

突波式流量之網頁伺服器負載平衡架構的研究

A Study of Web Server Load Balancing Architecture for

Burst Mode Traffic

研 究 生：陳建伯（Jian-Bo Chen）

指導教授：包蒼龍（Prof. Tsang-Long Pao）

大同大學

資訊工程研究所

博士論文

Ph. D. Dissertation

Department of Computer Science and Engineering

Tatung University

中華民國 九十七 年 七 月

July 2008

ACKNOWLEDGMENTS

Due to the effective help of numerous hearty persons, this dissertation is accomplished

and published. Here, I am much obliged to them for their support and suggestions.

I wish to thank Prof. Tsang-Long Pao, my advisor, for having accepted me as a

member of his research group at Tatung University. He helped me and encouraged me to

get involved in group projects and seminars throughout my doctorate study at Tatung

University. He also gave me the opportunity of having different point of view on various

subjects.

I would like to express my deepest gratitude to my dissertation committee members,

Prof. Hsuan-Shih Lee, Prof. Yo-Ping Huang, Prof. Jin-Long Wang, Prof. Chau-Yun Hsu,

and Prof. Liang-Teh Lee for their invaluable guidance, support, encouragement, helpful

comments and suggestions. I would also like to acknowledge all the Lab members at

Tatung University and colleagues in the Information Network Division at Ming Chuan

University for their valuable discussions and constant friendships. Finally, I am grateful to

my father, my mother, and my wife. Without their consistent support and patience, this

work would not have been possible.

ABSTRACT

The server load balancing architecture is the most efficient way to solve the heavy

loading problem of popular server. There are different solutions in implementing the load

balancing system. In this dissertation, we adopt a flexible registration protocol that can

easily add a new backend server to the load balancing system to share the load. In

addition, the registration protocol also reports the real time backend server loading status

to the load balancing system. So we can use these information to distribute client requests

by any available load balancing algorithms.

The purpose of load balancing algorithm is to improve the load sharing

performance of the popular web server. Most of the load balancing architectures are based

on supporting homogeneous backend servers. If the hardware specifications of backend

servers in the system are different, the load balancing system must have a strategy to

fairly dispatch the load to the backend servers. We derive a capacity measurement for

heterogeneous backend servers. From the experimental results, the maximum number of

connection with certain drop rate can be used as the capacity, but it can not provide fair

response time for each client requests. Thus, we must consider the capacity not only

depending on drop rate but also on the response time. Using this measurement, the

average response time for all client requests will nearly be the same.

In addition to the definition of capacity, we also use the remaining capacity

algorithm to reduce the hardware cost when the web site does not have frequent burst

requests. We propose the concept of service-on-demand servers, which can bring other

servers such as DNS servers or MAIL servers to join the load balancing system during the

burst traffic period. For example, the course registration system or ticket reservation

systems have burst requests only several times a year. The proposed algorithm can use the

remaining capacity of DNS or MAIL server to share the load in the burst request period.

The simulation results show that using the remaining capacity of both DNS server and

MAIL server can achieve higher performance compared to using another dedicated

backend server.

Due to the different remaining capacities that these servers have, we need an

intelligent mechanism to make the load distribution decision. We propose an algorithm

using the fuzzy decision algorithm to dispatch the client requests to the appropriate

backend server. The CPU idle percentage, the available memory percentage, and the

available connection percentage for each backend servers are the input parameters of our

fuzzy decision algorithm. The most appropriate backend server can thus be determined.

The simulation results show that the fuzzy decision algorithm can achieve higher

performance than other load balancing algorithms.

Keywords: load balance, remaining capacity, fuzzy decision, service-on-demand

中文摘要

伺服器負載平衡架構是經常用來解決熱門網站負載分攤的一種方法，而負載平衡系

統有許多不同的解決方案。在本論文中，我們採用一種有彈性的註冊協定，使得負

載平衡系統能夠很容易增加後端伺服器來分擔負載。除此之外，在這註冊協定的訊

息中，同時也將伺服器的即時負載量回報給負載平衡系統，利用這些資訊，便可採

用任一可行的負載平衡演算法來分配使用者的需求。

負載平衡演算法的目的是為了改善熱門網站的效能。大部分的負載平衡架構都

僅能適用在同質性的後端伺服器上。如果後端伺服器的硬體規格不同時，負載平衡

系統必須要有一種策略來將用戶端的連線需求，公平地分配到每一台後端伺服器

上。我們推導一個異質性後端伺服器運算能力的度量機制。這些運算能力可以根據

在特定丟棄率的條件下，後端伺服器所能提供的最大連線數來決定。然而，根據實

驗的結果可知，這種定義方式無法保證每個用戶端均有公平的連線回應時間。因此，

在考慮定義運算能力時，我們不僅是要考慮到丟棄率，同時也要考慮到回應時間。

採用這樣的定義方式，對於所有用戶端連線的平均回應時間幾乎都是相同的。

除了定義運算能力之外，當網站並不是經常性的有突波連線需求時，我們可以

採用剩餘能力負載平衡演算法來降低負載平衡系統中的硬體成本。我們提出一種隨

選服務(service-on-demand)伺服器的概念，也就是在有突波連線需求時，將其他的伺

服器像是 DNS 伺服器或是 MAIL 伺服器等，加入到負載平衡系統中來分擔流量。舉

例來說，學校的選課系統或是訂票系統等，一年之中會有突波需求的次數僅有少數

幾次而已。這種剩餘能力演算法可以利用 DNS 伺服器或是 MAIL 伺服器的剩餘能

力，當突波連線需求來臨之前，加入到負載平衡系統中來分擔流量。模擬的結果發

現，當同時使用 DNS 伺服器以及 MAIL 伺服器的剩餘能力時，所得到的結果，會比

使用另一台專屬後端伺服器的效果來的要好。

由於每一台後端伺服器的剩餘運算能力均不相同，因此需要一種智慧型的機制

來做決策。我們提出一種模糊決策的演算法，來將使用者的連線需求派遣給最適合

的後端伺服器處理。每一台後端伺服器的 CPU 的閒置百分率、可用的記憶體空間以

及可用的連線數，當成是模糊決策演算法的三個輸入參數。根據這些參數來計算最

後的明確值以決定最適合的後端伺服器了。模擬的結果發現，當採用模糊決策負載

平衡演算法時，可以比其他的演算法，得到更高的效能。

關鍵字:負載平衡、剩餘能力、模糊決策、隨選服務

TABLES OF CONTENTS

ACKNOWLEDGMENTS ... I

ABSTRACT .. II

CHINESE ABSTRACT ... IV

TABLES OF CONTENTS ... VI

LIST OF FIGURES ... IX

LIST OF TABLES ... XI

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Motivation ... 2

1.3 Objective ... 3

1.4 Dissertation Organization ... 5

CHAPTER 2 RELATED WORKS .. 6

2.1 Hardware-based Load Balancing Solutions .. 6

2.1.1 High Performance Server .. 6

2.1.2 Cluster Approach .. 6

2.1.2.1 Microsoft Windows Cluster ... 7

2.1.2.2 Linux Cluster ... 7

2.1.3 Server Switch .. 8

2.2 Software-based Load Balancing Solutions ... 11

2.2.1 DNS-based Approach .. 11

2.2.1.1 System-stateless Algorithms .. 13

2.2.1.2 Server-state-based Algorithms ... 14

2.2.2 Dispatcher-based Approach .. 16

2.2.2.1 Packet Single-Rewriting .. 17

2.2.2.2 Packet Double-Rewriting ... 18

2.2.2.3 HTTP Redirection .. 19

2.2.2.4 Server-based HTTP Redirection .. 21

2.3 Load Balancing Algorithms .. 22

2.3.1 Least Connection .. 22

2.3.2 Round-Robin ... 22

2.3.3 Minimum Misses .. 23

2.3.4 Hash .. 23

2.3.5 Response Time .. 24

2.3.6 Bandwidth ... 24

CHAPTER 3 LOAD BALANCING ALGORITHMS ... 26

3.1 Flexible Server Registration Protocol ... 26

3.1.1 Server Registration Protocol ... 26

3.1.2 Flexible Registration Protocol .. 28

3.1.3 Implementation of Flexible Registration Protocol 31

3.2 Weighted Distributed Load Balancing Algorithm ... 33

3.2.1 Definition of Capacity ... 33

3.2.2 Capacity Enhancement for Fair Response Time 34

3.2.3 Weighted Distributing Load Balancing Algorithm 35

3.3 Remaining Capacity Load Balancing Algorithm .. 37

3.4 Fuzzy Decision Load Balancing Algorithm .. 40

3.4.1 Feature Selection ... 40

3.4.1.1 CPU Idle Percentage .. 40

3.4.1.2 Available Memory Percentage ... 42

3.4.1.3 Available Connection Percentage ... 43

3.4.2 Fuzzy Decision Load Balancing Algorithm .. 44

3.4.2.1 Fuzzification .. 44

3.4.2.2 Rule Evaluation .. 45

3.4.2.3 Defuzzification ... 48

CHAPTER 4 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 49

4.1 Weighted Distributed Load Balancing Algorithm ... 49

4.2 Remaining Capacity Load Balancing Algorithm .. 55

4.2.1 Connection Hit Rate and Server Utilization ... 55

4.2.2 Drop Rate Comparison ... 59

4.2.3 Scalability of the Load Balancing System .. 60

4.3 Fuzzy Decision Load Balancing Algorithm .. 64

CHAPTER 5 CONCLUSIONS ... 67

REFERENCES .. 69

LIST OF FIGURES

Figure 2.1: Incoming session ID substitution. ... 10

Figure 2.2: Outgoing session ID substitution. ... 10

Figure 2.3: DNS-based approach to load balancing. ... 12

Figure 2.4: Configuration of RR-DNS. .. 13

Figure 2.5: lbnamed protocol format. .. 16

Figure 2.6: Packet single-rewriting by the dispatcher. ... 17

Figure 2.7: Packet double-rewriting by the dispatcher. ... 19

Figure 2.8: HTTP redirection. .. 20

Figure 2.9: HTTP redirection by the server. .. 21

Figure 3.1: The message flows between dispatcher and backend server. 27

Figure 3.2: Flexible registration protocol flows. ... 29

Figure 3.3: Intelligent forwarding mechanism. .. 30

Figure 3.4: Cron table for registration. .. 32

Figure 3.5: Part of the registration.php script to retrieve system information. 32

Figure 3.6: Example of serverlist table. ... 36

Figure 3.7: Membership function for CPU. ... 38

Figure 3.8: Membership function for Memory. ... 39

Figure 3.9: Membership function for Connection. .. 39

Figure 3.10: Membership function for CPU idle percentage. .. 41

Figure 3.11: Membership function for available memory percentage. 42

Figure 3.12: Membership function for available connection percentage....................... 43

Figure 3.13: Fuzzy decision steps. ... 44

Figure 4.1: Maximum number of connections per second. ... 50

Figure 4.2: Comparison of drop rate for each backend servers. 51

Figure 4.3: Comparison of average response time for each backend servers. 51

Figure 4.4: Comparison of connection numbers with capacity ratio 9:11:13. 52

Figure 4.5: Comparison of average response time with capacity ratio 9:11:13. 53

Figure 4.6: Comparison of connection number with capacity ratio 6:10:17. 54

Figure 4.7: Comparison of average response time with capacity ratio 6:10:17. 54

Figure 4.8: Comparison of hit rate for RR algorithm. ... 56

Figure 4.9: Comparison of utilization for RR algorithm. .. 56

Figure 4.10: Comparison of hit rate for LC algorithm. .. 57

Figure 4.11: Comparison of utilization for LC algorithm. ... 58

Figure 4.12: Comparison of hit rate for RC algorithm. ... 58

Figure 4.13: Comparison of utilization for RC algorithm. .. 59

Figure 4.14: Comparison of drop rate for RR, LC, RC algorithms. 60

Figure 4.15: Utilization for one web server. .. 61

Figure 4.16: Utilization for two web servers. .. 62

Figure 4.17: Utilization for Web + DNS. ... 62

Figure 4.18: Utilization for Web + DNS + MAIL. .. 63

Figure 4.19: Comparison of hit rate for different schemes. ... 63

Figure 4.20: Comparison of drop rate for different schemes. .. 64

Figure 4.21: Comparison of response time for service-on-demand servers. 65

Figure 4.22: Comparison of response time for fuzzy, round robin, least connection, and

hash algorithms. ... 66

Figure 4.23: Comparison of response time for fuzzy, response time, and bandwidth

algorithms. ... 66

LIST OF TABLES

Table 3.1: Load balancing decision rule base. ... 46

Table 3.2: Fuzzy decision values. .. 47

Table 4.1: CPU speed for the three backend servers.. 50

Table 4.2: The max. number of connections for each backend servers. 51

Table 4.3: Capacities of each backend server with drop rate below 5%. 52

Table 4.4: Capacity of each backend server with drop rate below 5% and avg. response

time below 1 second. .. 53

CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the growing popularity of the World Wide Web, the traffic of popular web sites

has grown far beyond the capacity of a single web server. Most popular web sites adopt a

distributed or parallel architecture to alleviate the load for the single server [1]. These

sites can provide higher performance for a large number of client requests [2,3]. Although

the load balancing architecture consists of a number of backend servers, they act as a

single unit. User transparency is implemented to allow clients to issue the requests to the

central unit without knowing the load balancing architecture the web site implemented.

