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Abstract—Volume optical storage systems suffer from numer- DVD) have recently been developed in which the storage
ous sources of noise and interference, the effects of which can secapacity of conventional optical disks is increased through
riously degrade retrieved data fidelity and produce unacceptable the use of multiple recording layers and improved optical

bit-error rates (BER's). We examine the problem of reliable two- luti 114121, Th ol
dimensional data retrieval in the context of recently developed resolution [1]-[2]. ese quasi-planar storage systems rep-

soft-decision methods for iterative decoding. We describe a novel resent a type of volume optical memory in which the third
near-optimal algorithm in which each pixel on the page is treated dimension is utilized with only coarse resolution. In contrast to
as a starting point for a simple iterative procedure so that these planar (2-D) and quasiplanar methods, three-dimensional
a highly parallel, locally connected, distributed computational 3 1y \qlume optical storage methods utilize all three spatial
model emerges whose operation is well suited to the page-oriented*; . . X . .
memory (POM) interface format. We study the use of our dimensions at high resolution, for the recording and retne_vql
two-dimensional distributed data detection (203) algorithm with ~ of data. Recent progress has produced a number of promising
both incoherent (linear) and coherent (nonlinear) finite-contrast material systems (e.g., photorefractives, photochromics, and
;Ol\géhaﬁ]nel_tgwodelsa We presetrr;t BER_trﬁSt‘ﬁ'ts Obttﬁ'“etd L_ISWIIQ photopolymers) as well as the required 2-D parallel support-
e algorithm ana compare ese wi ree other typica . . . , s u
methods [i.e., simple thresholding (THA), differential encoding Ing deV|ce.technoqu|es (e.g, CCD's and SLM's) [3]H{17].
(DC) and the decision feedback Viterbi algorithm (DFVA)]. The Renewed interest in these 3-D storage methods has been
BER improvements are shown to have a direct impact on POM fueled by the promise of very high capacity Tbyte), short
storage capacity and density and this impact is quantified for access time<1 us), and high sustained data transfer raté (
the special case of holographic POM. In a Rayleigh resolved Gpy/s) The simultaneous combination of these three desirable

holographic POM system with infinite contrast, we find that 20" haracteristics i hieved in part by virt f the 2-D parallel
offers capacity improvements of 84%, 56%, and 8% as compared characteristcs Is achieve part by ue ot the 2-L paralle

with DC, THA, and DFVA respectively, with corresponding Nature of the memory access paradigm, in which pages (e.g.,
storage density gains of 85%, 26%, and 9%. In the case of finite 1000 x 1000 pixels) of data can be stored and recalled
contrast (C' = 4), similar capacity improvements of 93%, 18%, from each memory address. Because volume optical storage
and 4% produce similar density improvements of 98%, 21%, gapends upon this page-oriented access to achieve its desirable
and 6%. Implementational issues associated with the realization - - . .
of this new distributed detection algorithm are also discussed performance characteristics, sp_eCIaI attention meSt _be.pald to
and parallel neural and focal plane strategies are considered. A the 2-D nature of the memory interface and to fidelity issues
2 cm® X = 0.1 um digital VLSI real estate budget will support a  related to the 2-D parallel storage and retrieval subsystems.
600 x 600 pixel 2D' focal plane processor operating at 40 MHz |n addition to these various performance related issues, the
with less than 1.7 W/cni power dissipation. degree of commercial success of volume optical memory will
Index Terms—Distributed detection, iterative method, maxi- of course depend upon additional considerations such as cost,
mum likelihood detection, optical memories, parallel algorithm. convenience, and reliability.
A real-world optical storage system operating near its ca-
I. INTRODUCTION pacity, will be subject to numerous sources of noise and
interference. These corrupting phenomena can arise from
imple noise sources such as CCD thermal noise or from
ore complex sources of interference such as image dependent
g)'hotovoltaic distortion [18]-[24]. These noise and interference
Heects can seriously corrupt the retrieved data thus produc-
iR unacceptably large bit-error rates (BER'’s). Conventional
YSftical memories utilize a number of interface processing
gc‘échniques both during storage and retrieval, to insure an
Manuscript received March 31, 1998; revised July 16, 1998. This work h.‘%;cemable level of data fidelity in the presence of these
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Eng.ineering—System-s, Univers?ig/ of Southern Califc’;)rnia, Los Angeles, CWOdUIation coding/decoding, equalization, and sequence es-
90089-2565 USA. timation. The utilization of these same methods within a
M. A. Neifeld is with the Department of Electrical and Computen,glyme optical storage environment however, will require

