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Abstract—Volume optical storage systems suffer from numer-
ous sources of noise and interference, the effects of which can se-
riously degrade retrieved data fidelity and produce unacceptable
bit-error rates (BER’s). We examine the problem of reliable two-
dimensional data retrieval in the context of recently developed
soft-decision methods for iterative decoding. We describe a novel
near-optimal algorithm in which each pixel on the page is treated
as a starting point for a simple iterative procedure so that
a highly parallel, locally connected, distributed computational
model emerges whose operation is well suited to the page-oriented
memory (POM) interface format. We study the use of our
two-dimensional distributed data detection (2D4) algorithm with
both incoherent (linear) and coherent (nonlinear) finite-contrast
POM channel models. We present BER results obtained using
the 2D4 algorithm and compare these with three other typical
methods [i.e., simple thresholding (THA), differential encoding
(DC) and the decision feedback Viterbi algorithm (DFVA)]. The
BER improvements are shown to have a direct impact on POM
storage capacity and density and this impact is quantified for
the special case of holographic POM. In a Rayleigh resolved
holographic POM system with infinite contrast, we find that 2D4

offers capacity improvements of 84%, 56%, and 8% as compared
with DC, THA, and DFVA respectively, with corresponding
storage density gains of 85%, 26%, and 9%. In the case of finite
contrast (C = 4), similar capacity improvements of 93%, 18%,
and 4% produce similar density improvements of 98%, 21%,
and 6%. Implementational issues associated with the realization
of this new distributed detection algorithm are also discussed
and parallel neural and focal plane strategies are considered. A
2 cm2 � = 0:1 �m digital VLSI real estate budget will support a
600� 600 pixel 2D4 focal plane processor operating at 40 MHz
with less than 1.7 W/cm2 power dissipation.

Index Terms—Distributed detection, iterative method, maxi-
mum likelihood detection, optical memories, parallel algorithm.

I. INTRODUCTION

CONVENTIONAL optical storage systems utilize two-
dimensional (2-D) planar media (e.g., optical disks)

together with serial recording and retrieval techniques (i.e.,
a single optical head) to achieve high storage capacity, low
cost, and a convenient removable format. The CD-ROM is
based on this paradigm and has proven important for use
as a software distribution medium. Multilayer methods (e.g.,
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DVD) have recently been developed in which the storage
capacity of conventional optical disks is increased through
the use of multiple recording layers and improved optical
resolution [1]–[2]. These quasi-planar storage systems rep-
resent a type of volume optical memory in which the third
dimension is utilized with only coarse resolution. In contrast to
these planar (2-D) and quasiplanar methods, three-dimensional
(3-D) volume optical storage methods utilize all three spatial
dimensions at high resolution, for the recording and retrieval
of data. Recent progress has produced a number of promising
material systems (e.g., photorefractives, photochromics, and
photopolymers) as well as the required 2-D parallel support-
ing device technologies (e.g., CCD’s and SLM’s) [3]–[17].
Renewed interest in these 3-D storage methods has been
fueled by the promise of very high capacity (Tbyte), short
access time (1 s), and high sustained data transfer rate (1
Gb/s). The simultaneous combination of these three desirable
characteristics is achieved in part by virtue of the 2-D parallel
nature of the memory access paradigm, in which pages (e.g.,
1000 1000 pixels) of data can be stored and recalled
from each memory address. Because volume optical storage
depends upon this page-oriented access to achieve its desirable
performance characteristics, special attention must be paid to
the 2-D nature of the memory interface and to fidelity issues
related to the 2-D parallel storage and retrieval subsystems.
In addition to these various performance related issues, the
degree of commercial success of volume optical memory will
of course depend upon additional considerations such as cost,
convenience, and reliability.

A real-world optical storage system operating near its ca-
pacity, will be subject to numerous sources of noise and
interference. These corrupting phenomena can arise from
simple noise sources such as CCD thermal noise or from
more complex sources of interference such as image dependent
photovoltaic distortion [18]–[24]. These noise and interference
effects can seriously corrupt the retrieved data thus produc-
ing unacceptably large bit-error rates (BER’s). Conventional
optical memories utilize a number of interface processing
techniques both during storage and retrieval, to insure an
acceptable level of data fidelity in the presence of these
various corrupting phenomena. Conventional interface pro-
cessing techniques include error correction coding/decoding,
modulation coding/decoding, equalization, and sequence es-
timation. The utilization of these same methods within a
volume optical storage environment however, will require
that we consider the 2-D nature of the stored data and
adapt the conventional sequential formulation of such meth-
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ods accordingly. Considerable efforts have been undertaken
to accomplish this adaptation to the page oriented memory
(POM) environment. 2-D parallel methods of equalization,
error correction, modulation coding, and sequence estimation
have all been discussed [25]–[36]. It is possible however,
to formulate a “best” (i.e., maximum likelihood) method
for processing the parallel 2-D data retrieved from optical
memory. Such a method will produce the lowest possible error
rates. In this paper we will reexamine the problem of reliable
2-D data retrieval in the context of some recently developed
soft-decision methods for iterative decoding [37]–[41]. These
soft-decision iterative techniques will be shown to produce a
convenient parallel distributed data detection algorithm whose
performance closely approximates that of the best possible
algorithm.

The basic problem of reliable page-oriented data detection
is to decide on the most likely user data given the observed
memory output page or pages. This problem is made difficult
by the noise and interference that characterizes the optical
storage channel and the resulting interpixel dependencies. A
conceptually simple page-wise optimal method of accom-
plishing this task would involve the use of a look-up-table
(LUT) containing all possible data pages together with their
corresponding expected retrieved pages as corrupted by the
storage and retrieval processes. An arbitrary retrieved page
could be compared against elements in the LUT to decide
on the original user data. This method is unfortunately not
feasible because for a storage system with page size of

the required LUT would contain entries!
Traditional sequential (1-D) systems utilize a low complexity
algorithm (i.e., the Viterbi algorithm (VA) [42]) to realize
this optimal detection strategy; however, such an optimal
sequential approach is unsuited to the page-oriented detection
problem owing to the lack of a natural ordering of pixels in
the 2-D array [43]. We note that there have been attempts to
impose an ordering on the 2-D data page so that the Viterbi
algorithm might be applied, and some reasonable success has
been achieved with these methods [29]. It is also important
to note that the optimal framework described above can be
applied to received pages whose correlations are intentional
(i.e., coded data pages) as well as unintentional (i.e., channel
effects). The LUT can therefore include the mappings imposed
via modulation and error correction codes as well as the
channel; however, here we will focus on mitigating unwanted
interference and noise without explicitly considering coding.

