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The strategic and monetary value of the civil infrastructure worldwide necessitates the development

of structural health monitoring (SHM) systems that can accurately monitor structural response due to

real-time loading conditions, detect damage in the structure, and report the location and nature of this

damage. In the last decade, extensive research has been carried out for developing vibration-based

damage detection algorithms that can relate structural dynamics changes to damage occurrence in a

structure. In the mean time, the wavelet transform (WT), a signal processing technique based on a

windowing approach of dilated ‘scaled’ and shifted wavelets, is being applied to a broad range of

engineering applications. Wavelet transform has proven its ability to overcome many of the limitations

of the widely used Fourier transform (FT); hence, it has gained popularity as an efficient means of

signal processing in SHM systems. This increasing interest in WT for SHM in diverse applications

motivates the authors to write an exposition on the current WT technologies.

This article presents a utilitarian view of WT and its technologies. By reviewing the state-of-the-art in

WT for SHM, the article discusses specific needs of SHM addressed by WT, classifies WT for damage

detection into various fields, and describes features unique to WT that lends itself to SHM. The

ultimate intent of this article is to provide the readers with a background on the various aspects of WT

that might appeal to their need and sector of interest in SHM. Additionally, the comprehensive

literature review that comprises this study will provide the interested reader a focused search to

investigate using wavelets in SHM.
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1 Introduction

Structural health monitoring (SHM) aims

at real-time characterization of structural perfor-

mance to enhance structural safety and to sig-

nificantly reduce lifetime operating costs by early

detection for maintenance. Thus, the basis for

implementing SHM systems in critical structures

(airplanes, rotorcraft, vehicles, and bridges) is to

detect damage occurrence and inform the respon-

sible stakeholders about the location, nature,

and severity of this damage [1,2]. Repeated

incidents in the airline industry have resulted in

growing uncertainty regarding the reliability of

routine maintenance methods and inspection

techniques [3]. The difficulty of thorough visual

inspection of structures has increased the need

for complex SHM systems that can provide

early and reliable damage detection in critical and

historical structures [4,5].

Vibration-based analysis has evolved in the

past decade as a promising method for SHM.

The premise of vibration-based SHM is that

dynamic characteristics of a structure are a

function of its mechanical properties. Thus

changes in these mechanical properties as a

result of localized structural damage will result in

observable changes in the dynamic characteristics

vibrations of the structure. Research on

vibration-based damage identification goes back

to the late 1970s in the study of offshore oil

and gas platforms as well as in the aerospace

industry. The civil engineering industry captured

this interest much later due to the increased

rate of infrastructure deterioration observed

late in the twentieth century. A review of SHM

techniques for detecting changes in structural

dynamics due to damage was provided by

Doebling et al. [6] and more recently by Yong [7].

Currently, most SHM systems depend on

measuring structural dynamics characteristics and

analyzing these data in the frequency domain by

performing modal analysis [6–10]. Damage detec-

tion algorithms from modal analysis depend on

observing signals from sensors distributed over

the structure and developing accurate structural

models (e.g., finite element (FE) models) to

identify observable mode shapes. Problems asso-

ciated with FE modeling such as, discretization,

configuration errors, and modeling errors,

as discussed by Yang et al. [11], proved that

modal testing might not be sufficiently practical.

Moreover, experimental verification of damage

detection algorithms using modal data from

relatively large structures showed that modal

characteristics might be insensitive to localized

damage [12,13]. Kim et al. [14] suggested using

modal strain energy to estimate the severity of

damage and pointed out that changes in the

natural frequencies are difficult to measure due

to the limited change in frequencies due to the

uneven mass distribution in large structures.

It has also been proven that changes in the mode

shapes due to damage might not be identifiable

due to signal corruption by noise and/or to the

limited number of identifiable mode shapes

(because of the low frequency of vibration of

relatively large structures) [15]. Ren and

De Roeck [8] examined the effect of noise on the

reliability of damage identification from modal

analysis and reported that the effect of noise is

highly dependent on damage severity such that

limited damage states will be more challenging to

detect at high levels of noise than severe ones.

As modal analysis is performed in the

frequency domain, most current SHM systems

implement fast Fourier transform (FFT) [6,8,16].

Fast Fourier transform is used to decompose

a time-domain sequence in terms of a set of basis

functions. The set of complex sinusoids {ei!n,

�1<f<1} forms the set of these basis func-

tions where i is the complex number ði ¼
ffiffiffiffiffiffiffi
�1

p
Þ,

(!¼ 2�f ), f is the frequency and n is the discrete

time variable [17]. The discrete Fourier transform

(DFT) of a discrete time signal x(n) is given by:

Xð!Þ ¼
X1

n¼�1

xðnÞ e�i!n ð1Þ

A major problem in using the FFT results

from the fact that the transform is the result of a

summation (or integration in the continuous time

domain) over the entire signal length. This means

that the signal decomposition cannot indicate

the time of occurrence for a transient signal.

Therefore, the DFT can provide good frequency

resolution, but no time resolution [18]. Therefore,

DFT-based SHM systems might recognize
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damage occurrence if they are used to observe

frequency spikes [16] but this damage recognition

would be based on frequency information only

while all possible time information will be lost.

Unless a time resolution analysis is used, the

value of such time information in structural

vibration signals cannot be assessed. It has been

shown that good time localization can be accom-

plished by applying the short time Fourier trans-

form (STFT), which utilizes a window function

that is multiplied by the input signal before

computing the FFT [19]. Although STFT pro-

vides a time–frequency representation of a signal,

there is a major drawback with respect to utiliz-

ing STFT in SHM applications; namely that the

width of the window is fixed. The STFT of a

signal can be represented in a two-dimensional

grid as shown in Figure 1(a) where the divisions

in the horizontal direction represent the time

extent for each window; the divisions in the

vertical direction represent the frequencies; and

the shade of each rectangle is proportional to the

frequency of the monitored signal component.

The darker the shade of the rectangle means the

lower the frequency of the signal component that

can be observed. As the width of the window

function increases, more accurate information

about the different frequencies within the window

is obtained; but the ability to determine when

those frequencies occur is lost [20]. Thus, there

remains a need for multiple resolution analysis

that can provide fine time resolution for long

duration signals and fine frequency resolution

for high frequency signals [21]. A thorough

review of various time–frequency techniques

for structural vibration analysis is provided by

Neild et al. [22]. Strengths and weaknesses of

each technique were examined through examining

a group of synthetic signals representing

possible structural dynamics. Although the review

did not address the issue of damage diagnosis

it shed light on similarities between these

techniques [22].

2 Prologue to Wavelet Transform
for Structural Health Monitoring

The subsections that follow will recapitulate

the motivation for and the concepts of wavelet

theory. An efficient digital signal processing

algorithm that is capable of analyzing continuous

and transient signals must provide multiple

resolutions in time and frequency domains. More

precisely, such an algorithm should consider fine

time resolution for long duration signals and fine

frequency resolution for high frequency signals.

Wavelet transform (WT) represents the next

logical step in the evolution of digital signal

processing algorithms since it is based on a

windowing technique with variable-sized regions.

In fact, wavelet analysis is capable of utilizing

long time intervals (large window) where precise

low frequency information is needed, and

short time intervals (small window) where high

frequency information is considered [23].