ONVENTIONAL optical storage systems utilize two-

dimensional (2-D) planar media (e.g., optical disk
together with serial recording and retrieval techniques (i.
a single optical head) to achieve high storage capacity, |
cost, and a convenient removable format. The CD-ROM
based on this paradigm and has proven important for
as a software distribution medium. Multilayer methods (e.
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A7 85721 USA. that we consider .the 2-D nature of the_ stored data and
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ods accordingly. Considerable efforts have been undertakbe convenient mechanism through which nonlinear channel
to accomplish this adaptation to the page oriented memdrghavior may be captured within a likelihood-based algorithm,
(POM) environment. 2-D parallel methods of equalizatiorip date, the application of these methods has been restricted
error correction, modulation coding, and sequence estimatimnthe incoherent case [29], [37], [45].
have all been discussed [25]-[36]. It is possible however,In this paper, we develop a new 2-D likelihood-based
to formulate a “best” (i.e., maximum likelihood) methodalgorithm and apply it to both incoherent and coherent POM
for processing the parallel 2-D data retrieved from opticahannels. We present a highly parallel solution in which each
memory. Such a method will produce the lowest possible ermixel on the page is treated as a starting point for a simple
rates. In this paper we will reexamine the problem of reliablerative procedure. In this new algorithm there is no sense of
2-D data retrieval in the context of some recently developedsequenceassociated with pixels on a page and the relevant
soft-decision methods for iterative decoding [37]-[41]. Thesoft information (likelihood) is computed in parallel at each
soft-decision iterative techniques will be shown to producepixel by collecting information from its nearest neighbors.
convenient parallel distributed data detection algorithm whose this way a highly parallel, locally connected, distributed
performance closely approximates that of the best possilslemputational model emerges whose operation is well suited
algorithm. to the POM interface format. In the next section we describe
The basic problem of reliable page-oriented data detectitire POM channel models and the new distributed algorithm.
is to decide on the most likely user data given the observBeth coherent optical POM and incoherent POM are included.
memory output page or pages. This problem is made diffic@ection Ill presents the BER results obtained using our two-
by the noise and interference that characterizes the optidihensional distributed data detection (9Dalgorithm and
storage channel and the resulting interpixel dependenciess@veral other typical algorithms. The effect of finite contrast is
conceptually simple page-wise optimal method of accoraiso quantified for both the coherent and incoherent models.
plishing this task would involve the use of a look-up-tabldhe BER improvements presented in Section Ill have a direct
(LUT) containing all possible data pages together with theimpact on POM storage capacity and density and this impact
corresponding expected retrieved pages as corrupted by ithguantified in Section IV for the special case of holographic
storage and retrieval processes. An arbitrary retrieved pdd@M. Implementational issues associated with the realization
could be compared against elements in the LUT to decigé the new distributed detection algorithm are discussed in
on the original user data. This method is unfortunately n&ection V. This section focuses on parallel neural and focal
feasible because for a storage system with page size ptdine strategies and is followed by Section VI that provides
N x N the required LUT would contaire™*"™ entries! insight concerning the implications of this research along with
Traditional sequential (1-D) systems utilize a low complexitpur conclusions and suggestions for future work.
algorithm (i.e., the Viterbi algorithm (VA) [42]) to realize
this optimal detection strategy; however, such an optimal
sequential approach is unsuited to the page-oriented detection
problem owing to the lack of a natural ordering of pixels in ) _
the 2-D array [43]. We note that there have been attemptsAo TWo-Dimensional ISTAWGN Channel Models
impose an ordering on the 2-D data page so that the ViterbiA volume optical memory system represents a complex
algorithm might be applied, and some reasonable success #ia@& environment that includes many sources of noise and
been achieved with these methods [29]. It is also importainterference. Each type of POM (i.e., holographic, two-photon,
to note that the optimal framework described above can hele-burning, etc.) will be characterized by its own dominant
applied to received pages whose correlations are intentiogalirce(s) of data corruption, the specifics of which will depend
(i.e., coded data pages) as well as unintentional (i.e., chanorlthe exact implementation details of the system (e.g., focal
effects). The LUT can therefore include the mappings impos&ghgths, CCD fill factor, exposure schedules, etc.). Despite the
via modulation and error correction codes as well as tlexpected variations among various POM implementations, it is
channel; however, here we will focus on mitigating unwantgebssible to identify two common factors that will contribute to
interference and noise without explicitly considering codingreduced fidelity in such systems. The first such factor concerns
The maximum-likelihood data detection approach describéte imaging behavior of the supporting optical system. Because
above is computationally unreasonable for use within POBuch a system (coherent or incoherent) will impose a spatial-
systems due to the highly parallel nature of the retrievdrequency lowpass response on the 2-D data array, the resulting
data pages. Various methods to combat this complexity aptical blur will cause 2-D intersymbol interference (ISI) to
possible and recent attention has been paid to linear medippear in the retrieved page. In contrast to the serial (1-D) case,
ods (e.g., equalization) and likelihood-based techniques (esuen small amounts of blur can produce significant effects in
VA). A recent study of minimum-mean-squared-error (MMSE2-D channels owing to the large number of nearest neighbors
equalizers for POM applications has found that these line@e., 8) supported by the 2-D topology. In addition to a lowpass
solutions can be useful for both coherent and incoherent PQidtical system, all POM implementations require some (finite
[44]. The nonlinear nature of the coherent channel howevégmperature) detector array and supporting electronics from
sets a limit to the benefit of linear equalization and it ishich thermal noise will arise, the magnitude of which will
expected that likelihood-based methods will be superior in thecome larger as the memory system strives to operate at lower
coherent case. Although this expectation is natural owing latency and higher sustained data transfer rate. It is of course

[I. 2D* ALGORITHM
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possible that shot noise or field noise will dominate some POtile framework of this conceptually simple, yet prohibitively
systems; however, the general behavior of such systems camctmplex, processing, there are algorithmic variations. One
well understood through a study of the Gaussian noise limitethy consider maximuna posteriori (MAP) detectiod of
case [44]. the bit a(i,5), or the page€ A = {a(i,5)} based on the
The POM model described above can be easily formulatetiservationZ (i.e., Zr in the incoherent system and. in
in terms of a discrete 2D ISI channel whose output is corruptéite coherent system). The former minimizes the BER, while
by additive white Gaussian noise (AWGN). We represent thige latter minimizes the probability of a page error. In practice,
user data as & x N pixel digital page of independent andeither criterion is logical and the resulting algorithms provide
identically distributed (iid) Bernoulli random variable$:, j), good performance under either measure [46]. Since an efficient
each taking on the real valueg, > 0 and c; > «9 With implementation of either approach is unknown, the difference
equal probability to convey a binary digit. These signal levels conceptual; however, we will present algorithms for ap-
represent the “on” and “off” states of a spatial light modulatgsroximating both approaches. Under the current assumption
(SLM) pixel with g # 0 representing the effect of finite of equala priori statistics (i.e.Pla(i,j) = ao] = Pla(é,j) =
contrast. At the output of each detector we defing, j) to «y]), the MAP rule reduces to the maximum likelihood (ML)
be an AWGN process with varianeg’,. For the case of an rule. Thus, we will refer to the BER-minimizing algorithm
incoherent optical system we interpkeg and «; as intensity as ML bit detection (MLBD) and the page-error-minimizing
guantities and we obtain an expression for the memory outlgorithm as ML page detection (MLPD). Our motivation for

(observation) at pixe(s, 5) distinguishing between MLBD and MLPD is that an intuitive
L explanation of algorithms aimed at approximating MLBD is
Lo P L simpler while numerical procedures that approximate MLPD
() = ImE_:_r ali =L =m)f(l,m) +w(ij) are computationally simpler. Thus, in this section we briefly
1 describe a distributed, iterative algorithm for approximating
_”AL; +:U; 7) (1) MLBD and in Appendix I-A we describe the analogous
F,m) / / / / him(@,y) do dy (2) Processing for an approximate MLPD algorithm.
INZ The MLBD algorithm selects the hypothesized data bit

h I h ber of | h j) that maximizes the bit likelihood’[Z|a(, )] which
where 2L + 1 represents the number of pixels over w 'Ché performed for each location in the data page. To compute

;he channel fbluhr function ex::eggﬁdrepresents the spi“ahms exactly, one would need to average the page likelihood
imension of the (square) etector over whic tﬁ[Z|A] over all pagesA consistent with the hypothesized
received intensity is integrated, ahg,,.(x,y) represents the

value of a(i,j) (i.e., 2V '~! entries of a LUT). Such a
incoherent point spread function (PSF) of the optical syst . i .
centered at thél, m) CCD pixel position (i.e.Jum (x,y) — et'gsk is computatlonally unreasonable; however, computing the

h(z + 1A,y + mA) where h(z, y) is the on-axis incoherent bit likelihood based on a subset of the observation page is

el T . : computationally feasible. For example, first consider compu-
Z;I;)é(lzlczt)e that the observatian(i, j) in (1) is linear in the tation of the likelihood ofa(i, j) based on the single pixel

observat|0n7 This can be accomplished by combinin
A coherent optical system gives rise to a somewhat mo, (7, 7). P y g

complicated discrete 2-D ISI channel in which the observatloq flﬂge OEEQSZL O?L(terst estﬂ?acgll(jgg)et Ioeft I':]fﬁlto%(:tt asgu ch
s a quadratic function of the user data. For a coherent systeml, ;"5 4] — pl2(s, )[S;,]. For the 2-D ISI models
b 231

we interpretay and «; as field quantities and the memoryOlescrlbeol above, the support ofi, j) is the (2L + 1) x
output at pixel(z, j) becomes (2L + 1) array of inputs centered af(i, ;). Also, define the

