

Many static computations can be conveniently modelled by directed acyclic
graphs, where each node corresponds to some simple operation, and the arcs
correspond to inputs and outputs. Let C, denote the directed acyclic graph
which has n® nodes vijk: 0 <1,7,k <mn, and arcs from v; j 1, 10 Viy1 5k, Vi jt+1,k
and v; j k41 where those nodes exist. In [14] it is shown that the LU decompo-
sition of an n X n non-singular matrix A can be computed (without pivoting)
using the following set of definitions: For all 0 < k < 4,7 < n,

Uk, k,k = Qk,kk—1
li7_7‘,k = aihjlk,]/um,k lfj = k}7 and lz}jfl,k otherwise.
Uik = Q4 k-1 if ¢ =k, and u;_1 ;; otherwise.

aijk = ijk—1 — (i Wijk)

where a; ;1 = a; ;. These definitions can be directly translated into a directed
acyclic graph which is a subgraph of C,,. Therefore, to produce a BSP algorithm
for LU decomposition it is sufficient to schedule C,, for a p processor BSP com-
puter. We can do this by partitioning C), into p*/? subgraphs, each of which is
isomorphic to C,, /p1/-.

Let s = n/p'/2 and C9F 0 < .7,k < p'/2, denote the subset of s* nodes
v; 4.k in Cp, where ¢ div s =4, j div s = jand k£ div s = k. The following simple
schedule for C,, requires 3p'/? — 2 supersteps: During superstep s(t), each C¥:k
for which 7+ 7+ k=tis computed by one of the p processors, with no two of
them computed by the same processor. From the structure of C), it is clear that
during a superstep, each processor will receive n?/p values, send n?/p values,
and perform n®/p*/? computation steps. The total time required for the BSP
implementation of any computation which can be modelled by C),, such as LU
decomposition, is therefore at most n®/p + (n?/p'/?) - g+ p'/? - 1.



4.4 Solution of a Triangular Linear System

Let A be an n X n non-singular, lower triangular matrix, and b be an n-element
vector. The linear system A - x = b can be solved by back substitution using
the recurrence x; = (b; — ZIS.KZ‘ a; ;- x;)/a;; for 0 < i < n. As in the case
of LU decomposition, we can produce an efficient BSP implementation of back
substitution by realising the computation as a directed acyclic graph and then
scheduling the graph. Let D,, denote the directed acyclic graph which has n?
nodes v; ;, 0 < 4,j < n, and arcs from v; ; to v;41,; and v; j41 where those
nodes exist. The back substitution recurrence above can be reformulated into
the following set of definitions: For all 0 < j < i < n,

tii = (bi —tii—1)/aii
bij = Qi Tij +lij1ifi>j
Tii = tigi

Tj,’j = T,‘,,Lj lf 7 > ]

Ti =t

)

where ¢; 1 = 0. These definitions can be directly translated into a directed
acyclic graph which is a subgraph of D,,. The graph D,, can be scheduled for a
p processor BSP computer in a very similar manner to that used for C),. In this
case, we partition D,, into p? subgraphs, each of which is isomorphic to D, /p-

Let s =n/p and C%J, 0 < i,j < p, denote the set of nodes v; ; in D, where
i div s =7 and j div s = j. The following simple schedule for D,, requires 2p—1
supersteps: During superstep s(t), each C%J for which 7 + j = t is computed by
one of the p processors, with no two of them computed by the same processor.
From the structure of D,, it is clear that during a superstep, each processor will
receive n/p values, send n/p values, and perform n?/p? computation steps. The
total time required for the BSP implementation of any computation which can be
modelled by D,,, such as back substitution, is therefore at most n? /p+n-g+p-I.

In some situations, using more processors in a BSP architecture will actually
increase the runtime. For example, consider a BSP architecture based on a ring,
with [ = g = p. The runtime of our BSP algorithm for the solution of an n x n
triangular linear system will be n2/p+ np+ p?. This runtime is minimised when
p = n'/?. Increasing the number of processors beyond this value will increase
the runtime.

4.5 Sparse Matrix-Vector Multiplication

We now return to the problem of computing u = M - v. Our interest now is in
the case where the matrix M is sparse. Sparse matrix-vector multiplication is
a problem of fundamental importance in scientific computing. It is at the heart
of many supercomputing applications which use iterative methods to solve very
large linear systems. To enable the multiplication to be performed repeatedly
with no additional data redistribution we require that the result vector u = M -v
should be distributed across the parallel machine in the same way as the input



vector v, i.e. the processor holding v; at the start of the computation should
hold u; at the end of the computation.

