
Virtual Network Embedding Through Topology-Aware
Node Ranking

Xiang Cheng, Sen Su∗, Zhongbao Zhang,
Hanchi Wang, Fangchun Yang

Beijing University of Posts and
Telecommunications

{chengxiang,susen, zhongbaozb,
luigiking, fcyang}@bupt.edu.cn

Yan Luo, Jie Wang
University of Massachusetts Lowell

yan luo@uml.edu, wang@cs.uml.edu

ABSTRACT
Virtualizing and sharing networked resources have become a
growing trend that reshapes the computing and networking
architectures. Embedding multiple virtual networks (VNs)
on a shared substrate is a challenging problem on cloud com-
puting platforms and large-scale sliceable network testbeds.
In this paper we apply the Markov Random Walk (RW)
model to rank a network node based on its resource and
topological attributes. This novel topology-aware node rank-
ing measure reflects the relative importance of the node. Us-
ing node ranking we devise two VN embedding algorithms.
The first algorithm maps virtual nodes to substrate nodes
according to their ranks, then embeds the virtual links be-
tween the mapped nodes by finding shortest paths with un-
splittable paths and solving the multi-commodity flow prob-
lem with splittable paths. The second algorithm is a back-
tracking VN embedding algorithm based on breadth-first
search, which embeds the virtual nodes and links during the
same stage using node ranks. Extensive simulation experi-
ments show that the topology-aware node rank is a better
resource measure and the proposed RW-based algorithms in-
crease the long-term average revenue and acceptance ratio
compared to the existing embedding algorithms.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms; Design; Performance

Keywords
Network Virtualization; Cloud Computing; Virtual Network
Embedding; Topology-aware; Random Walk; Markov Chain

1. INTRODUCTION
Sharing virtualized resources enables new computing and

networking paradigms such as cloud based computing plat-
forms [1] and sliceable network testbeds [15]. Users of a
cloud platform or a network infrastructure request their
share of resources including CPU capacities, storage space,
network bandwidth, etc., while the infrastructure providers

∗Corresponding author of this paper is Prof. Sen Su

make their best effort to serve the requests, which are also
known as virtual networks (VNs). The allocation of re-
sources to VNs in such a virtualization environment is criti-
cal to both users’ computation needs and the resource providers’
monetary gain.

In the multi-tenant network virtualization environments,
infrastructure providers (InPs) (e.g., cloud providers) and
service providers (SPs) (e.g., cloud users/tenants) play two
decoupled roles, namely, InPs manage the physical infras-
tructure while SPs create VNs and offer end-to-end services
[27, 14, 8]. Mapping VN requests of the SPs onto the sub-
strate network of the InPs, also known as VN embedding,
is NP-hard[28, 5]. Thus, devising heuristics has become the
main line of research in VN embedding [13, 29, 22, 28]. The
early algorithms measure the resource of a node by its CPU
capacity, or bandwidth, or both, without considering the
topological structure of the VNs and the underlying sub-
strate network. Yet the topological attributes of nodes have
significant impact on the success and efficiency of mapping
outcomes. It would make sense to measure a node’s re-
sources and its topological attributes at the same time.

Inspired by PageRank used by Google’s search engine,
which measures the popularity of web pages based on Markov
random walks, we use the same theory to measure topology-
aware resource ranking of a node, called NodeRank, which
reflects the resource and quality of connections of a node.
PageRank considers a link from page A to page B as a vote,
and a page is considered important if a number of important
pages vote to it. In such a way, the topology of the world
wide web influences the PageRank of a web page. In VN em-
bedding, if a node links forward to a number of nodes with
relatively high importance, this node would also be consid-
ered important, where the importance refers to the relative
resource quality of a node. We will take into account not
only the availability or requirements of the CPU and link re-
sources of the node, but also its topological characteristics,
i.e., the quality of its neighbors. Treating the connectivity
between two nodes as a Markov chain transition with certain
probability, we can calculate the relative resource quality of
a node with a Markov chain model based on the topology of
the network.

We devise two new VN embedding algorithms called RW-
MaxMatch and RW-BFS based on NodeRanks. They first
compute the node rank for each node in the VN request
and for each node in the residual substrate network. RW-
MaxMatch is a two-stage VN embedding algorithm. In the
first stage it maps a virtual node with the highest rank to

ACM SIGCOMM Computer Communication Review 39 Volume 41, Number 2, April 2011

a substrate node with the highest rank, a virtual node with
the second highest rank to a substrate node with the sec-
ond highest rank, and continues in this manner for the rest
of the virtual nodes. In the second stage it embeds vir-
tual links using the shortest path algorithm if path splitting
[28] is not supported by the substrate network, or using the
multi-commodity flow algorithm if the substrate supports
path splitting. Similar to the existing two-stage VNE al-
gorithms, RW-MaxMatch may lead to higher substrate net-
work resource consumption and restrict the ability of the
substrate to accept additional future requests. RW-BFS can
help solve this problem. It is a backtracking VN embedding
algorithm based on breadth-first search that maps virtual
nodes and virtual links during the same stage, aiming to
increase the resource utilization of the substrate resource.
Extensive simulation experiments show that the topology-
aware node rank is a better node resource measure and the
proposed RW-based algorithms increase the long-term av-
erage revenue and acceptance ratio compared to existing
embedding algorithms.

This paper presents the following major contributions:

• We formulate a Markov random walk model to com-
pute topology-aware resource ranking of nodes in a
network, which serves as the basis of embedding vir-
tual networks on substrate networks. To the best of
our knowledge, this work is the first to apply random
walks in solving VNE problems.