The WT, therefore, will provide accurate

Figure 1 Time–frequency representation of signals:
(a) Time–frequency representation using (STFT) for
wide window (low frequency), medium window
(medium frequency), and narrow window (high
frequency) and (b) time–frequency representation of
wavelet transform (WT).
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location of the transient signals while

simultaneously reporting the fundamental

frequency and its low-order harmonics. This

inherent feature of the WT (the ability to provide

good time and frequency resolutions of a signal)

contributed to its widespread use in engineering

applications [24–28]. Before going into further

discussion on WT and its features and uses

in SHM, it is important to emphasize that

WT shall not be regarded as a competitive

technique to FT but simply an extension. The

two techniques have fundamentally the same

approach. As stated by Hubbard [23] ‘The goal is

to turn the information of a signal into numbers –

coefficients – that can be manipulated, stored,

transmitted, analyzed, or used to reconstruct the

original signal’.

As described by Mallat [29], two types of

wavelet functions might be used in performing

WT: the real and the analytic wavelets. The real

wavelets are those wavelets used to detect sharp

signal transitions [21,23,29]. The analytic wavelets

are those wavelets used to identify instantaneous

frequency evolution. A wavelet is named analytic

if its FT is zero for all negative frequencies [29].

The distinction between the two types of wavelets

might be important for SHM applications as

damage detection might be captured through

observing sharp transitions of signals or evolution

of new frequencies in the structural dynamics.

The WT output can be represented in a two-

dimensional grid similar to the STFT but with

very different divisions in time and frequency

as shown in Figure 1(b). The rectangles in

Figure 1(b) have equal area or constant time-

bandwidth product (following the Heisenberg

uncertainty principle [21,23,29]) such that they

narrow at the low scales (high frequencies) and

widen at the high scales (low frequencies). In

contrast to the STFT, the WT isolates the

transient high frequency components in the top

frequency band at the time of their occurrence

while the long lasting low frequency components

are presented as a continuous magnitude.

The wavelet coefficients can thus be useful in

analyzing nonstationary events.

The WT of a time-domain signal is defined in

terms of the projections of this signal on to a

family of functions that are all normalized

dilations and translations of a wavelet function

[21,23,29,30]. The wavelet (basis) functions  (t)
are not limited to exponential (or sinusoidal)

basis functions as in the case of the FT.

The choice of the wavelet function strives to

produce the maximum number of wavelet

coefficients within the full time span of the

original signal to be close to zero to guarantee

good time localization [29]. This can be

achieved by restricting  (t) to be short

and oscillatory to ensure that the integration

(summation) of the transform is finite.

Furthermore, it must have an average of

zero and decay quickly at both ends. These

admissibility conditions ensure that the

integration in the WT transform equation is

finite [21,29]. The function  (t) has been given

the name wavelet or ‘small wave’ and is

referred to as the ‘mother wavelet’ and its

dilates (scaled) and translates (shifted) simply

as ‘wavelets’ or ‘daughter wavelets’ [29–31].

A schematic representation of a few mother

wavelet functions is presented in Figure 2. The

major WT techniques that are currently used

in SHM systems are discussed in the following

sections.

2.1 Continuous and Discrete

Wavelet Transform

Continuous wavelet transform (CWT) of a

time-domain signal x(t) is determined as:

CWT a,�ð Þ ¼
1ffiffiffi
a

p

Z 1

�1

x tð Þ  
t� �

a

� �
dt ð2Þ

where a and � are the scaling and shift (position)

parameters of the wavelet function  (t),
respectively. For each scale ‘a’ and position ‘�’
the time-domain signal is multiplied by shifted

and scaled versions of the wavelet function. The

discrete wavelet transform (DWT) of a discrete

time sequence x(n) is given as:

Cj,k ¼ 2ð�j=2Þ
X
n

xðnÞ 2�jn� k
� �

ð3Þ

where  (n) is the wavelet function (the

basis function utilized in the WT) and 2(�j/2)
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 (2�j n� k) are scaled and shifted versions of

 (n) based on the values of j (scaling coefficient),

and k (shifting coefficient) and is usually written

as  j,k (n). The j and k coefficients take integer

values for different scaling and shifted versions

of  (n). Cj,k represents the corresponding wavelet

coefficients. It is worth noting that the scale in

wavelet analysis is analogous to frequency in

Fourier analysis [23,29]. A graphical representa-

tion of the wavelet coefficients plotted on a

time-scale grid is named ‘the scalogram’. It is a

graphical representation of the amplitude of

wavelet coefficients (Cj,k) with respect to time

and scale variables. It is usually represented

in a two-dimensional fashion with the wavelet

coefficients corresponding to the color intensity

or the gray intensity of the grid. The gray

intensity is commonly used to represent the

change in the wavelet coefficients with black,

gray, and white corresponding to positive, zero,

and negative wavelet coefficients, respectively

[29]. The scalogram reveals the wavelet coeffi-

cients at each time step and allows determination

of the occurrence of transient signals [29,32,33].

This is because of the fact that the wavelet

coefficients measure the correlation between a

segment of the signal of interest and the wavelet.

As stated by Meyer [34] ‘strong correlation means

that there is a little piece of the signal that looks

like the wavelet’. The square of amplitude of the

wavelet coefficients can also be graphically repre-

sented with respect to time and scale in what is

Figure 2 Example representation of some mother wavelets: (a) Daubechies wavelet (db6), (b) Mexican hat wavelet,
(c) Gaussian wavelet, and (d) Morlet wavelet.
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called ‘wavelet maps’ which can be interpreted as

the time-scale distributions of the signal energy

[2,35].

2.2 Wavelet Multi-resolution

Analysis (WMRA)

Wavelet multi-resolution analysis (WMRA) is

a technique used to implement the DWT with

filters. It allows the decomposition of signals

into various resolution scales. Originally the

multi-resolution technique came after the work

by Mallat [29] to speed the computation and

to make the computation possible for two-

dimensional image analysis. The concept is to

study the signal at different resolutions: coarse

resolution to get the big picture and fine resolu-

tion to get the details [23]. Thus, the data with

coarse resolution contains information about low

frequency components and retains the main

features of the original signal. The data with fine

resolution retain information about the high

frequency components.

Scaling a wavelet simply means stretching

or compressing it in the time domain. The

smaller the scale the more compressed the wavelet

will be, while the larger the scale the more

stretched the wavelet will be [21,29,31]. Therefore,

frequency scales allow the analysis of rapidly

changing details (high frequency components)

and low frequency scales allow the analysis

of slowly changing features (low frequency

components) [36]. The low frequency component

of the signal usually identifies the long-term

variation of the signal [35,36]. The approxima-

tions correspond to the low scale, low frequency

components of the signal while the details

correspond to the high scale, high frequency

components of the signal. The WMRA, therefore,

decomposes the signal into various resolution

levels: the data with coarse resolution

(approximations) contain information about

low frequency components and data with fine

resolution (details) contain information about the

high frequency components [35].

Consider j and k to be the scaling (dilation)

index and the translation (shifting) index,

respectively. Each value of j corresponds to

analyzing a different resolution level of the

signal. The WMRA of a digital signal x(n) can be

described as follows [21,35,36]:

For an input signal x(n), the approximation

coefficient aj,k at the jth resolution can be

computed as follows:

aj,k ¼ 2ð�j=2Þ
X
n

xðnÞ � 2�jn� k
� �

ð4Þ

where � is called the scaling function. It might

be worth noting that the approximation

coefficient aj,k computed using Equation (4) is

obtained in a similar way to the wavelet

coefficient Cj,k computed using Equation (3).