Let C(r,d) denote the adjacency matrix of the directed r-ary, d-dimensional
hypercube graph. The nodes of this graph form a d-dimensional grid of n = r?
points which are numbered lexicographically. Each node has directed arcs to
itself and to its immediate neighbours in each dimension. For the purposes of
discussion we will consider just four n x n sparse matrices. Three of the four are
instances of C(r,d). They are: 2D-MESH = C(n'/?,2), 3D-MESH = C(n'/?,3)
and HYPERCUBE = C(2,logn). Matrices of this kind are often used to model
finite-difference operators in the solution of partial differential equations [3].
The fourth matrix has a random structure in which each row and each column
contains four nonzeros. We will refer to it as the EXPANDER matrix. [Note.
The value four is not particularly significant. We could have chosen any small
integer value greater than one.]

The theoretical and experimental analysis in [3] shows that, compared with
random data distributions, matrix-based distributions such as block-grid can
offer some reductions in the BSP communication cost H(n,p) of most sparse
matrix-vector multiplication problems. It also shows that in many cases, much
more significant reductions in H (n, p) can be achieved by using a data distribu-
tion based on an efficient decomposition of the underlying graph. For example,
the nodes of the 2D-MESH graph can be partitioned into p regions, each of
which corresponds to a 2D-MESH on n/p nodes. The corresponding data dis-
tribution for matrix elements gives a BSP algorithm for u = M - v, where M
is the 2D-MESH matrix, with total cost n/p + (n'/?/p'/?) - g + 1. The same
approach, applied to the 3D-MESH matrix, gives a BSP algorithm with total
cost n/p + (n*/3/p*/3) - g +1 and, applied to the HYPERCUBE matrix, gives
a BSP algorithm with total cost (nlogn)/p + ((nlogp)/p) - g + [. In each case
we minimise the communication cost of the algorithm by partitioning the nodes
of the graph into p equal sized subsets in a way which minimises the number of
arcs between different subsets. Lower bounds on the efficiency of such partitions
can be derived from known isoperimetric inequalities in graph theory, see e.g.
[4].

For the EXPANDER matrix, the best upper bound which we have is the
trivial one, n/p+ (n/p) - g + 1, which can be obtained by randomly distributing
the matrix elements. Techniques similar to those in [12] can be used to show
that for the EXPANDER matrix there is no partition of the nodes into p equal
sized subsets which gives a value for H(n,p) which is less than the trivial n/p.
Therefore, for the EXPANDER matrix, u = M - v is an inherently non-local
problem.

5 BSP Programming

Although we have described the BSP computer as an architectural model, one
can also view bulk synchrony as a programming discipline. The essence of the
BSP approach to parallel programming is the notion of the superstep, in which



communication and synchronisation are completely decoupled. A “BSP pro-
gram” is simply one which proceeds in phases, with the necessary global com-
munications taking place between the phases. This approach to parallel pro-
gramming is applicable to all kinds of parallel architecture: distributed memory
architectures, shared memory multiprocessors, and networks of workstations.
It provides a consistent, and very general, framework within which to develop
portable software for scalable computing.

Since the early 1980s, message passing based on synchronised point-to-point
communication has been the dominant programming approach in the area of par-
allel computing. What are the advantages of BSP programming over message
passing? On heterogeneous parallel architectures, in which the individual nodes
are quite varied, the answer is probably that there is not a lot to be gained from
the BSP approach. On homogeneous distributed memory architectures with low
capacity global communications, the two approaches will be broadly similar in
terms of the efficiency which can be achieved. On shared memory architectures
and on modern distributed memory architectures with powerful global commu-
nications, synchronised message passing is likely to be less efficient than BSP
programming, where communication and synchronisation are decoupled. This
will be especially true on those modern distributed memory architectures which
have hardware support for non-blocking direct remote memory access (1-sided
communications). Message passing systems based on pairwise, rather than bar-
rier, synchronisation also suffer from having no simple analytic cost model for
performance prediction, and no simple means of examining the global state of a
computation for debugging. Comparing it to message passing, the BSP approach
offers (a) a higher level of abstraction for the programmer, (b) a cost model for
performance analysis and prediction which is simpler and compositional, and (c)
more efficient implementations on many machines.