• We devise two VNE algorithms based on topology-
aware node ranks. Both two-stage and one-stage map-
ping strategies are investigated.

• We conduct a thorough comparison between our algo-
rithms and a wide range of existing algorithms through
extensive simulations. We design a VNE simulator and
make it publicly available to the research community.

The rest of the paper is organized as follows. In Section
2, we discuss the related work. Section 3 presents the net-
work model and formalizes the VN embedding problem. In
Section 4 we present the method of computing the topology-
aware resource ranks of nodes using the random walk model.
Section 5 describes RW-MaxMatch and RW-BFS. The VN
embedding algorithms are evaluated in Section 6. Section 7
concludes the paper.

2. RELATED WORK
The VN embedding problem is similar to the virtual pri-

vate network (VPN) provisioning problem [18]. The ma-
jor difference between them is on resource constraints. In a
typical VPN request, the only resource constraints are band-
width requirements from sources to destinations specified by
a traffic matrix. There are typically no resource constraints
on the nodes (e.g., CPU) and their locations. Another sim-
ilar problem is the network testbed mapping problem. The
Assign algorithm [24] used in the Emulab testbed considers
constraints on both nodes and links, where the node con-
straint is provided as the exclusive use of nodes, i.e., differ-
ent virtual networks cannot share the same substrate node.
VN embedding, however, allows substrate nodes and links
to be shared by multiple VNs.

Early studies on VN embedding either assume that the
VN requests are known in advance (an offline version) [29,

22]; or deal with at most one type of constraints (node or
link) [13, 29, 22]; or perform no admission control when the
resource of the substrate network is insufficient [13, 29, 22];
or focus only on the backbone-star topology [22].

Without reducing the problem space, Yu et al. [28] intro-
duce the mechanisms of substrate supporting path splitting
and migration. Chowdhury et al. [9], while considering
the same online VN embedding problem space as in [28],
also consider location requirements of virtual nodes and use
mixed integer programming (MIP) to solve the VN embed-
ding problem.

Lischka et al. [21] model the topology of the substrate
and the virtual network as a directed graph, and propose a
VN embedding algorithm based on subgraph isomorphism
which maps nodes and links during the same stage. Their
algorithm can be seen as a extended version of the classic VF
graph matching algorithms [10], where link-on-link mapping
has been relaxed.

Houidi et al. [20] present a distributed VN embedding
algorithm that achieves embedding through communicat-
ing and exchanging messages between agent-based substrate
nodes. Although centralized algorithms could suffer from a
single point of failure, the performance and scalability of the
proposed distributed algorithm compare unfavorably with
those of the centralized algorithms.

To maximize the aggregate performance across virtual
networks, He et al. [19] propose an architectural framework
called DaVinci to dynamically adapt virtual networks for
a customized network substrate, where each substrate link
periodically reassigns bandwidth among its virtual links.
While on a smaller timescale, a distributed protocol is run
in each VN to maximize the VN’s own performance objec-
tive independently. DaVinci, however, does not have a node
embedding stage.

Since the network condition change over time due to the
arrival and departure of VNs, resources in the substrate net-
work may become fragmented. Butt et al. [7] present a
topology-aware measure using scaling factors for the sub-
strate network, which identifies the bottleneck nodes and
links in the substrate network. They then propose a set
of algorithms for re-optimizing and re-embedding initially-
rejected VN requests.

Recently, Guo et al. proposed a data center network vir-
tualization architecture called SecondNet[17]. In Second-
Net, the unit of resource allocation for multiple tenants in
the cloud is referred as virtual data center (VDC) which
consists of virtual machines and virtual links. The VDC re-
source allocation problem is close related to the VN embed-
ding problem and the main difference is the problem scale.
The VDC resource allocation algorithms proposed in [17]
primarily focus on how to quickly allocate the resources to
the VDCs when a VDC has thousands of virtual machines
and the cloud infrastructure has tens to hundreds of thou-
sands servers and switches, and how to satisfy the elasticity
requirement of VDCs. We believe that the topology-aware
node ranking method is general enough to be applied in their
context to increase the possibility of satisfying the resource
requirements of VDCs.

Page et al. [23] use random walks to rank the relative
importance of web pages, where the rank of a page depends
on the topological properties of the weighted links between
the pages, regardless of their content. A more general frame-
work for this scheme was proposed in [11]. Another example

ACM SIGCOMM Computer Communication Review 40 Volume 41, Number 2, April 2011

a

b

c

20

20

15

12

15

VN Request 2

VN Request 1

A D

E

C

F

B

30

20

30

10

40

50

ba

c d

20

25

40

40

30 30

15

20

(c) (d)

A D

E

C

F

B

30

10

10

10

30

30c

b

a 20

25

25

25

20 20

15

20

Substrate Network

a b

dc

1010

20 20

15

10 10

15

(a) (b)

Substrate Network

Figure 1: Examples of VN embedding

of using random walks is to compute a set of topological sig-
natures for each node in a graph, and it is also shown to be
effective for exact (and approximate) graph matching (see
[16]). In a typical graph matching problem, there are either
no weights on the nodes or links, or there are only visual fea-
tures (e.g., RGB color space) contained in the nodes with-
out links. Unlike PageRank and graph matching, however,
in the VN embedding problem there are weights on both
nodes and links, and the weights are typically non-uniform.

