
An Efficient Update Propagation Algorithm

for P2P Systems

Zhijun Wanga, Sajal K. Dasb, Mohan Kumarb and Huaping Shenc

aDepartment of Computing, The Hong Kong Polytechnic University, Hong Kong
bCenter for Research in Wireless Mobility and Networking (CReWMaN)

Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019, USA

cAsk Jeeves Inc., Piscataway, NJ, 808854, USA

Abstract

As more and more applications with dynamic files are introduced in peer-to-peer
(P2P) systems, file consistency maintenance becomes important. In this paper, we
propose a novel file consistency maintenance algorithm, called Update P ropagation
Through Replica Chain (UPTReC), for decentralized and unstructured peer-to-peer
(P2P) systems. UPTReC provides a probabilistically guaranteed file consistency. In
UPTReC, each file has a logical replica chain composed of all replica peers (RPs)
which is defined as a peer that has a replica of the file. Each RP acquires partial
knowledge of the bi-directional chain by keeping a list of information about k near-
est RPs in each direction. When an RP initiates an update, it pushes the update
to all possible online (active) RPs through the replica chain. A reconnected RP
pulls an online RP to synchronize the replica status and the chain information. An
analytical model is derived to evaluate the performance of the UPTReC algorithm.
The analytical results provide insights of the system design in choosing the para-
meters. Simulation experiments are conducted to compare the performance with an
existing update propagation algorithm based on the rumor spreading scheme. The
experimental results show that UPTReC can significantly reduce (up to 70%) over-
head messages and also achieve smaller stale query ratio for files prone to frequent
updates.

Key words: Peer-to-Peer, Consistency, file replica

Preprint submitted to Elsevier 18 July 2006

1 Introduction

The peer-to-peer (P2P) systems are self-organizing distributed systems. There
are two types of decentralized P2P systems: structured and unstructured. In a
structured P2P system, the topology is tightly controlled and the files are well
deployed [16] [19]. On the other hand, an unstructured P2P system has no cen-
tral control of its topology and file placement [1][3] [5]-[8] [10] [14]. Chord [19]
is an example of a structured P2P system whereas Gnutella [1] is an example
of an unstructured P2P system. Compared to structured P2P systems which
provide efficient file searches through distributed hash table (DHT), unstruc-
tured P2P system can support key word search and are efficient for extremely
transient peers. In this paper, we focus on the decentralized and unstructured
P2P systems, in which some files may be heavily replicated to improve the
file availability, reduce file search cost and enhance system fault-tolerance. In
order to make such systems scalable and efficient, significant efforts have been
made on the development of search and replication algorithms [5] [8][10][14]. In
these algorithms, the locations of replicas for a file are well deployed based on
partial knowledge of the system to minimize the search cost and balance the
network load. However, these algorithms assume that the files are rather static
and updates occur very infrequently. Indeed, the impact of the file update has
not received much attention.

As more and more applications, such as trust management [3], bulletin-board
systems and distributed web cache [11], become available in P2P systems, the
file consistency issues become important. Consider an update on a dynamic
file, without update propagation, even if the replicas are invalidated properly,
the well placed replicas may no longer exist, thus resulting in a large search cost
or even unavailable for incoming file queries. Therefore, effective propagation
of update to all replica peers (RPs), which are defined as peers that have
the replicated files, is critical to maintain balanced network load, enhance
file availability, and reduce access latency. Hence there is a need to develop
efficient update propagation algorithms for P2P systems.

In this paper, we propose an efficient update propagation algorithm, called
Update Propagation Through Replica Chain (UPTReC), for decentralized
and unstructured P2P systems. UPTReC provides a probabilistically guar-
anteed file consistency. In the algorithm, each file has a logical replica chain
composed of all RPs. Each RP has partial knowledge of the bi-directional
chain by keeping information (i.e., identity (ID) and IP address) of k nearest
RPs (called probe peers) in each direction. The replica chain can be naturally
built and easily maintained during the file replica process. When an RP up-
dates a file, it pushes the update to its online (i.e., active) probe peers in both
direction. In each direction, the farthest online probe peer is in charge to for-
ward the update to its online probe peers along the direction. This process is

2

recursively executed to propagate the update to all possible online RPs. When
an offline (i.e., inactive) RP gets reconnected, it pulls an online probe peer to
synchronize the file status and the probe peers’ information. If the RP’s IP
address is changed, the new IP address is pushed to all possible online probe
peers which in turn update the recorded information of the reconnected RP.
A preliminary version of this paper appeared in [20].

An analytical model is derived for the UPTReC algorithm. The optimal num-
ber of probe peers is calculated to achieve the minimum file consistency main-
tenance overhead messages. The numerical results show that UPTReC is effi-
cient and scalable. The simulations are also conducted, the results show that
UPTReC significantly reduces (up to 70%) overhead messages for update prop-
agation compared to that of the rumor spreading based algorithm [9].