The maximum-likelihood data detection approach described
above is computationally unreasonable for use within POM
systems due to the highly parallel nature of the retrieved
data pages. Various methods to combat this complexity are
possible and recent attention has been paid to linear meth-
ods (e.g., equalization) and likelihood-based techniques (e.g.,
VA). A recent study of minimum-mean-squared-error (MMSE)
equalizers for POM applications has found that these linear
solutions can be useful for both coherent and incoherent POM
[44]. The nonlinear nature of the coherent channel however,
sets a limit to the benefit of linear equalization and it is
expected that likelihood-based methods will be superior in the
coherent case. Although this expectation is natural owing to

the convenient mechanism through which nonlinear channel
behavior may be captured within a likelihood-based algorithm,
to date, the application of these methods has been restricted
to the incoherent case [29], [37], [45].

In this paper, we develop a new 2-D likelihood-based
algorithm and apply it to both incoherent and coherent POM
channels. We present a highly parallel solution in which each
pixel on the page is treated as a starting point for a simple
iterative procedure. In this new algorithm there is no sense of
a sequenceassociated with pixels on a page and the relevant
soft information (likelihood) is computed in parallel at each
pixel by collecting information from its nearest neighbors.
In this way a highly parallel, locally connected, distributed
computational model emerges whose operation is well suited
to the POM interface format. In the next section we describe
the POM channel models and the new distributed algorithm.
Both coherent optical POM and incoherent POM are included.
Section III presents the BER results obtained using our two-
dimensional distributed data detection (2D) algorithm and
several other typical algorithms. The effect of finite contrast is
also quantified for both the coherent and incoherent models.
The BER improvements presented in Section III have a direct
impact on POM storage capacity and density and this impact
is quantified in Section IV for the special case of holographic
POM. Implementational issues associated with the realization
of the new distributed detection algorithm are discussed in
Section V. This section focuses on parallel neural and focal
plane strategies and is followed by Section VI that provides
insight concerning the implications of this research along with
our conclusions and suggestions for future work.

II. 2D ALGORITHM

A. Two-Dimensional ISI/AWGN Channel Models

A volume optical memory system represents a complex
data environment that includes many sources of noise and
interference. Each type of POM (i.e., holographic, two-photon,
hole-burning, etc.) will be characterized by its own dominant
source(s) of data corruption, the specifics of which will depend
on the exact implementation details of the system (e.g., focal
lengths, CCD fill factor, exposure schedules, etc.). Despite the
expected variations among various POM implementations, it is
possible to identify two common factors that will contribute to
reduced fidelity in such systems. The first such factor concerns
the imaging behavior of the supporting optical system. Because
such a system (coherent or incoherent) will impose a spatial-
frequency lowpass response on the 2-D data array, the resulting
optical blur will cause 2-D intersymbol interference (ISI) to
appear in the retrieved page. In contrast to the serial (1-D) case,
even small amounts of blur can produce significant effects in
2-D channels owing to the large number of nearest neighbors
(i.e., 8) supported by the 2-D topology. In addition to a lowpass
optical system, all POM implementations require some (finite
temperature) detector array and supporting electronics from
which thermal noise will arise, the magnitude of which will
become larger as the memory system strives to operate at lower
latency and higher sustained data transfer rate. It is of course
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possible that shot noise or field noise will dominate some POM
systems; however, the general behavior of such systems can be
well understood through a study of the Gaussian noise limited
case [44].

The POM model described above can be easily formulated
in terms of a discrete 2D ISI channel whose output is corrupted
by additive white Gaussian noise (AWGN). We represent the
user data as a pixel digital page of independent and
identically distributed (iid) Bernoulli random variables
each taking on the real values and with
equal probability to convey a binary digit. These signal levels
represent the “on” and “off” states of a spatial light modulator
(SLM) pixel with representing the effect of finite
contrast. At the output of each detector we define to
be an AWGN process with variance . For the case of an
incoherent optical system we interpret and as intensity
quantities and we obtain an expression for the memory output
(observation) at pixel

(1)

(2)

where represents the number of pixels over which
the channel blur function extends, represents the spatial
dimension of the (square) CCD detector over which the
received intensity is integrated, and represents the
incoherent point spread function (PSF) of the optical system
centered at the CCD pixel position (i.e.,

where is the on-axis incoherent
PSF). Note that the observation in (1) is linear in the
data .

A coherent optical system gives rise to a somewhat more
complicated discrete 2-D ISI channel in which the observation
is a quadratic function of the user data. For a coherent system,
we interpret and as field quantities and the memory
output at pixel becomes

(3)

(4)

where in this case and represent two
copies of the coherent PSF centered on pixels and ,
respectively, and the * superscript indicates the complex-
conjugate operation.

B. A 2D Algorithm

As described in the introduction, an optimal algorithm
would require the storage of page likelihoods. Even within

the framework of this conceptually simple, yet prohibitively
complex, processing, there are algorithmic variations. One
may consider maximuma posteriori (MAP) detection1 of
the bit or the page2 based on the
observation (i.e., in the incoherent system and in
the coherent system). The former minimizes the BER, while
the latter minimizes the probability of a page error. In practice,
either criterion is logical and the resulting algorithms provide
good performance under either measure [46]. Since an efficient
implementation of either approach is unknown, the difference
is conceptual; however, we will present algorithms for ap-
proximating both approaches. Under the current assumption
of equala priori statistics (i.e.,

, the MAP rule reduces to the maximum likelihood (ML)
rule. Thus, we will refer to the BER-minimizing algorithm
as ML bit detection (MLBD) and the page-error-minimizing
algorithm as ML page detection (MLPD). Our motivation for
distinguishing between MLBD and MLPD is that an intuitive
explanation of algorithms aimed at approximating MLBD is
simpler while numerical procedures that approximate MLPD
are computationally simpler. Thus, in this section we briefly
describe a distributed, iterative algorithm for approximating
MLBD and in Appendix I-A we describe the analogous
processing for an approximate MLPD algorithm.

The MLBD algorithm selects the hypothesized data bit
that maximizes the bit likelihood which

is performed for each location in the data page. To compute
this exactly, one would need to average the page likelihood

over all pages consistent with the hypothesized
value of (i.e., entries of a LUT). Such a
task is computationally unreasonable; however, computing the
bit likelihood based on a subset of the observation page is
computationally feasible. For example, first consider compu-
tation of the likelihood of based on the single pixel
observation . This can be accomplished by combining
a finite number of terms. Specifically, let thesupport
of the observation be the subset of input data such
that For the 2-D ISI models
described above, the support of is the

array of inputs centered at Also, define the
neighborhoodof to be Notice
that the neighborhood can take on one of
values in the binary-valued space Thus,
the likelihood is computed via

(5)

(6)

(7)

1The MAP decision criterion yields minimum error probabilities. The ML
decision criterion is equivalent to MAP when thea priori probabilities of 0
and 1 levels are equal.

2Upper case variables are used to denote 2-D arrays of corresponding lower
case quantities.
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where the is completely characterized by the
channel and the last step follows from the assumption of
independent data bits.