L neighborhoodof a(z, j) to be N;; = S;; — {a(¢, j)}. Notice
zo(i,5)= Y, la(i—1l,j—m)a(i—p,j—q)] that the neighborhoodV;,; can take on one opl2Z+1)?~1]
Lm.p,q=—L values in the binary-valued spa@e= {0, 1}l@Z+D"=1] Thus,
Ry (I,m;p, q) +w(i, 5) the likelihood is computed via
=zc(t,7) +w(i, j) 3
a2 pajz Pl(i, j)|a(i, )] =B, {P[7(" Dlali, ), Nijly )
Bty mip.g /A/2 /A/Q Mo, (2) do dy = Y Pl2(i,5)]8:;]1P[Ni;] (6)
(4) Ni;CR2

where in this caséy (z,y) and h, ,(x,y) represent two = Z z(4, § |S“]< H P[a(l,m)])

copies of the coherent PSF centered on pikkls:) and(p, ), Ni;€Q a(l,;m)e N,
respectively, and the * superscript indicates the complex- 7)

conjugate operation.

1The MAP decision criterion yields minimum error probabilities. The ML
B. A 2D Algorithm decision criterion is equivalent to MAP when thepriori probabilities of 0
and 1 levels are equal.
As described in the |ntr0duct|0n an 0pt|mal algorlthm 2Upper case variables are used to denote 2-D arrays of corresponding lower

would require the storage af"* page likelihoods. Even within case quantities.
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where theP[z(¢, j)|S:;] is completely characterized by theThis corresponds to replacing the expectation in (5) by a
channel and the last step follows from the assumption ofaximization, which has certain computational advantages.
independent data bits. This may be interpreted as replacing the (average) likelihood
The likelihood P[=(4, j)|a(%, j)] can be thresholded to makeL[a(i, j)] by a generalized likelihood [4787[a(4, j)]; sO we
an optimal decision based only o4, j). However, a sig- will refer to L-2D* andG-2D* algorithms when the distinction
nificantly more reliable decision will result from a likelihoodis relevant. Second, an effort is made to set the combining
based on other observations. A method of combining the liketioefficients based on a larger portion of the observation page.
hoodsP[z(I, m)|a(l, m)] to approximate this goal is motivatedThese details are discussed in Appendix I-A. Also, a method
by the relation in (7). Specifically, note th&{z(i, j)|a(¢,5)] of complexity reduction is investigated in Section IlI-B.
is proportional to the posterioriprobability Pla(é, j)| (%, j)] The knowledge about the channel is incorporated only
because of the equal priors assumptions. Thus we proptis®ugh the combining coefficients;;[S;;] in the update rule
to infuse likelihood information from the neighboring pixelg8). An important feature of the 2Dalgorithm is its ability
by using (7) with P[a(l,m)] replaced byP[z(I,m)|a(l,m)]. to include channel effects of arbitrary complexity within these
Although this assignment appears nonintuitive, the approagfobabilities. This algorithm is therefore well suited to the
is commonly referred to as “propagation of the extrinsinonlinear channel models that characterize coherent optical
information” and is widely used for turbo decoding [39]-[40]storage systems. It is often the case for experimental POM
More specifically, based on (7), we suggest the followingystems, that an explicit channel model is unavailable owing
iterative likelihood propagation rule to the complexity associated with the various relevant noise
k . - and interference sources. However, an explicit model is not
Lz(;)[a(hj)] = Z Cij15ii] H LVl m)) required by the 2B algorithm and experimental measurements

Nycs altm)CNi can be used to estimat€;;[S;;] (e.g., P[2(4,)|Si;]) for
(Likelihood Exchange) (8) use in likelihood update rule (8). Also, it is conceptually
L®a(i, )] =1 - B)L*Va(s, j)] +/3Lg,“)[a(i,j)] straightforward to compute these probabilities so as to also
(Likelihood Filtering) 9) include the effects of modulation and/or error control codes.

In summary, under the POM models described above, a
where L*) is the likelihood atkth iteration, andC;;[Si;] bit-wise optimal algorithm would require the use of an entire
is a set of 22E+D” combining coefficients determined atpage of observations in order to decide on the digital value of a
initialization for each bit location(z, 7). We refer to this single pixel. Such a procedure is not computationally feasible
iterative rule as the 2balgorithm. The exchange (combining)and the algorithm described in this section has motivated the
in (8) is not optimal because thee posterioristatistics of the use of a local neighborhood of observations as a substitute for
data arenotindependent. However, the intuitive notion is thatthe use of an entire page. This concept defines one iteration
beginning fromL()[a(l,m)] based on some small portion ofof the 2D* algorithm. The proposed algorithm is iterative,
the observation page, the exchange mechanism will appro&agwever, with each pixel using the instantaneous values of its
the desiredP[Z|a(t, )] for large k. For example, one may neighboring likelihoods to update its own likelihood estimates.
choose to seC;;[S;;] = P[z(i,4)|S:;] and LO[a(l,m)] = This iterative process can be viewed as a mechanism through
Pla(l,m)], which would be based exactly on the relation invhich likelihood information igoropagatedn 2-D throughout
(7). Many iterative algorithms exhibit a tradeoff between speehle retrieved data page. During each successive iteration, each
of convergence and accuracy. This motivates the filteripgxel is influenced by a growing number of observations. This
process at each pixel as defined in (9). The filtering parameligelihood propagation process is the key to facilitate a highly
B € (0, 1] determines the bandwidth of a single-pole low-pagsarallel 2-D detection algorithm. In Section V, we will use
filter which rejects abrupt changes in the updated likelihoa neural network analogy to further clarify the operational
L,Ef“)[a(i,j)]. Specifically, the smaller the value ¢f, the principals of the proposed 2Dmethod. In the next section we
greater the rejection of fluctuations i [a(i, )], which is quantify the performance of this algorithm.
expected to increase the time to convergence. One iteration
of the algorithm is defined by the combination of likelihood
exchange with neighboring bit locations and the filtering ll. BER REsULTS
update, which takes place independently at each pixel f.e., In this section, we examine the BER performance of the
measures the iteration number). The iterations may be cont®d* algorithm. Monte Carlo simulations were run for two
ued until some stopping criterion is met (e d.{*)[a(l,m)] — incoherent channels and two coherent channels with a page
L¥=D[a(l,m)]| < ¢) or for a fixed number of iterations. Insize of N = 128. Under both kinds of channels, BER’s are
either case, if stopping occurs aft&riterations, the decisions plotted against the inverse noise variari¢¢o?2,) in decibels
are made according toi(i,j) = a; if LYa(i,j) = (i.e., INV = 10log,o(1/02)) with the channels normalized
1] > LU a(4, ) = ao)], otherwisea(i, j) = ao. to unit optical intensity. The two incoherent channels are