Meanwhile, clients do not need to make any configuration modifications when they

connect to the load balancing systems.

There are various methods used to build a load balancing system. These methods

include the hardware-based approach [4-11], cluster-based approach [12-17], DNS-based

(Domain Name Server) approach [18-29], dispatcher-based approach [30-34], and so on.

In hardware-based and DNS-based approaches, the exact workload of each individual

backend server in the system may not take into consideration which might lead to an

unbalanced load situation. For the DNS-based approach, another major problem is the

DNS query result caching in the intermediate DNS server and the client itself [35]. In this

case, requests from hosts in the same domain may all be served by the same backend

server and may drive that server into overload state.

In the dispatcher-based approach, the central unit is the dispatcher which is

responsible for dispatching the client requests to the most appropriate one among backend

servers. In the server-state dispatching architecture [36], the dispatcher must collect the

status of all the backend servers and make the decision regarding which backend server is

the most appropriate one to serve the request. The decision criteria are based on the status

of backend servers such as CPU loading, memory usage, current number of connections,

and so on [37].

1.2 Motivation

In this dissertation, our focus is on using the dispatcher-based approach to solve the burst

traffic load problem. In some web systems, the workload of web servers is light for most

of the time, but may incur a heavy traffic load during a specific period of time. For

instance, the course registration system and the ticket reservation system will incur burst

traffic during a specific period of time several times a year. During most of the time

throughout the year, they only have a very light traffic load. Although the load balancing

system can efficiently solve the burst traffic problems, the cost of the backend servers is

the main issue. If we use a powerful dedicated server as the backend server, the

investment in the hardware does not seem to be cost effective. Thus, we proposed to use

some service-on-demand servers as the backend servers prior to the anticipated burst

traffic period. These service-on-demand servers are not dedicated servers for the load

balancing system; in fact they have their routing jobs to do, such as acting as DNS server

or MAIL servers. During the heavy web load period, we initiated the web daemon and

server registration protocol for the DNS server and the MAIL server to cooperate with the

original web server to form the load balancing system. The contents of the web server

were already stored inside a separated disk space or SAN, so we only needed to mount

the file system. In doing so, the dispatcher knows that these additional backend servers

can share the load. In addition to these service-on-demand servers, we can also use the

personal computer in the PC classroom booting up with a live-CD to join the load

balancing system when all of these service-on-demand servers still cannot handle the

traffic load.

1.3 Objective

In our proposed load balancing system, the first issue is the registration process of a new

backend server. Before the burst traffic period, the service-on-demand servers must

register themselves into the load balancing system. The service-on-demand servers start

the process of server registration protocol, which advertise a registration message to

inform the dispatcher that a new backend is ready to serve the client requests. In addition,

the registration protocol of the backend server also reports the update-to-date loading

information to the dispatcher that can be used by the dispatcher to decide which one is the

most appropriate to serve the client request.

In the load balancing system, the capacities of each backend servers may be

different, such as the CPU speed, memory, and network. In this kind of heterogeneous

load balancing system, the dispatcher must have initial weights for each backend servers

in order to balance the load [38-44]. The weights can be determined by the static factors

such as CPU, memory, and so on. But when considering the fair response time for each

client, we proposed a weighted distributed load balancing algorithm that their initial

weights are determined by the average response time [45-55]. In this proposed algorithm,

the average response time of client requests are nearly the same no matter which backend

server serve the requests.

Although each heterogeneous backend servers have different initial weights, the

current loading information is another important factor in the load balancing system

[56-68]. Some requests need large amount of resource of backend server, but others not.

If the load balancing system dispatches the client request to the most appropriate backend

server just according to the initial weights, the system load will eventually become

unbalance. To avoid this situation, we propose the remaining capacity load balancing

algorithm to dispatch the client request to the most appropriate backend according to the

current loading information of each backend servers [69]. In this algorithm, we use the

CPU idle percentage, available memory, and current connection number to calculate the

remaining capacity of each backend server. The backend server with highest remaining

capacity is the candidate to serve the request. In this remaining capacity algorithm, the

service-on-demand servers can easily join the load balancing system because the

dispatcher dispatches the client request according to the remaining capacity. If the routing

job for the service-on-demand server is heavy, the remaining capacity of this

service-on-demand server is less than others, and the dispatcher will not dispatch the

client request to this server. Thus, the routing job will not be influenced by the load

balancing system.

In addition to the remaining capacity, we can use an intelligent algorithm to decide

which backend server is the most appropriate one. In this dissertation, we adopt a fuzzy

decision algorithm [70-73] to determine which backend server should respond to the

client request. First, we will collect the status of the backend servers as the input

parameters, such as the CPU idle percentage, available memory percentage, and available

connection percentage. We quantify these features and define the membership functions

for these features. Then, the membership function degree can be used as the parameters

for rule evaluation. After the rule evaluation process, we will get the fuzzy decision

values and fuzzy degree for these input parameters. The final process, defuzzification,

will generate crisp values for these input parameters. The crisp value is used to determine

which backend server is the most appropriate one to serve the incoming client request.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 addresses some related works.

Chapter 3 introduces the load balancing algorithms, including the flexible server

registration protocol, the weighted distributed load balancing algorithm, the remaining

capacity load balancing algorithm, and the fuzzy decision load balancing algorithm.

Chapter 4 presents the experimental and simulation results. Chapter 5 states our

conclusions.

CHAPTER 2

RELATED WORKS

In this chapter, we will discuss some backgrounds and related researches about load

balancing architectures and solutions.

2.1 Hardware-based Load Balancing Solutions

2.1.1 High Performance Server

A single server is generally not able to process the burst requests because of the limitation

of hardware performance. The simplest solution is to upgrade its hardware. If the CPU is

too busy, we can add extra CPU(s). If the memory utilization is too high, we can add

more memory. If the network is too busy, we can upgrade with a high speed network

interface card. The advantages of this kind of systems are easy to setup and maintain. And

the web server administrator only needs to manage one single machine. The

disadvantages are the cost and performance limitation of the hardware. Furthermore, the

server is the single point of failure which may not be desired for reliable operation.

2.1.2 Cluster Approach

The second solution is to adopt the cluster approach. The cluster server system consists of

many independent servers that work together. The workload is evenly dispatched to

independent servers by using a proper dispatching algorithm. The advantage of this

approach is that it can add more servers into the cluster easily, and from the client point of

view, the server is still a single unit. The disadvantages are hard to setup and maintain. It

must use some specific hardware and software to group servers as a single unit.

2.1.2.1 Microsoft Windows Cluster

While Windows 2000 represents a dramatic improvement over its predecessors in terms

of the total uptime (availability), reduced system failure (reliability) and ability to add

resources and computers to improve performance (scalability), Windows Server 2003

takes the availability, reliability and scalability of the Windows operating system to the

next level by enhancing existing features and providing new options.

Microsoft clustering technologies are the key to improve availability, reliability and

scalability. With Windows 2000 and Windows Server 2003, Microsoft uses a three-part

clustering strategy.

Network Load Balancing provides failover support for IP-based applications and

services that require high scalability and availability. With Network Load Balancing

(NLB), organizations can build groups of clustered computers to support load balancing

of TCP or UDP traffic requests.

Component Load Balancing provides dynamic load balancing of middle-tier

application components that use COM+. With Component Load Balancing (CLB), COM+

components can load balanced over multiple nodes to dramatically enhance the

availability and scalability of software applications.

Server Cluster provides failover support for applications and services that require

high availability, scalability and reliability. With clustering, organizations can make

applications and data available on multiple servers linked together in a cluster

configuration. Backend applications and services are ideal candidates for server cluster.

2.1.2.2 Linux Cluster

Linux Virtual Server (LVS) is a highly scalable and highly available server built on a

cluster of real servers. The architecture of cluster is transparent to end users, and the users

interact with the system as if it were only a single high performance virtual server.

The real servers may be interconnected by high-speed LAN or by geographically

dispersed WAN. The front-end box in front of the real servers is a load balancer, which

schedules requests to the different servers and make parallel services of the cluster to

appear as a virtual service on a single IP address. Scalability is achieved by transparently

adding or removing a node in the cluster. High availability is provided by detecting node

or daemon failures and reconfiguring the system appropriately. The three-tie architecture

consists of :

Load Balancer, the front-end machine of the whole cluster systems, balances

requests from clients among a set of servers. The clients will consider that all the services

is from a single IP address.

Server Array, which is a set of servers running actual network services, such as

WEB, MAIL, FTP, DNS or Media service.

Shared Storage, which provides a shared storage space for the servers so that it is

easy for the servers to have the same contents and provide the same services.

2.1.3 Server Switch

During the last few years, an active commercial market for server switching products has

emerged [5]. Many of these products are Ethernet switches supplemented with build-in

processing power to examine the incoming packet and manage service traffic intelligently,

assign requests to servers based on request content, client session, and/or server status.

Server switches and their request routing (server selection) policies play a key role in

managing content and server resources for scalable Internet services [4,6].

Server switching is a technique to virtualize services at the IP level. An ensemble of

servers cooperates to serve the request loading. Clients interact with the service through a

client/server protocol such as HTTP, addressing their request to a virtual IP address

representing the service. The server switch intercepts the incoming traffic and redirects

each request to a specific server according to predefined policies. The set of functioning

servers to choose from may grow and shrink dynamically, allowing a site to manage

server resources locally to adapt to load changes. The switch isolates clients from internal

details of the service structure, so that the ensemble appears to clients as a single virtual

server that is powerful and reliable. Commercial server switches are available from Notel

(Alteon) [7], Cisco (Arrowpoint) [8], Extreme [9], F5 Networks [10], and other

companies.

The Alteon server switch [6,7] recognizes when a client is requesting a new TCP

session by identifying the TCP SYN packet. The request is forwarded to the best available

server, based on the configured load balancing policy. Once the switch determines the

best server, it binds the session to that server’s real IP address. The server switch

maintains a binding table that associates each active session with the real server to which

is assigned. After the server switch binds a connection request to a real server, it performs

address substitution, so the real server will transparently receive packets for that session.

The switch replaces the virtual IP address in the IP destination address with the server’s

real IP address and replaces the switch’s MAC address in the destination address field

with the server’s MAC address. Figure 2.1 illustrates how IP addressing substitution takes

place as traffic flows inbound from the client to the real server [11].

After performing the necessary address substitution, the server switch forwards the

connection request to the chosen server. All subsequent packets belonging to that session

undergo the same address substitution process and are forwarded to the same real server

until the switch sees a session termination packet (that is, a TCP FIN packet). Likewise,

the server switch intercepts packets traveling form the real server to the client and

performs the reverse address substitution. It replaces the real server’s actual IP address in

the Network Layer source address field with the virtual IP address and forwards each

modified frame to the client. The process is described in Fig. 2.2.

Figure 2.1: Incoming session ID substitution.

Figure 2.2: Outgoing session ID substitution.

On the receiving of a TCP FIN packet, the server switch performs the necessary

address substitution and forwards the FIN packet to the appropriate real server, causing

the server to teardown the connection. Then it removes the session-server binding from its

binding table.