The likelihood can be thresholded to make
an optimal decision based only on . However, a sig-
nificantly more reliable decision will result from a likelihood
based on other observations. A method of combining the likeli-
hoods to approximate this goal is motivated
by the relation in (7). Specifically, note that
is proportional to thea posterioriprobability
because of the equal priors assumptions. Thus we propose
to infuse likelihood information from the neighboring pixels
by using (7) with replaced by .
Although this assignment appears nonintuitive, the approach
is commonly referred to as “propagation of the extrinsic
information” and is widely used for turbo decoding [39]–[40].
More specifically, based on (7), we suggest the following
iterative likelihood propagation rule

(Likelihood Exchange) (8)

(Likelihood Filtering) (9)

where is the likelihood at th iteration, and
is a set of combining coefficients determined at
initialization for each bit location . We refer to this
iterative rule as the 2Dalgorithm. The exchange (combining)
in (8) is not optimal because thea posteriori statistics of the
data arenot independent. However, the intuitive notion is that,
beginning from based on some small portion of
the observation page, the exchange mechanism will approach
the desired for large . For example, one may
choose to set and

which would be based exactly on the relation in
(7). Many iterative algorithms exhibit a tradeoff between speed
of convergence and accuracy. This motivates the filtering
process at each pixel as defined in (9). The filtering parameter

determines the bandwidth of a single-pole low-pass
filter which rejects abrupt changes in the updated likelihood

. Specifically, the smaller the value of, the
greater the rejection of fluctuations in , which is
expected to increase the time to convergence. One iteration
of the algorithm is defined by the combination of likelihood
exchange with neighboring bit locations and the filtering
update, which takes place independently at each pixel (i.e.,
measures the iteration number). The iterations may be contin-
ued until some stopping criterion is met (e.g.,

or for a fixed number of iterations. In
either case, if stopping occurs after iterations, the decisions
are made according to: if

otherwise .
The preceding description is intended to provide ample

motivation for the family of 2D algorithms and we will refer
to the steps of the algorithm as defined in (8) and (9). However,
the algorithm used for simulations differed in two ways. First,
we used an algorithm inspired by MLPD rather than MLBD.

This corresponds to replacing the expectation in (5) by a
maximization, which has certain computational advantages.
This may be interpreted as replacing the (average) likelihood

by a generalized likelihood [47] so we
will refer to -2D and -2D algorithms when the distinction
is relevant. Second, an effort is made to set the combining
coefficients based on a larger portion of the observation page.
These details are discussed in Appendix I-A. Also, a method
of complexity reduction is investigated in Section III-B.

The knowledge about the channel is incorporated only
through the combining coefficients in the update rule
(8). An important feature of the 2Dalgorithm is its ability
to include channel effects of arbitrary complexity within these
probabilities. This algorithm is therefore well suited to the
nonlinear channel models that characterize coherent optical
storage systems. It is often the case for experimental POM
systems, that an explicit channel model is unavailable owing
to the complexity associated with the various relevant noise
and interference sources. However, an explicit model is not
required by the 2Dalgorithm and experimental measurements
can be used to estimate (e.g., for
use in likelihood update rule (8). Also, it is conceptually
straightforward to compute these probabilities so as to also
include the effects of modulation and/or error control codes.

In summary, under the POM models described above, a
bit-wise optimal algorithm would require the use of an entire
page of observations in order to decide on the digital value of a
single pixel. Such a procedure is not computationally feasible
and the algorithm described in this section has motivated the
use of a local neighborhood of observations as a substitute for
the use of an entire page. This concept defines one iteration
of the 2D algorithm. The proposed algorithm is iterative,
however, with each pixel using the instantaneous values of its
neighboring likelihoods to update its own likelihood estimates.
This iterative process can be viewed as a mechanism through
which likelihood information ispropagatedin 2-D throughout
the retrieved data page. During each successive iteration, each
pixel is influenced by a growing number of observations. This
likelihood propagation process is the key to facilitate a highly
parallel 2-D detection algorithm. In Section V, we will use
a neural network analogy to further clarify the operational
principals of the proposed 2Dmethod. In the next section we
quantify the performance of this algorithm.

III. BER RESULTS

In this section, we examine the BER performance of the
2D algorithm. Monte Carlo simulations were run for two
incoherent channels and two coherent channels with a page
size of . Under both kinds of channels, BER’s are
plotted against the inverse noise variance in decibels
(i.e., INV with the channels normalized
to unit optical intensity. The two incoherent channels are
representative of a POM system operating near and beyond
the Sparrow resolution limit with a Gaussian blur. Specifically,

is used to
compute which was then truncated to and
renormalized so that Incoherent Channels A
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and B were so defined for and , respec-
tively. For the coherent case, we consider an optical imaging
system containing a square Fourier plane aperture of length

on each side. The coherent impulse response of such
an imaging system is
where measures the degree of blur experienced by images
passing through the system. The coherent channels were
computed by determining , truncating to

and renormalized so that .
Coherent Channels A and B, were computed in this manner for

and respectively. Although the forward
channel models have been simulated using support, the
computational complexity of the 2Dalgorithm with is
unacceptable, requiring 2 neighborhood configurations per
pixel. In order to reduce this computational burden we will
simulate the required 2Dinterface processing using a reduced

support. The omitted entries on the boundary
(i.e., 16 pixels) are assigned a fixed input value, i.e.,

This mismatch will cause a slight reduction in overall
performance (i.e., more pronounced for larger blurs); however,
the results will more accurately represent the performance of
the 2D algorithm within an actual realtime POM system
environment.

All simulations are based on the -2D algorithm with
combining coefficients and initialization as described in Ap-
pendix I-A. We compare the 2Dalgorithm with three other
approaches: the simple pixel-by-pixel threshold decision algo-
rithm (THA), the decision feedback Viterbi algorithm (DFVA)
[29] and the use of differential encoding/decoding (DC) [48].
The THA makes decisions by thresholding on the single
observation: if otherwise

where is the mean value of . The DFVA runs the
VA row-by-row with decisions fedback from previous rows.
Although in [29] the DFVA is only applied to incoherent
channels, it is straightforward to adapt the DFVA for a coherent
channel model. Due to the same complexity constraint as the
2D , the DFVA is also simulated with a reduced 33 support.
The assignment of a fixed input value on the ignored edge
entries, as used with the 2Dalgorithm, is also applied. Using
DC combats the ISI by using two pixels in the page to record
a single bit. Specifically, DC records a binary “1” by “10” and
a binary “0” by “01.” For example, an input bit
sets and At the detector, the
decision is made according to the simple rule: if

otherwise Thus, the use of
DC results in a 50% decrease in the number of bits per page.
This fact does not impact the BER results presented in this
section, but is included when translating the BER results to
storage capacity/density in Section IV.

Before presenting the BER comparisons for the incoherent
and coherent Channels A and B, we demonstrate the effects
of and complexity reduction techniques.