The preceding description is intended to provide amptepresentative of a POM system operating near and beyond
motivation for the family of 2B algorithms and we will refer the Sparrow resolution limit with a Gaussian blur. Specifically,
to the steps of the algorithm as defined in (8) and (9). Howevér(z,y) = (1/y/2nc?)exp [—(a? + y?)/207] is used to
the algorithm used for simulations differed in two ways. Firstomputef(, ), which was then truncated fo= 2 (5x5) and
we used an algorithm inspired by MLPD rather than MLBDrenormalized so that; ;, f(i,j) = 1. Incoherent Channels A
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and B were so defined far, = 0.45 ando;, = 0.623, respec-

tively. For the coherent case, we consider an optical imaging
system containing a square Fourier plane aperture of length
1/W on each side. The coherent impulse response of such

an imaging system i&c(xz,y) = sinc(z/W)sinc(y /W) /W, 102
whereW measures the degree of blur experienced by images
passing through the system. The coherent channels werg
computed by determinind?, (¢, j;I,m), truncating toL = A

2 (5 x 5) and renormalized so that; ;) Rp(i,j54,5) = 1. \\ Lo 10°

m“

P ROoCLeeoooo
| DO U W=

[N B

Coherent Channels A and B, were computed in this manner for
W = 0.4 and W = 1.0, respectively. Although the forward \\
channel models have been simulated using 5 support, the T\
computational complexity of the 2Dalgorithm with L = 2 is
unacceptable, requiring®2 neighborhood configurations per 0t
pixel. In order to reduce this computational burden we will 0
simulate the required 2finterface processing using a reduced
L =1 (3 x 3) support. The omitted entries on the boundarlig. 1. The convergence properties of _the4299rithm parametered by
(. 16 piels) are assigned a fxed nput value, Ko + 100 faies o e et e nogrie verson of e fver porion.
aq)/2. This mismatch will cause a slight reduction in overal
performance (i.e., more pronounced for larger blurs); however,
the results will more accurately represent the performanceaff 5 are plotted for the incoherent Channel B in Fig. 1.
the 2D algorithm within an actual realtime POM systemlhe convergence rate is dependent on the valug.dflore
environment. specifically, wheng < 0.5, the convergence is slower with

All simulations are based on th€-2D* algorithm with decreasing3, although the performance after convergence is
combining coefficients and initialization as described in Agsimilar. For example, fod = 0.1, convergence is achieved
pendix I-A. We compare the 2Dalgorithm with three other for £ > 50, but for 3 = 0.5, convergence occurs fdr > 15.
approaches: the simple pixel-by-pixel threshold decision algbhis behavior is reversed fgi > 0.5—i.e., the performance,
rithm (THA), the decision feedback Viterbi algorithm (DFVA)not the convergence rate is more sensitive to varyingror
[29] and the use of differential encoding/decoding (DC) [48]3 > 0.5, convergence occurs at approximately 15 iterations
The THA makes decisions by thresholding on the singkith the steady-state BER varying by up to 25% (see the insert
observation:a(i, j) = oy if 2(4,5) > 7; otherwisea(i,j) = in Fig. 1). Also, oscillations in the BER results are observed
«o, Wherez is the mean value of(4, 7). The DFVA runs the after a certain number of iterations, especially whieh 0.9.
VA row-by-row with decisions fedback from previous rowsBased on the results in Fig. 1, we y$e= 0.3 in the following
Although in [29] the DFVA is only applied to incoherentsimulations as a reasonable compromise. For this choice, no
channels, it is straightforward to adapt the DFVA for a coherentore than 20 iterations are required; even fewer for less severe
channel model. Due to the same complexity constraint as 8 channels (i.e., see Sections IlI-C and 1lI-D).
2D*, the DFVA is also simulated with a reduceck3® support.
The assignment of a fixed input value on the ignored edge
entries, as used with the 2@lgorithm, is also applied. Using B. Effect of Reduced Connection Complexity
DC combats the ISI by using two pixels in the page to record The main computation task within the 2RIgorithm, comes
a single bit. Specifically, DC records a binary “1" by “10” androm the update rule (8), the complexity of which is determined
a binary “0” by “01.” For example, an input bit(i,j) = 1 by the size of the neighborhood;;. For most low-pass
setsa(2¢,j) = ar anda(2i + 1,7) = ao. At the detector, the channels, the ISI channel coefficients decrease in magnitude
decision is made according to the simple rdig, j) = 1 if  rapidly at the edge of the neighborhood. For example, even in

#(2i,§) > #(2i+1,5); otherwiseb(i, j) = 0. Thus, the use of the relatively severe incoherent channel /8], 1)/£(0,0) =
DC results in a 50% decrease in the number of bits per page993 is relatively small. Thus, we consider omitting some
This fact does not impact the BER results presented in thiatries of V;; in the likelihood update of (8) to simplify the
section, but is included when translating the BER results g@mputation. In the 2Balgorithm, the connection complexity
storage capacity/density in Section V. is reduced by 50% for each entry that is omitted. However, it

Before presenting the BER comparisons for the incoheregtexpected that this complexity reduction will be realized at
and coherent Channels A and B, we demonstrate the effegis cost of performance and/or convergence rate because the
of 8 and complexity reduction techniques. likelihood exchange-update process is weakened. The connec-
tion complexity is an important factor in the implementation
of 2D* algorithms (see more discussion in Section V).

We define theconnection maskf the 2D* algorithms as the

The convergence rate of the iterative procedure in (8) atite structure of the connectivity used during the update step.
(9) determines the time complexity of the 2@algorithm. The “fully connected” connection mask suggested by (8) is a
Fixing INV = 27 dB, the BER curves for various valuesspecial case. For the>33 processing used in this paper we

Iteration Number

A. Convergence Properties



CHEN et al. NEAR-OPTIMAL PARALLEL DISTRIBUTED DATA DETECTION 871

—S——op’_1
—F—2Dp' 20

Fig. 2. Impact of the connection complexity on the performance of tie 2D
algorithm. (a) Convergence properties for the incoherent channel B at INV
= 27 dB. (b) BER performance for the incoherent channels A and B. The 1
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number of iterations used is 5 and 20 for channels A and B, respectively. 078 X Differential Coding 3
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Hooooeeee- MLPD Bounds '-,‘ : 4
have considered three different connection masks: L R T Y S v
INV (dB)
[ [ [ o [ o X [ X
° o, ° o, ° ° Fig. 4. Comparison of the BER performance for various detection algorithms
e o o c e o < o X for the incoherent channel B.

where “o” indicates the connection is includedy™indicates 2.0 dB in INV on channels A and B, respectivéljdowever,
hard-decision feedback anc" indicates omission. From left with hard decision feedback, there is virtually no performance
to right, these are referred to as the fully connected (FQjegradation for channel A, while the degradation is reduced
no-corner connected with feedback (NCCF) and no-cornir only 0.3 dB for channel B. Actually, even the NCC 2D
connected without feedback (NCC) masks in order of reducimdgorithm outperforms the DFVA algorithm, the performance
complexity. In the NCCF case, temporary hard-decisions avé which is discussed in Section IlI-C.