The advantages are that the load balancing policies can be varied by the devices,

and the implementations are hardware-based, so they have the highest performance. The

disadvantages are that they were designed by the manufactures, so we are not able to

modify the source codes of devices. Furthermore, these devices are always quite

expensive.

2.2 Software-based Load Balancing Solutions

2.2.1 DNS-based Approach

In the distributed web server architectures that use request routing mechanisms on the

cluster side, there is no additional action to take in the client side. Architecture

transparency is typically obtained through a single virtual interface to the outside world,

at least at the URL level. The cluster DNS — the authoritative DNS server for the

distributed web nodes — translates the symbolic site name (URL) to the IP address of one

server. This process allows the cluster DNS to implement many policies to select the

appropriate server and spread client requests. The DNS, however, has a limited control on

the request reaching the web cluster. Between the client and the cluster DNS, many

intermediate name servers may cache the logical-name-to-IP-address mapping to reduce

network traffic. Moreover, the client will also cache the result of address resolution.

In addition to provide the IP address of a node, the DNS also specifies a validity

period (Time-To-Live, or TTL) for caching the result of the logical name resolution

[22,23]. When the TTL expires, the address-mapping request is forwarded to the cluster

DNS to obtain the IP address map again; otherwise, an intermediate name server will

handle the request. Figure 2.3 shows the resolution.

If an intermediate name server holds a valid mapping for the cluster URL, it

resolves the address-mapping request without forwarding it to upper level name server.

Otherwise, the address request reaches the cluster DNS, which selects the IP address of a

web server and the TTL. The URL-to-IP-address mapping and the TTL value are

forwarded to all intermediate name servers along the path and to the client.

We distinguish the DNS-based architectures by the scheduling algorithm that the

cluster DNS uses. These algorithms are classified by the system state information that the

DNS uses to select a web server node.

Figure 2.3: DNS-based approach to load balancing.

2.2.1.1 System-stateless Algorithms

The Round-Robin DNS (RR-DNS) approach, first implemented by the National Center

for Supercomputing Applications (NCSA) to handle increased traffic at its site, is for

distributed homogeneous web server architecture [3]. NCSA developed a web cluster

comprising the following entities: a group of loosely coupled web servers to respond to

HTTP requests; a distributed file system that manages the entire WWW document tree;

and one primary DNS for the entire web server system.

NCSA modified the primary DNS for its domain to map addresses by a

Round-Robin algorithm. The load distribution under the RR-DNS is unbalanced because

the address-caching mechanism lets the DNS control only a small fraction of requests. An

uneven distribution of client requests from different domains further adds to the

imbalance such that many clients from a single domain can be assigned to the same web

server, which overloads server nodes [24,25].

Additional drawbacks result because the algorithm ignores both server capacity and

availability. With an overloaded or non-operational server, no mechanism can stop the

clients from trying to access the web site by its cached address continuously. The

RR-DNS policy’s poor performance needs further study for alternative DNS routing

schemes that require additional system information. Example of RR-DNS is shown in

Fig. 2.4.

www IN A 192.168.1.1

IN A 192.168.1.2

IN A 192.168.1.3

IN A 192.168.1.4

IN A 192.168.1.5

IN A 192.168.1.6

IN A 192.168.1.7

IN A 192.168.1.8

Figure 2.4: Configuration of RR-DNS.

2.2.1.2 Server-state-based Algorithms

Knowledge of server state conditions is essential for a high available web server system

to exclude servers that are unreachable because of fault or congestion. DNS policies,

combined with a simple feedback alarm mechanism from highly utilized servers,

effectively avoid web server system overload [24]. The Sun-SCALR framework

implements a similar approach combined with the RR-DNS policy [26].

R. J. Schemers proposed and developed the lbnamed algorithm which make

scheduling decision based on the web servers current loading [27,28]. The DNS, after

receiving an address query, selects the least-loaded server. To inhibit address caching at

name servers, the lbnamed algorithm requires that the DNS sets the TTL value to zero.

This requirement limits the applicability.

The lbnamed is a load balancing name server written in Perl. Of course it was

meant to be a proof of concept that would get added back into BIND [29]. lbnamed

allows the creation of dynamic groups of hosts that have one name in the DNS name

space. A host may be in multiple groups at the same time [28].

The load balancer consists of two perl programs, lbnamed and poller. These

programs run in parallel and communicate using signals and configuration files. The

poller program contacts the daemon running on the backend servers being polled. It reads

a configuration file that tells the poller which backend servers to poll. The poller

periodically sends out requests and receives the responses asynchronously. After it has

received all the responses, it dumps the information into a configuration file and sends a

signal to lbnamed which then reloads its configuration file. If the poller does not receive a

response from one of the backend servers being polled, it simply removes it from the

configuration file it feeds to lbnamed.

The lbnamed reads the configuration file generated by the poller and stores the

http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#poller-config
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#lbnamed-config

configuration into its memory. Each group of backend servers is stored in an array, while

the weights of all the backend servers are stored in one hash table. When a request for a

particular group comes in the array for that group is sorted based on the weight of each

backend server in that group. The backend server with lowest weight is then returned as

the best server. The weight in the corresponding entry is increased.

To other name servers, lbnamed looks like a standard DNS server, with the

exception that it does not answer recursive queries. It only handles requests for the

dynamic groups it maintains. lbnamed gets a normal DNS query and based on the name in

the query, it selects the best host to return. lbnamed then constructs a standard DNS

response and sends it back to the client. The TTL value in the response is set to 0 to

ensure the response from being cached by other name servers which would defeat the

whole mechanism.

Backend servers that are going to be polled by the poller need to run a special

daemon. That daemon responds to poller requests (over UDP) using a simple protocol.

The protocol format is described in Fig. 2.5.

#define PROTO_PORTNUM 4330
#define PROTO_MAXMESG 2048 /* max udp message to receive */
#define PROTO_VERSION 2

typedef enum P_OPS {
 op_lb_info_req =1, /* load balance info, request and reply */
} p_ops_t;

typedef enum P_STATUS {
 status_request =0, /* a request packet */
 status_ok =1, /* ok */
 status_error =2, /* generic error */
 status_proto_version =3, /* protocol version error */
 status_proto_error =4, /* any other protocol error */
 status_unknown_op =5, /* unknown operation requested */
} p_status_t;

typedef struct {
 u_short version; /* protocol version */
 u_short id; /* requestor's uniq request id */
 u_short op; /* operation requested */
 u_short status; /* set on reply */
} P_HEADER,*P_HEADER_PTR;

typedef struct {
 P_HEADER h;
 u_int boot_time;
 u_int current_time;
 u_int user_mtime; /* time user information last changed */
 u_short l1; /* (int) (load*100) */
 u_short l5;
 u_short l15;
 u_short tot_users; /* total number of users logged in */
 u_short uniq_users; /* total number of uniq users */
 u_char on_console; /* true if somone on console */
 u_char reserved; /* future use, padding... */
} P_LB_RESPONSE, *P_LB_RESPONSE_PTR;

Figure 2.5: lbnamed protocol format.

2.2.2 Dispatcher-based Approach

To centralize request scheduling and completely control client-request routing, a network

component of the web server system acts as a dispatcher. Request routing among servers

is transparent. Unlike DNS-based architectures, which deal with addresses at the URL

level, the dispatcher has a single, virtual IP address (IP-SVA).

The dispatcher uniquely identifies each backend server in the system through a

private address that can be at different protocol levels, depending on the architecture. We

differentiate dispatcher-based architectures by routing mechanism — packet

single-rewriting, packet double-rewriting, HTTP redirection, or server-based HTTP

redirection [22].

Dispatcher-based architectures typically use simple algorithms to select the web

server (for example, Round-Robin, server loading) to handle incoming requests. Simple

algorithms help minimize request processing.

2.2.2.1 Packet Single-Rewriting

In some architectures, the dispatcher reroutes client-to-server packets by rewriting their IP

address, such as in the basic TCP router mechanism. The web server cluster consists of a

group of backend servers and a load balancer that acts as an IP address dispatcher.

Figure 2.6 outlines the mechanism, in which address i is the IP address of the i-th web

server.

Figure 2.6: Packet single-rewriting by the dispatcher.

All HTTP client requests reach the dispatcher because the IP-SVA is the only public

address. The dispatcher selects a backend server for each HTTP request through a

Round-Robin algorithm and forwards the packet by rewriting the destination IP address

of each incoming packet. The dispatcher replaces its IP-SVA with the IP address of the

selected server. Because a request consists of several IP packets, the dispatcher tracks the

source IP address for every established TCP connection in an address table. The

dispatcher can thereby route packets regarding the same connection to the same web

server.

Furthermore, the web server must replace its IP address with the dispatcher’s

IP-SVA before sending the response packets to the client. Therefore, the client is not

aware that its requests are handled by a hidden web server.

This approach provides high system availability because, when a backend server

fails, its address can be removed from the dispatcher to prevent further request routing.

Moreover, the dispatcher architecture can be combined with a DNS-based solution to

scale from a LAN- to a WAN-distributed web system.

2.2.2.2 Packet Double-Rewriting

This mechanism also relies on a centralized dispatcher to schedule and control client

requests but differs from packet single-rewriting in the source address modification of all

packets between server and client. Packet double-rewriting is based on Network Address

Translation mechanism published by the Internet Engineering Task Force, as shown in

Fig. 2.7. The dispatcher receives a client request, selects the web server and modifies the

IP header of each incoming packet, and also modifies the outgoing packets that compose

the requested document.

Figure 2.7: Packet double-rewriting by the dispatcher.

2.2.2.3 HTTP Redirection

A centralized dispatcher receives all incoming requests and distributes them among the

web server nodes through the HTTP redirection mechanism. The dispatcher redirects a

request by specifying the appropriate status code [32] in the response, indicating in its

header the server address where the client can get the desired document. Such redirection

is largely transparent; at most, users might notice an increased response time. Unlike most

dispatcher-based solutions, HTTP redirection does not require IP address modification of

packets reaching or leaving the web server system. HTTP redirection can be implemented

with two techniques.

Server-state-based dispatching: Used by the Distributed Server Groups architecture

[33]. It adds new methods to HTTP protocol to administer the web system and exchange

messages between the dispatcher and the servers. Since the dispatcher must be aware of

the server loading, each server periodically reports the number of processes in its run

queue and the number of received requests per second. The dispatcher then selects the

least-loaded server, as shown in Fig. 2.8.

Location-based dispatching: Used by Cisco Systems’ Distributed Director [8]

appliance. It provides two dispatching modes. The first applies the DNS-based approach

with client and server state information. The second use the HTTP redirection. The

Distributed Director estimates a client’s server proximity and the node availability with

algorithms that apply to the DNS-based solution. Client requests are redirected to the

server that is evaluated as most suitable for each request at a certain time.

Figure 2.8: HTTP redirection.

2.2.2.4 Server-based HTTP Redirection

The scalable server World Wide Web (SWEB) system and similar architectures [34] use a

two-level distributed scheduler, as shown in Fig. 2.9. Client requests, initially assigned by

the DNS to a web server, can be reassigned to another server via HTTP redirection.

Figure 2.9 shows server 1 receiving the client request, then redirecting the request to

server 2. The first level web server selected by the DNS can be prevented by the caching

mechanism of the intermediate name servers.

Redirecting individual client connections is crucial to better load balancing at a fine

granularity level. In most instances, however, it is preferable to combine client redirection

with domain redirection [34].

The SWEB architecture uses a Round-Robin DNS policy as a first-level scheduler.

In second-level scheduler, each web server redirects requests according to server selection

that minimizes the client request’s response time, a value estimated on the basis of server

processing capabilities and Internet bandwidth/delay.

Figure 2.9: HTTP redirection by the server.

These mechanisms imply an overhead of intra-cluster communications, as every

server must periodically transmit status information to the cluster DNS or other servers.

But such cost is usually negligible as compared to the client-request-generated network

traffic. To users, the main drawback of HTTP redirection is the increased response time.

This is because each redirected request requires a new client-server connection.

2.3 Load Balancing Algorithms

The load balancing system scheduler makes decisions regarding which backend server to

be assigned a new connection based on the load balancing algorithms [4,6,7]. Various

algorithms available are addressed as follows.