The major difference is the use of the scaling

function � to compute the approximation coeffi-

cient aj,k instead of the wavelet function  to

compute the wavelet coefficient Cj,k. Scaling

functions are similar to wavelet functions except

that they have only positive values [29]. They are

designed to smooth the input signal, thus

operating in a manner equivalent to a low pass

filter which rejects high frequency components

of the signal [23,29,36]. The approximation

signal xj(n) at the jth resolution level is then

computed as

xjðnÞ ¼
X1

k¼�1

aj,k �j,kðnÞ ð5Þ

The detail coefficient dj,k at the jth resolution

level and the detail signal gj(n) are then

computed as

dj,k ¼ 2ð�j=2Þ
X
n

xðnÞ 2�jn� k
� �

ð6Þ

gjðnÞ ¼
X1

k¼�1

dj,k �  j,kðnÞ ð7Þ

where  j,k(n) is the wavelet basis function. The

above three steps are repeated for the jþ 1

resolution level but using the approximation xj(n)

obtained in Step 2. The original signal x(n)

can be reconstructed using an infinite number

of details obtained after decomposing the
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signal at infinite resolution levels as per the

equation [23,29]

xðnÞ ¼
X1
j¼�1

gjðnÞ ¼
X1
j¼�1

X1
k¼�1

dj,k  j,kðnÞ: ð8Þ

The above equation implies that one has to

break the original signal to an infinite number of

details, which is impractical. Alternatively, the

analysis can stop at the Mth resolution level

and the signal can be reconstructed using the

approximation at the Mth level and all the details

starting from the first level until the Mth level

[21,29]. The following equation presents this

procedure

x nð Þ ¼
X1

k¼�1

aM,k � �M,k nð Þþ
XM
j¼1

X1
k¼�1

dj,k � j,k nð Þ:

ð9Þ

The first term represents the approximation

at level M and the second term represents

the details at level M and lower. Therefore,

multi-resolution analysis (MRA) builds a

pyramidal structure that requires an iterative

application of the scaling and the wavelet

functions, respectively [21,35]. A schematic repre-

sentation of the WMRA pyramid structure

is presented in Figure 3. The high frequency

band outputs are taken as the detail coefficients

(D1, D2, D3), and the low frequency band

outputs are taken as the approximation coeffi-

cients (A1, A2, A3). It is worth mentioning that

a down-sampling process is performed at every

decomposition stage. If the decomposition

operation is performed on the entire range of the

signal, the number of samples considered in

the analysis will be doubled. For instance, if the

original signal consists of 100 samples, the

approximation and the detail signals will each

have 100 samples (total of 200 samples). In

order to overcome this problem which affects

computation time and data storage, the down-

sampling process is carried out by ignoring the

second sample of each sampling pair.

2.3 Wavelet Packet Transform

Wavelet packet transform (WPT), like

WMRA, is a technique to decompose a signal

repeatedly into successive low and high frequency

components. However, it differs from WMRA in

that not only is the approximation at a given

level decomposed further, but so are the details.

This results in a more flexible and wider base for

the analysis of monitored signals [29,37,38].

A wavelet packet is a family of scaling

functions and wavelet functions constructed by

following a binary tree of dilations/translations.

Thus, wavelet packets inherit properties, such

as orthonormality and time–frequency localiza-

tion from their corresponding wavelet functions.

A wavelet packet,  i
j,k tð Þ, is a function of three

indices, where i, j, and k are integers representing

the modulation, the scale, and the translation

parameters, respectively. It can be written as

 i
j,k tð Þ ¼ 2j=2 i 2jt� k

� �
; i ¼ 1, 2, 3, . . . : ð10Þ

where the wavelets  i are obtained from

the following recursive relationships in

Equations (11) and (12)

 2i tð Þ ¼
ffiffiffi
2

p X1
k¼�1

h kð Þ i 2t� kð Þ ð11Þ

 2iþ1 tð Þ ¼
ffiffiffi
2

p X1
k¼�1

g kð Þ i 2t� kð Þ ð12Þ

where h(k) and g(k) are filters associated with

the scaling function and the mother wavelet

Figure 3 Schematic representation of the pyramid
structure representing WMRA.
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function, respectively. It should be emphasized

that in the above two equations,  i(t) is the

mother wavelet function. The analysis procedure

starts by computing the wavelet packet decom-

position of the monitored dynamic signal at level

N using a given wavelet. This means there are 2N

components at the Nth level which gives the

flexibility in choosing the manner in which one

wants to encode the original signal (this is

specifically useful for de-noising) such that the

reconstruction error ‘distortion’ is minimum.

Research is actively trying to determine the best

encoding scheme of the original signal that shows

important features without inducing distortion,

for example, an entropy-based criterion [37–40].

This will be discussed later in further detail

in Section 3.2.

For each packet (except for the

approximations), a threshold value is selected

and the thresholding procedure is applied to the

coefficients. The wavelet packet reconstruction is

performed based on the original approximation

coefficients at level N and the threshold

coefficients. Schematic representation of the

wavelet packet transform (WPT) of a signal is

presented in Figure 4. For instance, reconstruc-

tion of the signal shown in Figure 4 can be

achieved by summing the signal components A1,

AAD3, DAD3, and DD2.

3 Wavelet Transform for Structural
Health Monitoring

The ability of the WT to provide time and

frequency information of the signal without the

limitations of the FFT paved the way for using

WT in many engineering applications including

SHM. In order to fully appreciate and under-

stand the value that WT can add to the SHM

system, it is necessary to discuss the requirements

of SHM. Structural health monitoring is

somewhat precarious and seeks to balance what

one can measure with the technology to decipher

the implications of the response values.

3.1 Structural Health Monitoring

Needs

The basic needs for SHM with respect to

damage identification comprise acquisition,

processing, detection, localization, assessment,

and prediction. Specifically, the need for an

efficient signal de-noising technique is one

fulfilled by WT even though signal de-noising

techniques captured very little interest in SHM

research. On the contrary, as many researchers

described SHM systems in the context of

anomaly detection [e.g., 41–44], major SHM

research using wavelets was focused on feature

extraction and pattern recognition. Such

hierarchical structures of SHM systems are

described by Worden and Dulieu-Barton [41] as

enhancing the ability of WT to provide good

time and frequency resolutions of the signal.

This reconfigured structure motivated researchers

to investigate the use of WT to provide a

relevant feature extraction for damage detection

[e.g., 41–45].

Moreover, Farrar et al. [42] provided an in-

depth analysis of the status and needs for

damage-prognosis as an estimate of a system’s

Figure 4 Schematic representation of wavelet packet transform (WPT) of a signal.
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remaining useful life. Essential damage prognosis

research demonstrated that a critical issue to

sensing and data acquisition is the need to

capture the response on varying length and time

scales. Patsias and Staszewski [46] showed the

possible use of the WT in developing a damage

detection method for optically observed mode

shapes. Companion information is produced

from the WT of mode shapes: the displacement

mode shape comes from the approximation

signals and the damage location comes from the

detail signals. This emphasizes the usefulness

of WT to address one of the challenges of sensing

and data acquisition, i.e., providing localized

information about damage.