The rest of the paper is organized as follows. Section 2 gives an overview of
the related work. A detailed description of UPTReC is given in Section 3. An
analytical model is derived in Section 4, and numerical results are given in
Section 5. Section 6 presents performance comparisons of UPTReC with an
existing propagation algorithm. The conclusions are drawn in Section 7.

2 Related Work

The problem of searching and replicating files in P2P systems has received
much attention. However, most existing P2P systems consider files to be static
and do not address the file updating issues. In this section, we present an
overview of file consistency maintenance algorithms in both structured and
unstructured P2P systems.

2.1 Structured P2P systems

File consistency maintenance in structured P2P systems is relatively simpler
compared to that in unstructured P2P systems due to the well-defined file loca-
tions. In [17], a controlled update propagation (CUP) algorithm was proposed
to maintain consistency of cache index entries for structured P2P systems.
CUP asynchronously builds caches of index entries while the files are searched
and queried. However, the scheme only caches metadata and hence only pro-
vides limited consistency. More recently, an efficient scheme called Scalable
COnsistency maintenance in structured PEer-to-peer system (SCOPE) was
developed in [6]. SCOPE builds a replica-partition tree and keeps track of the
locations of replicas through DHTs. However, this scheme cannot be applied
to unstructured P2P systems.

3

2.2 Unstructured P2P systems

In [9], a hybrid push/pull update propagation algorithm based on the ru-
mor spreading scheme was proposed for unstructured P2P systems, such as
Gnutella [1] and P-Grid [2]. The algorithm provides probabilistically guar-
antees rather than strict consistency. In the algorithm, each RP maintains a
subset of all RPs as its responsible peers. When an RP initiates an update,
the update is pushed to its responsible peers, which in turn propagate the up-
date to their responsible peers with some probabilities. This process continues
until all possible online peers get the update. When a peer gets reconnected,
it queries multiple responsible peers to synchronize itself with the peer having
the most recent update. The algorithm in [9] is the first attempt to focus on
the effective propagation of updates to RPs in decentralized and unstructured
P2P systems. However, the overhead messages due to push updates are sig-
nificant. Moreover, the maintenance of the subset of responsible peers is not
easy, especially for RPs with dynamic IP addresses. The discussion on how to
maintain the responsible subset is not presented in [9].

An invalidation report based on push and pull (PAP) algorithm is developed in
[12] [13]. In PAP, each file has a master peer, only the master peer can update
the file. An estimated Time-To-Expire (TTE) and the master peer information
are associated with each replica. When a file is updated, its invalidation report
is broadcast to the network. Any online peers that have replicas of the file
invalidate the replicas. Once the TTE of a file expires, the file must be pulled
from the master peer if it is accessed. Only the master peer updating the file
is a strong constraint in P2P systems. Moreover, the master peer may change
its IP address and go offline, thus resulting in a small probability of an RP
successfully pulling a master peer.

3 Update Propagation Through Replica Chain (UPTReC)

In this section, we present the details of the proposed Update Propagation
Through Replica Chain (UPTReC) algorithm. The main motivation behind
UPTReC is to minimize the overhead messages for propagating updates to
RPs in decentralized and unstructured P2P systems.

3.1 System Model and Assumptions

We consider decentralized and unstructured P2P systems, such as Gnutella
where all peers are equal and no peer has a global view of the system. A peer

4

frequently joins (online) and leaves (offline) the system and has some probabil-
ity to change its IP address for each reconnection. The physical connectivity
and topology are ignored. We assume that an online peer can communicate
with the other if it knows the IP address of that peer. This is not a strong
assumption because if two peers cannot communicate with each other, they
can perceive each other as offline. In summary, the assumptions are as follows:

(1) No strong file consistency is required, but a probabilistically guaranteed
file consistency is required.

(2) All peers frequently join and leave the system.
(3) An online peer that gets an update has the ability to finish its push

process.
(4) An online peer can communicate with any other online peer if it knows

the IP address of that peer.
(5) The physical connectivity and system topology are ignored.
(6) Each RP has an ID and an IP address, the ID is fixed but the IP address

may be changed for each reconnection.
(7) Each file is associated with a version and generation time used for syn-

chronization.

The probability of an online peer to successfully finish its push process is usu-
ally over 0.95 [9]. If the probability is low for a system, the assumption (3)
can be remedied by using a reliable push process. In a reliable push process,
the push process of RPa does not stop after it propagates the update to RPb,
which in turn forwards the update to other RPs. RPa must wait for the con-
firmation from RPb indicating the update has been successfully propagated.
If the confirmation is not received within a certain period, RPa probes RPb

again; and if RPb is offline, RPa contacts another RP to continue the push
process. The reliable push process incurs some additional overhead messages
for confirmation. Due to low fail rates, we make assumption (3) to simplify
our algorithm analysis.