2.3.1 Least Connection

With the least connections algorithm, the number of connections currently open on each

backend server is measured in real-time. The backend server with the fewest current

connections is considered to be the best choice for the next client connection request. This

algorithm is the most self-regulating, with the fastest servers typically getting the most

connections over time.

2.3.2 Round-Robin

With the Round-Robin algorithm, new connections are issued to each backend server in

turn. That is, the first backend server in the group gets the first connection, the second

backend server gets the next connection, followed by the third backend server, and so on.

When all the backend servers in this group have received at least one connection, the

process starts over with the first backend server.

2.3.3 Minimum Misses

The minimum misses algorithm is optimized for WAN-link load balancing. It uses IP

address information in the client request to select a server. The specific IP address

information used depends on the application.

For WAN-link load balancing, the client destination IP address is used. All requests

for a specific IP destination address is sent to the same server. This algorithm is

particularly useful in caching applications, helping to maximize successful cache hits.

Best statistical load balancing is achieved when the client IP addresses are spread across a

broad range of IP subnets.

For server load balancing, the client source IP address and backend server IP

address are used. All requests from a specific client are sent to the same backend server.

This algorithm is useful for applications where client information must be retained on the

server between sessions. With this algorithm, backend server loading becomes most

evenly balanced as the number of active clients with different source or destination

addresses increases.

2.3.4 Hash

The hash algorithm uses IP address information in the client request to select a backend

server. The specific IP address information used depends on the application. For

WAN-link load balancing, the client destination IP address is used. All requests for a

specific IP destination address will be sent to the same server. This is particularly useful

for maximizing successful cache hits.

For server load balancing, the client IP address is used. All requests from a specific

client will be sent to the same backend server. This option is useful for applications where

client information must be retained between sessions.

When selecting a backend server, a mathematical hash of the relevant IP address

information is used as an index into the list of currently available servers. Any given IP

address information will always have the same hash result, providing natural persistence,

as long as the backend server list is stable. However, if a server is added to or leaves the

system, then a different backend server might be assigned to a subsequent session with

the same IP address information even though the original server is still available. Open

connections are not cleared.

The hash algorithm provides more distributed load balancing than minimum misses

at any given instant. It should be used if the statistical load balancing achieved using

minimum misses is not as optimal as desired. If the load balancing statistics with

minimum misses indicate that one backend server is processing significantly more

requests over time than other servers, consider using the hash algorithm.

2.3.5 Response Time

The response time algorithm uses backend server response time to assign sessions to

servers. The response time between the servers and the load balancer is used as the

weighting factor. The load balancer monitors and records the amount of time it takes for

each backend server to reply to a health check to adjust the backend server weights. The

weights are adjusted so they are inversely proportion to a moving average of response

time. In such a scenario, a server with half the response time as another server will

receive a weight twice as large.

2.3.6 Bandwidth

The bandwidth algorithm uses backend server octet counts to assign sessions to a server.

The load balancer monitors the number of octets sent between the server and itself. Then,

the backend server weights are adjusted so they are inversely proportion to the number of

octets that the backend server processes during the last interval.

Backend servers that process more octets are considered to have less available

bandwidth than those that have processed fewer octets. For example, the backend server

that processes half the amount of octets over the last interval receives twice the weight of

other backend servers. The higher the bandwidth used, the smaller the weight assigned to

the server. Based on this weighting, the subsequent requests go to the backend server with

the highest amount of free bandwidth. These weights are automatically assigned.

CHAPTER 3

LOAD BALANCING ALGORITHMS

In this chapter, we will discuss our proposed load balancing algorithms. Section 3.1 will

describe the flexible server registration protocol which enables the backend servers to join

and leave the load balancing system easily. Section 3.2 will describe the weighted

distributed load balancing algorithm and how to define the initial weights for

heterogeneous backend servers. Section 3.3 will describe the remaining capacity load

balancing algorithm which can be used when the service-on-demand servers join into the

load balancing system. Section 3.4 will describe the fuzzy decision load balancing

algorithm which dispatches the client request based on the fuzzy decision mechanism.

3.1 Flexible Server Registration Protocol

In our proposed server load balancing system, it consists of a dispatcher and a number of

backend servers that serve the same services. The backend servers must register their

services to the load balancing system. The dispatcher will maintain the validity of the

information of those servers. When a request comes from a client, the dispatcher redirects

the client request to the appropriate backend server by the pre-defined algorithm.

3.1.1 Server Registration Protocol

William V. Wollman et al. [74] proposed a plug and play server load balancing

architecture. Their proposed method is described as below. First, the backend server

registers itself with the dispatcher. The dispatcher will acknowledge the registration of the

backend server. Next, the server registers its services with the dispatcher. Once the

backend server issues the service registration request, the dispatcher performs a health

check on the service. If the health check success, the dispatcher responses the registration

acknowledge to the backend server.

After the initial registration protocol, the backend servers will delivery service

health status messages to the dispatcher by the heartbeat messages. When the dispatcher

receives this heartbeat, it will send back an acknowledge message to the backend server.

In addition, the dispatcher will also perform its own independent health check on the

registration service. If a service health failure occurs, the dispatcher will automatically

remove the backend server from the load balancing system. The message flows between

the backend server and the dispatcher are shown in Fig. 3.1.

DispatcherBackend Server

Server Registration

Acknowledgement

Service Registration

Service Health Check

Service Reg Ack

Service Health Heartbeat

Heartbeat Ack

Service Health Check

Periodic

Messages

Figure 3.1: The message flows between dispatcher and backend server.

3.1.2 Flexible Registration Protocol

The goal of our proposed registration protocol is to simplify the registration flows. Our

registration flow also checks the health status at the same time. The process is described

as follows. First, if a new backend server is initialized, it will issue an HTTP request to

itself, that is, localhost. In this step, we not only check the status of backend server, but

also check the health of the service, ie, HTTP. In addition, the HTTP request also gets

system information of the backend server, so the response messages will include the real

time server loading. If the health check of the service failed, nothing will be done. If it

can get an HTTP response, that means the HTTP service is available, the server will

insert an entry into the central database. The entry includes the server’s IP address,

registration time, CPU idle percentage, available memory, current number of connection,

etc.

The HTTP request to itself of each backend server is issued periodically. So the

database always have the current server status information. The dispatcher will

periodically query the database to get the most updated messages about the backend

servers. In this protocol, we also check the status of database implicitly to avoid the

database failure. Figure 3.2 shows the message flows for our proposed registration

protocol.

Dispatcher
Database

Backend Server 1

Backend Server 2

.

.

.

1. Backend server health check

2. Register to the database server

3. Dispatcher look up the database

1

1

3

2

2

Figure 3.2: Flexible registration protocol flows.

If one of the backend servers does not issue registration operation within a specific

time, the dispatcher will remove that backend server from the load balancing system.

There are three cases that the backend server will not register to the load balancing

system. The first case is that the backend server is going to quit from the HTTP service.

In this case, the backend server will stop registering to the database server. The old entry

will be removed by the dispatcher in the next maintainance check. In the second case, the

service daemon or the operating system of the backend server is crashed. The third case

happens when the network traffic is jammed or the service daemon reaches to its

maximum capacity. In the later two cases, the backend server can no longer provide the

service to any new connection. Therefore, we need to remove it from the list of available

servers to ensure that no new connection will be redirected to it.

Consider a load balancing system with N backend servers and one dispatcher as

shown in Fig. 3.3. When a client wants to access a web page, it will issue a DNS query to

find the IP address of the web server. The DNS server will reply with the IP address of the

dispatcher instead of the address of the web server that provides the service. The client

then issues an HTTP request to the dispatcher, marked as step 1. When the dispatcher

receives the request, a redirection page will be sent back to the client, marked as step 2.

The redirection page contains the IP address or domain name of the web server which is

the most appropriate one to serve this request. The client then issues the HTTP request

again to the real backend server, marked as step 3. The backend server will then serve the

client request and transfer document directly to the client in the final step [20].

Backend Server 2

.

.

.

Backend Server 1

Backend Server N

Dispatcher
Client

1. request

2. redirect

3. request

4. response

Figure 3.3: Intelligent forwarding mechanism.

3.1.3 Implementation of Flexible Registration Protocol

The backend server in our load balancing architecture can be added or removed at any

time. We can register a new backend server and report the real time loading in just one

step. That is, we can execute only one program on the backend server to register and

report. In our proposed registration protocol, we can use some servers whose primary

function is MAIL server, FTP server, or DNS server, etc. to act as the backend server

prior the burst period and release them after the burst period. For example, during the

course registration period, almost all the students are focus on the course registration, the

other servers will have light loading at that time. When we activate the HTTP daemon

and execute the registration program on those servers, they will join the load balancing

architecture, and provide the HTTP services to the students. In this case, we can

efficiently use the resource of all available servers.

If all the other servers already join the load balancing system, and the system is still

experienced heavy loading, we can use the PCs in the PC room as the backend servers. In

this situation, we may use the Konppix Linux distribution [75]. Knoppix is a great Linux

tool for all skill levels. We can modify the Knoppix Live-CD, install the registration

program into the Live-CD. When we insert the Live-CD and reboot that computer, the

computer automatically becomes one of the backend servers. If we have a PC room with

about 100 personal computers, we can boot them with Knoppix Live-CD, and we will

have 100 more backend servers.

The registration program must check the network status, HTTP service, and the

database server. To simplify the registration protocol, we use a script to do all the function.

Each backend server use the crond to execute the registration program, that will ensure

the server is active. The crond will issue a wget to execute a PHP script, which makes

sure the HTTP service is alive. The entry in the crond is shown in Fig. 3.4.

In the registration.php script, it calculates the real time loading such as CPU,

memory, number of connections, etc, and it inserts these information into the database

server. This process will guarantee that the database server is running and the connection

between HTTP server and database server is operational.

We retrieve the speed of CPU from the command “cpuinfo” which is under /proc

directory. To retrieve the CPU usage and memory utilization, the “vmstat” is used. We

also use the “netstat” to get the number of connection for the backend server. These

information will be sent to the database server during the registration process. The detail

of registration.php is shown in Fig. 3.5.

wget -q --delete-after http://localhost/registration.php

Figure 3.4: Cron table for registration.

$hostaddr = exec('ifconfig eth0 | sed -n 2p | cut -b 21-35 ');
$cpu_idle = exec('vmstat | sed -n 3p | cut -b 74-76 ');
$mem = exec('vmstat | sed -n 3p | cut -b 13-19 ');
$connect_num = exec('netstat -tn | wc -l | cut -b 1-5');

Figure 3.5: Part of the registration.php script to retrieve system information.

3.2 Weighted Distributed Load Balancing Algorithm

In this Section, we consider the heterogeneous backend servers in a load balancing system.

Due to the different capacities of each backend server, we must define the weights for

each backend server. The definition factors for each backend server can be considered as

the maximum number of connections, drop rate, or response time. We will introduce

some definitions for the weights, and compare the results of each definition. The

weighted distributed load balancing algorithm is also introduced.

3.2.1 Definition of Capacity

Assume that there are three heterogeneous backend servers in the load balancing system,

say S1, S2, and S3. We define the capacities of these servers be C1, C2, and C3, respectively.

The capacities are the weights of these backend servers. Using the weights in our

proposed weighted distributed load balancing algorithm, we can accomplish higher

performance and fair response time for the clients.

In the definition of capacity, we first need to know the maximum number of

connections for a single backend server. To define this, we also need to define a threshold

that the drop rate is below acceptable value. Assume that the clients issue M requests to

the backend server, the response time of the server will vary in length randomly. The

response time R for each request is defined as Ri. We partition the possible values into n

disjoint intervals, {[T0=0,T1), [T1,T2),…, [Tn-1,Tn=∞)}, where T0<T1<…<Tn, and Ri fall

in the ith interval [Ti-1,Ti). The number of connection for [Ti-1,Ti) is mi, where

m1+m2+…+mn=M. For user perceived latency, we define the maximum response time

Rmax as the threshold which fall in the jth interval [Tj-1,Tj). For each request, if the

response time is higher than the Rmax, we then consider that the request was dropped. We

define the drop rate when the Rmax fall in the jth interval as in Eq. 3.1. If the drop rate is

below certain percentage, we can obtain the maximum number of connections or the

capacity for that server by Eq. 3.2.

intervalth in the fall thresholdmax. thewhere, j
M

m

DrateDrop

n

ji

i

 (3.1)

intervalth in the fall thresholdmax. thewhere,
1

1

jmCCapacity
j

i

i

 (3.2)

For example, if the total number of requests is 500 (M=500). The response time

have 10 disjoint intervals {[0,0.25), [0.25,0.5), [0.5,0.75), [0.75,1), [1,1.25), [1.25,1.5),

[1.5,1.75), [1.75,2), [2,2.25), [2.25,∞)}, and the number of responses for each interval is

{120, 95, 75, 65, 45, 30, 25, 22, 15, 8}. If we define the threshold as 2 seconds, which

means that Rmax=2, then the drop rate D is (15+8)/500 or 4.6% and the capacity C is

(120+95+75+65+45+30+25+22) or 477.