The following sections are designed to give

specific accounts of the usefulness of WT in

SHM systems. This article first introduces a

survey about the use of WT for damage detection

and diagnosis, and then provides an in-depth

discussion of specific features of WT applicable

to SHM. It is followed by conferring the

important issue of choosing the appropriate

wavelets for an analysis. The last section provides

a discussion on wavelet-aided analysis where

artificial intelligence techniques (e.g., artificial

neural networks (ANN) and fuzzy systems)

were combined with WT to provide system

learning for pattern recognition. Furthermore,

a summary of the variety of wavelet features,

their corresponding tools and their application

in different SHM applications are presented in

Table 1. More importantly, this table is

provided to give a consistent and lucid flow of

knowledge for practitioners on using specific

wavelet features and WT tools in SHM.

3.2 A Survey of Wavelet Transform

for Damage Detection

This section presents a survey of WT

applications in four areas: composite plates,

large-scale structures like bridges, civil infra-

structure and mechanical systems. It is important

to realize that WT is not used in one particular

field: it is being used across a variety of

fields showing its generality. WT’s generality

is facilitated by its many aspects

and features, all of which are based on the

same utility of WT as a signal processing

technique.

Composite materials are becoming essential

for industrial applications like aircraft design

because of its light weight and strength.

However, it is notorious for concealing damage

in the way of delamination. Kumara et al. [47]

and Sohn et al. [48] suggested using CWT to

detect delamination of composite structures.

The system is designed to analyze the responses

of an active SHM system using piezoelectric

sensors. Damage detection is performed by

observing the signal energy in a wavelet

scalogram. Rus et al. [49] showed that the CWT

can be used to discriminate between degraded

and intact composite. Damage occurrence in thin-

walled composite structures, ‘sandwich panels’

can be detected using a combined WT and finite

element algorithm. Qi et al. [50] showed that

WMRA can not only detect damage but also

detect particular levels of damage. They

demonstrated that the energy computed from

decomposed signals at three specific frequency

ranges was related to three different damage

modes in a carbon fiber reinforced polymer

(CFRP) composite. Dawood et al. [51] showed

successful WMRA signal de-noising of signals

generated by Bragg grating sensors that were

contaminated with noise generated by thermal

effects of a structural composite. Yan and Yam

[52] used the energy spectrum and wavelet packet

analysis with an index vector to detect small

structural damage. Their index vector is a non-

dimensional comparison of intact and

delaminated plates. The maximum value of the

index vector at a particular wavelet decomposi-

tion level indicates damage due to an excited and

damaged mode. Finally damage location and

severity were identified in a composite structure

in [53]. Here ANN were used to relate the

damage energy detected by WT. Using WT,

one can now detect an otherwise unobservable

delamination damage in composite plates and

structures.

Detecting damage in large-scale structures

like bridges can be an especially daunting chal-

lenge because of the bridge’s complexity and its

monitoring requirements; but WT has been

successful for SHM in bridge applications.
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Table 1 Summary of literature review on WT applications, tools and features for structural health monitoring.

SHM application Wavelet tool Feature used Comments References

Damage detection in civil
engineering structures

WPT Energy Analysis of energy [50,85,86]
Statistical analysis of
WPT energy components

[37–39,87,88]

WT Coefficients Changes in coefficients [58,59,90,91]
Extracting modal parameters [107]
Extracting eigenvectors [57]
Discontinuity in coefficients [89]

Energy [84]
Wavelet ridges Number of ridges relate

to level of damage
[60,76]

Wavelet connection coefficient Solving inverse problem [92]
WMRA Spikes and changes in

decomposed signals
[78–81,95,98]

Wavelet aided AI Anomaly detection in structural
dynamic response

Wavelet Neural Networks
are used for detecting
abnormalities

[121,122]

Single discontinuity WT and PCA for identifying
damage

[119]

Signal energy WMRA is combined
with ANN to learn healthy
structural response

[43]

Fuzzy sets used to identify
damage in the wavelet
domain

[104,129]

Signal singularity and discontinuity Hölder exponent in the
wavelet domain

[101,102]

Spectrum analysis WMRA combined
with ANN

[126]

WPT decomposed signals WPT aided with ANN [124]
WPT coefficients WPT aided with PNNs [112]
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Damage detection in
composites and
aerospace structures

WT Wavelet coherence maps [33,66]
Wavelet coefficients Observe changes in

lamb waves
[49,93,94]

Signal energy Signals observed by
piezoelectric sensors

[47,48]

WMRA Wavelet coefficients [96,97]
Signal energy [50]
Spatial variation of wavelet decomposed signals [95,98]

Wavelet aided AI Energy WT and ANN [53,127,128]
Damage detection in
mechanical systems

WT Wavelet coefficients [59,62–65,67,69]
Spatial wavelet coefficients [68]
Time–frequency localizations Defects in bearing faults [72]

WMRA MRA Using orthogonal wavelets [63,70]
Wavelet aided AI Wavelet coefficients WT and pattern recognition [120]

WT and ANN [11,107,121]
WT, ANN, and simulated
annealing to determine forces

[123]

WT and Neuro-fuzzy
learning

[130]

Energy of wavelet packets Combined RNN with WPT [125]
Fuzzy clustering of WPT
energy components

[88]

Signal de-noising
for damage
diagnosis

WMRA Signal decomposition and
extraction of noise signals

[51,99,109,126]
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The Centre Street Bridge in Calgary, Canada is

monitored by ISIS Canada after its rehabilitation

to ensure its performance [54]. The lower level

bridge is hung from the concrete arched girders

as shown in Figure 5(a). The accelerometers were

installed on the deck slab of the lower level

bridge to monitor its vertical acceleration.

The dynamic activity of the bridge was measured

as the truck crossed over the bridge [54].

The time-domain and the frequency-domain

Figure 5 Health monitoring of the Centre Street Bridge in Calgary, Canada [54]: (a) the bridge, (b) measured
acceleration of the bridge due to a moving truck ‘Time-domain’, (c) Fourier transform of the acceleration measured of the
bridge due to a moving truck ‘frequency-domain’, and (d) wavelet transform of the acceleration measured of the bridge
due to a moving truck ‘scalogram’.
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representation of the recorded bridge dynamics

are shown in Figure 5(b) and (c), respectively.

Figure 5(d) presents a typical scalogram of the

WT of the dynamic response acceleration signal

of the bridge. The WT is performed using the

Morlet mother wavelet showing the variation of

the amplitude of wavelet coefficients as variation

of the gray color intensities with respect to both

time and scale. It is obvious that Figure 5(d) is

more capable of describing the changes in the

Figure 5 Continued.
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system dynamics in both time and frequency

domains than Figure 5(b) and (c) individually.

While a peak acceleration in the structural

response is indicated close to 40 s, this peak

intensifies at relatively high scale values (relatively

stretched wavelets) indicating the existence of

high frequency components at this time instant.

The specific analysis uses WMRA to

decompose the dynamic signal (see Figure 6).

The dynamic response of the Centre Street Bridge

in Calgary, Canada that was shown earlier in

Figure 5 is decomposed here using the Morlet

wavelet at three decomposition levels. Figure 6

presents the components that constitute this

decomposition, including the third level approx-

imation (A3) and the first, second, and third level

details (D1, D2, and D3). This process of decom-

position can be useful for de-noising or for

damage detection in SHM systems. However, this

analysis in not limited to one form of WT

technology.