Some message passing systems provide primitives for various specialised com-
munication patterns which arise frequently in message passing programs. These
include broadcast, scatter, gather, complete exchange, reduction, scan etc. These
standard communication patterns also arise frequently in the design of BSP al-
gorithms. It is important that such structured patterns can be conveniently
expressed and efficiently implemented in any BSP programming language, in
addition to the more primitive operations such as put and get which generate
arbitrary and unstructured communication patterns. The efficient implementa-
tion of broadcasting and combining on a BSP architecture is discussed in [23].

Data parallelism is an important niche within the field of scalable computing.
A number of interesting programming languages and elegant theories have been
developed in support of the data parallel style of programming, see e.g. [19]. The
BSP approach, as outlined in this paper, aims to offer a more flexible and general
style of programming than is provided by data parallelism. The two approaches
are not, however, incompatible in any fundamental way. For some applications,
the increased flexibility provided by the BSP approach may not be required and
the more limited data parallel style may offer a more attractive and productive
setting for parallel software development, since it frees the programmer from



having to provide an explicit specification of the various scheduling and memory
management aspects of the parallel computation. In such a situation, the BSP
cost model can still play an extremely important role in terms of providing an
analytic framework for performance prediction of the data parallel program.

In Figure 1 we give a pseudocode version of the BSP algorithm for dense
matrix-vector multiplication, where the data distribution is defined to be block-
grid. For simplicity we assume that n is a multiple of p, and that p is a perfect
square. The assumption of such an ideal match between problem size and ma-
chine size is, of course, unrealistic in practice. It does however permit us to give
a clear and concise description of the main points of the BSP algorithm and its
implementation, without having to give all of the technical details required for
the general case. The various non-standard constructs used in the pseudocode
are informally described in Figure 2.

Given integers ndivp, sqrtp.

const p = sqrtp”~ 2;
const n = ndivp *p;
const b = n/sqrip;
const side = 0 .. n-1;
var amem : array [side,side] of real with blocksize [b,b];
view Afi,j] = amem[i,b*(j mod sqrip)+(j div sqrtp)];
var vmem : array [side,(0 .. sqrtp)] of real with blocksize [ndivp,sqrip+1];
view vfi] = vmem/i,0];
view vsums/i,j| = vmemfi,j];
par for (i< 0,b.. n-1;j« 0.. sqrip-1)
at Afi,j];
const jgroup = j, j+sqrtp .. n-1;
var t : real;
get vfk] for k « jgroup;
seq for bi < i .. i+b-1
t = 0.0;
seq for bj < jgroup
b= t+A[bi,bj]*v[bj];
put ¢ in vsums[bi,j+1];
par for k < 0, ndivp .. n-1
at vfk/;
seq for w < k .. k+ndivp-1
vfw] := 0.0;
seq for z < 1 .. sqrtp
v[w] := vfw]+vsums[w,z];

Fig. 1. BSP pseudocode for an n X n matriz vector product on p processors.



var A :array [(1 .. ¢*r),(1 .. d*s)] of real with blocksize [r,s/;

Declares a two-dimensional array A of size ¢ - r x d - s, in which the
elements of A are to be partitioned into ¢ - d contiguous blocks, each of
size 7 X s. The storage for each complete block will be allocated on a
single processor-memory pair, i.e. a block will not be split across two or
more memory modules. The arrangement of the various complete blocks
will be made so as to uniformly distribute them across the set of memory
modules in the machine.
get vfi] for i « 1 .. m;

Get a local copy of the variables v[1],v[2],...,v[m] for use in the oper-
ations of the next superstep. If variable v[i] is already held locally then
the get v[i] operation has no effect. [There is an implicit barrier syn-
chronisation after any sequence of get statements.] Within a superstep,
any attempt to access a value which is not held locally will result in a
run-time error.
put v in v;

Put the value of the local variable u in the remote variable v. [This remote
write will be completed by the end of the current superstep.]

at v;

Execute this parallel thread on the processor-memory pair to which the
variable v has been allocated. The inclusion of an at declaration in a
thread is optional.

Fig. 2. Notations used in the BSP pseudocode.