made after each iteration based on current likelihood quan-or all subsequent results we have used the fully connected
tities, and are fedback at the corners of the mask wheresk.

connections are omitted. This approach is similar to well-

known state reduction techniques for 1-D data detection [49, |ncoherent System Performance

[50], as is the DFVA. Note that using feedback only slightly The BER of the infinite contrastao = 0 and a; = 1)

increases the connection complexity. Compared to the 'i:rcnlicoherent system with Channels A and B is plotted as a

scheme, the connection complexity is reduced 16 times in both . - . X
) unction INV in Figs. 3 and 4, respectively, for various data
the NCC and NCCF schemes. The incoherent channels A a . :
etection approaches. The theoretical performance bounds

B are simulated for all three connection masks. Fixing IN . : .
— 27 dB in Channel B, Fig. 2(a) shows that the impact of th%ssomated with MLPD [43] are plotted for reference, which

. . . - Irepresents the best achievable performance. For channel A,
connection complexity on the convergence rate is negligib

P’ ! . . . ]
However, a certain performance degradation due to complexi 9 works virtually optimally with only 5 iterations. Because

reduction is observed for both channels. Specn‘lcally, at a3Henceforth, unless otherwise specified, the value of INV is always
BER of 10°%, the NCC scheme suffers a loss of 0.4 andscussed at a BER of 10.
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Fig. 5. Comparison of the impact of contrast on various algorithms for tHég. 6. Comparison of the BER performance for various detection algorithms
coherent channel A. The-axis is the inverse of contrast and thexis is the for the coherent channel A and various contrast levels.
value of INV (dB) at which a BER= 10~* is achieved.

the performance of the 2Dalgorithm closely approximates the A A A
optimal MLPD performance, we refer to the 2Blgorithm as M 8 ]
“near-optimal.” Its performance is 1.7, 4.9, and 12 dB better )
than that of DFVA, DC, and THA, respectively. The THA
and DC are inoperable for the more severe channel B. Both L
exhibit an error floor around BER 0.08, far above the desired 10°
10—*. The performance of 2bis approximately 2.5 dB worse &

than the achievable MLPD performance and 4.2 dB better thari®

g

T T

C = Infinity

that of the DFVA. While the 2B algorithm with one iteration L :
provides acceptable performance for channel A (i.e., only 0.9 F o —e—apty \\\ 1
dB worse than 5-iteration version), it results in a INV cost of W | —=—DEVA _ ’
15 dB relative to the 20-iteration version on Channel B. 10 T e o + N

Due to the linearity of the incoherent channel, the impact of r ; ]
reduced contrast (i.exo # 0) in such systems can be directly | S E——— é —— ‘1io' - ‘1i5' e

associated with an increase in noise [44]. Thus, the effects of

finite contrast can be determined by translating the curves in

FigS 3 and 4 and are not presented explicitly Fig. 7. Comparison of the BER performance for various detection algorithms
' ' for the coherent Channel B and various contrast levels.

INV (dB)

D. Coherent System Performance

The BER performance for the coherent channels A arf];\(gproach is slightly better than the 2@lgorithms in terms

B is presented in this section. Since the coherent channefBBER on this channel for infinite contrast and comparable

. ) o ' or the C = 4 case.

nonlinear, the impact of finite contrast (definedCas- O‘.%/O‘%). The BER results for the coherent channel B are plotted in

does not transla_lte_ to an equivalent INV degrgdanon. F'.g‘lég. 7. In infinite contrast systems, the 2Blgorithm using 3

presents the variations of the value of INV required to aChle\llt%rations performs 8 and 1.5 dB better than THA and DFVA
4 L ) . . ;

a BER of 10 * due to varlatlpns I for channel A. As in the respectively. Wher = 4, the channel nonlinearity helps the

incoherent case, the THA yields the worst BER. Moreover, '[ISHA to improve the performance by 3.6 dB. The 2ierforms

behavior withC' is complicated due to the nonlinearity of the0 5 and 2% dB bettgr than the DFX/A. and.THA respectively

g:?nrgﬁigl.;ghz bzerst Ei:fc::rrr]r; ?]nnCeT ioii:Ot;?ggqjaz’ 0ngain, at the cost of 50% coding redundancy, the DC performs
= 25, ' p slightly better &1 dB) than the 2B algorithm.

the DFVA, DC, and 2B approaches are similar for all levels
of contrast. For the remaining coherent channel results, we
choose to examine two representative valuesCofinfinite
contrast{a; = 1 anday = 0) and a more typical experimental The results of Section Il characterize the BER perfor-
value of C =4 (a; = 1 and oy = 0.5). mance of various approaches, including the*2igorithm,

The BER results for the coherent channel A are plotteah particular channels. In this section, we describe how the
in Fig. 6. With three iterations, the 2Dalgorithm achieves a BER gains realized by more sophisticated processing may
gain of ~5 dB over the THA and is slightly better than thebe translated to an increase in storage capacity and density.
DFVA for both infinite contrast and” = 4 systems. The DC Consider the data fidelity of a coherent POM system as

IV. HOLOGRAPHIC STORAGE CAPACITY AND DENSITY
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channel. Although the performance of the “2Bigorithm is
degraded due to the simple approximation strategy used, it is
still the best over most of the range of various blur for two
typical values of contrast ratio.

0.6 e Differential coding is the only approach that meets the
L fidelity requirement for the infinite contrast case whHénhe

ol S \ [0.6,0.7]. However, the storage capacity associated with DC is

= =

relatively low for other values of¥ due to the inherent 50%
redundancy. For an infinite contrast system with= 1.0 (the
Rayleigh resolution), the 2Dprovides increases in capacity of
approximately 8%, 56%, and 84% relative to that associated

04 05 o6 o7 o8 00 10 11 1o  withthe DFVA, the THA, and DC, respectively. For the= 4
w case, these capacity increases are 4%, 18%, and 93%, respec-
@ tively. Also, the 20¥ capacity forC' = 4 is approximately 8%
greater than that for the infinite contrast case.

1.0 Based only on the curves in Fig. 8, it is tempting to conclude
= ] that the performance of a POM is optimized by designing for
g 0.8F N /ﬁk\ ] very small blur and, hence, reducing the need for sophisticated
lz v \\ ] interface processing. However, storage density is another
g 0.6 U\ important characteristic of POM and a large blur corresponds
% , 4%*’ (//\ \\ ] to a narrow signgl bandwidth WhiCh is an indication_ of area
g U4r ] efficiency. In particular, the Fourier plane area associated with
?é i +%IF>;-A3 \ \\: a particular value of blur is characterized byW?2. Since
S 0211 T Differential Coding ] storage density is inversely proportional to this area, we find

[| — Threshold \ that storage density may not be optimized for small blur as

%% 05 06 07 08 09 Lo 11 19 1/W? can become large. In order to quantify these trends