Our work differs from the existing studies in three ways.
First, we address the online VN embedding problem with
admission control, and do not need to reduce problem space
as in [29, 22, 13]. Second, we consider both the resource
amount and topology properties of a node in a unified way to
rank the relative importance of a node, which will be lever-
aged in the mapping procedure. Different from existing work
that only takes into consideration the resource (e.g., CPU,
bandwidth, or both) of a node while neglecting its topology
property in computing the resource availability, our work
mends this gap. Third, our topology-aware node ranking
measure focuses on leveraging such a rank to benefit the
current VN embedding process rather than identifying the
bottlenecks of the substrate nodes and links for the VN em-
bedding reoptimization process proposed in [7]. In Section 4
we will provide details how we apply the random walk model
to compute the topology-aware node resource ranks.

3. NETWORK MODEL AND PROBLEM DE-
SCRIPTION

Substrate Networks. A substrate network can be repre-
sented by a weighted undirected graph Gs = (Ns, Ls, A

n
s , Al

s),
where Ns is the set of substrate nodes and Ls the set of sub-
strate links. The notations An

s and Al
s denote the attributes

of the substrate nodes and links, respectively. The attributes
of the node include processing capacity, storage, and loca-
tion. The typical attribute of the link is its bandwidth. In
this paper we consider the available CPU capacity for the
node attribute and the available bandwidth for the link at-
tribute as in most of the previous research. Denote by Ps

the set of all loop-free paths of the substrate network. Fig.
1(b) presents a substrate network, where the numbers in
rectangles are the available CPU resources at the nodes and
the numbers over the links represent available bandwidths.

Virtual Network Request. Similar to the substrate net-
work, we use an undirected graph Gv = (Nv, Lv, Cn

v , Cl
v)

to denote a virtual network, where Nv is the set of virtual
nodes and Lv the set of virtual links. Virtual nodes and
links are associated with their capacity constraints, denoted
by Cn

v and Cl
v, respectively. We also denote a VN request

by V NR(i)(Gv, ta, td), where ta is the arrival time of the
VNR and td the duration of the VN staying in the sub-
strate network. When the i-th VNR arrives, the substrate
network should allocate resources to the VN to meet the
requirements of the virtual nodes and links. If there are
no sufficient substrate resources available, the VNR should
be rejected or postponed. The allocated substrate resources
are released when the VN departs. There may be different
roles of all node in using VNs, such as directory or file server
etc. For simplicity, like most of the previous work [28, 9], we
ignore these dependencies. Fig. 1(a) and Fig. 1(c) present
two VN requests with node and link requirements.

VN Embedding Problem Description. The VN embed-
ding problem is defined by a mapping M : Gv(Nv, Lv) →
Gs(N

′
s, P

′
s) from Gv to a subset of Gs, where N

′
s ⊂ Ns

and P
′
s ⊂ Ps. The mapping can be decomposed into two

mapping steps: (i) node mapping places the virtual nodes
to different substrate nodes that satisfy the node resource
constraints; and (ii) link mapping assigns the virtual links
to loop-free paths on the substrate that satisfy the link re-
source requirements.

Fig. 1(a) and Fig. 1(b) show a VN embedding solution
for VNR 1. Fig. 1(c) and Fig. 1(d) show another VN
embedding solution for VNR 2, where residual resources are
also shown. Note that the virtual nodes of different VNRs
can be mapped onto the same substrate node.

Objectives. The main objective of VN embedding is to
map the VNs to the substrate network to make efficient use
of the substrate network resources, when the VN requests
arrive and depart over time.

Similar to the previous work in [29, 28, 9], the revenue of
accepting a VNR at time t can be formulated by

R(Gv, t) =
X

dv∈Nv

CPU(dv) +
X

lv∈Lv

BW (Lv), (1)

where CPU(dv) and BW (Lv) are the CPU and the band-
width requirements for virtual node dv and link lv, respec-
tively.

The cost of accepting a VNR at time t is defined as the
sum of the total substrate resources allocated to that VN:

C(Gv, t) =
X

dv∈Nv

CPU(dv) +
X

lv∈Lv

X
ls∈Ls

BW (f lv
ls

, lv), (2)

where f lv
ls
∈ {0, 1} and f lv

ls
= 1 if substrate link ls allocated

bandwidth resource to virtual link lv, otherwise f lv
ls

= 0.

BW (f lv
ls

, lv) is the bandwidth allocated to lv from ls.
From the InPs’ point of view, an efficient and effective on-

line VN embedding algorithm would maximize the revenue
of InPs and increase the utilization of the substrate network
in the long run. Like the previous work in [28], the long-term
average revenue is given by

lim
T→∞

PT
t=0 R(Gv, t)

T
. (3)

ACM SIGCOMM Computer Communication Review 41 Volume 41, Number 2, April 2011

n1

A1

D1 B1

C1

A2

D2 B2

C2

n2

(a) node n1 (b) node n2

Figure 2: Motivational example

The VNR acceptance ratio of the substrate network can
be defined by

lim
T→∞

PT
t=0 V NRsPT
t=0 V NR

, (4)

where V NRs is the number of VN requests successfully ac-
cepted by the substrate network.

We also consider the long-term revenue to cost ratio to
quantify the efficiency of resource utilization of the substrate
network:

lim
T→∞

PT
t=0 R(Gv, t)PT
t=0 C(Gv, t)

. (5)

If the long-term average revenues of the VN embedding so-
lutions are about the same, the higher VN acceptance ratio
and R/C ratio are preferred.