6 BSP Programming Languages

We noted above that the BSP model was not prescriptive in terms of the phys-
ical architectures to which it applies. It is also not prescriptive in terms of the
programming languages and programming styles to which it applies. In this sec-
tion we briefly describe a number of the programming languages and libraries
which are currently available to support BSP programming, and some which are
currently under development.

The PVM message passing library [8] is widely implemented and widely used.
The MPI message passing interface [16] is more elaborate. It supports block-
ing and non-blocking point-to-point communication and a number of collective
communications (broadcast, scatter, gather, reduction etc.). Although neither of
these libraries is directly aimed at supporting BSP programming, they can be
used for that purpose.

The Oxford BSP Library [17] consists of a set of subroutines which can be
called from standard sequential languages such as Fortran and C. The core of



the Library consists of just six routines: bsp_start, bsp_finish, bsp_sstep,
bsp_sstep_end, bsp_fetch and bsp_store. The first two are for process man-
agement, the next two are for barrier synchronisation, and the last two are for
communication. Higher level operations such as broadcast and reduction are also
available. The Library supports a static SPMD style of BSP programming. It
has been implemented on a large number of machines and is being used by a
growing community of applications developers to produce source codes which run
unchanged and efficiently on a wide variety of parallel and distributed systems.
Generic versions of the Library are freely available by ftp to run on any homoge-
neous parallel UNIX machine with at least one of: PVM, PARMACS, TCP/IP,
or System V Shared Memory primitives. Highly optimised native implementa-
tions have been produced for the IBM SP1/SP2, the SGI Power Challenge, the
CRAY T3D and other machines. Some preliminary benchmarking studies have
also been carried out for these systems, to estimate the values of [ and g which
a programmer using the native implementation should expect.

GPL is a new programming language for scalable computing. It is being de-
veloped at Oxford by the author and Quentin Miller as part of ESPRIT Project
9072 - GEPPCOM (Foundations of General Purpose Parallel Computing). The
first prototype compiler is currently operational. A preliminary description of
some of the ideas behind this work can be found in [15]. The language is de-
signed to permit the efficient, high level programming of static and dynamic BSP
computations, and to permit the performance of those programs to be accurately
analysed and predicted. The notations used in the pseudocode example above
are similar in style to those of GPL. The language is procedural, explicitly par-
allel and strongly-typed. It allows the programmer to explicitly control schedul-
ing, synchronisation, memory management, combining and other properties of
a program which may be crucial to achieving efficient, scalable and predictable
performance while retaining portability. For example, if run on a BSP architec-
ture, the program will have access to constants G, P and L corresponding to
the BSP parameters of the machine. The program can use these to optimise
the computation. In a multiuser system, the constants might be supplied by the
operating system at run time. [At some point in the future of BSP computing
it may also become customary for applications programs to assist in optimising
resource allocation on multiuser multiprocessors by indicating to the operating
system the p, g and [ resources that it could efficiently utilise (or cope with!).
For example, the dense matrix-vector multiplication code in the previous section
might contain a declaration indicating pmax = 7, gmax = n/p"/? and lpay = n2/p
in some way.] As with any language for high performance programming, a key
requirement of the GPL language and its implementations is that there should
be an accurate cost model which will be applicable to any implementation of the
language. With a reliable cost model of this kind, the programmer will be able to
make appropriate design decisions to achieve the highest possible performance.

Split-C [7] is a parallel extension of C which supports efficient access to a
global address space on current distributed memory architectures. Like GPL, it
aims to support careful engineering and optimisation of portable parallel pro-



grams by providing a cost model for performance prediction. The language ex-
tension is based on a small set of global access primitives and simple memory
management declarations which support both bulk synchronous and message
driven styles of parallel programming.

BSP-L [6] is an experimental BSP programming language under development
at Harvard. The language is being used to explore the effectiveness of various
constructs which might be added to conventional languages such as Fortran
and C to support BSP programming. An important objective of this work is to
reach a much better understanding of the issues involved in designing optimising
compilers and efficient run time systems for programming languages based on
the BSP model.

7 Challenges

The study of BSP program design has only recently begun. In contrast to se-
quential computing, we do not yet have well developed techniques, tools and
methodologies for dealing with the specification, refinement, transformation, ver-
ification, modularity, reusability, fault tolerance, and other important aspects of
BSP programs. Nor do we have a blueprint for the development of a high perfor-
mance operating system for multiuser BSP computers. These, and many other
problems, remain challenges for the future of scalable computing.
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