A. Convergence Properties

The convergence rate of the iterative procedure in (8) and
(9) determines the time complexity of the 2Dalgorithm.
Fixing INV dB, the BER curves for various values

Fig. 1. The convergence properties of the 2D4 algorithm parametered by
various values of�. The insert is a magnified version of the lower portion.
The incoherent channel B is simulated at a INV of 27 dB.

of are plotted for the incoherent Channel B in Fig. 1.
The convergence rate is dependent on the value of. More
specifically, when , the convergence is slower with
decreasing , although the performance after convergence is
similar. For example, for , convergence is achieved
for , but for convergence occurs for .
This behavior is reversed for —i.e., the performance,
not the convergence rate is more sensitive to varying. For

, convergence occurs at approximately 15 iterations
with the steady-state BER varying by up to 25% (see the insert
in Fig. 1). Also, oscillations in the BER results are observed
after a certain number of iterations, especially when .
Based on the results in Fig. 1, we use in the following
simulations as a reasonable compromise. For this choice, no
more than 20 iterations are required; even fewer for less severe
ISI channels (i.e., see Sections III-C and III-D).

B. Effect of Reduced Connection Complexity

The main computation task within the 2Dalgorithm, comes
from the update rule (8), the complexity of which is determined
by the size of the neighborhood . For most low-pass
channels, the ISI channel coefficients decrease in magnitude
rapidly at the edge of the neighborhood. For example, even in
the relatively severe incoherent channel B,

is relatively small. Thus, we consider omitting some
entries of in the likelihood update of (8) to simplify the
computation. In the 2Dalgorithm, the connection complexity
is reduced by 50% for each entry that is omitted. However, it
is expected that this complexity reduction will be realized at
the cost of performance and/or convergence rate because the
likelihood exchange-update process is weakened. The connec-
tion complexity is an important factor in the implementation
of 2D algorithms (see more discussion in Section V).

We define theconnection maskof the 2D algorithms as the
the structure of the connectivity used during the update step.
The “fully connected” connection mask suggested by (8) is a
special case. For the 33 processing used in this paper we
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(a)

(b)

Fig. 2. Impact of the connection complexity on the performance of the 2D4

algorithm. (a) Convergence properties for the incoherent channel B at INV
= 27 dB. (b) BER performance for the incoherent channels A and B. The
number of iterations used is 5 and 20 for channels A and B, respectively.

have considered three different connection masks:

where “ ” indicates the connection is included, “” indicates
hard-decision feedback and “” indicates omission. From left
to right, these are referred to as the fully connected (FC),
no-corner connected with feedback (NCCF) and no-corner
connected without feedback (NCC) masks in order of reducing
complexity. In the NCCF case, temporary hard-decisions are
made after each iteration based on current likelihood quan-
tities, and are fedback at the corners of the mask where
connections are omitted. This approach is similar to well-
known state reduction techniques for 1-D data detection [49],
[50], as is the DFVA. Note that using feedback only slightly
increases the connection complexity. Compared to the FC
scheme, the connection complexity is reduced 16 times in both
the NCC and NCCF schemes. The incoherent channels A and
B are simulated for all three connection masks. Fixing INV

dB in Channel B, Fig. 2(a) shows that the impact of the
connection complexity on the convergence rate is negligible.
However, a certain performance degradation due to complexity
reduction is observed for both channels. Specifically, at a
BER of 10 , the NCC scheme suffers a loss of 0.4 and

Fig. 3. Comparison of the BER performance for various detection algorithms
for the incoherent channel A. Note that “K” in 2D4

�K is the number of
iterations used.

Fig. 4. Comparison of the BER performance for various detection algorithms
for the incoherent channel B.

2.0 dB in INV on channels A and B, respectively.3 However,
with hard decision feedback, there is virtually no performance
degradation for channel A, while the degradation is reduced
to only 0.3 dB for channel B. Actually, even the NCC 2D
algorithm outperforms the DFVA algorithm, the performance
of which is discussed in Section III-C.

For all subsequent results we have used the fully connected
mask.

C. Incoherent System Performance

The BER of the infinite contrast and
incoherent system with Channels A and B is plotted as a
function INV in Figs. 3 and 4, respectively, for various data
detection approaches. The theoretical performance bounds
associated with MLPD [43] are plotted for reference, which
represents the best achievable performance. For channel A,
2D works virtually optimally with only 5 iterations. Because

3Henceforth, unless otherwise specified, the value of INV is always
discussed at a BER of 10�4.
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Fig. 5. Comparison of the impact of contrast on various algorithms for the
coherent channel A. Thex-axis is the inverse of contrast and they-axis is the
value of INV (dB) at which a BER= 10

�4 is achieved.

the performance of the 2Dalgorithm closely approximates the
optimal MLPD performance, we refer to the 2Dalgorithm as
“near-optimal.” Its performance is 1.7, 4.9, and 12 dB better
than that of DFVA, DC, and THA, respectively. The THA
and DC are inoperable for the more severe channel B. Both
exhibit an error floor around BER , far above the desired
10 . The performance of 2Dis approximately 2.5 dB worse
than the achievable MLPD performance and 4.2 dB better than
that of the DFVA. While the 2D algorithm with one iteration
provides acceptable performance for channel A (i.e., only 0.9
dB worse than 5-iteration version), it results in a INV cost of
15 dB relative to the 20-iteration version on Channel B.

Due to the linearity of the incoherent channel, the impact of
reduced contrast (i.e., in such systems can be directly
associated with an increase in noise [44]. Thus, the effects of
finite contrast can be determined by translating the curves in
Figs. 3 and 4 and are not presented explicitly.

D. Coherent System Performance

The BER performance for the coherent channels A and
B is presented in this section. Since the coherent channel is
nonlinear, the impact of finite contrast (defined as
does not translate to an equivalent INV degradation. Fig. 5
presents the variations of the value of INV required to achieve
a BER of 10 due to variations in for channel A. As in the
incoherent case, the THA yields the worst BER. Moreover, its
behavior with is complicated due to the nonlinearity of the
channel—i.e., the best performance does not occur at ,
but rather at . For channel A, the performance of
the DFVA, DC, and 2D approaches are similar for all levels
of contrast. For the remaining coherent channel results, we
choose to examine two representative values ofinfinite
contrast and and a more typical experimental
value of and

The BER results for the coherent channel A are plotted
in Fig. 6. With three iterations, the 2Dalgorithm achieves a
gain of 5 dB over the THA and is slightly better than the
DFVA for both infinite contrast and systems. The DC

Fig. 6. Comparison of the BER performance for various detection algorithms
for the coherent channel A and various contrast levels.

Fig. 7. Comparison of the BER performance for various detection algorithms
for the coherent Channel B and various contrast levels.

approach is slightly better than the 2Dalgorithms in terms
of BER on this channel for infinite contrast and comparable
for the case.