W

we definep(-) as the storage densities for a given detection
() algorithm. As described above we hay@) o My (-)/A
Fig. 8. Comparison of the normalized storage capacity as a function 8,,,.(-)W?2, where A is the storage area required to record
system blur. (2" = infinity. (b) €' = 4. M pages of data while maintaining BER 10~*. Thus, the
storage density metric will benefit from interface processing
represented by the BER curves such as those presente®@fh through an increase in noise margi®., M.x(-)) and
Section lIl. For the fidelity requirement of BER 104, there the ability to tolerate largei¥’. Again, the DC approach suffers
is a minimum value of the INV which can be tolerated foRh inherent 50% reduction in storage density. Fig. 9 shows the
a given algorithm. Define this value of noise standard deormalized storage density for all algorithms as a function of
viation asgw?maX(THA)’gwﬂnax(gD‘l)’ 0w max(DFVA), and blur for two values of contrast ratio. It is clear from the data
0w.max(DC) for the four algorithms considered. Since undéh Fig. 9 that an optimum blur exists for which density can be
the postdetection AWGN model an increase in noise strengft@ximized. For th&? = oo case, this occurs at approximately
is equivalent to a decrease in optical signal intensity, w& = 0.9 for the THA andW = 1.0 for all other approaches.
observe that eaCh'w,111ax(') Corresponds to some minimumThe 2D algorithm provides the maximum storage density with
acceptable signal levePy,i(-)  1/0y max(-). Due to the relative gains of 9%, 26%, and 85% in storage density relative
diffraction efficiency scaling behavior of holographic POMto the DFVA, THA, and DC approaches, respectively.
the Signa| power at each detector decrease];/a,g2 where Similar results are observed for th¢ = 4 case, with the
M is the number of stored pages [51], [52]. This implies th&xception that all approaches are able to meet the fidelity
the maximum number of pages will be limited By, () o criterion for 0 < W < 1.1, with the DFVA and 20
/aw,max(~) for a given algorithm. Thus, a gain #, max(-) approaches also meeting this criterioni@t = 1.1. In fact
results in an increase i« (-). The storage capacity is thenthe storage density associated with the*28lgorithm is
Max(-)N? for all approaches except for DC, for which it ismaximized atW’ = 1.1 with C = 4 (this occurs a8V = 1.0
M. (DC)N? /2 due to the use of two pixels to convey dor all other approaches). The relative gains in maximum
single bit. The relative capacity achieved using each of thes®@rage density for the 2Dalgorithm with C 4 are
methods is illustrated in Fig. 8 as a function of system bl§%, 21%, and 98% relative to the DFVA, THA, and DC
for C = oo and C' = 4. These capacity curves have beef@pproaches, respectively.
normalized to the capacity achieved using the* 2iyorithm
on a coherent POM system with a bluriéf = 0.4 and infinite
contrast. The normalization constant is therefore determined V.
by the maximum number of pages that can be stored whileThe 2D* algorithm has been shown to offer superior BER
maintaining a fidelity constraint of BER= 10~* using our performance for a variety of channels, both coherent and in-
proposed algorithm on an infinite contrast, relatively blur-freeoherent. The capacity and density gains associated with these

IMPLEMENTATIONAL ISSUES
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(b) Fig. 10. Schematic of a pixel-parallel neighborhood-serial digital VLSI

implementation of the.-2D" algorithm. The details of a neighborhood-serial
Fig. 9. Comparison of the normalized storage density as a function of systprecessor are illustrated in the lower portion.
blur. (a) C' = infinity. (b) C' = 4.

: . . ._converge ink iteration clocks, wherd( is the convergence
BER improvements were quantified in the previous sectiopl. o represented in Fig. 1 (typicallk < 10). For each
Capacity and denS|ty., however, are only two of the.releva% putation clock it is necessary for each pixel to accom-
storage system metrics, and algorithms that offer mcrea?én

: : h the likelihood exchange (8). This computation requires
capacity or density at the expense of latency or transfer r Snsideration of all 2 possible neighborhood configurations

are of limited use. This implies that there is a bound on thg,\ve propose a sequential approach to this task at each pixel.
acceptable computational complexity for this application. He 2 terms of the sum in (8) are computed sequentially and
this section we investigate the implementational cost of the, 4ccumulation register is used to collect the intermediate
2D* algorithm. We consider a 2-D parallel implementationglg s, This requires at least Basic clock cycles to realize
model that is a convenient match with the natural 2D daffye computation clock. Fig. 10 represents a schematic of the
format that characterizes POM. In this section, we measg)posed pixel-parallel neighborhood-serial implementation.
the implementational cost of 2Din terms of VLSI area and gach pixel contains an optical detector, 5-bit A/D converter
power for a parallel digital solution and suggest a potenti@erian, neighborhood counter (produces 8-bit binary word
analog implementation that exploits the relationship betweglr)' neighborhood-gated 9-input 8-bit multiplier (forms product
the 2D* algorithm and neural networks. of only those inputs corresponding to “on” positions 1of,

The likelihood exchange rule (8) represents the basic opgtcumulation register, two 2-input 8-bit multipliers, one 8-
ation that must be performed at each pixel in a 2D arrayit adder, and some storage and initialization circuitry. Prior
For the cases studied here with = 1, the likelihood to beginning the iteration procedure some overhead may
exchange rule (8) represents a locally connected (8 neighbasg) required for A/D conversion (32 clocks) and algorithm
computation in which each pixel first collects information fromnitialization which we do not include in our cost estimates.
its neighbors, and then computes an update. We consider tiielse channel informationz(S;;) (i.e., the noise-free signal
tasks to comprise one iteration-clock so that 1 iteration clogonditioned on the value of the support) is communicated via
= 1 communication clock+ 1 computation clock. It is of the column busses shown in the figure and together with the
course also possible to realize such a solution on a mestered value of the observatiaf, j), are used to compute the
connected array in which two communication clocks are usembmbining coefficients”;; (.S;;) with a single 8-bit multiplier
According to this pixel-parallel model the 2@lgorithm will  (e.g., Ci;(Si;) = [2(4,5) — z(Si;)]?).
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Using simpleX = 0.1 um CMOS models for the functional
units described above, the area cost of the pixel-parallel cee
neighborhood-serial-2D* algorithm has been computed. For
multiplier and is roughly3.4 x 10~ cm?. This value is quite

this architecture the pixel area is dominated by the 9-input
large, and with a reasonable chip size of 2¢supports page
sizes of only 2900 pixels. An alternative to the parallel 9-input
multiplier would utilize additional clock cycles ¢8) to realize

this computation. Such a solution can reduce the area per pixel : %,
to 6.0 x 10~° cn? offering array sizes up to 33340 pixels.
The page sizes that can be supported with the likelihood- m
based L-2D* algorithm are limited to roughly 180< 180 - ~—
pixels. We have also considered an implementation of the e lL(f) Tl

metric-based versiofiG-2D*) that is described in Appendix

I-A. In this case the multipliers are replaced by adders and

significant area and power savings are obtained. The Ly

2D* algorithm offers an implementational area per pixel of

2.1x10~% cm? which leads to more useful array sizes of nearly ©

10° pixels. We note that additional parallelism can be obtained 7/ L la(i,f)

through the use of resource sharing at the cost of higher clock L§’

rates. The 19 pixel implementation must operate at a basic

clock rate that is roughly28 x 8 times the iteration clock rate.

