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ABSTRACT 

The server load balancing architecture is the most efficient way to solve the heavy 

loading problem of popular server. There are different solutions in implementing the load 

balancing system. In this dissertation, we adopt a flexible registration protocol that can 

easily add a new backend server to the load balancing system to share the load. In 

addition, the registration protocol also reports the real time backend server loading status 

to the load balancing system. So we can use these information to distribute client requests 

by any available load balancing algorithms.  

The purpose of load balancing algorithm is to improve the load sharing 

performance of the popular web server. Most of the load balancing architectures are based 

on supporting homogeneous backend servers. If the hardware specifications of backend 

servers in the system are different, the load balancing system must have a strategy to 

fairly dispatch the load to the backend servers. We derive a capacity measurement for 

heterogeneous backend servers. From the experimental results, the maximum number of 

connection with certain drop rate can be used as the capacity, but it can not provide fair 

response time for each client requests. Thus, we must consider the capacity not only 

depending on drop rate but also on the response time. Using this measurement, the 

average response time for all client requests will nearly be the same. 

In addition to the definition of capacity, we also use the remaining capacity 

algorithm to reduce the hardware cost when the web site does not have frequent burst 

requests. We propose the concept of service-on-demand servers, which can bring other 

servers such as DNS servers or MAIL servers to join the load balancing system during the 

burst traffic period. For example, the course registration system or ticket reservation 

systems have burst requests only several times a year. The proposed algorithm can use the 

remaining capacity of DNS or MAIL server to share the load in the burst request period. 



 

 

The simulation results show that using the remaining capacity of both DNS server and 

MAIL server can achieve higher performance compared to using another dedicated 

backend server. 

Due to the different remaining capacities that these servers have, we need an 

intelligent mechanism to make the load distribution decision. We propose an algorithm 

using the fuzzy decision algorithm to dispatch the client requests to the appropriate 

backend server. The CPU idle percentage, the available memory percentage, and the 

available connection percentage for each backend servers are the input parameters of our 

fuzzy decision algorithm. The most appropriate backend server can thus be determined. 

The simulation results show that the fuzzy decision algorithm can achieve higher 

performance than other load balancing algorithms. 
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中文摘要 

伺服器負載平衡架構是經常用來解決熱門網站負載分攤的一種方法，而負載平衡系

統有許多不同的解決方案。在本論文中，我們採用一種有彈性的註冊協定，使得負

載平衡系統能夠很容易增加後端伺服器來分擔負載。除此之外，在這註冊協定的訊

息中，同時也將伺服器的即時負載量回報給負載平衡系統，利用這些資訊，便可採

用任一可行的負載平衡演算法來分配使用者的需求。 

負載平衡演算法的目的是為了改善熱門網站的效能。大部分的負載平衡架構都

僅能適用在同質性的後端伺服器上。如果後端伺服器的硬體規格不同時，負載平衡

系統必須要有一種策略來將用戶端的連線需求，公平地分配到每一台後端伺服器

上。我們推導一個異質性後端伺服器運算能力的度量機制。這些運算能力可以根據

在特定丟棄率的條件下，後端伺服器所能提供的最大連線數來決定。然而，根據實

驗的結果可知，這種定義方式無法保證每個用戶端均有公平的連線回應時間。因此，

在考慮定義運算能力時，我們不僅是要考慮到丟棄率，同時也要考慮到回應時間。

採用這樣的定義方式，對於所有用戶端連線的平均回應時間幾乎都是相同的。 

除了定義運算能力之外，當網站並不是經常性的有突波連線需求時，我們可以

採用剩餘能力負載平衡演算法來降低負載平衡系統中的硬體成本。我們提出一種隨

選服務(service-on-demand)伺服器的概念，也就是在有突波連線需求時，將其他的伺

服器像是 DNS 伺服器或是 MAIL 伺服器等，加入到負載平衡系統中來分擔流量。舉

例來說，學校的選課系統或是訂票系統等，一年之中會有突波需求的次數僅有少數

幾次而已。這種剩餘能力演算法可以利用 DNS 伺服器或是 MAIL 伺服器的剩餘能

力，當突波連線需求來臨之前，加入到負載平衡系統中來分擔流量。模擬的結果發

現，當同時使用 DNS 伺服器以及 MAIL 伺服器的剩餘能力時，所得到的結果，會比



 

 