3.2.2 Capacity Enhancement for Fair Response Time

In Section 3.2.1, we define the capacities C1, C2, and C3 for the three servers S1, S2, and S3.

In the experimental results shown in Section 4.1, we find that the more powerful server S3

will serve more client requests because we define higher capacity for that server. But in

the figure of response time analysis, the S3, which serves more client requests, still

response faster than others. It is not fair in the user perceive latency. We need to consider

both the drop rate and response time when defined the capacity. Using the same

environment as above, the drop rate definition is still the same, but we want to modify the

definition of the capacity. Rather than only consider the drop rate, we use the response

time as another factor to calculate the capacity. Assume that we define the acceptable

response time Rmin as the threshold, which means the capacity definition must under the

minimum threshold rather than the maximum threshold Rmax. If the Rmin falls in the kth

interval [Tk-1,Tk), where k < j. We can re-define the capacity as in Eq. 3.3.

1

1

intervalth in the fall thresholdmin. thewhere,
k

i

i kmCCapacity (3.3)

For the above example, we define the threshold as 1 second, which means that

Rmin=1, then the capacity C is (120+95+75+65) or 355. Under this definition, the

experimental results in Section 4.1 show that the average response time for all the servers

is almost the same. The algorithm for the drop rate and capacity are given as

for each time intervals {[T0=0,T1), [T1,T2),…, [Tn-1,Tn=∞)}

where the number of connection for [Ti-1,Ti) is mi

and m1+m2+…+mn=M

the maximum threshold Rmax is fall in the jth interval [Tj-1,Tj)

Drop rate D=(mj+mj+1+…+mn)/M

the minimum threshold Rmin is fall in the kth interval [Tk-1,Tk), where k < j

Capacity C= m1+m2+…+mk-1

3.2.3 Weighted Distributing Load Balancing Algorithm

In this section, we will show the weighted distributing algorithm used in the load

balancing system. In our load balancing system, each backend server has different

capacity. The capacity is the weights of the server. After obtaining the capacity for each

server, a serverlist table is generated. Figure 3.6 shows an example.

Server IP Capacity

192.168.1.1

192.168.1.2

3

5

Capacity

192.168.1.1

192.168.1.2

3

5

ServerName ServerPort ServiceCount TotalCount

80

80

0

0

0

0

Generate

Figure 3.6: Example of serverlist table.

The IP address of individual backend server is stored in ServerName field. The

ServerPort field specifies the TCP port number of individual backend server. The

ServiceCount field stores the current number of connection which was dispatched to that

backend server, and will be reset to 0 when all entries with ServiceCount equals to

capacity. The TotalCount field stores the total dispatched number of each backend server.

When a client issues a request to the dispatcher, the dispatcher retrieves the entry

from the serverlist table from the database server. We use a simple but elegant method to

choose the most appropriate entry from the serverlist table. The method is to choose the

entry with the largest remaining capacity, that is, the entry with largest difference between

capacity and ServiceCount. If all the remaining capacities are same, the dispatcher will

return the entry which registered first in the table. Then the ServiceCount of the chosen

entry will be incremented by one. When all the values of ServiceCount are equal to

capacity, the dispatcher will add ServiceCount to TotalCount and reset ServiceCount to

zero.

3.3 Remaining Capacity Load Balancing Algorithm

Although load balancing system can efficiently distribute the client requests, the cost of

these backend servers are the main issues. In some cases, the backend servers are not

always experienced heavy loading. They have heavy request traffic only in a certain time

period. Some web servers, such as course registration or ticket reservation systems, have

burst requests only several times a year. In these cases, we can predict the start time of

burst requests. Thus we can prepare some service-on-demand servers as the backend

servers before that time. The flexible server registration protocol, described in Section 3.1,

allows those service-on-demand servers to register and coordinate their services with the

load balancing system. This architecture uses the registration messages to automatically

configure a backend server to support the services. In addition, the registration protocol

also checks the status of the backend server, so that it can report the loading information

of the backend servers. In our architecture, a new server can register to the load balancing

system while needed and withdraw themselves from the system after the burst period.

In this proposed algorithm, there are three heterogeneous servers S1, S2, and S3 in

the system. Each backend server periodically reports its current load information to the

dispatcher. The load balancing algorithm calculates the remaining capacities as R1, R2,

and R3. And then selects the best server i, where Ri = max(R1,R2,R3). If a request T comes

to the dispatcher, the IP address of backend server Si with the maximum remaining

capacity Ri will be sent back to the client. We assume that the maximum capacity needed

by the request T is Tk. If the maximum remaining capacity Ri is less than the request Tk, it

means that all the backend servers do not have enough remaining capacity to serve the

request task Tk. The dispatcher drops this request Tk and return a server busy page to the

client. When the backend servers finish their previously assigned requests, they will then

have capacity to serve future requests.

Assume that the CPU clock-rate of the servers are C1, C2, and C3. The backend

server i reports the current load information parameters as {ci,mi,ni}, where ci is CPU idle

percentage, mi is available memory, and ni is current number of connections. We define

the three membership functions as in Figures 3.7 to 3.9. Then the remaining capacity Ri of

server Si can be obtained by the following equation.

 iiiii nfmfcCfR 321 **** (3.4)

where α,β,γare weights and α+β+γ=1. In our simulations, we find that the

CPU has the significant impact for server loading. In the simulation presented in

Section 4.2, we useα=0.4, β=0.3, γ=0.3 as weights.

Figure 3.7: Membership function for CPU.

Figure 3.8: Membership function for Memory.

Figure 3.9: Membership function for Connection.

The pseudo codes for the proposed algorithm are as follows:

Report Phase:

1. calculate the three parameters {ci,mi,ni} periodically;

2. report (ci,mi,ni) for each backend server periodically;

Decision Phase:

1. iiiii nfmfcCfR 321 **** , for each backend server;

2. Ri=max(R1,R2,R3);

3. if (Capacity(Ri)) > Require(Tk)

 send(Tk,Si);

 else

 drop(Tk);

3.4 Fuzzy Decision Load Balancing Algorithm

3.4.1 Feature Selection

The proposed approach of this section is based on the features of backend servers. So, a

set of the effective features of the backend server should be selected before the fuzzy

decision. Some proposed features were selected to create the feature set in our proposed

approach.

3.4.1.1 CPU Idle Percentage

The CPU loading of the backend server is one factor that influences the performance of

the load balancing system. The more loads the backend server has, the less CPU idle

percentage it has. Thereafter, the CPU idle percentage is our first feature in the fuzzy

decision mechanism. We define the CPU idle percentage fcpu as

 C P Ut h eofpercetageidlethefcpu (3.5)

A larger fcpu value means the higher possibility of available CPU resources that the

backend server has. Thus, we can define the membership function for fcpu in Fig. 3.10.

Here, the High CPU Idle means the membership function for a high CPU idle percentage,

the Medium CPU Idle means the membership function for a medium CPU idle percentage,

and the Low CPU Idle means the membership function for a low CPU idle percentage.

Figure 3.10: Membership function for CPU idle percentage.

3.4.1.2 Available Memory Percentage

The memory usage is another important factor that determines the loads of the backend

server. The more memory the backend server uses, the less capacity the backend server

has. However, the backend servers may have different memory installed. Thus, we use

the percentage of available memory as the feature in our fuzzy decision mechanism.

Assuming that the total memory of the backend server is Mtotal, and the available memory

of the backend server is Mavail, then we define the available memory percentage fmem as

t o t a l

a v a i l
m e m

M

M
f (3.6)

A larger fmem value means the higher possibility of available memory that the

backend server has. Thus, we can define the membership function for fmem as shown inFig.

3.11. Here, the High Available Memory means the membership function for a high

available memory percentage, the Medium Available Memory means the membership

function for a medium available memory percentage, and the Low Available Memory

means the membership function for a low available memory percentage.

Figure 3.11: Membership function for available memory percentage.

3.4.1.3 Available Connection Percentage

When the current number of connections increases, the performance of the backend

server tends to decrease. Thus, the current number of connections is the third factor of the

load balancing system. Assuming that the maximum number of connections for the

backend server is Cmax, and the current number of connections is Ccur, then we define the

percentage of available connection fcon as

m a x

m a x

C

CC
f c u r

c o n

 (3.7)

A larger fcon value means the higher possibility of available connections that the

backend server has. Thus, we can define the membership function for fcon as shown inFig.

3.12. Here, the High Available Connection means the membership function for a high

available connection percentage, the Medium Available Connection means the

membership function for a medium available connection percentage, and the Low

Available Connection means the membership function for a low available connection

percentage.

Figure 3.12: Membership function for available connection percentage.

3.4.2 Fuzzy Decision Load Balancing Algorithm

In this section, the proposed load balancing mechanism is introduced, which employs the

fuzzy decision to decide the appropriate backend server. A fuzzy based approach consists

of three steps, including the fuzzification, the rule evaluation, and the defuzzification, as

shown in Fig. 3.13 [76].

3.4.2.1 Fuzzification

Based on the membership functions presented in Section 3.4.1, the fuzzy degree can be

obtained according to the crisp values of the selected features. In order to describe the

fuzzy decision mechanism, we use the following example. The given CPU idle

percentage fcpu, the available memory percentage fmem, and the available connection

percentage fcon are as following.

fcpu = 0.72

fmem = 0.65

fcon = 0.55

Fuzzification
Rule

Evaluation
Defuzzification

Figure 3.13: Fuzzy decision steps.

The degree of membership function can be determined from Figures 3.10 to 3.12.

Hence, we can obtain the degree of High CPU idle percentage (HCPU), Medium CPU

idle percentage (MCPU), Low CPU idle percentage (LCPU), High available memory

percentage (HMEM), Medium available memory percentage (MMEM), Low available

memory percentage (LMEM), High available connection percentage (HCON), Medium

available connection percentage (MCON), and Low available connection percentage

(LCON). These values are shown as below.

HCPU=0.72, MCPU=0.12, LCPU=0.28

HMEM=0.65, MMEM=0.4, LMEM=0.35

HCON=0.55, MCON=0.8, LCON=0.45

3.4.2.2 Rule Evaluation

The main purpose of rule evaluation is to apply the fuzzy values to the rule base for

obtaining the fuzzy decision values. Table 3.1 shows the rule base, in which the

influenced rules are illustrated. Y, PY, PN, and N indicate the Yes, Probably Yes, Probably

No, and No, respectively, corresponding to the load balancing decision. The degree of

membership can be assigned the minimum, maximum, or average of the degree of

membership of the rules.

Table 3.1: Load balancing decision rule base.

CPU idle
Memory

available

Connection

available
Decision

HCPU HMEM HCON Y

HCPU HMEM MCON Y

HCPU HMEM LCON PY

HCPU MMEM HCON Y

HCPU MMEM MCON Y

HCPU MMEM LCON PY

HCPU LMEM HCON PY

HCPU LMEM MCON PY

HCPU LMEM LCON PN

MCPU HMEM HCON PY

MCPU HMEM MCON PY

MCPU HMEM LCON PY

MCPU MMEM HCON PY

MCPU MMEM MCON PN

MCPU MMEM LCON PN

MCPU LMEM HCON PY

MCPU LMEM MCON PN

MCPU LMEM LCON PN

LCPU HMEM HCON PY

LCPU HMEM MCON PN

LCPU HMEM LCON PN

LCPU MMEM HCON PN

LCPU MMEM MCON N

LCPU MMEM LCON N

LCPU LMEM HCON PN

LCPU LMEM MCON N

LCPU LMEM LCON N

Since each factor has three membership functions, the combinations have 27 cases

in total. Each load balancing decision in Tale 3.1 has a decision among Y, PY, PN, and N.