3.2 Push Update Through Replica Chain

Figure 1 (a) shows a logical replica chain for a file with N replicas. Each RP
is a node on the chain and has a unique ID. For simplification, node and
RP are used alternatively in the following of the paper. Each node maintains
information (i.e., ID and IP address) about k (typically k is tens) nearest
nodes in each (left and right) direction of the chain. These 2k nodes are called
probe nodes (peers). Two nodes are said to have h-hop distance if there are
h-1 nodes between them. For example, node i and node i+k-1 have k-hop
distance.

5

i−k i−1

Offline RP

i

k11k

i+1 i+k−2 i+k−1 i+k i+k+1

Online RP

left k probe nodes right k probe nodes

k−1

1 2 i

(a)

(b)

i+1 N−1 N

Fig. 1. (a) Logical Replica Chain; (b) Update propagation of node i. Node i ± m
(0 < m ≤ k) is the mth probe node in right (left) direction.

Figure 1 (b) shows the update propagation process of node i. When node i
initiates an update (node i is called the update initiating node), the update
is pushed symmetrically along both left and right directions of the chain.

Now let us show the process of node i pushing the update to node N (right side
of the chain). Node i has information of k probe nodes in right direction (from
node i+1, called the 1st probe node, to node i+k, called the kth probe node).
To propagate the update, node i sends a probe message to each of the probe
nodes in this direction (i.e., node i+k, ..., i+1). The farthest online probe node
(here node i+k-1) is chosen to be the update relay node, which will further
propagate the update through the chain along the direction. All other online
probe nodes of i, such as node i+k-2, will receive but do not propagate the
update. After node i determines its update relay node i+k-1, it first sends the
update to that node with the relay flag bit set as 1 and then sends the update
to all other online probe nodes with the relay flag bit set as 0. When an online
probe node receives the update, it first checks the update relay flag bit. If the
bit is 0, it only needs to receive the update. Otherwise, it needs to propagate
the update through the chain along the direction. The process of the update
propagation is similar to node i except not to send the probe messages to its
probe nodes which are also the probe nodes of i. Because all these nodes are
probed by i and they should be offline. As shown in Fig. 1(b), when node
i+k-1 gets the update, it finds that the update relay flag bit is 1, and hence
it immediately sends the probe messages to its probe nodes in the right hand
side which are not the probe nodes of i, i.e., nodes i+2k-1, ..., i+k+1. The
process is repeatedly executed to propagate the update through the chain. If
all k probe nodes of an update relay node are offline, the propagation process
is stopped and the update cannot be propagated in this direction. The same
process is executed for node i to propagate the update to node 1. Figure 2
gives the update propagation pseudo codes of a node in the chain.

6

Procedure of Update Propagation of an RP:
IF (Initiate an update)

For (all probe peers in both right and left hand side)
Send a probe message

Wait for probe peers’ acknowledgment back
For the farthest online probe peers in both right and left sides

set the relay fag bit as 1, and send the update
For other online probe peers

set the relay flag bit as 0, and send the update
IF (Receive an update from RPj in right (left) side)

IF (the relay flag bit is 1)
For (all probe peers which are not the probe peers of

RPj in the left (right) side)
Send a probe message

Wait for probe peers’ acknowledgment back
For the farthest online probe peers

set the relay fag bit as 1, and send the update
For other online probe peers

set the relay flag bit as 0, and send the update

Fig. 2. Procedure of Update Propagation of an RP

3.3 Pull After Online

An RP may go offline. During an RP’s offline period, it may miss some file
updates and/or some updated chain information. Therefore, when an offline
RP gets reconnected, it needs to pull some online RPs to synchronize the
status of the file and its probe nodes. An RP can probe an online probe node
from its nearest probe node to farthest one in each direction. Whenever an
online RP is probed in one direction, the file and the information of its probe
nodes are synchronized. If its IP address is not changed, the pull process in
this direction is finished. The same process is executed in the other direction.
If the IP address of the reconnected RP is changed, it needs to send its ID and
new IP address to all its probe nodes. Then the pull process is finished. If no
online probe node can be pulled (due to probe nodes going offline or changing
IP addresses), the reconnected RP needs to connect its probe nodes through
flooding search to synchronize the file status and the chain information if its
IP address is changed.

3.4 Write-write protection

In UPTReC, if two RPs update a file and push the updates through the chain
at the same time, there is a write-write confliction. In this case, one RP in

7

the chain can detect a write-write confliction when it receives two updated
files generated by two different RPs at the same time. Whenever the write-
write confliction is detected, the RP can send the confliction information back
to the two update initiating RPs, which in turn solve the confliction through
communication with each other, then the latest updated file is pushed through
the chain again. Due to low write-write confliction rate [15] in P2P systems,
we ignore the write-write confliction costs in our analysis below.