使用另一台專屬後端伺服器的效果來的要好。 

由於每一台後端伺服器的剩餘運算能力均不相同，因此需要一種智慧型的機制

來做決策。我們提出一種模糊決策的演算法，來將使用者的連線需求派遣給最適合

的後端伺服器處理。每一台後端伺服器的 CPU 的閒置百分率、可用的記憶體空間以

及可用的連線數，當成是模糊決策演算法的三個輸入參數。根據這些參數來計算最

後的明確值以決定最適合的後端伺服器了。模擬的結果發現，當採用模糊決策負載

平衡演算法時，可以比其他的演算法，得到更高的效能。 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Due to the growing popularity of the World Wide Web, the traffic of popular web sites 

has grown far beyond the capacity of a single web server. Most popular web sites adopt a 

distributed or parallel architecture to alleviate the load for the single server [1]. These 

sites can provide higher performance for a large number of client requests [2,3]. Although 

the load balancing architecture consists of a number of backend servers, they act as a 

single unit. User transparency is implemented to allow clients to issue the requests to the 

central unit without knowing the load balancing architecture the web site implemented. 

Meanwhile, clients do not need to make any configuration modifications when they 

connect to the load balancing systems. 

There are various methods used to build a load balancing system. These methods 

include the hardware-based approach [4-11], cluster-based approach [12-17], DNS-based 

(Domain Name Server) approach [18-29], dispatcher-based approach [30-34], and so on. 

In hardware-based and DNS-based approaches, the exact workload of each individual 

backend server in the system may not take into consideration which might lead to an 

unbalanced load situation. For the DNS-based approach, another major problem is the 

DNS query result caching in the intermediate DNS server and the client itself [35]. In this 

case, requests from hosts in the same domain may all be served by the same backend 

server and may drive that server into overload state.  

In the dispatcher-based approach, the central unit is the dispatcher which is 

responsible for dispatching the client requests to the most appropriate one among backend 

servers. In the server-state dispatching architecture [36], the dispatcher must collect the 



 

 

status of all the backend servers and make the decision regarding which backend server is 

the most appropriate one to serve the request. The decision criteria are based on the status 

of backend servers such as CPU loading, memory usage, current number of connections, 

and so on [37]. 

 

1.2 Motivation 

In this dissertation, our focus is on using the dispatcher-based approach to solve the burst 

traffic load problem. In some web systems, the workload of web servers is light for most 

of the time, but may incur a heavy traffic load during a specific period of time. For 

instance, the course registration system and the ticket reservation system will incur burst 

traffic during a specific period of time several times a year. During most of the time 

throughout the year, they only have a very light traffic load. Although the load balancing 

system can efficiently solve the burst traffic problems, the cost of the backend servers is 

the main issue. If we use a powerful dedicated server as the backend server, the 

investment in the hardware does not seem to be cost effective. Thus, we proposed to use 

some service-on-demand servers as the backend servers prior to the anticipated burst 

traffic period. These service-on-demand servers are not dedicated servers for the load 

balancing system; in fact they have their routing jobs to do, such as acting as DNS server 

or MAIL servers. During the heavy web load period, we initiated the web daemon and 

server registration protocol for the DNS server and the MAIL server to cooperate with the 

original web server to form the load balancing system. The contents of the web server 

were already stored inside a separated disk space or SAN, so we only needed to mount 

the file system. In doing so, the dispatcher knows that these additional backend servers 

can share the load. In addition to these service-on-demand servers, we can also use the 

personal computer in the PC classroom booting up with a live-CD to join the load 



 

 

balancing system when all of these service-on-demand servers still cannot handle the 

traffic load. 

 

1.3 Objective 

In our proposed load balancing system, the first issue is the registration process of a new 

backend server. Before the burst traffic period, the service-on-demand servers must 

register themselves into the load balancing system. The service-on-demand servers start 

the process of server registration protocol, which advertise a registration message to 

inform the dispatcher that a new backend is ready to serve the client requests. In addition, 

the registration protocol of the backend server also reports the update-to-date loading 

information to the dispatcher that can be used by the dispatcher to decide which one is the 

most appropriate to serve the client request. 