4. TOPOLOGY-AWARE NODE RANKING
VN embedding incurs node mapping and link mapping.

Node mapping can be achieved by selecting substrate nodes
with sufficient CPU resources, and link mapping requires
sufficient link resource on both of the selected nodes and the
path between any two selected substrate nodes. Most early
publications (e.g., [28]) perform node mappings and link
mappings at two different stages, where nodes are selected
first at the node-mapping stage, and link allocation and path
selection are done at the link-mapping stage. We take a dif-
ferent approach by incorporating topology attributes dur-
ing the node mapping stage, aiming to improve the success
rate and efficiency of link mapping. A motivational exam-
ple is illustrated in Fig. 2, where larger nodes are nodes
with more CPU resources and the wider lines are links with
more bandwidth resources. Nodes n1 and n2 seem to have
the same resource availability if they are considered alone.
However, n1 is a “better” node because the neighbors of n1,
namely, A1, B1, and C1, have more resources than those of
n2’s neighbors, and so mapping a virtual node to n1 has a
higher chance to achieve a successful link mapping.

We define the notion of node rank to measure the resource
availability of a node. Intuitively, the rank of a given node
u is determined by its CPU power and its collective band-
width of outgoing links. It is also affected by the ranks of
the nodes that can be reached from u. We model the first
using the product of its CPU and collective bandwidth of
outgoing links as in [28]. We model the second by dividing
reachable nodes into two groups, that is, the nodes that are
incident to the outgoing links from u and the nodes that can
be reached from u via multiple hops. Modeling connectivity
is challenging, and in this paper we define a jumping prob-
ability to model the likelihood of a node that is reachable

from u via multiple hops and define a forward probability
to model the influence of the neighboring nodes from u’s
forward links. In particular, let

H(u) = CPU(u)
X

l∈L(u)

BW (l), (6)

where, on a substrate network, L(u) is the set of all the
outgoing links of u, CPU(u) is the remaining CPU resource
of u, and BW (l) is the unoccupied bandwidth resource of
link l. On a virtual node, CPU(u) and BW (l) are the ca-
pacity constraints of the node u, respectively. The initial
NodeRank value for node u can be computed by

NR(0)(u) =
H(u)P

v∈V

H(v)
. (7)

Let u, v ∈ V be two different nodes. Let

pJ
uv =

H(v)P
w∈V

H(w)
, (8)

pF
uv =

H(v)P
w∈nbr1(u)

H(w)
, (9)

where pJ
uv denotes the jumping probability from node u to

land on node v, nbr1(u) = {v | (u, v) ∈ E}, and pF
uv the

forward probability from node u to node v with (u, v) ∈ E.
Clearly,

X
v∈V

pJ
uv = 1,

X
v∈nbr1(u)

pF
uv = 1.

The probabilities pJ
uv and pF

uv may be viewed as resource
voting for node u from, respectively, any node reachable
from u and node u’s neighboring nodes. The voting from
a non-neighboring node implies that there should exist a
multi-hop path between u and v. Thus, the topology infor-
mation of the two nodes is also embedded in the probabili-
ties.

For any node v ∈ V , let

NR(t+1)(v) =
X
u∈V

pJ
uv · pJ

u ·NR(t)(u) +

X
u∈nbr1(v)

pF
uv · pF

u ·NR(t)(u), (10)

where pJ
u + pF

u = 1, pJ
u ≥ 0, pF

u ≥ 0, and t = 0, 1, · · · . The
pJ

u and pF
u are bias factors, and we will typically want to set

pJ
u to 0.15 and pF

u to 0.85 (for details see Section 6).
For a network of n nodes with V = {v1, v2, · · · , vn}, let

NR
(t)
i = NR(t)(vi) and denote the vector of node ranks at

iteration t by NR(t) = (NR
(t)
1 , NR

(t)
2 , · · · , NR

(t)
n)T , where

t = 0, 1, · · · . We have

NR(t+1) = T ·NR(t),

where T is a one-step transition matrix of the Markov chain

ACM SIGCOMM Computer Communication Review 42 Volume 41, Number 2, April 2011

defined by

T =

0
BBB@

pJ
11 pJ

12 · · · pJ
1n

pJ
21 pJ

22 · · · pJ
2n

...
...

. . .
...

pJ
n1 pJ

n2 · · · pJ
nn

1
CCCA ·

0
BBB@

pJ
1 0 · · · 0
0 pJ

2 · · · 0
...

...
. . .

...
0 0 · · · pJ

n

1
CCCA +

0
BBB@

0 pF
12 · · · pF

1n

pF
21 0 · · · pF

2n

...
...

. . .
...

pF
n1 pF

n2 · · · 0

1
CCCA ·

0
BBB@

pF
1 0 · · · 0
0 pF

2 · · · 0
...

...
. . .

...
0 0 · · · pF

n

1
CCCA (11)

Note that T is stable since it is a stochastic matrix hav-
ing a maximum eigenvalue equal to one. This guarantees
that the above recurrence relation converges to NR(∗) =

(NR
(∗)
1 , NR

(∗)
2 , · · · , NR

(∗)
n)T , the steady state distribution

[25]. This can be computed using a classic iterative scheme
[23], given by Algorithm 1.

Algorithm 1 The NodeRank Computing Method

1: Given a positive value ε, i← 0
2: repeat
3: NR(i+1) ← T ·NR(i)

4: δ ← ‖NR(i+1) −NR(i)‖
5: i + +
6: until δ < ε

5. MAPPING WITH NODERANK:
RW-MAXMATCH AND RW-BFS ALGO-
RITHMS

Taking advantage of the topology-aware node resource
rank NR(∗), we devise two new VN embedding algorithms
called RW-MaxMatch and RW-BFS, both taking the sub-
strate network and a virtual network as input. Given below
are details of these two algorithms.