3.5 Chain Construction and Maintenance

Now let us discuss how to construct and maintain a replica chain. After a peer
initiates a file in a system, the file can be searched, fetched and replicated
by other peers. Each replica is copied from one of other replicas. If each RP
maintains the information of all RPs which fetched the file from it, then a
replica tree is naturally constructed. Figure 3 (a) shows a replica tree composed
of 5 RPs as the root node at RP1. If all RPs are always online, an update
from any RP can be successfully propagated to any other RPs. For example,
when RP3 initiates an update, it sends the update to RP1, RP4 and RP5.
Each RP in turn updates its replica and then relays the update to all its
children and parent except the one which sent the update. The update is
successfully propagated through all RPs. A new replica tree with RP3 as the
root is shown in Figure 3 (b). However, frequently disconnected peers make
such a replica tree ineffective in terms of update delivery. In order to increase
the probability of successfully propagating the update, each RP must maintain
the information of multiple RPs along each path. Due to the properties of the
general tree, some RPs may maintain the information of a large number of
RPs, while some other RPs maintain information of very few RPs. To balance
the overhead associated with the file maintained by each RP, a replica chain
can be constructed from the replica tree as explained below.

2

1

3

4 5

3

(a) (b)

2

1 4 5

Fig. 3. RPs naturally constructs a replica tree. (a) Root at RP1; (b) New tree with
root at RP3.

Figure 4 shows the process of constructing a replica chain during the replica
process. Figure 4 (a) presents the first four RPs which naturally form a chain.
In this case, a new node locates at the head or tail of the chain. When a
new peer replicates the file fetched from another RP, the corresponding chain

8

information is also fetched. The information of a new RP is forwarded to all
possible RPs which should have the information of the new RP. Figure 4 (a)
illustrates the process for an RP, such as RP4 joining the chain. When RP4

fetches the file from RP3, the replica chain including information about RP1

and RP2 is also fetched. The RP3 adds RP4 into the chain, and pushes the
information about RP4 to RP1 and RP2. However, if RP1 for example is offline
at that time, it needs to probe either RP2 or RP3 to get the updated chain
information.

1 23

1 234 5

4

(b)

(a)

Fig. 4. The process for construction a replica chain. (a) The new replica locates on
the head or tail of the chain; (b) The new replica locates at the middle of the chain.

If a new peer joins in the middle of a chain, it needs to push its information
to at most k RPs in the chain along the direction opposite to the RP which
provides the file. For example, when RP5 joins the chain by obtaining the
chain information from RP3, RP5 pushes the information to RP4.

When RPi removes a replicated file, it sends a message to each of its probe
peers to get removed from the replica chain. All online probe peers get the
message and in turn remove RPi from the chain. All offline probe peers get
this message when they reconnect. If all probe peers are offline, the RP is
not removed from the chain but will inform the reconnecting peers when they
probe. The process of adding or removing a replica requires up to 2k messages.

4 Performance Analysis

The performance of UPTReC is analyzed in this section. One critical issue
concerning the UPTReC algorithm is to determine the value of k. If k is too
small, an update may not be successfully propagated through the chain. If k
is too large, the overhead cost of chain maintenance is high.

9

4.1 Performance Analysis

Our analytical modeling is based on the assumptions made in Section 3.1.
Some parameters and measurement metrics are defined below.

• N : number of nodes in the chain, i.e., the total number of replicas of a file
• k: number of probe nodes in one direction
• Pon: probability of an RP to be online
• Poff : probability of an RP to be offline (Poff=1-Pon)
• PcIP : probability of an RP to change its IP address after each reconnection
• h: number of hops an online RP from the update initiating peer
• T : average period of a peer online and offline cycle
• λ: access rate of a file in the whole system
• Tup: average file update period
• P s

h :probability of successfully propagating an update to an online RP with
h-hop distance

• P s
h(m): probability of successfully propagating an update to an online RP

with h-hop distance while the online RP only counts the contributions of
its m farthest (1 ≤ m ≤ k) probe peers (i.e., the kth, ..., (k-m+1)th probe
peers)

• P s
pull(k): probability of a reconnected RP to successfully pull an online RP

• Cflood: average number of messages to find an online probe peer through
flooding search

• Cpush(N): maximum number of messages to push an update through an
N -node replica chain

• Cpull(k): average number of messages in each pull procedure of a reconnected
peer

• OHQ: number of overhead messages per query of file consistency mainte-
nance (including overhead of push and pull)

• Pstale(N): stale query probability for a file with N replicas
• D: update propagation delay (in hops)

In UPTReC, for a chain with N RPs, the maximum number of probe messages
to push an update through the chain is N , because each RP at most receives
one probe message. Thus we have

Cpush(N) ≤ N (1)

When an offline RP rejoins the system, it pulls an online RP from its probe
peers in each direction to synchronize the file status and probe peers’ informa-
tion, the pull process in one direction stops whenever an online RP is pulled. If
a probe peer is offline or online but with different IP address from that recorded
by the reconnected RP, it cannot be pulled. We use Pfail=Poff+PonPcIP to
represent the probability that a probe peer cannot be pulled by a reconnected

10

peer. Then the probability of a reconnected RP to successfully pull an online
RP is

P s
pull(k) = 1− (Pfail)

2k (2)

If the IP address of the reconnected RP is changed, it needs to contact all probe
peers once, hence 2k probe messages are needed. If no probe peer is probed,
it needs to search a probe peer through flooding. So the average number of
probe messages for each pull process is:

Cpull(k) = PcIP [2k + (1− P s
pull(k))Cflood] +

2(1− PcIP)[(1− Pfail)
k−1∑

i=1

i(Pfail)
i−1 + k(Pfail)

k−1)]

= PcIP [2k + (1− P s
pull(k))Cflood] +

2(1− PcIP)(
1− P k

fail

1− Pfail

) (3)

In Eqn. (3), the first term is the pull cost for a reconnected RP with changed
IP address, and the second term is the pull cost when its IP address is not
changed. In the second term, if an online probe peer is pulled in a direction,
the pull process is stopped in that direction, and if no online probe peer is
pulled, all k probe peers are needed to be pulled once. The pull process is
symmetrical in both directions.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

h−k h−k+m−2 h−k+m−1 h−k+m

h
P (m)

s

h

s
P (1)

h−1 h

P (m−1)
s

h

Fig. 5. Calculation diagram of P s
h(m).

Based on the definitions, we have P s
h = P s

h(k), and P s
h(m) can be recursively

calculated. Figure 5 shows the calculation diagram of P s
h(m). Here RPh has

h-hop distance from the update initiating peer. P s
h(m) represents the prob-

ability of RPh to get the update if only its farthest m probe peers (i.e., its
kth, (k− 1)th, ..., (k−m)th probe peers) are considered, these probe peers are
h-k, h-k+1, ..., h-k+m-1 hop distance from the update initiating peer, we call
these RPs as RPh−k, RPh−k+1, ..., and RPh−k+m−1 as shown in Figure 5. For
example, P s

h(2) is the probability for RPh to get an update if only probe peers
RPh−k and RPh−k+1 are considered to push the update to RPh, and all probe
peers RPh−k+2, ..., RPh−1 are not considered. All these probabilities can be

11

recursively calculated by the following three equations:

If h ≤ k and 1 ≤ m ≤ k,

P s
h(m) = 1 (4)

If h > k and m = 1,

P s
h(m) = PonP

s
h−k(k) (5)

If h > k and 1 < m ≤ k,

P s
h(m) = P s

h(m− 1) + PonP
m−1
off P s

h−k+m−1(k −m + 1) (6)

Eqn. (4) means that an online RP is a probe peer of the update initiating peer,
it can absolutely get the update. Eqn. (5) indicates that only considering
its farthest probe peer RPh−k, if it is online and successfully receives the
update, then RPh can successfully get the update. Eqn. (6) can be explained
by considering the mth farthest probe peer RPh−k+m−1, the probability of
successfully receiving the update by peer RPh is the probability of successfully
receiving the update through its farthest m-1 probe peers plus the contribution
of the mth farthest probe peer. The mth probe peer has contributions only if all
farthest m-1 probe peers are offline, because if any of these peer is online, the
contribution has been counted through that peer. In this case, the probability
of successfully getting the update for the mth farthest probe peer is only
through its k-m+1 probe peers (its first m-1 probe peers are offline), i.e.,
P s

h−k+m−1(k-m+1).

The number of overhead message per query of file consistency maintenance is:

OHQ =
1

λ
(
Cpush

Tup

+ N
Cpull(k)

T
) (7)

The optimal k is determined by ∂OHQ
∂k

= 0, that is:

PcIP + P 2k
failCfloodPcIP ln(Pfail)− (1− PcIP)

P k
failln(Pfail)

1− Pfail

= 0 (8)

However, this optimal k may not satisfy the guaranteed consistency require-
ments. For a replica chain with N RPs, the maximum number of hops from
an update initiating peer to an online RP is N -1. Hence any online RP has
a probability larger than P s

N to get the update. An offline RP has P s
pull(k)

12

probability to synchronize with an online RP, hence each online RP has at
least P s

NP s
pull probability with a valid file. Then the stale query probability is

upper bounded by:

Pstale(N) ≤ 1− P s
N(k)P s

pull(k) (9)

In Eqn. (9), Pstale decreases as k increases. So the optimal k must satisfy Eqn.
(9) while have the minimal OHQ. The optimal k can be obtained by Eqns. (7)
- (9). The overall performance of UPTReC is formulated by Eqn.s (1) - (9).

5 Numerical Results

The numerical results are presented here to characterize the optimal value of k
under some probabilistically guaranteed file consistency. The characteristics of
Gnutella system are measured in [18] and [4]. The results show that about 60%
peers have 0.2 or less online probability, and 10% peers have more than 0.8
online probability, and 50% peers stay 60 minutes or less while 10% peers stay
300 minutes or more in each online session. Moreover, about 40% peers change
their IP addresses in one day and about 50% in seven days. Our parameters
are chosen based on theses statistics.

5.1 Impact of peer online probability

We first study the impact of the peer online probability. In this case, we set N
= 5,000, Cflood = 1,000,000, T = 7,200 sec, and Tup=1800 sec. The optimal
values of k and the probability of successfully propagating update through
the chain versus Pon with PcIP = 0.5 and 0.3 are shown in Tables 1 and 2,
respectively.