The fuzzy values are used to evaluate rules for obtaining Fuzzy Decision Values (FDV) by

assigning the minimum of the degree of membership of the rules. In this way, the decision

and the corresponding FDV can be precisely determined, as shown in Table 3.2.

Table 3.2: Fuzzy decision values.

Rules FDV

Rule(HCPU,HMEM,HCON)=Y minimum(HCPU=0.72,HMEM=0.65,HCON=0.55)=0.55

Rule(HCPU,HMEM,MCON)=Y minimum(HCPU=0.72,HMEM=0.65,MCON=0.8)=0.65

Rule(HCPU,HMEM,LCON)=PY minimum(HCPU=0.72,HMEM=0.65,LCON=0.45)=0.45

Rule(HCPU,MMEM,HCON)=Y minimum(HCPU=0.72,MMEM=0.4,HCON=0.55)=0.4

Rule(HCPU,MMEM,MCON)=PY minimum(HCPU=0.72,MMEM=0.4,MCON=0.8)=0.4

Rule(HCPU,MMEM,LCON)=PY minimum(HCPU=0.72,MMEM=0.4,LCON=0.45)=0.4

Rule(HCPU,LMEM,HCON)=PY minimum(HCPU=0.72,LMEM=0.35,HCON=0.55)=0.35

Rule(HCPU,LMEM,MCON)=PY minimum(HCPU=0.72,LMEM=0.35,MCON=0.8)=0.35

Rule(HCPU,LMEM,LCON)=PN minimum(HCPU=0.72,LMEM=0.35,LCON=0.45)=0.35

Rule(MCPU,HMEM,HCON)=Y minimum(MCPU=0.12,HMEM=0.65,HCON=0.55)=0.12

Rule(MCPU,HMEM,MCON)=PY minimum(MCPU=0.12,HMEM=0.65,MCON=0.8)=0.12

Rule(MCPU,HMEM,LCON)=PY minimum(MCPU=0.12,HMEM=0.65,LCON=0.45)=0.12

Rule(MCPU,MMEM,HCON)=PY minimum(MCPU=0.12,MMEM=0.4,HCON=0.55)=0.12

Rule(MCPU,MMEM,MCON)=PN minimum(MCPU=0.12,MMEM=0.4,MCON=0.8)=0.12

Rule(MCPU,MMEM,LCON)=PN minimum(MCPU=0.12,MMEM=0.4,LCON=0.45)=0.12

Rule(MCPU,LMEM,HCON)=PY minimum(MCPU=0.12,LMEM=0.35,HCON=0.55)=0.12

Rule(MCPU,LMEM,MCON)=PN minimum(MCPU=0.12,LMEM=0.35,MCON=0.8)=0.12

Rule(MCPU,LMEM,LCON)=PN minimum(MCPU=0.12,LMEM=0.35,LCON=0.45)=0.12

Rule(LCPU,HMEM,HCON)=PY minimum(LCPU=0.28,HMEM=0.65,HCON=0.55)=0.28

Rule(LCPU,HMEM,MCON)=PN minimum(LCPU=0.28,HMEM=0.65,MCON=0.8)=0.28

Rule(LCPU,HMEM,LCON)=PN minimum(LCPU=0.28,HMEM=0.65,LCON=0.45)=0.28

Rule(LCPU,MMEM,HCON)=PN minimum(LCPU=0.28,MMEM=0.4,HCON=0.55)=0.28

Rule(LCPU,MMEM,MCON)=N minimum(LCPU=0.28,MMEM=0.4,MCON=0.8)=0.28

Rule(LCPU,MMEM,LCON)=N minimum(LCPU=0.28,MMEM=0.4,LCON=0.45)=0.28

Rule(LCPU,LMEM,HCON)=PN minimum(LCPU=0.28,LMEM=0.35,HCON=0.55)=0.28

Rule(LCPU,LMEM,MCON)=N minimum(LCPU=0.28,LMEM=0.35,MCON=0.8)=0.28

Rule(LCPU,LMEM,LCON)=N minimum(LCPU=0.28,LMEM=0.35,LCON=0.45)=0.28

From Table 3.2, it is shown that the fuzzy decisions have more than one value for

the degree of membership. Generally, the minimum, maximum, or average of the

membership degree can be used to obtain the final fuzzy degree. Here, the minimum rule

evaluation is adopted to obtain the four Fuzzy Degrees (FD) of Y, PY, PN, and N.

FD(Y) = min(0.55,0.65,0.4,0.4)=0.4

FD(PY) = min(0.45,0.4,0.35,0.35,0.12,0.12,0.12,0.12,0.12,0.28)=0.12

FD(PN) = min(0.35,0.12,0.12,0.12,0.12,0.28,0.28,0.28,0.28)=0.12

FD(N) = min(0.28,0.28,0.28,0.28)=0.28

3.4.2.3 Defuzzification

In the defuzzification step, a set of weightings are assigned to the four truth values (Y, PY,

PN, N). For instance, the four weightings may be assigned with the weight of 0.4, 0.3, 0.2,

and 0.1, respectively. Therefore, the Crisp Value (CV) can be determined based on the FD

weightings and the degree of the membership. The CV is calculated by Eq. 3.5.

i

i

iw

iwiFD

CV
)(

)(*)(

 (3.8)

where FD(i) and w(i) represent the degree of membership and the weights respectively, in

which FD(i) belongs to (Y, PY, PN, N). In the example considered above, the CV is

obtained as

248.0
1.02.03.04.0

1.0*28.02.0*12.03.0*12.04.0*4.0

CV

After the CV has been obtained, the backend server with the highest CV is the most

appropriate one to serve the client request.

CHAPTER 4

EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

4.1 Weighted Distributed Load Balancing Algorithm

In our experimental environment, the load balancing system consists of a dispatcher, a

central database server, and a number of heterogeneous backend servers. A log server is

installed to keep track of the transaction log between servers and clients. The log server is

used to check whether the requests are distributed evenly, and we can decide to add new

backend server if needed. In other words, we must make an effort to achieve the

maximum performance with existing servers by more sophisticated load balancing

algorithm before adding extra backend servers.

The operations of the load balancing system are described as follows. First,

backend servers register to the database. The database server will generate a serverlist

table on the database. When client issues request to dispatcher, the dispatcher looks up the

serverlist table to obtain the IP address of the most appropriate backend server. Then the

dispatcher returns an HTML document with HTTP header redirection to notify the IP

address of backend server to the client. After client receives this document, it issues the

request to the appropriate backend server. The assigned server serves the client requests

from now on until the transaction finished.

To verify our proposed system can be applied in the heterogeneous system, we use

three servers with different computational power as the backend servers. The servers are

named S1, S2, and S3. Table 4.1 shows the CPU speed of the three backend servers and

Fig. 4.1 shows the maximum numbers of connection per second for each backend server.

Table 4.1: CPU speed for the three backend servers.

Server name CPU Speed

S1 1.0G Hz

S2 1.6G Hz

S3 2.6G Hz

Figure 4.1: Maximum number of connections per second.

Figures 4.2 and 4.3 show the drop rate and the average response time of these three

backend servers with different abilities. On Figures 4.1 to 4.3, we can observe that the

high-end backend server, say S3, can handle more client requests at the same time.

Furthermore, the high-end backend server takes little time to response the same number

of requests. Based on the experimental results above, we got some conclusions in Table

4.2.

Figure 4.2: Comparison of drop rate for each backend servers.

Figure 4.3: Comparison of average response time for each backend servers.

Table 4.2: The max. number of connections for each backend servers.

Server CPU Max. connection number
- Drop rate below 5%

Max. connection number
- Drop rate below 5%

- Avg. response time below 1 second

S1 1 GHz 360 120

S2 1.6 GHz 440 200

S3 2.6 GHz 520 340

The next experiment needs to set the capacities for the heterogeneous backend

servers. The capacities derived from maximum request numbers with less than 5% drop

rate in Table 4.2 is shown in Table 4.3.

Figures 4.4 and 4.5 show the experimental results when the capacity ratio of

S1:S2:S3 is 9:11:13. The highest capacity server S3 can serve more request than the others,

as shown in Fig. 4.4. Although S3 can server more requests, the average response time is

still shorter than S1 and S2. In fact, it is unfair for users that connect to our load balancing

system in first come first serve sequence. The reason is that we define the capacity values

only considering the drop rate.

Table 4.3: Capacities of each backend server with drop rate below 5%.

Server
Max. request numbers
- Drop rate below 5%

Capacity

S1 360 9

S2 440 11

S3 520 13

Figure 4.4: Comparison of connection numbers with capacity ratio 9:11:13.

Figure 4.5: Comparison of average response time with capacity ratio 9:11:13.

We consider both drop rate and average response time to get new capacity ratio.

The new capacity ratio of S1:S2:S3 is 6:10:17, as listed in Table 4.4 which is derived from

the average response time under 1 second as shown in Table 4.2. Figures 4.6 and 4.7

show the number of connection and the average response time of these backend servers.

The values of average response time for the three servers are very close.

Table 4.4: Capacity of each backend server with drop rate below 5% and avg. response

time below 1 second.

Server
Max. connection numbers
- Drop rate below 5%

- Avg. response time below 1 second
Capacity

S1 120 6

S2 200 10

S3 340 17

Figure 4.6: Comparison of connection number with capacity ratio 6:10:17.

Figure 4.7: Comparison of average response time with capacity ratio 6:10:17.

In the experimental results above, the load balancing system can improve the

performance. Most of the load balancing systems are based on homogeneous web servers.

If the hardware specifications of backend servers in the system are different, the load

balancing system must have a strategy to fairly dispatch the load to the backend servers.

In this section, we derive a formula to define the capacities for heterogeneous backend

servers. From the experimental results, the maximum number of connections with certain

drop rate can be used as the capacity indicator, but it can not provide fair response time

for each client requests. Thus, we must consider the capacity not only depending on drop

rate but also on the response time. Using this measurement, the response time for all

client requests will nearly be the same.

4.2 Remaining Capacity Load Balancing Algorithm

To evaluate the performance of the remaining capacity load balancing algorithm, we

performed simulation using round robin (RR) and least connection (LC) load balancing

algorithm as well as our proposed remaining capacity (RC) algorithm. The performance

evaluation includes connection hit rate, server utilization, drop rate, and system

scalability.

4.2.1 Connection Hit Rate and Server Utilization

In our simulation environment, we use three backend servers, denoted as S1, S2 and S3.

The capacities of these three backend server are C1, C2 and C3, where C3 > C2 > C1. We

generate the client requests from 100 requests per second to 1000 requests per second.

Figures 4.8 and 4.9 shows the results for the RR algorithm. Figure 4.8 shows the total hit

number for the three heterogeneous backend servers. According to our environment, the

S1 has lowest capacity. When the arrival rate of client requests is about 300 requests per

second, the S1 server does not have enough remaining capacity. If the arrival rate

increases, the S1 server can only serve the same amount of client requests and begin to

drop requests. If we continuously increase the arrival rate to about 600 requests per

second, the second server S2 will not have enough remaining capacity. If the arrival rate is

up to about 900 requests per second, the third server S3 also runs out of capacity. The

utilizations of the three servers are shown in Fig. 4.9. At 300 requests per second, the

utilization of S1 goes to about 95%. If the arrival rate increases, the server S1 will begin to

drop requests.

Figure 4.8: Comparison of hit rate for RR algorithm.

Figure 4.9: Comparison of utilization for RR algorithm.

Figures 4.10 and 4.11 show the results of the simulation of the LC algorithm. In the

LC algorithm, the dispatcher will select the server with the least connection. Since we use

heterogeneous backend servers; the server with least connection may not be able to serve

extra request because it does not have enough remaining capacity. In this situation, if a

server with least connection but with 95% loading, the dispatcher will not redirect client

request to this server. Instead, it redirects the request to the next least loaded server. The

hit rate of LC algorithm is similar to the RR algorithm. But in this case, the S2 will up to

95% loading at 500 requests per second and S3 at 700 requests per second. It seems that

the RR algorithm is better than the LC algorithm. But when we consider the drop rate, we

can find that the RR algorithm drops more requests than LC algorithm.