5.1 RW-MaxMatch

5.1.1 Description and Discussion
RW-MaxMatch is a two-stage VN embedding algorithm.

During the first phase, it first computes the NodeRank value
for each virtual node and substrate node. It then sorts vir-
tual nodes in non-increasing order according to their NodeR-
ank values, and does the same on substrate nodes. Let
m = |Nv| and n = |Ns|. Without loss of generality, let
the sorted virtual nodes be

N1
v , N2

v , · · · , Nm
v , where NR1 ≥ NR2 ≥ · · · ≥ NRm,

and let the sorted substrate nodes be

N1
s , N2

s , · · · , Nn
s , where NR1 ≥ NR2 ≥ · · · ≥ NRn.

RW-MaxMatch maps N1
v to N1

s , provided that the CPU ca-
pacity and the link capacity of N1

s can meet what node N1
v

asks for. It then maps N i
v to N i

s in a similar way, where
i = 2, · · · , m. For convenience we call this mapping an
L2S2 mapping (which stands for “large-to-large and small-
to-small” mapping). This phase is executed in Algorithm
2.

In the second phase, RW-MaxMatch maps virtual links
to substrate links (see Algorithm 3). The link embedding

stage is similar to the previous research [28, 26]. That is,
find the just-fit shortest paths by searching the k-shortest
paths using binary search on values of k, until a path on the
substrate network that satisfies the bandwidth requirement
of the virtual link is found. If the substrate network sup-
ports path splitting, we will use the multi-commodity flow
algorithm to embed the virtual links to the substrate links
between the mapped virtual nodes.

Algorithm 2 RW-MaxMatch Node Mapping Stage

1: Compute the NodeRank values of all nodes in both Gs

and Gv using Algorithm 1 with a given value of ε.
2: Sort the nodes in Gs according to their NodeRank values

in non-increasing order.
3: Sort the nodes in Gv according to their NodeRank values

in non-increasing order.
4: Map virtual nodes to substrate nodes using the L2S2

mapping procedure.
5: if node resource constraints satisfied then
6: return NODE MAPPING SUCCESS
7: else
8: return NODE MAPPING FAILED
9: end if

Algorithm 3 RW-MaxMatch Link Mapping Stage

1: if path unsplittable then
2: Map virtual links using the k-shortest path algorithm.
3: else
4: Map virtual links using the multi-commodity flow al-

gorithm.
5: end if
6: if link resource constraints satisfied then
7: return LINK MAPPING SUCCESS
8: else
9: return LINK MAPPING FAILED

10: end if

5.1.2 Time Complexity Analysis
Note that the iterative scheme (i.e., Algorithm 1) has been

shown to yield any desired precision ε with a number of itera-
tions proportional to max{1,−logε} [6]. The k-shortest path
[12] link mapping algorithm and the multi-commodity flow
problem [4] can both be solved in polynomial time. Thus,
RW-MaxMatch is a polynomial-time algorithm in terms of
|Gs|, |Gv|, and max{1,− log ε}.

5.2 RW-BFS

5.2.1 Description and Discussion
The main framework of RW-BFS is presented in Algo-

rithm 4 and the details of the function called Match is pre-
sented in Algorithm 5. Different from RW-MaxMatch, RW-
BFS is a one-stage backtracking VN embedding algorithm
based on breadth-first search (BFS), which embeds virtual
nodes and links at the same stage. The motivation of this
algorithm is that a two-stage embedding algorithm maps all
virtual nodes first without considering the impact on the link
mapping stage, which may lead to unnecessary consumption
of bandwidth resources of the substrate network. For exam-
ple, when the virtual nodes in the virtual network are very

ACM SIGCOMM Computer Communication Review 43 Volume 41, Number 2, April 2011

close to each other (e.g., just one-hop away), the distance of
two mapped virtual nodes in the substrate network may be
considerably long. Thus, the virtual link between the two
nodes would have to be mapped to a long path, resulting in
a waste of the bandwidth resources.

To help solve this problem, RW-BFS first computes the
NodeRank values of the nodes in Gs and Gv. It then con-
structs a breadth-first search tree of Gv, where the root node
is the virtual node with the largest NodeRank value. At each
level of the search tree, nodes are sorted by their NodeRank
values in non-increasing order. For each virtual node N i

v

in Gv, we build a candidate substrate node list consisting
of the nodes whose available CPU capacity and the sum of
available bandwidth resources are at least as large as those
of the virtual node. The substrate nodes in the list are also
sorted by their NodeRank values in non-increasing order. In
the last step, we embed every virtual node in Gv to the sub-
strate node that meets the CPU resource requirement and
maps the virtual links directly connected to a virtual node
onto the substrate paths satisfying the bandwidth and con-
nectivity constraints using the shortest path algorithm in a
breadth-first search manner. If the virtual node is the root
node of Gv, it is embedded to the substrate node with the
largest NodeRank value. If there is no suitable mapping for
N i

v in its candidate substrate node list, we backtrack to the
previous virtual node N i−1

v , re-map it to another substrate
node, and continue to map N i

v. Notice that the constant
value Max Hop presented in the match function (Algorithm
5) is the maximum distance from the mapped parent node
of N i

v. The use of a hop bound is to reduce the search space
of BFS. It can also avoid placing the virtual node too far
away from the already mapped nodes to save substrate link
resources.

Algorithm 4 RW-BFS

1: Compute the NodeRank values of all nodes in both Gs

and Gv using Algorithm 1 with a given value of ε.
2: Construct the breadth-first searching tree of Gv.
3: Sort all the nodes in Gv in non-increasing order in each

level of the breadth-first tree according to their NodeR-
ank values.