From the tables, we know that the optimal value k decreases as the peer online
probability increases. The optimal k is determined by the chain maintenance
and RP rejoining costs. For each rejoining RP, it needs to probe at lease
one online probe peer if its IP address is changed. If no one can be pulled
successfully, it needs to search one online RP through flooding search which
costs a lot of messages. Hence, an RP needs to keep information of more probe
peers with smaller Pon. Similarly, an RP needs to record information of more
probe peers with larger PcIP so that it has high probability to successfully
probe one online probe peer to rejoin the chain. This can be seen in Tables 1
and 2.

For PcIP = 0.5, P s
N is over 0.99 for all Pon, and hence we can choose the optimal

13

Table 1
Optimal k and P s

N vs Pon at PcIP = 0.5

Pon 0.1 0.2 0.3 0.4 0.5

Optimal k 105 54 36 27 21

P s
N 0.992 0.994 0.996 0.998 0.999

Table 2
Optimal k and P s

N vs Pon at PcIP = 0.2

Pon 0.1 0.2 0.3 0.4 0.5

Optimal k 77 39 26 19 15

P s
N 0.862 0.848 0.886 0.927 0.999

K 103 52 34 24 18

Table 3
Optimal k and P s

N vs N

N 2000 4000 8000 16000 32000

Optimal k 36 36 36 36 36

P s
N 0.998 0.997 0.994 0.987 0.975

k number of probe peers. But for PcIP = 0.2, the P s
N is low for small Pon. To

maintain P s
N larger than 0.99, the number of probe peers must be increased,

Table 2 shows the minimal k (denoted as K) to ensure P s
N > 0.99. Then K is

the optimal value of k which can provide P s
N larger than 0.99.

5.1.1 Impact of number of replicas

We study the scalability of UPTReC. The parameters are set to the same as in
the previous case, excluding Pon = 0.3 and PcIP = 0.5. The maximum number
of hops in a replica chain increases as the number of RPs increases. In P2P
systems, the typical number of replicas for a file varies from tens to thousands.
Table 3 shows the results of P s

h as h increases from 2,000 to 32,000. The results
indicate that by keeping the optimal number of k = 36 probe peers, P s

N only
decreases from 0.998 to 0.975 when N increases from 2,000 to 32,000. This
indicates that the UPTReC algorithm has good scalability in terms of the
number of RPs.

14

6 Performance Comparisons

The performance comparisons between UPTReC and the update propagation
algorithm based on the rumor spreading scheme (in short, Rumor) proposed
in [9] are presented in this section. The overhead messages of file consistency
maintenance come from push and pull processes, the major messages of a
fast (slow) updating file is from the push (pull) process. We use simulations to
study the impact on the performance of update frequency that is not analyzed
in Rumor algorithm.

The both algorithms , i.e., UPTReC and Rumor, focus on the efficient up-
date propagation to all online RPs. Note that the update propagation is only
through the RPs. Moreover, both algorithms are independent on the file search
and replication. Therefore, we simulate only RPs instead of a whole P2P sys-
tem to focus on the file consistency maintenance cost. The system topology
and physical connectivity are ignored.

In the simulations, each RP alternatively leaves and joins the system as a
Poisson process. The file update is also assumed to follow Poisson distribution.
When an update comes, the update initiating peer is randomly chosen from
an online RP. In a real P2P system, a file can be searched and replicated by
other peers, and an RP may drop a replica. As stated in the previous section,
adding a new RP or removing an RP costs 2k messages to maintain the chain,
but the subset maintenance is not discussed in Rumor algorithm [9]. Hence,
we ignore the comparison on the costs of the chain and subset maintenance in
the simulation by assuming a static chain and subsets. Moreover, all RPs are
considered to have static IP addresses, because no method is discussed to deal
with dynamic IP address in Rumor algorithm. The chain is randomly built,
i.e., each RP has equal probability to appear at any location on the chain.
Each RP keeps information of k probe peers in each direction. In the Rumor
algorithm, each peer randomly picks up R RPs as its responsible peers. In
the 0 push round, the update as well as a replica list are forwarded to its all
responsible peers. The replica list records all RPs in which the update has been
sent. In the t (≥ 1) push round, a peer has a probability PF (t) = f t to push
the update to its any responsible peer that is not on the replica list, where f
is a constant between 0 and 1. A RP that receives an update is assumed to
have ability to finish its push process. The pull process in both algorithms is
similar. In UPTReC, when an online probe peer is probed in a direction, the
pull process in this direction is finished. In Rumor, two online probe peers are
probed in each pull process.

Let the file have an access rate λ for the whole system, each access randomly
fetches the file from an online RP. When an online RP answers a query, if the
file is in its newest version, a valid query is counted, otherwise a stale query

15

Table 4
Parameter Setup I

N λ T Tup

10000 1 10000 10000

is counted. Due to focus on the efficiency of file consistency maintenance, the
parameters λ, T , and Tup are set to unit time.