Figure 4.10: Comparison of hit rate for LC algorithm.

Figure 4.11: Comparison of utilization for LC algorithm.

With our proposed RC algorithm shown in Figures 4.12 and 4.13, all the three

servers will up to 95% loading in 700 requests per second. This means that the three

heterogeneous backend servers will with 95% loading at the specific arrival rate. In other

word, the system can serve as much requests as possible with minimum drop rate. When

the arrival rate is less then 300, the least capable server S1 will serve less connection and

its utilization will be lower. In this situation, the average response time will be shorter

than the RR and LC algorithm.

Figure 4.12: Comparison of hit rate for RC algorithm.

Figure 4.13: Comparison of utilization for RC algorithm.

4.2.2 Drop Rate Comparison

When the server reaches its service capacity but the dispatcher still redirects the client

request to that server, the request will be dropped. An optimal load balancing system must

have as little drop rate as possible. Now we compare the drop rate for these three load

balancing algorithms. As shown in Fig. 4.14, the RR algorithm begins to drop client

request at 300 requests per second, but in the LC and RC algorithm, they begin to drop

requests at 600 and 700 requests per second, respectively. Because the LC algorithm

considers only the number of connections, it redirects the request to the backend server

according to the current number of connections. But with RC algorithm, the remaining

capacity will be considered, so the request will be redirected to the maximum remaining

capacity server. Thus the drop rate is less than LC algorithm.

Figure 4.14: Comparison of drop rate for RR, LC, RC algorithms.

4.2.3 Scalability of the Load Balancing System

In our load balancing system, we can scale the system by using the remaining capacity of

other part-time servers. Figure 4.15 is the utilization of only one web server. The web

server cannot handle over 350 request per second. If we add another web server in the

system, the utilization for these two web servers is shown in Fig. 4.16, which can serve

more requests per second. In our proposed architecture, we use the remaining capacities

of other servers like DNS or MAIL server. Consider using the remaining capacity of DNS

server, we need to reserve some capacity for its original service, DNS service. In this

simulation, we reserve 10% of capacity for DNS service, and the other capacity can be

used as web service. The utilization for one web server plus one DNS server is shown in

Fig. 4.17. It seems that the performance is not as good as the one shown in Fig. 4.16. Now

we continue to use the remaining capacity of MAIL server. We must reserve more

capacity for the MAIL service, say 50%, so the remaining 50% capacity can be used for

web service. The utilization for one web server plus one DNS server plus one MAIL

server is shown in Fig. 4.18.

Figure 4.19 shows the hit rate for one web server, two web servers, one web server

plus one DNS server, and one web server plus one DNS server plus one MAIL server. We

can find that when we use the remaining capacity of both DNS and MAIL server, the hit

rate is higher than the hit rate of the one with two web servers. It means that if we can use

the remaining capacities, the performance will be better than use another dedicate web

server. The drop rate is also compared in Fig. 4.20. When using the remaining capacity of

both DNS and MAIL servers, the system will begin to drop request about 700 requests

per second which is also better than adding another dedicated web server.

Figure 4.15: Utilization for one web server.

Figure 4.16: Utilization for two web servers.

Figure 4.17: Utilization for Web + DNS.

Figure 4.18: Utilization for Web + DNS + MAIL.

Figure 4.19: Comparison of hit rate for different schemes.

Figure 4.20: Comparison of drop rate for different schemes.

4.3 Fuzzy Decision Load Balancing Algorithm

In this section, we will present the experimental results for fuzzy decision load balancing

algorithm. In our first experiment, we use the fuzzy decision mechanism to dispatch the

client requests. When there is only one web server, the response time at 800 connections

per second is a little bit over 1.5 seconds. In order to reduce the response time, we tried to

use two web servers, and the response time at 800 connections per second is reduced to

about 0.85 seconds. In this architecture, we need bring another dedicated server to the

load balancing system. If the high traffic volume does not happen regularly, using another

dedicated web server is not cost effective. Therefore we try to use the DNS server as the

service-on-demand server to join the load balancing system. The response time at 800

connections per second is about 1.17 seconds. The results showed that it is no better than

the case of using another dedicated web server. Then, the MAIL server also being brought

into the load balancing system, and the response time at 800 connections per second is

only about 0.55 seconds. In Fig. 4.21, when the DNS server and the MAIL server joined

the load balancing system, we achieved a lower average response time when compared to

using another dedicated web server.

Figure 4.21: Comparison of response time for service-on-demand servers.

The fuzzy decision and the other load balancing algorithms are compared and the

results are shown in Figures 4.22 and 4.23. In these experiments, the DNS server and the

MAIL server joined the load balancing system. In Fig. 4.22, the round robin, least

connection, and hash algorithms dispatched the client requests without considering the

loading information of backend servers, so the average response times are much higher

than that of the proposed fuzzy decision mechanism. The response time and bandwidth

algorithms, which take the current status of backend servers into consideration, shall have

better performance than the round robin, least connection, and hash. But when comparing

these two algorithms with our proposed fuzzy decision algorithm, the fuzzy decision

algorithm is still better than these two, as shown in Fig. 4.23. Because only partial

capacity of the DNS server and the MAIL server are used to serve the requests from

clients, our fuzzy decision mechanism takes the CPU, memory, and connection of

backend servers into consideration. So we can reduce the average response time.

Figure 4.22: Comparison of response time for fuzzy, round robin, least connection, and

hash algorithms.

Figure 4.23: Comparison of response time for fuzzy, response time, and bandwidth

algorithms.

CHAPTER 5

CONCLUSIONS

In this dissertation, we propose some load balancing algorithms to improve the

performance of web sites. Many researches already proposed useful load balancing

architectures. Our proposed algorithms are focused on some specific working

environments. Firstly, if the processing power or the memory of each backend servers are

different, the initial weights for each backend server are very important. We can use the

ratio of drop rate as the initial weights to distribute the client request. But the

experimental results show that the perceive latency for each client are not fair. In order to

be fair in the perceive latency for each client, we re-define the initial weights according to

the response time. With this modification, we can see that all of the client can obtain a

fair average response time regardless of the backend server who serves it.

Secondly, we want to solve the burst web traffic problem without extra cost

because most web sites do not have heavy traffic all the time. The service-on-demand

server, such as DNS server or MAIL server can join the load balancing system when

needed. When the service-on-demand servers join the system, we use the remaining

capacity to find out which backend server is the most appropriate one to serve the client

request. And then dispatch the client request to that backend server.

In addition to the remaining capacity load balancing algorithm, we want to use

another intelligent method to decide which backend server is the most appropriate one.

The fuzzy decision mechanism was adopted to dispatch the client request in our proposed

fuzzy decision load balancing algorithm. With this intelligent algorithm, we can reduce

the average response time for all the client requests. The experimental results also show

that the part-time DNS server plus a MAIL server can achieve higher performance than

by adding an additional dedicated web server.

REFERENCES

[1] Eunmi Choi, Yoojin Lim, and Dugki Min, “Performance Comparison of Various

Web Cluster Architectures,” Lecture Notes in Computer Science, vol. 3398, pp.

617-624, May 2005.

[2] Dan Mosedale, William Foss, and Robert Martin McCool, “Lessons Learned

Administering Netscape’s Internet Site,” IEEE Trans. Internet Computing, vol. 1,

no. 2, pp. 28-35, March/April 1997.

[3] Eric Dean Katz, Michelle Butler, and Robert McGrath, “A Scalable HTTP Server:

The NCSA Prototype,” Trans. Computer Networks and ISDN Systems, vol. 27, no.2,

pp. 155-164, 1994.

[4] Tsang-Long Pao, Jian-Bo Chen, and I-Ching Cheng, “An Analysis of Server Load

Balance Algorithms for Server Switching,” Proc. Ming-Chung University

International Academic Conference, Taiwan, March 2004.

[5] Jeffery S. Chase, “Server Switching: Yesterday and Tomorrow,” Proc. Second IEEE

Workshop on Internet Applications, pp. 114-123, San Jose, CA, 2001.

[6] Notel Networks, “Alteon Link Optimizer Application Guide,” Release 1.0, 2002.

[7] Notel Networks, http://www.nortelnetworks.com.

[8] Cisco System, http://www.cisco.com.

[9] Extreme Network, http://www.extremenetworks.com.

[10] F5 Networks, http://www.f5.com.

[11] Scot Hull, “Content Delivery Networks: Web Switching for Security, Availability,

and Speed,” McGraw Hill, 2002.

[12] Microsoft, http://www.microsoft.com.

[13] Linux Virtual Server, http://www.linuxvirtualserver.org.

[14] Jiani Guo and Laxmi N. Bhuyan, “Load Balancing in a Cluster-Based Web Server

for Multimedia Applications,” IEEE Trans. Parallel and Distributed Systems, vol.

17, no. 11, pp. 1321-1334, November 2006.

[15] Richard Martin, Amin Vahdat, David Culler, and Thomas Anderson, “Effects of

Communication Latency, Overhead, and Bandwidth in a Cluster Architecture,”

Proc. 24th International Symposium on Computer Architecture, pp. 85-97, Denver,

Co, June 1997.

[16] Huican Zhu, Hong Tang, and Tao Yang, “Demand-Driven Service Differentiation

in Cluster-Based Network Servers,” Proc. Joint Conference between IEEE

Computer and Communications Societies (INFOCOM), pp. 679-688, Anchorage,

Alaska, USA, April 2001.

[17] Chang Li, Gang Peng, Kartik Gopalan, and Tzi-cher Chiueh, “Performance

Garantees for Cluster-Based Internet Services,” Proc. 23th International

Conference on Distributed Computing Systems, pp. 378-385, May 2003.

[18] Devarshi Chatterjee, Zahir Tari, and Albert Zomaya, “A Task-Based Adaptive TTL

Approach for Web Server Load Balancing,” Proc. 10th IEEE Symposium on

Computers and Communication, pp. 877-884, Murcia, Cartagena, Spain, June

2005.

[19] Valeria Cardellini, Michele Colajanni, and Philip S. Yu., “DNS Dispatching

Algorithms with State Estimators for Scalable Web-server Clusters,” Trans. World

Wide Web, vol. 2, no. 3, pp. 101-113, 1999.

[20] Kai-Hau Yeung, Kam-Wa Suen, and Kin-Yeung Wong, “Least Load Dispatching

Algorithm for Parallel Web Server Nodes,” Proc. IEE Communications, vol. 149,

no. 4, pp 223-226, August 2002.

[21] DNS rfc, http://www.dns.net/dnsrd/rfc.

[22] Philips S. Yu, Valeria Cardellini, and Michele Colajanni, “Dynamic Load

http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://www.ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35991

Balancing on Web-server Systems,” IEEE Trans. Internet Computing, pp. 28-39,

May/June 1999.

[23] Michele Colajanmi and Philip S. Yu, ”Adaptive TTL schemes for Load Balancing

of Distributed Web Servers”, ACM Trans. Sigmetrics Performance Evaluation

Review, vol. 25, no. 2, pp. 36-42, September 1997.

[24] Michele Colajanni, Philip S. Yu, and Daniel M. Dias, “Analysis of Task

Assignment Policies in Scalable Distributed Web-Server Systems,” IEEE Trans.

Parallel and Distributed Systems, vol. 9, no. 6, pp. 585-600, June 1998.

[25] Daniel M. Dias, William Kish, Rajat Mukherjee, and Renu Tewari, “A Scalable

and Highly Available Web-Server,” Proc. 41st IEEE International Conference on

Computer Society, pp. 85-92, Santa Clara, CA, February 1996.

[26] Ashish Singhai, Swee Boon Lim, and Sanjay R. Radia, “The SunSCALR

Framework for Internet Servers,” Proc. IEEE Fault-Tolerant Computing Systems,

pp. 108-116, Munich, Germany, June 1998.

[27] Roland J. Schemers, “lbmnamed: A Load Balancing Name Server in Perl,” Proc.

9th USENIX Conference on Systems Administration, pp. 1-12, Monterey, CA, 1995.

[28] lbnamed, A Load Balancing name server written in Perl,

http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html.

[29] Internet System Consortium, http://www.isc.org.

[30] Trevor Schroeder, Steve Goddard, and Byrav Ramamurthy, “Scalable Web Server

Clustering Technologies,” IEEE Trans. Network, vol. 14, no. 3, pp. 38-45,

May/June 2000.