4: backtrack count = 0
5: Select a positive integer Δ.
6: for each node N i

v in Gv do
7: Build the candidate substrate node list for N i

v

8: if Match(N i
v)==1 then

9: Match(N i+1
v)

10: else
11: if backtrack count <= Δ then
12: Match(N i−1

v)
13: backtrack count++
14: else
15: return BFS FAILED
16: end if
17: end if
18: end for
19: return BFS SUCCESS

5.2.2 Time Complexity Analysis
It is well known that backtracking algorithm has an ex-

ponential time complexity. To avoid exponential explosion,
we introduce an upper bound θ to limit the number of node
remapping operations (in Algorithm 4 step 11).

Algorithm 5 The Details of Match Function

1: if N i
v is the root then

2: map N i
v onto the substrate node with the largest

NodeRank
3: return MATCH SUCCESS
4: end if
5: k = 1
6: while k < Max Hop do
7: for each N j

s which satisfies the k-hop constraint from
its mapped parent node in the candidate substrate
node list of N i

v do
8: if pair(N i

v, N j
s) meets all the capacity constraints

then
9: return MATCH SUCCESS

10: end if
11: end for
12: k++
13: end while
14: return MATCH FAILED

6. PERFORMANCE EVALUATION
In this section we first describe the performance evalua-

tion environment, and then present our main evaluation re-
sults. The experiments focus primarily on the performance
comparison of the proposed two algorithms with the existing
ones and the advantages of topology-aware node rank.

6.1 Evaluation Settings
We implement two simulators to evaluate the performance

of our algorithms. The RW-MaxMatch simulator is a mod-
ified version of the VN embedding simulator devised in [3],
and the RW-BFS simulator is implemented from scratch.
Both simulators are publicly available at [2].

The substrate network topology is configured to have 100
nodes with about 500 links, corresponding to a medium sized
ISP. We use the GT-ITM tool to generate substrate net-
works. The CPU and bandwidth resources of the substrate
nodes and links are real numbers uniformly distributed be-
tween 50 and 100. We assume that VNRs arrive following a
Poisson process with an average arrival rate of 5 VNs per 100
time units, and each one has an exponentially distributed
lifetime with an average of 500 time units. In each VNR,
the number of virtual nodes is determined by a uniform dis-
tribution between 2 and 20. The average VN connectivity is
fixed at 50%, which means that an n-node VN has n(n−1)/4
links on average, similar with [28]. The CPU and bandwidth
requirements of virtual nodes and links are real numbers uni-
formly distributed between 0 and 50. We run each of our
simulations for about 50000 time units, which corresponds
to about 2500 VNRs on average in one instance of simula-
tion.

Our simulation experiments evaluate eight algorithms listed
in Table 1. Ten different instances are run for these nine al-
gorithms and we record the arithmetic mean of the ten runs
as the final result. Supporting location constraints is not
our focus in this paper, thus we don’t compare our algo-
rithms with algorithms proposed in [9], in which location
constraints is taken into consideration. We have also con-
sidered to make a comparison between our algorithms and
the virtual network embedding algorithm based on subgraph
isomorphism proposed in [21]. However, the algorithm in
[21] is limited to substrate networks and virtual networks

ACM SIGCOMM Computer Communication Review 44 Volume 41, Number 2, April 2011

Table 1: Comparisons
Notation Algorithm Description

RW-MM-SP

Use the RW model to compute NodeRank
values. Two-stage mapping: first map
virtual nodes with larger NodeRank val-
ues to the substrate nodes with larger
NodeRank values, then embed the virtual
links using shortest path if the substrate
does not support path splitting. MM de-
notes MaxMatch.

CB-MM-SP
Simply use Equation (6) to compute node
resources rank. The other steps of CB-
MM-SP is the same as RW-MM-SP. CB
denotes multiplying CPU by bandwidth.

RW-BFS

Use the RW model to compute NodeRank
values. One-stage mapping: embed the
virtual nodes and links during the same
stage based on breadth-first searching.

CB-BFS
Simply use Equation (6) to compute node
resources rank. The other steps of CB-
BFS is the same as RW-BFS.

RW-MM-
MCF

Similar to RW-MM-SP, with path split-
ting.

CB-MM-MCF Similar to CB-MM-SP, with path split-
ting.

BL-SP The baseline algorithm proposed in [28].

BL-MCF
The baseline algorithm using MCF to
embed virtual links.

modeled by directed graphs, thus a fair comparison is not
applicable and so we exclude it from the results.

The bias factors of pJ
v and pF

v presented in Equation (10)
are used to balance between local and global node resources.
Experiments show that setting pJ

v to 0.15 and pF
v to 0.85,

the same values used in PageRank, will achieve the optimal
result. The value for the parameter ε presented in the it-
erative scheme is set to 0.0001. Since the diameter of the
substrate network is 3, we set the value of Max Hop in the
match function (Algorithm 5) to 3. To gain better mapping
quality without consuming much execution time, the upper
bound Δ, which limits the re-mapping steps in RW-BFS,
is set to 3n, where n is the number of virtual nodes in the
VNR.

6.2 Evaluation Results
Our evaluation results quantify the efficiency of the two

algorithms we proposed (depicted in Fig. 3(a), Fig. 3(b),
and Fig. 3(c)) and reveal the benefits of using the RW model
for computing the node resource rank (depicted in Fig. 4(a),
Fig. 4(b), and Fig. 4(c)). Several performance metrics for
evaluation purposes are used, including the long-term aver-
age revenue defined by Equation (3), the VNR acceptance
ratio defined by Equation (4), the long term R/C ratio de-
fined by Equation (5), and the runtime of these algorithms.
We summarize the key observations from our simulation as
follows.