The structural dynamic analysis of the

Centre Street Bridge can also make use of the

wavelet packet decomposition. Figure 7(a) and (b)

demonstrates the wavelet packet decomposition of

the dynamic response of the Centre Street Bridge

this time using the Daubechies wavelet and not

the Morlet wavelet as in the case with WMRA at

three levels of decomposition. Here the flexibility

of WT to glean new information is shown by its

use of two different wavelet functions for two

different WT approaches. This flexibility of use

avails itself to the more general use of structural

damage detection in the civil infrastructure.

Civil infrastructure damage detection expands

on the complexity of damage detection in bridge

structures and would be even more daunting if it

were not for WT’s manifold signal processing

capability. For example, the WPT can lead to a

variety of decompositions if a selection procedure

is not used. Entropy-based criterion has been

nominated by many researchers to be the most

successful method for selecting the optimal

wavelet packet tree for efficient damage diagnosis

[37–39]. Coifman et al. [40] and Bukkapatnam

et al. [44] explained the basic principles of using

entropy-based analysis for signal processing.

An entropy-based criterion would try to establish

Figure 6 Original acceleration signal from the Centre Street Bridge in Calgary and its decomposed approximation and
details using Morlet wavelet at three levels of decomposition.
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a crisp division between systematic signals and

noise using means of Shannon’s information

theory [40,44,55]. Ross [55] explained that the

entropy of a set of possible outcomes (here

systematic signals and noise) where one and

only one outcome is true is defined by the

summation of probability and logarithm of the

probability for all outcomes. The minimization

of the entropy targets quantifying the quantity

of information in the given data set [55,56].

Bukkapatnam et al. [44] showed that a

pure noise signal has the largest entropy

Figure 7 Wavelet packet decomposed structural dynamic signal using Daubechies mother wavelet. Three
levels of decomposition. Original signal observed from the Centre Street Bridge in Canada (Figure 6 (b)): (a) WPT
components [AAA3, DAA3, ADA3, and DDA3] see Figure 5 and (b) WPT components [AAD3, DAD3, ADD3 and DDD3]
see Figure 5.
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while a systematic signal has zero entropy.

Thus, by minimizing the entropy of the

WPT signal components, an optimal

selection of the wavelet packet tree becomes

possible. This process permits extraction of the

original structural response for damage diagnosis

[37–39].

Liew and Wang [57] showed that crack

identification of a non-propagating crack in

structural systems, such as simply supported

beams using WT is much more efficient than

using eigenvalues analysis. Douka et al. [58] used

CWT to determine the location and size of the

crack in a beam using the fundamental mode of

vibration. The size of the crack was related to

the wavelet coefficients. Similar work was also

reported by Gentile and Messina [59] who

showed that the CWT can detect damage location

and crack size from both noisy and clean data.

Melhem and Kim [60] used CWT and the wavelet

ridges to detect structural beam damage. It has

been shown that using a scalogram, damage

occurrence was detectable in an asphalt pavement

as well as in a prestressed concrete beam.

The number of ridges on the scalogram was

shown to be directly proportional to the number

of cracks and inversely proportional to the

crack growth. Features like wavelet coefficients

and wavelet ridges and their uses will be further

described in Section 3.3. Gurley and Kareem [61]

proved the effectiveness of monitoring an off-

shore platform’s response to wind and waves

using a DWT. They also pointed out features

that would have been missed by using time or

frequency domain methods like distinguishing

between responses due to large waves impacting

below deck or topside of the platform. In their

work [61], it was shown that WT can provide

insights into the transfer of energy by plotting the

squared coefficients on a time-scale grid which

is called the ‘mean square map’.

The use of WT for detecting structural

damage in mechanical systems is not new and

was proposed by many researchers in the last

decade [62–64]. It was argued that damage of

machinery parts can be predicted by observing

the changes in the wavelet coefficients of the

wavelet-transformed vibration signal [64,65].

Recently, Giurgiutiu et al. [66] reviewed some

different damage identification in helicopter

components and identified the WT as one of

the most efficient methods for mechanical

components health monitoring specially for early

identification of incipient damage. Similarly,

Rubini and Menegheiti [67] showed that WT can

be used for real-time monitoring of fatigue

crack growth in rotating machines. Chang and

Chen [68] discussed the use of ‘spatial wavelet’

coefficients for damage detection of a rotating

blade. Instead of working in the time domain, the

spatial wavelet based approach replaces the time

variable with a spatial coordinate allowing for

the detection and the positioning of a crack.

The crack is detected based on the distribution of

the wavelet coefficients. In addition to detecting

and locating the crack, the distribution can also

indicate crack size. The method was applied to

a FEM model of a cracked rotating cantilever

blade. Discrete wavelet transform using the

Gabor wavelet function with dyadic dilation

and translation parameter was applied to

the simulated mode shapes. A peak in the

distribution of wavelet coefficients indicates a

geometric discontinuity (crack) and locates

its position [68]. Boltežer et al. [69] compared

the ability of CWT to that of FFT in detecting

faults in DC electric motors. The analysis proved

CWT has superior abilities compared to

FFT especially when analyzing data with consid-

erable noise. Three criteria were used for fault

detection using CWT, these include the highest

coefficient magnitude, the frequency of the

first and second harmonics, and the third

period between the magnitude pulses at high

frequencies.

What distinguishes the use of WT for

mechanical systems and highlights its strength is

that mechanical systems are of smaller scale than

discussed earlier and thus have several dynamic

features. For example, Wang and McFadden [63]

showed that orthogonal wavelets can be

used to detect gear damage in a gear box casing.

Similarly, Seker and Ayaz [70] presented

an algorithm to detect the effect of aging

on bearings using WMRA. Kim and Ewins [71]

showed, using simulated rotor system data,

that efficient signal noise removal is a major

advantage of WT over FT. Yiakopoulos and
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Antoniadis [72] proposed using WT for detection

of defects in rolling element bearings. The

vibration response of the faulty bearings is

analyzed using time–frequency localization from

the WT. What makes all of these methods under

WT work so well is the effective use of certain

features of WT. The following section discusses

some of the most helpful features that are useful

from WT.

3.3 Features of Wavelet Transform

Ridges, spikes, scalogram, energy,

coefficients, and thresholding are terms that are

often encountered in the vocabulary of the WT

practitioner and the latest research literature.

This section discusses each feature and cite their

respective reference to further allow the reader to

understand the WT tools and features as they

relate to SHM.

The wavelet ridges are simply the maxima

points of the normalized scalogram representing

the wavelet coefficients with respect to the

different time and scale values [23,29]. The

method of wavelet ridges depends on the fact

that the instantaneous frequencies determined at

the ridges can be used to characterize the signal.

For instance, if a slice of the signal is considered

at a given time, the peak of the instantaneous

spectrum of the signal representing the ‘frequency

spectrum at this time instant’ defines the ridge

of this frequency band [73]. As the energy

distribution of the monitored signal might be

concentrated at more than one frequency, classi-

fying these frequency components requires

acquiring the relevant information of the signal

by extracting the main frequencies along the

ridges [74,75]. Hou et al. [76] suggested the use of

WT for instantaneous identification of modal

parameters of time-varying systems. The modal

parameters can be observed as wavelet ridges in

the wavelet scalogram. Hasse and Widjajkusuma

[77] suggested that fundamental information

about structural dynamics is contained in the

maxima lines or ridges of the CWT. It was

shown that using analytic wavelets (explained

in Section 2) it was possible to extract the

corresponding frequencies and damping

parameters from the maxima of the wavelet

coefficients and the wavelet ridges, respectively.