In our simulation model, when RPa pushes an update to RPb, it first probes
RPb. If RPb is online, the update is forwarded. Thus the total number of
update sent out is equal to the number of online RPs which have received
the update. This number is almost equal in both algorithms if the stale query
ratio is close to each other. We compare the overhead messages for probing
all RPs rather than the number of update themselves. Of course, the update
can be sent out instead of the probe messages. However, if the update is large,
this may cause large extra traffic for sending the update to offline RPs.

6.1 Overhead messages for each push process

The number of overhead messages in the push process and the stale query
ratio are studied by varying the peer online probabilities. The probability
of successfully propagating an update is determined by the probability of a
peer being online and the number of probe (responsible) peers. Based on the
analytical results in the previous section, we set 2kPon = 20 (or RPon = 20)
to ensure a low stale hit probability. Thus, Pon = 10% corresponds to k = 100
(R = 200), and Pon = 50% corresponds to k = 20 (R = 40). The other
parameters are set as in Table 4. Based on these setups, there are 1 query
per RP and 1 update in each RP online and offline cycle (T period) on the
average. Two different f values (0.8 and 0.9) are used in the Rumor algorithm
to show the relationship between the stale query ratio and the number of
overhead messages. The number of overhead messages in Rumor algorithm is
determined by the stale query ratio, a larger f or R makes a lower stale query
ratio. We set the R value as 2k which is the total number of probe peers kept
by an RP in UPTReC. For such R value, high f values are needed to ensure a
similar stale query ratio between UPTReC and Rumor algorithm, and hence
f is set to 0.8 and 0.9.

Figures 6 and 7 show the number of overhead messages in the push process
and the stale query ratio of both algorithms. As shown in these figures, a
smaller f reduces the number of overhead messages in the Rumor algorithm,
but the stale query ratio is increased. When f drops from 0.9 to 0.8, the
number of overhead messages drops about 20%, but the stale query ratio is
almost doubled.

16

10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 T
he

 n
um

be
r

of
 o

ve
rh

ea
d

m
es

sa
ge

s
pe

r
up

da
te

 (
xN

)

Average peer online probability (%)

UPTReC
Rumor−f=0.8
Rumor−f=0.9

Fig. 6. The number of overhead messages for push process versus peer online prob-
ability

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ta

le
 q

ue
ry

 r
at

io
 (

%
)

Average peer online probability (%)

UPTReC
Rumor−f=0.8
Rumor−f=0.9

Fig. 7. Stale query ratio (%) versus peer online probability

The results show that the number of push overhead messages divided by the
number of RPs (N) in UPTReC is almost 1, and this value is more than 2.4
in Rumor. The stale query ratio for the UPTReC is less than 1.2% for all
ranges of Pon from 10% to 50%. But the stale query ratio for Rumor increases
from 1.2% to 4.8% when Pon increases from 10% to 50% with f = 0.8. The
stale query ratio can be reduced to less than 2.5% but incurs more than 20%
overhead messages if f is set to 0.9. The results indicate that compared with
Rumor, UPTReC reduces more than 60% overhead messages to put an update
while achieving a smaller stale query ratio.

6.2 Overhead messages per query

The number of overhead messages per query in various update frequency is
investigated in this case. We measure two performance metrics: the number of
overhead messages per query and stale query ratio. The number of overhead
messages per query is defined as the total number of consistency maintenance
messages which include overhead messages of the push and pull processes

17

divided by the total number of queries in the system. We set two R values (80
and 100) for Rumor algorithm in the simulation to study the effects of R. The
other system parameters are set as in Table 5.

Table 5
Parameter Setup II

N λ Pon T k f

10000 1 30% 10000 40 0.9

Figures 8 and 9 show the results of the number of overhead messages per
query and stale query ratio versus different update frequencies. When the
average update period (Tup = 105) is much larger than the peer online and
offline cycle, the overhead messages of the pull process are the major source.
Due to the similar pull process, the number of overhead messages per query
for two algorithms is close in this case. As the update period decreases, the
number of overhead messages from the push process increases and dominates
the number of overhead messages from the pull process. This leads to a better
performance of UPTReC than that of Rumor. When the update period is
much shorter than the peer online and offline cycle, the number of overhead
messages per query in UPTReC is more than 70% lower than that of Rumor.
The stale query ratio in UPTReC is less than 0.1% in all range of update
periods. In Rumor, when the update frequency is high, the stale query ratio
is about 2% for R = 80, and it is reduced to less than 1% when R = 100. The
effect of R is similar to f . A larger R or f gives a lower stale query ratio but
costs more overhead messages. The results show that the UPTReC can save up
to 70% overhead messages while providing better probabilistically consistency
guarantee for highly update files compared to the Rumor algorithm.