6.2.1 Our new algorithms lead to higher acceptance
ratio and average revenue

Fig. 3(a) and Fig. 3(b) show that the proposed algorithms
RW-MM-SP and RW-BFS can produce higher revenue and
acceptance ratio than those of the baseline algorithms, re-
gardless the path splittability of substrate network. These
two graphs show that topology-aware node ranking plays an
important role in VN embedding process. We note that al-
though RW-BFS produces the highest acceptance ratio, the
long-term average revenue of this algorithm is lower than

that of RW-MM-MCF. The reason is that RW-BFS tends
to accept more small VNRs and reject a number of large
VNRs, thus the residual resources on the substrate network
would have larger fragmentation.

6.2.2 RW-BFS produces the hightest long-term R/C
ratio

The reason is that RW-BFS uses breadth-first search to
map virtual nodes, and avoids mapping virtual links onto a
long substrate path that may cause more resource consump-
tion. Fig. 3(a) shows that, in the case of un-splittable paths,
RW-BFS produces the highest revenue, which has close rela-
tionship with its high long-term R/C ratio (depicted in Fig.
3(c)). Lower VN embedding cost saves more room for the
future VNRs.

6.2.3 NodeRank is a better node resource measure
Computing NodeRank leads to higher revenue and accep-

tance ratio than simply using Equation (6) as the measure
of node resource. With respect to the two-stage VN embed-
ding algorithms, Fig. 4(a) and Fig. 4(b) show that RW-
MM-SP and RW-MM-MCF offer larger revenue and better
acceptance ratio than CB-MM-SP and CB-MM-MCF. The
NodeRank also contributes to the increase of revenue and
acceptance ratio for one-stage VN embedding algorithms.
With NodeRank, the resource ranking is not only deter-
mined by the node itself, but also influenced by its neigh-
bors. A node with higher NodeRank value tends to have a
set of good neighbors with higher NodeRank values, which
may increase probability of meeting the constraints of the
VN request and thus benefit the VN embedding process.
However, shown in Fig. 4(c), NodeRank makes no signifi-
cant contributions to increasing R/C ratio.

6.2.4 The RW-based algorithms consume compara-
ble runtime with others

Fig. 5 depicts the average execution time of these VN
embedding algorithms run on the same PC. The RW-based
algorithms consume nearly the same time as the CB-based
algorithms, even though the RM-based algorithms need to
compute node ranks, both in the substrate network and vir-
tual network, for each VNR. The iterative process of com-
puting the node rank converges to a reasonable tolerance in
roughly 7 iterations for a substrate network with 100 nodes
and about 500 links, which is deemed reasonable.

7. CONCLUSION
In this paper, we compute the topology-aware node re-

source rank based on Markov Random Walks. Using the
resource rank of a node as its resource measurement, we
propose two new algorithms called RW-MaxMatch and RW-
BFS. Simulation results show that our algorithms outper-
form the previous approaches in terms of the long-term aver-
age revenue and the VNR acceptance ratio. We also demon-
strate the benefit of applying the RW model to compute the
node resource rank for achieving a higher acceptance ratio
and higher revenue.

In this work, we define the amount of node resources pre-
sented in Equation (6) the same as the previous work in [28].

ACM SIGCOMM Computer Communication Review 45 Volume 41, Number 2, April 2011

 22

 24

 26

 28

 30

 32

 4 8 12 16 20 24 28 32 36 40 44 48

A
ve

ra
ge

 R
ev

en
ue

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
BL-SP

BL-MCF

(a) The long-term average revenue com-
parison

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 4 8 12 16 20 24 28 32 36 40 44 48

R
eq

ue
st

 A
cc

ep
ta

nc
e

R
at

io

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
BL-SP

BL-MCF

(b) The VNR acceptance ratio over time
comparison

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 4 8 12 16 20 24 28 32 36 40 44 48

R
/C

 R
at

io

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
BL-SP

BL-MCF

(c) The long-term R/C ratio (Rev-
enue/Cost) comparison

Figure 3: Comparison between the RW-based and the existing algorithms

 24

 25

 26

 27

 28

 29

 30

 4 8 12 16 20 24 28 32 36 40 44 48

A
ve

ra
ge

 R
ev

en
ue

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
CB-MM-SP

CB-MM-MCF
CB-BFS

(a) The long-term average revenue com-
parison

 0.75

 0.8

 0.85

 0.9

 4 8 12 16 20 24 28 32 36 40 44 48

R
eq

ue
st

 A
cc

ep
ta

nc
e

R
at

io

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
CB-MM-SP

CB-MM-MCF
CB-BFS

(b) The VNR acceptance ratio over time
comparison

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 4 8 12 16 20 24 28 32 36 40 44 48

R
/C

 R
at

io

Time (1000 Time Unit)

RW-MM-SP
RW-MM-MCF

RW-BFS
CB-MM-SP

CB-MM-MCF
CB-BFS

(c) The long-term R/C ratio (Rev-
enue/Cost) comparison

Figure 4: Comparison between the RW-based and CB-based algorithms

 0

 5

 10

 15

 20

 25

 30

 35

RW-MM
-SP

CB-MM
-SP

BL-SP RW-MM
-MCF

CB-MM
-MCF

BL-MCF RW-BFS CB-BFS

T
im

e
(m

in
)

Virtual Network Embedding Algorithms

Figure 5: The execution time comparison of embed-
ding algorithms with 95% confidence interval

But we also find using other methods to mark the node re-
sources value, such as α·CPU + (1 − α)·BW (0 < α < 1),
appears to get better results in our preliminary experiments.
The value of α can be changed dynamically to adapt to the
substrate network resource environment when mapping a
new virtual network request, and such study is left for fur-
ther development. Secondly, the different value of bias ex-
pressing the probability whether a node choosing to jump
to a random node or following an edge from this node will
also be tested in our future work. Finally, we plan to extend
our work by considering the domain-specific substrate re-
source availability (e.g., fat-tree type network topology) and
requirements from user requests (e.g., multi-dimensional re-
source requirements on CPU, storage, etc.).