The BER results for the coherent channel B are plotted in
Fig. 7. In infinite contrast systems, the 2Dalgorithm using 3
iterations performs 8 and 1.5 dB better than THA and DFVA,
respectively. When , the channel nonlinearity helps the
THA to improve the performance by 3.6 dB. The 2Dperforms
0.5 and 2.8 dB better than the DFVA and THA, respectively.
Again, at the cost of 50% coding redundancy, the DC performs
slightly better ( 1 dB) than the 2D algorithm.

IV. HOLOGRAPHIC STORAGE CAPACITY AND DENSITY

The results of Section III characterize the BER perfor-
mance of various approaches, including the 2Dalgorithm,
on particular channels. In this section, we describe how the
BER gains realized by more sophisticated processing may
be translated to an increase in storage capacity and density.
Consider the data fidelity of a coherent POM system as
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(a)

(b)

Fig. 8. Comparison of the normalized storage capacity as a function of
system blur. (a)C = infinity. (b) C = 4.

represented by the BER curves such as those presented in
Section III. For the fidelity requirement of BER , there
is a minimum value of the INV which can be tolerated for
a given algorithm. Define this value of noise standard de-
viation as and

for the four algorithms considered. Since under
the postdetection AWGN model an increase in noise strength
is equivalent to a decrease in optical signal intensity, we
observe that each corresponds to some minimum
acceptable signal level . Due to the
diffraction efficiency scaling behavior of holographic POM,
the signal power at each detector decreases as where

is the number of stored pages [51], [52]. This implies that
the maximum number of pages will be limited by

for a given algorithm. Thus, a gain in
results in an increase in . The storage capacity is then

for all approaches except for DC, for which it is
due to the use of two pixels to convey a

single bit. The relative capacity achieved using each of these
methods is illustrated in Fig. 8 as a function of system blur
for and . These capacity curves have been
normalized to the capacity achieved using the 2Dalgorithm
on a coherent POM system with a blur of and infinite
contrast. The normalization constant is therefore determined
by the maximum number of pages that can be stored while
maintaining a fidelity constraint of BER using our
proposed algorithm on an infinite contrast, relatively blur-free

channel. Although the performance of the 2Dalgorithm is
degraded due to the simple approximation strategy used, it is
still the best over most of the range of various blur for two
typical values of contrast ratio.

Differential coding is the only approach that meets the
fidelity requirement for the infinite contrast case when

However, the storage capacity associated with DC is
relatively low for other values of due to the inherent 50%
redundancy. For an infinite contrast system with (the
Rayleigh resolution), the 2Dprovides increases in capacity of
approximately 8%, 56%, and 84% relative to that associated
with the DFVA, the THA, and DC, respectively. For the
case, these capacity increases are 4%, 18%, and 93%, respec-
tively. Also, the 2D capacity for is approximately 8%
greater than that for the infinite contrast case.

Based only on the curves in Fig. 8, it is tempting to conclude
that the performance of a POM is optimized by designing for
very small blur and, hence, reducing the need for sophisticated
interface processing. However, storage density is another
important characteristic of POM and a large blur corresponds
to a narrow signal bandwidth which is an indication of area
efficiency. In particular, the Fourier plane area associated with
a particular value of blur is characterized by . Since
storage density is inversely proportional to this area, we find
that storage density may not be optimized for small blur as

can become large. In order to quantify these trends
we define as the storage densities for a given detection
algorithm. As described above we have

, where is the storage area required to record
pages of data while maintaining BER . Thus, the

storage density metric will benefit from interface processing
both through an increase in noise margini.e., and
the ability to tolerate larger . Again, the DC approach suffers
an inherent 50% reduction in storage density. Fig. 9 shows the
normalized storage density for all algorithms as a function of
blur for two values of contrast ratio. It is clear from the data
in Fig. 9 that an optimum blur exists for which density can be
maximized. For the case, this occurs at approximately

for the THA and for all other approaches.
The 2D algorithm provides the maximum storage density with
relative gains of 9%, 26%, and 85% in storage density relative
to the DFVA, THA, and DC approaches, respectively.

Similar results are observed for the case, with the
exception that all approaches are able to meet the fidelity
criterion for with the DFVA and 2D
approaches also meeting this criterion at . In fact
the storage density associated with the 2Dalgorithm is
maximized at with (this occurs at
for all other approaches). The relative gains in maximum
storage density for the 2Dalgorithm with are
6%, 21%, and 98% relative to the DFVA, THA, and DC
approaches, respectively.

V. IMPLEMENTATIONAL ISSUES

The 2D algorithm has been shown to offer superior BER
performance for a variety of channels, both coherent and in-
coherent. The capacity and density gains associated with these
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(a)

(b)

Fig. 9. Comparison of the normalized storage density as a function of system
blur. (a)C = infinity. (b) C = 4.

BER improvements were quantified in the previous section.
Capacity and density, however, are only two of the relevant
storage system metrics, and algorithms that offer increased
capacity or density at the expense of latency or transfer rate
are of limited use. This implies that there is a bound on the
acceptable computational complexity for this application. In
this section we investigate the implementational cost of the
2D algorithm. We consider a 2-D parallel implementational
model that is a convenient match with the natural 2D data
format that characterizes POM. In this section, we measure
the implementational cost of 2Din terms of VLSI area and
power for a parallel digital solution and suggest a potential
analog implementation that exploits the relationship between
the 2D algorithm and neural networks.

The likelihood exchange rule (8) represents the basic oper-
ation that must be performed at each pixel in a 2D array.
For the cases studied here with , the likelihood
exchange rule (8) represents a locally connected (8 neighbors)
computation in which each pixel first collects information from
its neighbors, and then computes an update. We consider these
tasks to comprise one iteration-clock so that 1 iteration clock

communication clock 1 computation clock. It is of
course also possible to realize such a solution on a mesh-
connected array in which two communication clocks are used.
According to this pixel-parallel model the 2Dalgorithm will

Fig. 10. Schematic of a pixel-parallel neighborhood-serial digital VLSI
implementation of theL-2D4 algorithm. The details of a neighborhood-serial
processor are illustrated in the lower portion.

converge in iteration clocks, where is the convergence
time represented in Fig. 1 (typically . For each
computation clock it is necessary for each pixel to accom-
plish the likelihood exchange (8). This computation requires
consideration of all 2 possible neighborhood configurations
and we propose a sequential approach to this task at each pixel.
The 2 terms of the sum in (8) are computed sequentially and
an accumulation register is used to collect the intermediate
results. This requires at least 2basic clock cycles to realize
one computation clock. Fig. 10 represents a schematic of the
proposed pixel-parallel neighborhood-serial implementation.
Each pixel contains an optical detector, 5-bit A/D converter
(serial), neighborhood counter (produces 8-bit binary word

, neighborhood-gated 9-input 8-bit multiplier (forms product
of only those inputs corresponding to “on” positions of,
accumulation register, two 2-input 8-bit multipliers, one 8-
bit adder, and some storage and initialization circuitry. Prior
to beginning the iteration procedure some overhead may
be required for A/D conversion (32 clocks) and algorithm
initialization which we do not include in our cost estimates.
The channel information (i.e., the noise-free signal
conditioned on the value of the support) is communicated via
the column busses shown in the figure and together with the
stored value of the observation , are used to compute the
combining coefficients with a single 8-bit multiplier
(e.g., .
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Using simple m CMOS models for the functional
units described above, the area cost of the pixel-parallel
neighborhood-serial -2D algorithm has been computed. For
this architecture the pixel area is dominated by the 9-input
multiplier and is roughly cm . This value is quite
large, and with a reasonable chip size of 2 cm, supports page
sizes of only 2900 pixels. An alternative to the parallel 9-input
multiplier would utilize additional clock cycles (8) to realize
this computation. Such a solution can reduce the area per pixel
to cm offering array sizes up to 33 340 pixels.