In the load balancing system, the capacities of each backend servers may be 

different, such as the CPU speed, memory, and network. In this kind of heterogeneous 

load balancing system, the dispatcher must have initial weights for each backend servers 

in order to balance the load [38-44]. The weights can be determined by the static factors 

such as CPU, memory, and so on. But when considering the fair response time for each 

client, we proposed a weighted distributed load balancing algorithm that their initial 

weights are determined by the average response time [45-55]. In this proposed algorithm, 

the average response time of client requests are nearly the same no matter which backend 

server serve the requests. 

Although each heterogeneous backend servers have different initial weights, the 

current loading information is another important factor in the load balancing system 

[56-68]. Some requests need large amount of resource of backend server, but others not. 

If the load balancing system dispatches the client request to the most appropriate backend 



 

 

server just according to the initial weights, the system load will eventually become 

unbalance. To avoid this situation, we propose the remaining capacity load balancing 

algorithm to dispatch the client request to the most appropriate backend according to the 

current loading information of each backend servers [69]. In this algorithm, we use the 

CPU idle percentage, available memory, and current connection number to calculate the 

remaining capacity of each backend server. The backend server with highest remaining 

capacity is the candidate to serve the request. In this remaining capacity algorithm, the 

service-on-demand servers can easily join the load balancing system because the 

dispatcher dispatches the client request according to the remaining capacity. If the routing 

job for the service-on-demand server is heavy, the remaining capacity of this 

service-on-demand server is less than others, and the dispatcher will not dispatch the 

client request to this server. Thus, the routing job will not be influenced by the load 

balancing system. 

In addition to the remaining capacity, we can use an intelligent algorithm to decide 

which backend server is the most appropriate one. In this dissertation, we adopt a fuzzy 

decision algorithm [70-73] to determine which backend server should respond to the 

client request. First, we will collect the status of the backend servers as the input 

parameters, such as the CPU idle percentage, available memory percentage, and available 

connection percentage. We quantify these features and define the membership functions 

for these features. Then, the membership function degree can be used as the parameters 

for rule evaluation. After the rule evaluation process, we will get the fuzzy decision 

values and fuzzy degree for these input parameters. The final process, defuzzification, 

will generate crisp values for these input parameters. The crisp value is used to determine 

which backend server is the most appropriate one to serve the incoming client request. 

 



 

 

1.4 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 addresses some related works. 

Chapter 3 introduces the load balancing algorithms, including the flexible server 

registration protocol, the weighted distributed load balancing algorithm, the remaining 

capacity load balancing algorithm, and the fuzzy decision load balancing algorithm. 

Chapter 4 presents the experimental and simulation results. Chapter 5 states our 

conclusions. 



 

 

CHAPTER 2 

RELATED WORKS 

In this chapter, we will discuss some backgrounds and related researches about load 

balancing architectures and solutions. 

 

2.1 Hardware-based Load Balancing Solutions 

2.1.1 High Performance Server 

A single server is generally not able to process the burst requests because of the limitation 

of hardware performance. The simplest solution is to upgrade its hardware. If the CPU is 

too busy, we can add extra CPU(s). If the memory utilization is too high, we can add 

more memory. If the network is too busy, we can upgrade with a high speed network 

interface card. The advantages of this kind of systems are easy to setup and maintain. And 

the web server administrator only needs to manage one single machine. The 

disadvantages are the cost and performance limitation of the hardware. Furthermore, the 

server is the single point of failure which may not be desired for reliable operation. 

 

2.1.2 Cluster Approach 

The second solution is to adopt the cluster approach. The cluster server system consists of 

many independent servers that work together. The workload is evenly dispatched to 

independent servers by using a proper dispatching algorithm. The advantage of this 

approach is that it can add more servers into the cluster easily, and from the client point of 

view, the server is still a single unit. The disadvantages are hard to setup and maintain. It 

must use some specific hardware and software to group servers as a single unit. 

 



 

 

2.1.2.1 Microsoft Windows Cluster 

While Windows 2000 represents a dramatic improvement over its predecessors in terms 

of the total uptime (availability), reduced system failure (reliability) and ability to add 

resources and computers to improve performance (scalability), Windows Server 2003 

takes the availability, reliability and scalability of the Windows operating system to the 

next level by enhancing existing features and providing new options. 

Microsoft clustering technologies are the key to improve availability, reliability and 

scalability. With Windows 2000 and Windows Server 2003, Microsoft uses a three-part 

clustering strategy. 

Network Load Balancing provides failover support for IP-based applications and 

services that require high scalability and availability. With Network Load Balancing 

(NLB), organizations can build groups of clustered computers to support load balancing 

of TCP or UDP traffic requests.  