[31] Xin Liu and Andrew A. Chien, “Traffic-based Load Balance for Scalable Network

Emulation,” Proc. ACM/IEEE Supercomputing, pp. 40-50, November 2003.

[32] W3C World Wide Web Consortium, http://www.w3c.org.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(dias%20%20d.%20m.%3cIN%3eau)&valnm=Dias%2C+D.M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20kish%20%20w.%3cIN%3eau)&valnm=+Kish%2C+W.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20mukherjee%20%20r.%3cIN%3eau)&valnm=+Mukherjee%2C+R.&reqloc%20=others&history=yes
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html

[33] Michael Garland, Sebastian Grassia, Robert Monroe, and Siddhartha Puri,

“Implementing Distributed Server Groups for the World Wide Web,” Technical

Report CMUCS-95-114, January 1995.

[34] Valeria Cardellini, Michele Colajanni, and Philip S. Yu, “Redirection Algorithms

for Load Sharing in Distributed Web-Server Systems,” Proc. 19th IEEE

International Conference on Distributed Computing Systems, pp. 528-535, 1999.

[35] Valeria Cardellini, Michele Colajanni, and Philip S. Yu, “Request Redirection

Algorithms for Distributed Web Systems,” IEEE Trans. Parallel and Distributed

Systems, vol 14, no 4, pp. 355-368, April 2003.

[36] Liming Liu and Yumao Lu, “Dynamic Traffic Controls for Web-server Networks,”

Trans. Computer Networks, vol. 45, no. 4, pp. 523-536, 2004.

[37] John Chiasson, Zhong Tang, Jean Ghanem, Chaouki T. Abdallah, J. Douglas

Birdwell, Majeed M. Hayat, and Henry Jerez, “The Effect of Time Delays on the

Stability of Load Balancing Algorithms for Parallel Computations,” IEEE Trans.

Control Systems Technology, vol. 13, no. 6, pp. 932-942, November 2005.

[38] Zhang Xiayu, Yu Yongquan, Chen Baixing, Ye Feng, and Xingxing Tan, “An

Extension-Based Dynamic Load Balancing Model of Heterogeneous Server

Cluster,“ Proc. IEEE International Conference on Granular Computing, pp.

675-679, November 2007.

[39] Haiying Shen and Cheng-Zhong Xu, “Hash-based proximity clustering for load

balancing in heterogeneous DHT networks,” Proc. International Conference on

Parallel and Distributed Processing Symposium, pp. 22-31, Rhode Island, Greece,

April 2006.

[40] Nehra Neeraj and Patel R.B., “Towards Dynamic Load Balancing in

Heterogeneous Cluster Using Mobile Agent,” Proc. International Conference on

http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4403044
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10917
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10917
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4426318
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4426318

Computational Intelligence and Multimedia Applications, pp. 15-21, December

2007.

[41] Di Wu, Ye Tian, and Kam-Wing Ng, “On the Effectiveness of Migration-based

Load Balancing Strategies in DHT Systems,” Proc. International Conference on

Computer Communications and Networks, pp. 405-410, October 2006.

[42] Karim Y. Kabalan, Waleed W. Smari, and Jacques Y. Hakimian, “Adaptive Load

Sharing in Heterogeneous Systems: Policies, Modifications, and Simulation,” Trans.

Simulation Systems Science and Technology, vol. 3, no. 1-2, pp. 89-100, 2002.

[43] Ruchir Shah, Bharadwaj Veeravalli, and Manoj Misra, “Estimation Based Load

Balancing Algorithm for Data-Intensive Heterogeneous Grid Environments,” Proc.

13th International Conference on High Performance Computing, pp. 72-83, 2006.

[44] Kai Lu and Albert Y. Zomaya, “A Hybrid Policy for Job Scheduling and Load

Balancing in Heterogeneous Computational Grids,” Proc. Sixth International

Symposium on Parallel and Distributed Computing, pp. 19-27, July 2007.

[45] Yigal Bejerano, Seung-Jae Han, and Li Li, “Fairness and Load Balancing in

Wireless LANs Using Association Control,” IEEE/ACM Trans. Networking, vol.

15, issue 3, pp. 1-14, 2007.

[46] Y. Bejerano, Seung-Jae Han, and Li Li, “Fairness and Load Balancing in Wireless

LANs Using Association Control,” Proc. ACM International Conference on Mobile

Computing and Networking, pp. 315-329, 2004.

[47] Jon Kleinberg, Yuval Rabani, and Eva Tardos, “Fairness in Routing and Load

Balancing,” Proc. 40th Annual Symposium on Foundations of Computer Science,

pp. 568-578, New York, NY, USA, October 1999.

[48] Parameswaran Ramanathan and Prathima Agrawal, “Adapting Packet Fair

Queueing Algorithms to Wireless Networks,” Proc. ACM International Conference

http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4067604
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4271883
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
http://www.ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4237134

on Mobile Computing and Networking, pp. 1-9, Dallas, Texas, USA, October 1998.

[49] Yijiao Chen, Xicheng Lu, and Zhigang Sun, “MSF: A Session-Oriented Adaptive

Load Balancing Algorithm,” Proc. International Conference on Network and

Parallel Computing Workshops, pp. 657-663, September 2007.

[50] Chhabra Amit and Singh Gurvinder, “Qualitative Parametric Comparison of Load

Balancing Algorithms in Distributed Computing Environment,” Proc. International

Conference on Advanced Computing and Communications, pp. 58-61, December

2006.

[51] Gregg Petrie, G. Fann, E. Jurrus, B. Moon, K. Perrine, C. Dippold, and D. Jones,

“A Distributed Computing Approach for Remote Sensing Data,” Proc. 34th

Symposium Interface, April 2002.

[52] Seyed Mahdi Bouzari, Mohammad Reza Javan, and Ahmad Salahi, “Efficient

Algorithm for Load Balancing,” Proc. International Symposium on Signals,

Circuits and Systems, vol. 2, pp. 1-4, July 2007.

[53] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated Load Information

Scheduling Algorithm for Distributed Computing Systems,” Trans. Computers and

Mathematics with Applications, vol. 37, no. 8, pp. 57-85, April 1999.

[54] Yoshitomo Murata, Hiroyuki Takizawa, Tsutomu Inaba, and Hiroaki Kobayashi,

“A Distributed and Cooperative Load Balancing Mechanism for Large-Scale P2P

Systems,” Proc. International Symposium on Applications and Internet Workshops,

pp. 23-27, January 2006.

[55] David B. Shmoys and Eva Tardos, “An Approximation Algorithm for the

Generalized Assignment Problem,” Trans. Matematical. Programming, vol. 62, no.

3, pp. 461-474, 1993.

[56] Rudiger Martin, Michael Menth, and Michael Hemmkeppler, “Accuracy and

http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4351441
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4351441
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4351441
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4289832
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4289832
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4292626
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4292626
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4292626

Dynamics of Multi-Stage Load Balancing for Multipath Internet Routing,” Proc.

IEEE International Conference on Communications, pp. 6311-6318, June 2007.

[57] Zeng Zeng and Bharadwaj Veeravalli, “Design and Performance Evaluation of

Queue-and-Rate-Adjustment Dynamic Load Balancing Policies for Distributed

Networks,” IEEE Trans. Computers, vol. 55, no. 11, pp. 1410-1422, November

2006.

[58] Waraich Sandeep Singh, “Classification of Dynamic Load Balancing Strategies in

a Network of Workstations,” Proc. Fifth International Conference on Information

Technology: New Generations, pp. 1263-1265, April 2008.

[59] Nehra Neeraj, Patel R.B., and Bhat V. K., “A Multi-Agent system for Distributed

Dynamic Load Balancing on Cluster,” Proc. International Conference on Advanced

Computing and Communications, pp. 135-138, December 2006.

[60] Zhiling Lan, Valerie E. Taylor, and Greg Bryan, “Dynamic Load Balancing for

Adaptive Mesh Refinement Application,” Proc. International Conference on

Parallel Processing, Valencia, Spain, 2001.

[61] Sagar Dhakal, Biliana Paskaleva, Majeed M. Hayat, Edl Schamiloglu, and

Chaouki T. Abdallah, “Dynamical Discrete-Time Load Balancing in Distributed

Systems in the Presence of Time Delays,” Proc. IEEE Conference on Decision and

Controls, vol. 5, pp. 5128-5134, December 2003.

[62] Ana Cortes, Ans Ripoll, Miquel Senar, and Emilio Luque, “Performance

Comparison of Dynamic Load-Balancing Strategies for Distributed Computing,”

Proc. 32nd Hawaii Conference on System Sciences, vol. 8, pp. 1-10, 1999.

[63] Yucai Feng, Dong Li, Hengshan Wu, and Yi Zhang, “A Dynamic Load Balancing

Algorithm Based on Distributed Database System,” Proc. Fourth International

Conference on High-Performance Computing in the Asia-Pacific Region, vol. 2, pp.

http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4288670
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://www.ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35990
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4492437
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4492437
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4492437
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4289832
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4289832
http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4289832

949-952, May 2000.

[64] Marc H. Willebeek-LeMair and Anthony Reeves, “Strategies for Dynamic Load

Balancing on Highly Parallel Computers,” IEEE Trans. Parallel and Distributed

Systems, vol. 9, no. 4, pp. 979-993, September 1993.

[65] Hwa-Chun Lin and C. Raghavendra, “A Dynamic Load-Balancing Policy with a

Central Job Dispatcher (LBC),” IEEE Trans. Software Engineering, vol. 18, no. 2,

pp. 148-158, Feburary 1992.

[66] Jerrell Watts and Stephen Taylor, “A Practical Approach to Dynamic Load

Balancing,” IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 3, pp.

235-248, March 1998.

[67] Mohammed J. Zaki, Wei Li, and Srinivan Parthasarathy, “Customized Dynamic

Load Balancing for a Network of Workstations,” Trans. Parallel and Distributed

Computing, vol. 43, no. 2, pp. 156-162, 1997.

[68] Suman Das, Harish Viswanathan, and Gee Rittenhouse, “Dynamic Load Balancing

Through Coordinated Scheduling in Packet Data Systems,” Proc. IEEE INFOCOM,

vol. 1, pp. 786-796, April 2003.

[69] Tsang-Long Pao and Jian-Bo Chen, “Remaining Capacity Based Load Balancing

Architecture for Heterogeneous Web Server System,” Proc. International

Conference on Parallel and Distributed Processing Techniques and Applications,

pp. 58-63, Las Vegas, USA, June 2006.

[70] Jaroslav Ramik, “A Decision System Using ANP and Fuzzy Inputs,” Trans.

International Journal of Innovative Computing, Information and Control, vol.3,

no.4, pp. 825-837, August 2007.

[71] Lily Lin and Huey-Ming Lee, “A Fuzzy Decision Support System for Selecting

the Facility Site of Multinational Enterprises,” Trans. International Journal of

Innovative Computing, Information and Control, vol.3, no.1, pp. 151-162, February

2007.

[72] Nyan Win Aung and Eric W. Cooper, Yukinobu Hoshino, Katsuari Kamei, “A

Proposal of Fuzzy Control Systems for Trailers Driven by Multiple Motors in Side

Slipways to Haul Out Ships,” Trans. International Journal of Innovative

Computing, Information and Control, vol.3, no.4, pp. 799-812, August 2007.

[73] Shimpei Matsumoto, Nobuyuki Ueno, Koji Okuhara, and Hiroaki Ishii, “Decision

of Optimal Load Leveling Point and Effect of Unofficial Announcement for

Implementing Mass Customization,” Trans. International Journal of Innovative

Computing, Information and Control, vol.3, no.1, pp. 53-69, February 2007.

[74] William V. Wollman, Harry Jegers, Maureen Loftus, and Caleb Wan, “Plug and

Play Server Load Balancing and Global Server Load Balancing for Tactical

Networks”, Proc. IEEE Military Communications Conference, vol. 2, pp. 933-937,

October 2003.

[75] KNOPPIX, http://www.knoppix.net/.

[76] Jin-Long Wang and Shih-Ping Huang, “Fuzzy Logic Based Reputation System for

Mobile Ad Hoc Networks,” Lecture Notes in Computer Science, vol. 4693, pp.

1315-1322, 2007.