The page sizes that can be supported with the likelihood-
based -2D algorithm are limited to roughly 180 180
pixels. We have also considered an implementation of the
metric-based version -2D that is described in Appendix
I-A. In this case the multipliers are replaced by adders and
significant area and power savings are obtained. The-
2D algorithm offers an implementational area per pixel of

cm which leads to more useful array sizes of nearly
10 pixels. We note that additional parallelism can be obtained
through the use of resource sharing at the cost of higher clock
rates. The 10 pixel implementation must operate at a basic
clock rate that is roughly times the iteration clock rate.
Given a desired page access time of 1 ms, we find a required
iteration clock rate of 10 kHz and a resulting basic clock rate
of 10 MHz. This clock rate is reasonable for the technology
that we have assumed. At this clock rate, the power dissipation
per pixel for the -2D algorithm is roughly 0.13 mW, and is
6 less than the power requirements of the likelihood-based
method. The total power density associated with-2D is not
unreasonable at 6.9 W/cm.

In Section III-B, we investigated the performance of the
2D algorithm when fewer neighbors are utilized in the update
computation. Fig. 2, for example, indicates the performance
cost of eliminating corner connections from the neighborhood
for a severe channel. Consider using such a strategy for
the purposes of reducing power dissipation in the associated
implementation. For an implementation of-2D that utilizes
no corner connections, the previous 128 8 clock multi-
plication factor becomes 16 4, reducing the basic clock
rate and the power dissipation both by a factor of 16. The
resulting power density of 0.43 W/cmis easily manageable
and additional multiplexing can now be used to achieve
greater area savings through resource sharing. For example,
the number of computational blocks can be reduced by a
factor of four and shared among groups of four pixels. Such a
strategy would facilitate array sizes of nearly 600600 pixels
operating at a 40-MHz basic clock rate, with a reasonable
power dissipation requirement of 1.7 W/cm. We have ignored
the small additional overhead that will be required to manage
the resource sharing in this case.

Although the parallel digital solutions described above will
benefit from additional cost reductions via more careful circuit
design, it is also possible to envision an analog solution to
the computational problem. Such a highly parallel, analog
implementation may offer significant reductions in area and
power. While such a design study is beyond the scope of
this work, an interesting point of departure for such an effort
might use the similarity between the likelihood propagation

Fig. 11. Schematic of a fully parallel neural network implementation of the
L-2D4 algorithm. The details of a subnet are illustrated in the lower portion.

rule (8) and (9), and the dynamic behavior of feedback
neural networks. These nonlinear dynamical systems have
been proven useful in the solution of various optimization
problems (e.g., traveling salesman) and the detection problem
is yet another in this class of problem [53]–[56]. In par-
ticular, the iterative likelihood-based method described here

-2D can be shown to minimize the criterion function
and the update rule (7) can be

cast in the form of a fully parallel network as shown in Fig. 11.
Fig. 11 depicts a locally connected network of subnets. Each
subnet can be thought of as a two-layer nonlinear (8th order)
network [57]–[59]. Alternately, each subnet may be considered
to be a single piecewise linear perceptron operating on 2so-
called Phi-functions, each of which is one of the 2possible
products of 8 neighboring likelihoods [60]. It is also possible to
consider the neural analog of the-2D algorithm. Although
it becomes difficult to write a simple criterion function in this
case, the recent development of morphological networks does
provide a framework for the study of a parallel distributed
min-sum approach [61]–[62].

VI. CONCLUSION AND DISCUSSION

In this paper, we have described a new data detection
algorithm for use within the highly parallel POM interface
environment. This algorithm is fashioned after other iterative,
soft-decision, maximum-likelihood techniques and represents
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a highly parallel, distributed computational model that is well
suited to the 2-D data format characteristic of POM systems.
The new 2D algorithm is motivated from a likelihood-based
perspective and its relationships with MLPD and MLBD have
been discussed. Both likelihood-based-2D and general-
ized likelihood-based -2D versions have been described.
The add-compare-select based computation of the-2D
algorithm is shown to offer significant reductions in implemen-
tational cost as compared with the multiplication-intensive-
2D algorithm. The BER performance of the-2D algorithm
has been compared with three other approaches (THA, DC,
and DFVA) for finite contrast POM channels based on both
incoherent (linear) and coherent (nonlinear) optical systems.
Varying degrees of coherent and incoherent optical blur have
been studied. The BER advantages of the-2D algorithm as
compared with the other three methods, are translated directly
into gains in storage capacity and density. In particular, for
the case of a Rayleigh resolved holographic POM system
with infinite contrast we find that the -2D algorithm offers
capacity improvements of 84%, 56%, and 8% as compared
with DC, THA, and DFVA respectively, with corresponding
storage density gains of 85%, 26%, and 9%. In the case of
finite contrast , comparable capacity improvements of
93%, 18%, and 4% produce similar density improvements of
98%, 21%, and 6%.

The holographic POM model for which the above results
are obtained, describes an observation that is nonlinear
in the input data . In this case therefore, it is natural to
expect that likelihood-based methods will be superior owing
to the ease with which such methods can incorporate accu-
rate channel information (i.e., the neighborhood-conditional
expected received signal . The results described above
bear out this expectation with the-2D algorithm offering
significant capacity/density advantages as compared with THA
and DC and only modest improvements as compared with the
other likelihood-based technique (DFVA).

Various algorithmic and implementational issues related
to the use of the new 2Dalgorithm have also been dis-
cussed. A study of algorithm convergence has shown the
relationship between convergence time and final BER, with
the best BER performance obtained for the slowest conver-
gence parameter . A reasonable compromise between
BER and convergence time is found to be for
the case of a fully connected neighborhood. Convergence
in these cases was generally obtained with fewer than 10
iterations. The neighborhood connection complexity was also
studied and it was found that using a reduced connection
mask allows significant reductions in complexity with little
performance degradation. The use of hard-decision feedback
may be required with reduced connection algorithms in order
to maintain the performance for more severe ISI channels (e.g.,
the incoherent channel B).