Given a desired page access time of 1 ms, we find a required

iteration clock rate of 10 kHz and a resulting basic clock rate

of 10 MHz. This clock rate is reasonable for the technology

that we have assumed. At this clock rate, the power dissipation

per pixel for theG-2D* algorithm is roughly 0.13 mW, and is

6x less than the power requirements of the likelihood-based TLS?

method. The total power density associated w@t2D* is not _ , ,

ureasonable at 69 Widn B g G S oo e ot oo
n Section IlI-B, we investigate e performance of the

2D* algorithm when fewer neighbors are utilized in the update ) .
computation. Fig. 2, for example, indicates the performanfd€ (8) and (9), and the dynamic behavior of feedback

cost of eliminating corner connections from the neighborhodtfura! networks. These nonlinear dynamical systems have
for a severe channel. Consider using such a strategy hgen proven useful in the solution of various optimization
the purposes of reducing power dissipation in the associai@PIems (€.g., traveling salesman) and the detection problem

implementation. For an implementation @£2D* that utilizes IS yet another ip thi_s cllass of problem [53]_[56]', In par-
no corner connections, the previous 1288 clock multi- ticular, the iterative likelihood-based method described here

plication factor becomes 16& 4, reducing the basic clock (L-2D*) can be shown to minimize the criterion function=

rate and the power dissipation both by a factor of 16. Trﬁ{(L_[“(iJ)] — Lu[a(i, /)])*} and the update rule (7_) can be
resulting power density of 0.43 W/cnis easily manageable cgst in the f(_)rm of a fully parallel network as shown in Fig. 11.
and additional multiplexing can now be used to achiedd: 11 depicts a locally connected network of subnets. Each

greater area savings through resource sharing. For examﬁ ,net can be thought of as a two-layer nonlinear (8th.order)
the number of computational blocks can be reduced byngtwork [.57]—[59].Alt§rnaFely, each subnet may b? considered
factor of four and shared among groups of four pixels. SucH@Pe a single piecewise linear perceptron operating‘oso2
strategy would facilitate array sizes of nearly 60600 pixels Ca/led Phi-functions, each of which is one of thie ssible
operating at a 40-MHz basic clock rate, with a reasonab[?éOdL_‘Cts of 8 neighboring |Ike|lh00d8£60]. It_|s also possible to
power dissipation requirement of 1.7 W/&riwe have ignored consider the neural analog of tié2D" algorithm. Although
the small additional overhead that will be required to manad?@comes difficult to write a simple criterion function in this
the resource sharing in this case. ase, the recent development of morphological netyvor_ks does
Although the parallel digital solutions described above Wiﬁnr_owde a framework for the study of a parallel distributed
benefit from additional cost reductions via more careful circufif!n-SUm approach [61}-[62].
design, it is also possible to envision an analog solution to
the computational problem. Such a highly parallel, analog
implementation may offer significant reductions in area andIn this paper, we have described a new data detection
power. While such a design study is beyond the scope afjorithm for use within the highly parallel POM interface
this work, an interesting point of departure for such an effoenvironment. This algorithm is fashioned after other iterative,
might use the similarity between the likelihood propagatiosoft-decision, maximume-likelihood techniques and represents

binary-value
input weights

28 hidden units
(8th-order neurons)

VI. CONCLUSION AND DISCUSSION



876 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 5, SEPTEMBER/OCTOBER 1998

a highly parallel, distributed computational model that is weflower dissipation. We have also suggested the use of a
suited to the 2-D data format characteristic of POM systentsighly parallel analog implementation and have outlined the
The new 20 algorithm is motivated from a likelihood-basedrelationship between such a solution and other neural network
perspective and its relationships with MLPD and MLBD havbased optimization circuits.
been discussed. Both likelihood-basgit2D*) and general- ~ While this paper has introduced a useful algorithm offering
ized likelihood-basedG-2D*) versions have been describedboth good BER performance and reasonable implementational
The add-compare-select based computation of ¢h&D* cost, several outstanding issues remain. The most critical of
algorithm is shown to offer significant reductions in implemerthese concern the recovery of algorithm performance in cases
tational cost as compared with the multiplication-intensive for which there is a mismatch between the physical channel
2D* algorithm. The BER performance of tif&2D* algorithm support and the neighborhood connectivity used during 2D
has been compared with three other approaches (THA, D@pcessing. The results presented here are based on a simple
and DFVA) for finite contrast POM channels based on botwveraging procedure that allows the uselof 1 processing
incoherent (linear) and coherent (nonlinear) optical systenm L = 2 channels. The reduced connection and hard-decision
Varying degrees of coherent and incoherent optical blur hateedback results presented in Section 1lI-B suggest that such
been studied. The BER advantages of ¢4@D* algorithm as techniques may provide improved capacity and density gains
compared with the other three methods, are translated direstligh marginal increases in processing complexity. Additional
into gains in storage capacity and density. In particular, fapproaches to complexity reduction for particularly severe
the case of a Rayleigh resolved holographic POM systethannels (e.g., coherent POM systems viith < W < 0.8
with infinite contrast we find that th&-2D* algorithm offers and W > 1.0) could perhaps be based on other existing
capacity improvements of 84%, 56%, and 8% as comparagproaches for 1D sequence detection (e.g., pre-equalization,
with DC, THA, and DFVA respectively, with correspondingand variable complexity tree-search algorithms). Effective
storage density gains of 85%, 26%, and 9%. In the caseroéthods for complexity reduction are also necessary to include
finite contrastC' = 4), comparable capacity improvements ofhe memory associated with signal encoding (e.g., modulation
93%, 18%, and 4% produce similar density improvements ofding and error control coding).
98%, 21%, and 6%. A second set of issues concerns the implementation of
The holographic POM model for which the above resultfiese likelihood-based methods in experimental POM systems.
are obtained, describes an observatiéi j) that is nonlinear Various imperfections associated with experimental POM will
in the input datau(4, j). In this case therefore, it is natural tocause the actual system to depart from the system model used
expect that likelihood-based methods will be superior owirdpring 20* processing. Understanding the BER degradation in
to the ease with which such methods can incorporate actbis case represents an important tolerancing exercise and may
rate channel information (i.e., the neighborhood-conditionggsult in the need to use empirical channel data within the 2D
expected received signalS;;)). The results described abovealgorithm. We are pursuing experimental verification of such
bear out this expectation with th@-2D* algorithm offering a strategy. Additional design work must also be completed
significant capacity/density advantages as compared with TH&fore a final implementational strategy can be established.
and DC and only modest improvements as compared with thee results of the baseline design study presented here suggest
other likelihood-based technique (DFVA). that the highly parallel and distributed nature of the*2D
Various algorithmic and implementational issues relateglgorithm make it suitable for a parallel 2-D focal plane
to the use of the new 2Dalgorithm have also been dis-implementation; however, detailed digital and analog circuit
cussed. A study of algorithm convergence has shown tHesigns must be established and compared with competing
relationship between convergence time and final BER, wigdgorithmic approaches.
the best BER performance obtained for the slowest conver-
gence parametdy3 < 1). A reasonable compromise between
BER and convergence time is found to e = 0.3 for
the case of a fully connected neighborhood. Convergence
in these cases was generally obtained with fewer than 10
iterations. The neighborhood connection complexity was aI@b
studied and it was found that using a reduced connectionThe generalized likelihood (GL) af(z, j) based or(z, 5)
mask allows significant reductions in complexity with littlemay be computed by
performance degradation. The use of hard-decision feedback
may be required with reduced connection algorithms in order £c(z(¢,5)|a(z, )]
to maintain the performance for more severe ISI channels (e.g.,