It appears that the use of the wavelet ridges

approach might be useful for monitoring progres-

sively developing damage and its effect on the

structural response.

Spikes on the other hand represent more

discrete signatures of a decomposed signal and

come with their own uses. Hou and Hera [78]

reported that spikes observed in wavelet

transformed signals from damaged structures

are difficult to identify at high noise levels

but are recognizable with low levels of noise.

Corbin et al. [79], Hou et al. [80], and Hera and

Hou [81] reported that spikes within high level

details (high resolution signals) were observable

when damage was introduced to the ASCE

Benchmark structure [81] at different levels

and types of damage. The benefit of using the

spike feature is the potential cost savings if

continous monitoring can be avoided. The need

to provide continuous monitoring of the structure

might have a significant cost burden on the

SHM system.

Recently, Gurely et al. [82] introduced the

concept to develop wavelet coherence maps

to represent correlation between signals. The

method utilized the theory of ridges and the

concept of hard and smart thresholding to isolate

meaningful coherence between signals. The

proposed plot is called the ‘co-scalogram’. The

wavelet coherence maps are described in both

frequency and time domains to represent the

dual nature of the wavelet analysis leading to

the definition of the bi-coherence. Amaravadi

et al. [33] suggested analyzing a two-dimensional

wavelet scalogram obtained from individual cur-

vature mode shapes. It was shown that the use of

wavelet coherence maps is very useful especially

in determining damage location of composite

materials. The premise of this technique is that

if the damage location has a high energy content,

it can be observed using the wavelet maps.

However, energy has its own benefit when it is

the feature of interest.

Karim and Adeli [83] demonstrated that the

wavelet energy algorithm can be used efficiently

to provide automatic incident detection on urban

and rural freeways. Batko and Mikulski [84]

proposed the use of signal energy in the
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wavelet domain to identify the failure of steel

ropes using a nondestructive magnetic method.

Damage is identified as local energy maxima

that can be detected if the energy distribution

of the wavelet-transformed signal is observed

continuously on the time-scale plots. Damage

identification using the energy extracted from

WPT has been suggested [85,86]. Moreover,

damage diagnosis by statistical analysis of the

wavelet packet component energies using means

of statistical process control was also suggested

[37,38,87,88]. In this method, the wavelet packet

energy component was selected as the feature to

recognize damage. The wavelet packet component

energy can be defined as

Ei
fj
¼

Z 1

�1

fijðtÞ
2dt ð13Þ

where fijðtÞ is the ith level component signal

decomposed at the jth level by the wavelet

function and translated in the time domain [87].

It was also argued that the WPT component

energy is more sensitive than the energy com-

puted using WMRA. These energy indices were

reported capable of detecting changes in signal

characteristics due to damage.

Next, the wavelet coefficients themselves have

been shown to be beneficial. An early application

of a damage index based on wavelet coefficients

was first reported by Kumara et al. [47]. In this

work indices based on wavelet coefficients derived

from continuous and discrete wavelet transforms

were used for gear fault diagnosis and prognosis.

Ovanesova and Suarez [89] discussed the possible

extraction of cracking (damage) of frame

structures by observing the discontinuity in the

coefficients of the WT of the deflection signal of

the structure. Pittner and Kamarthi [90] suggested

that clustered wavelet coefficients can be used

to provide the necessary feature for pattern

recognition for damage detection. The Euclidian

norm of the detected clusters is used as a

sensitive indicator of the change in the structure

in response to damage. Wimmer and

De Giorgi [91] suggested another technique where

the summed wavelet coefficients derived from the

CWT of the signal representing the structural

dynamic response (e.g., strain) are used to detect

the occurrence of damage. Zabel [92] suggested

using wavelet connection coefficients to determine

the decomposed displacement and velocity signals

using experimentally measured accelerations to

avoid numerical integration of the acceleration

data that is usually noisy. The decomposed

displacements and velocities were then used to

solve the inverse problem and determine the

structure stiffness matrix to detect damage

occurrence. The fundamental connection

coefficients for a set of linear operators need to

be computed for each specific mother wavelet

function used in this method [92]. Paget [93] and

Paget et al. [94] showed that the change of the

amplitude of the wavelet coefficients can be used

to detect damage in aerospace composites

using Lamb waves generated and received by

piezoceramic transducers.

Wang and Deng [95] showed that using

WMRA crack propagation can be detected by

observing sudden changes in spatial variation of

the decomposed signals. It was possible to relate

the scaling factor (a) from the wavelet coefficients

of WMRA to the frequency of the structure and

therefore to represent damage in structures and

degradation in heterogeneous materials [96–98].

Analysis of experimental data where damage

was induced on a four-degree of freedom system

showed spikes in the wavelet decomposed signals.

It has been suggested that the magnitude of the

spike in the wavelet analysis will be the maximum

if the measurement point is next to the damage

location [98].

The next feature, thresholding, makes wavelet

de-noising a more efficient method than

conventional de-noising methods as described

in [99]. The procedure starts by choosing an

appropriate level for decomposition and

decomposing the dynamics signal up to this level.

For each level of decomposition, a certain

threshold is selected and an appropriate thresh-

olding criterion is applied. The threshold criterion

can either be hard or soft thresholding [21,100].

The major challenge in this case is that the

maximum level of signal decomposition and the

level of noisy signals need to be known a priori.

Other tools have also been combined

with WT for damage feature extraction. It was

suggested that using the magnitude of the

284 Structural HealthMonitoring 5(3)

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on February 7, 2008 http://shm.sagepub.comDownloaded from 

http://shm.sagepub.com


Lipschitz exponent of the WT would be a

meaningful signal feature for damage detection.

The Lipschitz exponent (also known as the

Hölder exponent (HE)) is a measure of how

smooth the signal is at a certain point.

Mathematically, the Lipschitz (Hölder) exponent

represents how many times the signal is differ-

entiable at a certain time [101]. Do et al. [102]

recommended using the HE as a measure for

signal singularity and discontinuity to detect

damage occurrence. The HE of the signal is

calculated after it is transformed into the wavelet

domain [29]. Although reported to be useful to

detect damage for inputs at low frequencies, the

HE was reported to be more sensitive to local

dynamic responses than to global responses due

to damage. The HE was also found to be sensor

location dependent which makes it less useful in

real applications. Robertson et al. [103] used

the HE to detect singularity and determine a

structural vibration response signal’s regularity.

The singularity is defined as an abrupt change

(or impulse) that indicates a sudden shift in a

structural response and damage. The change

in the HE provides a good identification for

singularities and the time of damage occurrence.

3.4 Choosing the Appropriate

Wavelet

Now that the flexibility of WT is demon-

strated, the practitioner is cautioned against a

cavalier approach to using WT for signal decom-

position. The fundamental aspect in using WT is

the correct selection of the wavelet function (that

is known as the mother wavelet). While the

choice of the wavelet function in many engineer-

ing applications has been based on trial and

error, when choosing the wavelet function for

SHM applications it is important to consider the

ability of the chosen wavelet to perform the

DWT or the fast wavelet transform (FWT). This

is because such transforms are capable of hand-

ling discrete digital signals which is necessary for

practical SHM applications. Ovanesova and

Saurez [89] argued that wavelets with explicit

mathematical expression, such as Gaussian,

Mexican Hat, Shannon, and Morlet wavelets do

not have a scaling function and therefore cannot

be used in performing DWT. Successful use of

other wavelets, such as the Meyer, the Haar, and

the Daubechies wavelets which have a scaling

function for damage diagnosis was reported by

many researchers [e.g., 89,104,105].