Implementational issues associated with the realization of
the -2D algorithm have also been discussed and a parallel
digital focal plane architecture is considered in detail. A
2-cm m digital VLSI real estate budget is
shown to support a 600 600 pixel -2D focal plane
solution operating at 40 MHz with less than 1.7 W/cm

power dissipation. We have also suggested the use of a
highly parallel analog implementation and have outlined the
relationship between such a solution and other neural network
based optimization circuits.

While this paper has introduced a useful algorithm offering
both good BER performance and reasonable implementational
cost, several outstanding issues remain. The most critical of
these concern the recovery of algorithm performance in cases
for which there is a mismatch between the physical channel
support and the neighborhood connectivity used during 2D
processing. The results presented here are based on a simple
averaging procedure that allows the use of processing
on channels. The reduced connection and hard-decision
feedback results presented in Section III-B suggest that such
techniques may provide improved capacity and density gains
with marginal increases in processing complexity. Additional
approaches to complexity reduction for particularly severe
channels (e.g., coherent POM systems with
and ) could perhaps be based on other existing
approaches for 1D sequence detection (e.g., pre-equalization,
and variable complexity tree-search algorithms). Effective
methods for complexity reduction are also necessary to include
the memory associated with signal encoding (e.g., modulation
coding and error control coding).

A second set of issues concerns the implementation of
these likelihood-based methods in experimental POM systems.
Various imperfections associated with experimental POM will
cause the actual system to depart from the system model used
during 2D processing. Understanding the BER degradation in
this case represents an important tolerancing exercise and may
result in the need to use empirical channel data within the 2D
algorithm. We are pursuing experimental verification of such
a strategy. Additional design work must also be completed
before a final implementational strategy can be established.
The results of the baseline design study presented here suggest
that the highly parallel and distributed nature of the 2D
algorithm make it suitable for a parallel 2-D focal plane
implementation; however, detailed digital and analog circuit
designs must be established and compared with competing
algorithmic approaches.

APPENDIX I
COMPUTATIONAL DETAILS OF THE 2D ALGORITHM

A. Generalized-Likelihood Based 2DAlgorithm

The generalized likelihood (GL) of based on
may be computed by

(10)

which is directly analogous to (7). The advantage of using GL
is that, unlike the averaging operation in (7), the maximization
operation commutes with any strictly monotonic function.
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Thus, we may rewrite (10) as

(11)

In this form, the GL computation includes only Addition-
Comparison-Select (ACS) operations, which are compu-
tationally simple. Thus, we define ametric as

where and are constants. For
example, in the AWGN channel, and may be selected
so that the metric is the squared Euclidean distance (e.g.,

Based on these observations, we suggest
a metric-based GL propagation rule analogous to (8)–(9)

(12)

(13)

where is the metric version of in log-
domain. After iterations are accomplished, the decisions
are made according to: if

otherwise

2) Setting the Likelihood Combining Coefficients

Since the objective of the iterative algorithms is to converge
to the likelihood of based on the entire page it is
desirable to set the likelihood combining coefficients to the
likelihood of based on the largest possible region of the
observation data to achieve stronger combining effects. The
simplest case is to use in the -2D algorithm.
With only slightly higher complexity, the combining coeffi-
cients may be set to the likelihood of based on

—i.e., the set of observations
located on a cross . Thus, we
calculate With the definitions of

and the
initialization scheme is given by

(14)

The constant is independent of . The last equality follows
from the conditional independence of the observations in

and the fact that is only dependent on
. After completing the calcula-

tion of ’s, we use (14) to obtain
Note that by carefully accounting for common terms in (14),
one can simplify the evaluation further. For-2D the
corresponding rule is

(15)

While this operation does not require significantly more com-
putation than simply using at-
tempting to compute the likelihood of based on larger
regions of the observation results in an exponential increase
in complexity.

APPENDIX II
LIKELIHOOD RATIO PROPAGATION

Since binary data is assumed, the decision statistic required
is the ratio of the likelihoods of the “1” and “0” hypotheses.
This fact may be exploited in order to reduce the computational
and storage requirements of the 2Dalgorithm by a factor
of two. Specifically, instead of updating both

and as in (8), we only need to
update the likelihood ratio

by

(16)

and the decision rule is modified to be if
otherwise By only storing

the memory requirements for the instantaneous
soft information quantities are cut in half. Also, the likelihood
exchange rule (8) is changed to

(17)
Since the likelihood information from is included only
when it is in a given , on average this saves half of
the multiplication operations. Consequently, in a fully parallel
implementation of the -2D algorithm, it also saves half
of the connections. Similarly, we can define the generalized
log-likelihood ratio

in the -2D algorithm. The correspond-
ing metric propagation scheme is

(18)
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(19)

The corresponding decision rule is if
otherwise The same

relative computational and storage savings are achieved in
-2D version as in -2D algorithm.

REFERENCES

[1] M. Moriya and T. Tokura, “Outline of DVD standard,”Nat. Tech. Rep.,
vol. 43, pp. 3–9, 1997.

[2] D. R. Guenette and D. J. Parker, “CD, CD-ROM, CD-R, CD-RW, DVD,
DVD-R, DVD-RAM: The family album,”EMedia Professional, vol. 10,
pp. 30–34, 1997.

[3] P. J. van Heerden, “Theory of optical information storage in solids,”
Appl. Opt., vol. 2, pp. 393–400, 1963.

[4] G. Sincerbox, “Holographic storage revisited,” inCurrent Trends in
Optics, C. Dainty, Ed. New York: Academic, 1994.

[5] M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle,
C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, and
G. Wittman, “Holographic-data-storage materials,”MRS Bull., vol. 21,
pp. 51–60, 1996.

[6] L. Hesselink and M. C. Bashaw, “Optical memories implemented with
photorefractive media,”Opt. Quantum Electron., vol. 25, pp. 611–661,
1993.

[7] S. Campbell, X. Yi, and P. Yeh, “Hybrid sparse-wavelength angu-
larly multiplexed optical data storage system,”Opt. Lett., vol. 19, pp.
2161–2163, 1994.

[8] I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar,
and M. Khoshnevisan, “Compact volume holographic memory system
with rapid acoustooptic addressing,” inProc. LEOS/OSA IEEE Nonlin-
ear Optics: Materials, Fundamentals, and Applications, 1994, 1995, pp.
424–426.

[9] H.-Y. S. Li and D. Psaltis, “Three dimensional holographic disks,”Appl.
Opt., vol. 33, pp. 3764–3774, 1994.

[10] E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, and U. P.
Wild, “Recording of 6000 holograms by use of spectral hole burning,”
Appl. Opt., vol. 34, pp. 4140–4148, 1995.

[11] F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium
niobate,” Opt. Lett., vol. 18, pp. 915–917, 1993.

[12] G. W. Burr, F. H. Mok and D. Psaltis, “Angle and space multiplexed
holographic storage using the 90 degree geometry,”Opt. Commun., vol.
117, pp. 49–55, 1995.

[13] G. W. Burr, F. H. Mok, and D. Psaltis, “Large scale volume holographic
storage in the long interaction length architecture,”Proc. SPIE, vol.
2297, pp. 402–414, 1994.