APPENDIX |
COMPUTATIONAL DETAILS OF THE 2D* ALGORITHM

Generalized-Likelihood Based 2@lIgorithm

the incoherent channel B). = max | P[z(i,/)S;] [[  Pla,m)
. . . . . . ]\‘rijcﬂl
Implementational issues associated with the realization of a(l,m)e Ny
the G-2D* algorithm have also been discussed and a parallel (10)

digital focal plane architecture is considered in detail. A

2-cn? A = 0.1 pm digital VLSI real estate budget iswhich is directly analogous to (7). The advantage of using GL
shown to support a 600< 600 pixel G-2D* focal plane is that, unlike the averaging operation in (7), the maximization
solution operating at 40 MHz with less than 1.7 Wfcmoperation commutes with any strictly monotonic function.
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Thus, we may rewrite (10) as z4 (¢, 7) and the fact that(i + 1, j +m) is only dependent on
) PPN Sitij+m C{HV(1,5;2),8;;}. After completing the calcula-
—log(Pa[z(i, j)la(i,7)]) tion of P[z(i, j)|S:;]'s, we use (14) to obtai®[z (i, j)|Si;].
) o Note that by carefully accounting for common terms in (14),
= ]\Hil&llQ —log(P[2(,4)[55]) one can simplify the evaluation further. Fa#-2D*, the
corresponding rule is

M _ PO ..
+ Y _10g(p[a(g7m)])>_ 1) Cij [Sil = Mz4.(4,5)154]
a(l,m)CN;; = 1 (1 il il i4+m]|-
e Wity 2 MEUELTEmISigen]
In this form, the GL computation includes only Addition- (tm)cR
Comparison-Select (ACS) operations, which are compu- (15)

tationally simple. Thus, we define aetric as M(-) = . . . R
While this operation does not require significantly more com-
—e1log P(-) + ¢ wheree; > 0 and e, are constants. For : : . o
example, in the AWGN channel; and e, may be selected PU2ION than simply: usingCi;[S;;] = P[z(, j)] 9], at
e, L 2 y tempting to compute the likelihood of;; based on larger

so that the metric is the squared Euclidean distance (e.d... . : e
(i, ) — 2(Si;))2). Based on these observations, we sugges gions of the observation results in an exponential increase
2 (4, i7). ,

a metric-based GL propagation rule analogous to (8)—(9) " complexity.

APPENDIX
k .. . .
Mé)[a(m)]:;r?lc‘b (C%[Sij] + Z MY [a(lvm)]> LIKELIHOOD RATIO PROPAGATION
7 a(l,m)cN;; . . . .. .. .
(Lr)eh Since binary data is assumed, the decision statistic required

e e W (12) is the ratio of the likelihoods of the “1” and “0” hypotheses.

M®ai, H]=(1 = BYM ¥ Vlalé, )] + BM;;” [ali, 5)] This fact may be exploited in order to reduce the computational
(13) and storage requirements of the 2BIgorithm by a factor

_ _ _ _ of two. Specifically, instead of updating boftt* [a(i, j) =
where C}[S;;] is the metric version ofC;;[S;;] in log- 1] and LWa(i,7) = ao] as in (8), we only need to
domain. After K iterations are accomplished1 the decisionﬁpdate the likelihood ratioA®1[a(i, j)] = L®[a(4, )
are made according toi(i,j) = a if Ma(i,j) = 1/L®a(i, ) = ao] by b b
o] > MU[a(i, ) = a,]; otherwisea(s, j) = ao. ! B 0

L [a(i,§) = o]

L ati, §) = ao]
Since the objective of the iterative algorithms is to converge (16)

to the likelihood ofa(i, j) based on the entire pagé it is

desirable to set the likelihood combining coefficients to thend the decision rule is modified to b&i,j) = o if

likelinood of S;; based on the largest possible region of th&"[a(i,)] > 1; otherwisea(i,j) = ao. By only storing

observation data to achieve stronger combining effects. TAE”[a(¢, j)], the memory requirements for the instantaneous

simplest case is to usB[z(i, j)|S;;] in the L-2D* algorithm. soft information quantities are cut in half. Also, the likelihood

With only slightly higher complexity, the combining coeffi-exchange rule (8) is changed to

cients may be set to the likelihood 6f; based oz (i, j) = N .

{2(i,9), 2(i £ 1,5), 2(i,j £ 1)}—i.e., the set of ol;rs(erv;tions L la(i, )] = Z Cisl94] H A a(l, m)].

located on a cros® = {(0,0),(+£1,0),(0,£1)}. Thus, we Nijetd Z((II’TZL))SJZU

calculateC;;[Si;] = Plz4(i,5)]5:;]. With the definitions of T (17)

V(i,j) = {a(i,4),a(@ £ 1,j)}, V(i,j) = {a(i,j),a(i,j + Since the likelihood information from(i, 5) is included only

D} and HV(i.j;m) = {H(i £ m,5),V(i.j £ m)}, the when it isay in a givenN,;, on average this saves half of

APa(i, )] = (1 — BAYD(a(i, )] + 8

2) Setting the Likelihood Combining Coefficients

initialization scheme is given by the multiplication operations. Consequently, in a fully parallel
Cii[Si,] = Plz4 (i, 1)1S5;] implementation_ of the_:L-_ZD4 algorithm, it_also saves ha_If
) of the connections. Similarly, we can define the generalized
= Y Pla(i, ), HV (i,5;2)|Si] log-likelihood ratio I'®[a(i, )] = M®[a(i,j) = o] —
HV(i,:2) M®a(i, j) = ao] in the G-2D* algorithm. The correspond-
=c > Ple(i,4)|[HV (i, j;2), Si)] ing metric propagation scheme is
e MPfai. )

=c Y. I PEG+1Li+m)Siriiml-

HV(¢,5;2) (ILm)ER

(14) = min | CH[Su1+ > TV, )]
" a(l,m)EN;;
The constant is independent of;;. The last equality follows a(l,m)=a

from the conditional independence of the observations in (18)
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L ®a(i, 5)]
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[22]
= (1= AL*Vlai, )] + BM [ali, j) = el
I . 23
— M ali, j) = ao)). (19) =
[24]
The corresponding decision rule i8(i,5) = g If

T ai, )]

<

0; otherwisea(i,j) = «o. The same [yg

relative computational and storage savings are achieved in
G-2D* version as inL-2D* algorithm.
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