Example research in the literature on choos-

ing the appropriate wavelet in SHM demonstrates

the fact that there is no unique wavelet that can

be used to satisfy all SHM needs. However, the

choice is usually performed with the objective of

maximizing the success rate of the damage

pattern classifier. For example, Ogaja and Rizos

[105] suggested that the Harr wavelet transform

(HWT) is an efficient preprocessing technique for

deformation monitoring. It was demonstrated

using GPS observations that significant events in

real-time monitoring can be detected by utilizing

the principal component analysis (PCA) on

data preprocessed using the HWT. Statistical

analysis represented by means of chi-square and

F-distributions was able to identify these events

with a relatively high probability. A similar result

on the efficiency of Harr wavelets over other

types of wavelets in detecting signal discontinuity

was reported by Alarcon-Aquino and Barria

[106]. Conversely, it was demonstrated that most

wavelet functions rather than the Morlet wavelets

were able to successfully detect unbalance forces

in flexible rotors based on measured vibration

responses by combining WT and ANN [107].

Furthermore, the best results of combining the

Lipschitz exponent with WT were reported when

the Mexican Hat wavelet was used in the CWT

[101]. Nishikawa et al. [26], Valente and Spina

[108], and Ahmad and Kundu [109] showed that

it might be useful to choose a mother wavelet

that has a complex exponential function (e.g.,

Gabor mother wavelet) similar to the basis

function of FFT when previous experiences with

FFT showed promising results. The use of the

Gabor filtering technique has also gained wide

acceptance in other engineering fields, such as

image processing [110]. On the other hand,

Yiakopoulos and Antoniadis [72] argued that the

choice of the mother wavelet has much less

impact on the efficiency of the damage detection

in rolling element bearings using WT compared

to the choice of the level of decomposition.

Moreover, Wu and Wang [111] showed that
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acoustic mother wavelets that are constructed

based on wave equations rather than pure mathe-

matics were capable of decomposing and analyz-

ing seismic signals more efficiently than the

known wavelet functions.

Considering another class of wavelets,

Ovanesova and Suárez [89] showed that deflec-

tion signal discontinuity was better extracted

using biorthogonal wavelets than orthogonal

wavelets. In biorthogonal wavelets, two wavelets

and scaling functions are used rather than one

wavelet and scaling function in orthogonal wave-

lets [29,89]. Duan et al. [112] also the reported

successful use of WPT using a biorthogonal

wavelet ‘bior3.9’ mother wavelet.

This discussion was clearly not exhaustive on

the use of a particular wavelet function. It is

simply meant to show that there is no unique

choice that can be recommended for all SHM

applications using wavelets and that some func-

tions might be better used in certain situations

than others. The choice of wavelet function is

simply application dependent and requires careful

scrutiny in its use and its results.

3.5 Wavelet Aided Analysis for SHM

This section describes some of the research

that has been accomplished using WT with

another technique that brings forth the strengths

of each method for a more effective means to

SHM. For example, Staszewski [2] discussed

two approaches for using the WT for SHM

applications within the context of statistical

pattern recognition. The first method considers

classifying all operating modes of the structures

and recognizing any structural response as one of

the pre-classified modes. The second method

compared any unknown structural response to a

priori-known healthy response subsequently to

distinguish the difference between the two

responses. While almost all SHM methods utilize

one of these two approaches, two major differ-

ences between these methods can be recognized.

The first is the choice of the feature for building

the patterns, and the second is the approach used

to aid the wavelet analysis in performing further

feature extractions. Significant research utilized

artificial intelligence combined with modal

analysis to develop the response patterns and

to perform efficient feature extraction using

ANNs [113–117], genetic algorithms [8], or fuzzy

systems [118]. First WT is discussed with a

more traditional pattern recognition method,

probabilistic analysis.

3.5.1 Wavelet Transform with Probabilistic

Analysis Alarcon-Aquino and Barria [106]

reported a successful use of the WT with

Bayesian analysis in monitoring communication

networks and the ability of the wavelet-Bayesian

algorithm to detect the presence of abnormal

network performance. Moreover, Browne et al.

[119] demonstrated that cracking introduces a

discontinuity to curvatures and deformation time

history. In this method, the displacement of

nodes during a fixed time period was analyzed

using WT. It was also shown that signal disconti-

nuity detection is dependent on the regularity

of the mother wavelets chosen for analysis.

A combination of WT and principal component

analysis (PCA) was developed to detect crack

occurrence in a sewer pipe by a maintenance

robot. The proposed method transforms the pipe

response into a set of basis vectors. The basis

vectors for the WT are determined from an a

priori-known time–frequency relationship, while

the basis vectors for the PCA are determined

empirically using variance maximization criterion

[106]. Yan et al. [107] examined combining

WT and modal analysis to extract a damage

index. Modal parameters are extracted from WT

coefficients. A statistical approach is proposed to

provide confidence intervals to assess the uncer-

tainty in the measured structural damage.

3.5.2 Wavelet Transform with Artificial Neural

Networks Thomas et al. [120] showed that

engine knock can be detected if engine vibration

signal is analyzed using WT and a pattern

recognition algorithm is used to classify the time-

scale analysis of the transform. Zhao et al. [121]

suggested using a multi-dimensional wavelet-

neural network for fault diagnosis using dynamic

response information. The proposed system

utilized a non-orthogonal wavelet sigmoid basis

function to perform the transform. Moreover,

a wavelet neural network model is used for
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determining the remaining service lifetime of a

structure (known as fault prognosis). The model

combines WT with recurrent neural networks

(RNNs). The system uses the intrinsic learning

abilities of the neural network to predict crack

growth extracted from wavelet transformed

structural response signals. The crack growth is

used to provide information about the

structural health and the residual service life of

the structure [122].

Lepore et al. [123] combined the use of WT,

ANN, and simulated annealing to identify the

excitation forces in a rotary machine. A dynamic

model for the rotary machine was developed

using neural networks and was optimized using

simulated annealing algorithms. The method

proved successful in identifying the unbalanced

forces in flexible rotors based on measured

vibration responses. Furthermore, an ANN was

used to relate the energy computed using WT

from a monitored composite structure to identify

damage location and severity for the structure

[53]. Reda Taha et al. [43] suggested augmenting

WMRA with ANN to evaluate the wavelet

norm index (WNI) that represents the energy of

the signals in the wavelet domain. The suggested

index can describe the change in system dynamics

due to damage. Wavelet packet transform was

also suggested to address the poor resolution of

the signals in the high-frequency region when WT

is used. Dynamic signals measured from the

structure are transformed into wavelet packet

components. The approach was further aided by

using an ANN which relates energies computed

from the wavelet packet components to the

damage status of the structure [124]. Kim

and Parlos [125] showed successful diagnosis of

induction motor faults by combining recurrent

dynamic neural networks with WPT. Moreover,

Duan et al. [112] utilized a combination of WPT

and probabilistic neural networks (PNNs) for

damage identification. Wavelet packet transform

coefficients of the cross-correlation functions

between the structural responses are extracted.

The coefficients are then used to calculate

normalized energy coefficients that are fed as

input to the PNN with the output being different

damage scenarios. The system requires a priori

knowledge of damaged structure’s response

which reduces its practical use in detecting

damage in civil structures.