[14] A. Pu and D. Psaltis, “High-density recording in photopolymer-
based holographic three-dimensional disks,”Appl. Opt., vol. 35, pp.
2389–2398, 1996.

[15] S. Hunter et al., “Three-dimensional optical image storage by two-
photon recording,”Optical Memory Neural Net., vol. 3, pp. 151–166,
1994.

[16] A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, and
P. M. Rentzepis, “Molecular transformations as a means for 3D optical
memory devices,”Opt. Commun., vol. 128, pp. 205–210, 1996.

[17] J. Kikas and K. Leiger, “Effect of geometry on storage density in spectral
hole burning memories,”Opt. Commun., vol. 94, pp. 557–560, 1992.

[18] M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C.
M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M.
Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in
digital holographic storage,”Appl. Opt., vol. 36, pp. 3107–3115, 1997.

[19] G. W. Burr, W. C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle,
and C. M. Jefferson, “Experimental evaluation of optimal coded user
capacity in holographic data storage systems,”Appl. Opt., submitted for
publication.

[20] W. C. Chou and M. A. Neifeld, “Interleaving and error correction
in volume holographic memory systems,”Appl. Opt., submitted for
publication.

[21] M. C. Bashaw, J. F. Heanue, and L. Hesselink, “Organization of data
for monochromatic multiplexed volume holography,”J. Opt. Soc. Amer.
A, vol. 13, pp. 2174–2186, 1996.

[22] C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Cross-talk
limited storage capacity of volume holographic memory,”J. Opt. Soc.
Amer. A, vol. 10, pp. 2547–2550, 1993.

[23] X. Yi, P. Yeh, and C. Gu, “Statistical analysis of cross-talk noise and
storage capacity in volume holographic memory,”Opt. Lett., vol. 19,
pp. 1580–1582, 1994.

[24] E. S. Maniloff and K. M. Johnson, “Effects of scattering on the dynamics
of holographic recording and erasure in photorefractive lithium niobate,”
J. Appl. Phys., vol. 73, pp. 541–547, 1993.

[25] K. M. Chugg, X. Chen, and M. A. Neifeld, “Two-dimensional linear
MMSE equalization for page-oriented optical memories,” presented at
the 31st Annu. Asliomar Conf. Signals, Systems, and Computers, 1997,
paper MP6-7.

[26] J. Heanue, M. Bashaw, and L. Hesselink, “Channel codes for digital
holographic data storage,”J. Opt. Soc. Amer. A, vol. 12, pp. 2432–2439,
1995.

[27] B. Olson and S. Esener, “Partial response precoding for parallel readout
optical memories,”Opt. Lett., vol. 19, pp. 661–663, 1994.

[28] B. Olson and S. Esener, “Multidimensional partial response for parallel
readout optical memories,”Proc. SPIE, vol. 2297, pp. 331–344, 1994.

[29] J. F. Heanue, K. Gurkan, and L. Hesselink, “Signal detection for page
access optical memories with intersymbol interference,”Appl. Opt., vol.
35, pp. 2431–2438, 1996.

[30] J. F. Hutton, G. A. Betzos, M. Schaffer, and P. A. Mitkas, “Error
correcting codes for page-oriented optical memories,”Proc. SPIE, vol.
2848, pp. 146–156, 1996.

[31] B. J. Goertzen and P. A. Mitkas, “Error-correcting code for volume
holographic storage of a relational database,”Opt. Lett., vol. 20, pp.
1655-1657, 1995.

[32] G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C.
M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched
holographic data storage,”Opt. Lett., vol. 22, pp. 639–641, 1997.

[33] A. Vardy, M. Blaum, P. H. Siegel, and G. Sincerbox, “Conservative
arrays: Multidimensional modulation codes for holographic recording,”
IEEE Trans. Inform. Theory, vol. 42, pp. 227–229, 1996.

[34] M. A. Neifeld and J. D. Hayes, “Parallel error correction for optical
memories,”J. Optical Memory and Neural Networks, vol. 3, pp. 87–98,
1994.

[35] M. A. Neifeld and M. McDonald, “Error correction for increasing the
usable capacity of photorefractive memories,”Opt. Lett., vol. 19, pp.
1483–1485, 1994.

[36] M. A. Neifeld and J. D. Hayes, “Error correction schemes for volume
optical memories,”Appl. Opt., vol. 34, pp. 8183–8191, 1995.

[37] X. Chen and K. M. Chugg, “Near-optimal data detection for two-
dimensional ISI/AWGN channels using concatenated modeling and
iterative algorithms,” inProc. IEEE 1998 Int. Conf. Communications,
1998, paper S27P04.

[38] K. M. Chugg and X. Chen, “Efficient architectures for soft output
algorithms,”Proc. IEEE 1998 Int. Conf. Communications, 1998, paper
S04P04.

[39] C. Berrou and A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes (1),” inProc. IEEE
1989 Int. Conf. Communications, 1993, pp. 1064–1070.

[40] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: Performance analysis, design, and iterative
decoding,”IEEE Trans. Inform. Theory, vol. 44, pp. 909–926, 1998.

[41] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as
An instance of Pearl’s “Belief propagation” algorithm,”IEEE J. Select.
Areas Commun., vol. 16, pp. 140–152, 1998

[42] G. D. Forney, Jr., “The Viterbi algorithm,”Proc. IEEE, vol. 61, pp.
268–278, 1973.

[43] K. M. Chugg, “Performance of optimal digital page detection in a two-
dimensional ISI/AWGN channel,” presented at the 30th Asilomar Conf.
on Signal, Systems and Computers, 1996, paper TP4-8.

[44] K. M. Chugg, X. Chen, and M. A. Neifeld, “Two-dimensional equal-
ization in coherent and incoherent page oriented optical memory,” to
appear inJ. Opt. Soc. Amer. A, 1998.

[45] C. L. Miller, B. R. Hunt, M. W. Marcellin, and M. A. Neifeld, “Bilevel
image reconstructions via 2D Viterbi algorithm,” inProc. IEEE Int.
Conf. Image Processing, 1997.

[46] J. F. Hayes, T. M. Cover, and J. B. Riera, “Optimal sequence detection
and optimal symbol-by-symbol detection: Similar algorithms,”IEEE
Trans. Commun., vol. COM-30, pp. 152–157, 1982.

[47] H. L. Van Trees,Detection, Estimation, and Modulation Theory, Part I.
New York: Wiley, 1968.

[48] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for
digital holographic data storage,”J. Opt. Soc. Amer. A, vol. 12, pp.
2432–2439, 1995.



CHEN et al.: NEAR-OPTIMAL PARALLEL DISTRIBUTED DATA DETECTION 879

[49] A. Duel-Hallen and C. Heegard, “Delayed decision feedback estima-
tion,” IEEE Trans. Commun., vol. 37, pp. 428–436, 1989.
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