10
3

10
4

10
5

5

10

15

20

25

30

35

40

45

50

T
he

 n
um

be
r

of
 o

ve
rh

ea
d

m
es

sa
ge

s
pe

r
qu

er
y

Average Update Period

UPTReC
Rumor (R=80)
Rumor(R=100)

Fig. 8. The number of overhead messages per query versus average update period

Through these comparisons, we know that UPTReC can significantly reduce
overhead messages to propagate an update with a smaller stale hit ratio com-
pared to the Rumor algorithm.

18

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
ta

le
 q

ue
ry

 r
at

io
 (

%
)

Average Update Period

UPTReC
Rumor (R=80)
Rumor (R=100)

Fig. 9. Stale query ratio (%) versus average update period

7 Conclusions and Remarks

In this paper, we propose an efficient algorithm, UPTReC, to propagate up-
date for decentralized and unstructured P2P systems. UPTReC provides prob-
abilistically guaranteed file consistency. In UPTReC, each file has a logical
replica chain composed of all RPs. Each RP has a partial knowledge of the
chain. When an RP updates the file, it pushes the update to all possible online
RPs through the replica chain. When an offline RP gets reconnected, the file
status is synchronized by pulling an online RP.

An analytical model of the proposed algorithm is derived. The performance
results of UPTReC compared to that of the Rumor algorithm shows that
UPTReC can reduce up to 70% overhead messages while ensures a smaller
query ratio for highly updating files.

As the growing of application in P2P systems, strong cache consistency is a
further requirement, and this will be considered in our future works.

References

[1] Open Source Community, Gnutella. In http://gnutella.wego.com, 2001

[2] K. Aberer, P-Grid: A Self-organizing Access Structure for P2P information
Systems. In Proceedings of the Sixth International Conference on Cooperative
Information Systems, Trento, Italy, 2001.

[3] K. Aberer, Z. Despotovic, Managing Trust in a P2P Information System.
In Proceedings of the 10th International Conference on Information and
Knowledge management, pp310-317, ACM press 2001.

[4] R. Bhagwan, S. Savage and G. M. Voelker, Understanding Availability. In
Proceedings of the 2nd International Workshop on Peer-to-peer systems, 2003.

19

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, N. lanham and S. Shenker.
Making Gnutella-like Peer-to-Peer Systems Scalable. In Proceedings of ACM
SIGCOMM’03, 2003.

[6] X. Chen, S. Ren, H. Wang and X. Zhang. SCOPE:Scalable Consistency
Maintenance in Structured P2P Systems. In Proceedings of IEEE INFOCOM,
pp 1502-1513, 2005.

[7] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer
Networks. In Proceedings of the ACM SIGCOMM’02 Conference, 2002.

[8] E. Cohen, A. Fiat and H. Kaplan, Associative Search in Peer-to-Peer Networks:
Harnessing and Latent Semantics. In Proceedings of IEEE INFOCOM’03, 2003.

[9] A. Datta, M. Hauswirth and K. Aberer, Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems, In Proceedings of IEEE ICDCS’03, pp76-88,
Rhode Island, May, 2003.

[10] B. Gedik and L. Liu, PeerCQ: A Decentralized and Self-Configuration P2P
Information Monitoring System, In Proceedings of IEEE ICDCS’03, pp490-499,
Rhode Island, May, 2003.

[11] S. Iyer, A. Rowstron and P. Druschel. Squirrel: A Decentralized Peer-to-peer
Web Cache. In Proceedings of the 21th ACM Symposium on Principles of
Distributed Computing (PODC), 2002.

[12] J. Lan, X. Liu, P. Shenoy and K. Ramaritham. Consistency Maintenance in
Peer-to-Peer File Sharing Networks. In Proceedings of Third IEEE Workshop
on Internet Applications, June, 2002

[13] X. Liu, J. Lan, P. Shenoy, and K. Ramaritham. Consistency Maintenance in
Dynamic Peer-to-Peer Overlay Networks. In Computer Networks, v50, pp 859-
876, 2006

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in
Unstructured Peer-to-Peer networks. In Proceedings of the 16th Annual ACM
International Conference on Supercomputing, 2002

[15] T. W. Page, R. G. Guly, J. S. Heidemann, D. Reiher, A. Goel, G. H. Kuenning,
and G. J. Popek. Perspectives on Optimistically Replicated Peer-to-Peer Filing.
Software-Practice and Experience, pp155-180, 28(2), 1998.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In Proceedings of ACM SIGCOMM, 2001

[17] M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation in
Peer-to-Peer Networks. In Proceedings of the 2003 Annual USENIX Technical
Conference, June 2003.

[18] S. Saroiu, P.K. Gummadi and S. Gribble. A Measurement Study of Peer-to-
Peer File Sharing Systems. In Proceedings of SPIE Conference on MUltimedia
COmputing and Networking, 2002.

20

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings
of ACM SIGCOMM, 2001.

[20] Z. Wang, S. K Das, M. Kumar and H. Shen, Update Propagation Through
Replica Chain in Decentralized and Unstructured P2P Systems. In Proceedings
of IEEE International Conference on Peer-to-Peer Computing (P2P), pp 64-71,
2004

21