Al-Khalidy and Dragomir-Daescu [126]

suggested that the signals received from the

structure be decomposed using WMRA and

have signal noise removed. The signals are

reconstructed afterward and a signal envelope

is constructed using a digital envelope detector.

The spectrum analysis of the signal envelope is

then used to detect damage. Another method was

also suggested that combined WT and ANN

for detecting bearing faults in motor rolling

elements. Results better than those reported by

the technique explained above were achieved

when the summed bi-spectrum signatures instead

of wavelets were combined with the ANN in

the analyses. The work also shed light on

some noteworthy limitations of the WT for

fault detection [11]. Combining WT and ANN,

Su and Ye [127,128] showed how to concisely

quantify signals for structural damage identifica-

tion of composite structures. Wavelets were used

to pre-process the signals and characteristic

points were defined as a damage feature vectors

named ‘digital damage fingerprints (DDFs)’.

These DDFs were then used as training data

for ANN to recognize a damage pattern.

The method was shown to successfully recognize

hole and delamination damage in composite

structures.

3.5.3 WT with Fuzzy Logic Reda Taha et al. [104]

showed that damage detection can be performed

by means of wavelet-aided fuzzy pattern recogni-

tion. A neuro-wavelet algorithm is used to

compute an energy index that is related to

damage occurrence. Damage is then recognized

using means of fuzzy pattern recognition [104].

The system was proved capable of recognizing

damage with an acceptable level of accuracy

using finite element data simulated from a

prestressed concrete bridge. A priori knowledge is

needed using finite element (FE) analysis to

establish the fuzzy sets representing the different

status of structural health. Figure 8 provides a

pictorial representation of the fuzzy sets that

were used to classify structural health conditions.

An alternative wavelet aided approach for

damage pattern recognition that utilizes evidence
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theory has been recently developed [129]. This

approach can perform fuzzy damage pattern

recognition without a priori knowledge based on

FE analysis.

Wang et al. [130] showed that WT aided with

a neuro-fuzzy learning algorithm were capable of

enhancing a localized damage diagnosis in gear

systems. Liu et al. [88] showed that WPT-aided

with fuzzy clustering can be used to provide

damage pattern recognition for identifying

thermal damage during material machining. The

WPT was used to extract features from

acoustic emission signals used to monitoring the

machining process. It was shown that WPT can

capture features that are sensitive to thermal

damage during machining and that fuzzy

clustering of these features was an efficient means

of recognizing this damage.

3.6 Additional Comments

A compendium of uses and features of

wavelets in SHM have been demonstrated. The

different WTs might provide means for fulfilling

several needs of SHM systems. However, it needs

to be emphasized that it is not the intention of

this article to suggest replacing all Fourier-based

transforms and analysis in SHM by wavelet ones.

On the contrary and as mentioned by many

researchers on wavelets (e.g. [23,29]), the use of

wavelets shall be made from the scope of

complementary and not competitive analysis to

FT. It also needs to be emphasized that whereas

wavelets are useful tools for SHM, they are not

always necessary and shall not be used blindly.

The decision to use WT as an alternative means

of digital signal processing in SHM shall be

based on the value of the analysis and the

computation expense of using the transform.

4 Conclusions

The fast growing multi-disciplinary structural

health monitoring (SHM) has adopted multiple

formulations of the wavelet transfer (WT) in

order to overcome many of the limitations of

fast Fourier transfer (FFT) in signal processing

of structural dynamics. A substantial amount

of research was developed in the last decade

Figure 8 A fuzzy structural patterns representing the different state of structural health based on a wavelet norm index
using a neural-wavelet algorithm for structural health monitoring [104].
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trying to solve the damage detection problem

with the help of the wavelet transform (WT).

This research review examined the use of

continuous and discrete wavelet transforms,

wavelet multi-resolution analysis (WMRA), and

wavelet packet transform (WPT) to analyze

signals observed from the structure.

This article also provides a review of wavelet

theory within the context of its use in SHM

systems. The article also spanned across the use

of WT in damage diagnosis of different scales

of structures ranging from considerably large

structures (e.g., bridges) to relatively small struc-

tures (e.g., mechanical gear boxes). This work

also discussed the different features of the WT

and how researchers used these features for

damage detection. While, some stand-alone wave-

let models proved efficient by being able to

provide a damage identification feature, it

became obvious that better results were attainable

when the WT, WMRA, or WPT were combined

with some means of artificial intelligence. Such

combination made it possible to extract features

from the structural dynamics using the WT while

providing means of pattern recognition of these

features under different performance environ-

ments. Although substantial research work has

been developed in the area, there is still a

significant need for further research if wavelet

theory is to be used as a widespread tool for

intelligent SHM.

Nomenclature

A ¼ approximation signal decomposed

using WMRA

a ¼ scaling parameter

aJ,k ¼ approximation coefficients for WMRA

at Jth level of decomposition

ANNs ¼ artificial neural networks

Cac ¼wavelet coefficients of the acquired

signal at different levels of decomposi-

tion

Cec ¼wavelet coefficients of the error

signal at different levels of decom-

position

CFRPs ¼ carbon fiber reinforced polymers

Cj,k ¼ corresponding wavelet coefficients

Cpc ¼wavelet coefficients of the

predicted signal at different levels of

decomposition

CWT ¼ continuous wavelet transform

D ¼ detail signal decomposed using

WMRA

DDFs ¼ digital damage fingerprints

DFT ¼ discrete Fourier transform

dj,k ¼ details coefficients of WMRA at j-level

of decomposition

DOF ¼ degrees of freedom

DWT ¼ discrete wavelet transform

Ei
fj
¼ energy of the ith wavelet packet

component at the jth level of decom-

position

fijðtÞ ¼ ith component signal superpositioned

by the wavelet function and translated

in the time-domain at the jth level of

decomposition

FE ¼ finite element

FFT ¼ fast Fourier transform

FWT ¼ fast wavelet transform

FT ¼Fourier transform

g(k) ¼ filter associated with mother wavelet

function

gj(n) ¼ detail signal at j-level of decomposition

h(k) ¼ filter associated with scaling function

HE ¼Hölder exponent

HWT ¼Harr wavelet transform

i ¼ ith wavelet packet component signal

(Equation 13)

i ¼ complex number

j ¼ jth level of wavelet packet decom-

position (Equation 13)

j ¼ scaling coefficient/index

k ¼ shifting coefficient/index

MRA ¼multi-resolution analysis

n ¼ discrete time variable

N ¼ level of decomposition using wavelet

packet transform

M ¼ the level at which WMRA

stopped (total number of levels of

decomposition)

PCA ¼ principal component analysis

PNNs ¼ probabilistic neural networks

RNNs ¼ recurrent neural networks

SHM ¼ structural health monitoring

STFT ¼ short time Fourier transform

t ¼ time
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WMRA ¼wavelet multi-resolution analysis

WPT ¼wavelet packet transform

WT ¼wavelet transform

x(n) ¼ discrete time signal sampled at every T

seconds

x(t) ¼ continuous time signal

X(!) ¼Fourier transformed continuous time

signal

�(n) ¼ scaling function

� ¼ shifting parameter

! ¼ angular frequency

 (n) ¼wavelet basis function (discrete)

 (t) ¼wavelet basis function (continuous)

 i
j,k tð Þ ¼ a wavelet packet: a function of three

indices, where i, j, and k are integers

representing the modulation, the

scale, and the translation parameters,

respectively.
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