Acknowledgment
This work is supported in part by the 973 project of China
(2009CB320504), Funds for Creative Research Groups of
China (60821001), NSF CNS-0709001, NSF/BBN GENI sub-
award, NSF CCF-0830314 and NSF CNS-1018422.

8. REFERENCES
[1] Amazonec2,http://aws.amazon.com/ec2/.

[2] VNE-RW Simulator
http://int.bupt.edu.cn/˜sensu/vne-rw.html.

[3] VNE Simulator
http://www.cs.princeton.edu/˜minlanyu/embed.tar.gz.

[4] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, and K. Weihe. Network
flows: theory, algorithms, and applications. Prentice hall
Englewood Cliffs, NJ, 1993.

[5] David G. Andersen. Theoretical approaches to node
assignment. Unpublished Manuscript, December 2002.

[6] M. Bianchini, M. Gori, and F. Scarselli. Inside pagerank. ACM
Transactions on Internet Technology (TOIT), 5(1):92–128,
2005.

[7] N. Butt, M. Chowdhury, and R. Boutaba. Topology-Awareness
and Re-optimization Mechanism for Virtual Network
Embedding. In Networking 2010: 9th International Ifip Tc 6
Networking Conference, Chennai, India, May 11-15, 2010,
Proceedings, page 27. Not Avail, 2010.

[8] N.M.M.K. Chowdhury and R. Boutaba. Network virtualization:
state of the art and research challenges. IEEE
Communications magazine, 47(7):20–26, 2009.

[9] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual
network embedding with coordinated node and link mapping.
In IEEE INFOCOM, 2009.

[10] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. An
improved algorithm for matching large graphs. In 3rd
IAPR-TC15 Workshop on Graph-based Representations in
Pattern Recognition, pages 149–159, 2001.

[11] M. Diligenti, M. Gori, M. Maggini, and
D. di Ingegneria dell’Informazione. A unified probabilistic

ACM SIGCOMM Computer Communication Review 46 Volume 41, Number 2, April 2011

framework for web page scoring systems. IEEE Transactions
on knowledge and data engineering, 16(1):4–16, 2004.

[12] D. Eppstein. Finding the k shortest paths. In Proc. of IEEE
Symposium on Foundations of Computer Science. IEEE
Comput. Soc. Press, 1994.

[13] J. Fan and M. Ammar. Dynamic topology configuration in
service overlay networks: A study of reconfiguration policies. In
Proc. IEEE INFOCOM, 2006.

[14] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet
in your spare time. ACM SIGCOMM Computer
Communication Review, 37(1):64, 2007.

[15] Global Environment for Network Innovations. National Science
Foundation, http://www.geni.net/, August 2005.

[16] M. Gori, M. Maggini, and L. Sarti. Exact and approximate
graph matching using random walks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(7):1100–1111,
2005.

[17] C. Guo, G. Lu, H.J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
Y. Zhang, MSR Asia, and MSR Redmond. SecondNet: A Data
Center Network Virtualization Architecture with Bandwidth
Guarantees.

[18] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener.
Provisioning a virtual private network: A network design
problem for multicommodity flow. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing,
pages 389–398. ACM New York, NY, USA, 2001.

[19] J. He, R. Zhang-Shen, Y. Li, C.Y. Lee, J. Rexford, and
M. Chiang. Davinci: Dynamically adaptive virtual networks for
a customized internet. In Proceedings of the 2008 ACM
CoNEXT Conference, pages 1–12. ACM, 2008.

[20] I. Houidi, W. Louati, and D. Zeghlache. A distributed virtual
network mapping algorithm. In Proceedings of IEEE ICC,
pages 5634–5640, 2008.

[21] J. Lischka and H. Karl. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proceedings of
the 1st ACM workshop on Virtualized infrastructure systems
and architectures, pages 81–88. ACM, 2009.

[22] J. Lu and J. Turner. Efficient mapping of virtual networks onto
a shared substrate. Department of Computer Science and
Engineering, Washington University in St. Louis, Technical
Report WUCSE-2006, 35, 2006.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[24] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network
testbed mapping problem. ACM SIGCOMM Computer
Communication Review, 33(2):81, 2003.

[25] E. Seneta. Non-negative matrices and Markov chains.
Springer Verlag, 2006.

[26] W. Szeto, Y. Iraqi, and R. Boutaba. A multi-commodity flow
based approach to virtual network resource allocation. In Proc.
GLOBECOM: IEEE Global Telecommunications Conference,
2003.

[27] JS Turner and DE Taylor. Diversifying the internet. In IEEE
Global Telecommunications Conference, 2005.
GLOBECOM’05, volume 2.

[28] M. Yu, Y. Yi, J. Rexford, M. Chiang, et al. Rethinking virtual
network embedding: Substrate support for path splitting and
migration. COMPUTER COMMUNICATION REVIEW,
38(2):17, 2008.

[29] Y. Zhu and M. Ammar. Algorithms for assigning substrate
network resources to virtual network components. In Proc.
IEEE INFOCOM, 2006.

ACM SIGCOMM Computer Communication Review 47 Volume 41, Number 2, April 2011