Component Load Balancing provides dynamic load balancing of middle-tier 

application components that use COM+. With Component Load Balancing (CLB), COM+ 

components can load balanced over multiple nodes to dramatically enhance the 

availability and scalability of software applications.  

Server Cluster provides failover support for applications and services that require 

high availability, scalability and reliability. With clustering, organizations can make 

applications and data available on multiple servers linked together in a cluster 

configuration. Backend applications and services are ideal candidates for server cluster. 

 

2.1.2.2 Linux Cluster 

Linux Virtual Server (LVS) is a highly scalable and highly available server built on a 

cluster of real servers. The architecture of cluster is transparent to end users, and the users 



 

 

interact with the system as if it were only a single high performance virtual server.  

The real servers may be interconnected by high-speed LAN or by geographically 

dispersed WAN. The front-end box in front of the real servers is a load balancer, which 

schedules requests to the different servers and make parallel services of the cluster to 

appear as a virtual service on a single IP address. Scalability is achieved by transparently 

adding or removing a node in the cluster. High availability is provided by detecting node 

or daemon failures and reconfiguring the system appropriately. The three-tie architecture 

consists of : 

Load Balancer, the front-end machine of the whole cluster systems, balances 

requests from clients among a set of servers. The clients will consider that all the services 

is from a single IP address.  

Server Array, which is a set of servers running actual network services, such as 

WEB, MAIL, FTP, DNS or Media service.  

Shared Storage, which provides a shared storage space for the servers so that it is 

easy for the servers to have the same contents and provide the same services.  

 

2.1.3 Server Switch 

During the last few years, an active commercial market for server switching products has 

emerged [5]. Many of these products are Ethernet switches supplemented with build-in 

processing power to examine the incoming packet and manage service traffic intelligently, 

assign requests to servers based on request content, client session, and/or server status. 

Server switches and their request routing (server selection) policies play a key role in 

managing content and server resources for scalable Internet services [4,6]. 

Server switching is a technique to virtualize services at the IP level. An ensemble of 

servers cooperates to serve the request loading. Clients interact with the service through a 

client/server protocol such as HTTP, addressing their request to a virtual IP address 



 

 

representing the service. The server switch intercepts the incoming traffic and redirects 

each request to a specific server according to predefined policies. The set of functioning 

servers to choose from may grow and shrink dynamically, allowing a site to manage 

server resources locally to adapt to load changes. The switch isolates clients from internal 

details of the service structure, so that the ensemble appears to clients as a single virtual 

server that is powerful and reliable. Commercial server switches are available from Notel 

(Alteon) [7], Cisco (Arrowpoint) [8], Extreme [9], F5 Networks [10], and other 

companies. 

The Alteon server switch [6,7] recognizes when a client is requesting a new TCP 

session by identifying the TCP SYN packet. The request is forwarded to the best available 

server, based on the configured load balancing policy. Once the switch determines the 

best server, it binds the session to that server’s real IP address. The server switch 

maintains a binding table that associates each active session with the real server to which 

is assigned. After the server switch binds a connection request to a real server, it performs 

address substitution, so the real server will transparently receive packets for that session. 

The switch replaces the virtual IP address in the IP destination address with the server’s 

real IP address and replaces the switch’s MAC address in the destination address field 

with the server’s MAC address. Figure 2.1 illustrates how IP addressing substitution takes 

place as traffic flows inbound from the client to the real server [11]. 

After performing the necessary address substitution, the server switch forwards the 

connection request to the chosen server. All subsequent packets belonging to that session 

undergo the same address substitution process and are forwarded to the same real server 

until the switch sees a session termination packet (that is, a TCP FIN packet). Likewise, 

the server switch intercepts packets traveling form the real server to the client and 

performs the reverse address substitution. It replaces the real server’s actual IP address in 



 

 

the Network Layer source address field with the virtual IP address and forwards each 

modified frame to the client. The process is described in Fig. 2.2. 

 

 

 

Figure 2.1: Incoming session ID substitution. 

 

 

Figure 2.2: Outgoing session ID substitution. 



 

 

On the receiving of a TCP FIN packet, the server switch performs the necessary 

address substitution and forwards the FIN packet to the appropriate real server, causing 

the server to teardown the connection. Then it removes the session-server binding from its 

binding table. 

The advantages are that the load balancing policies can be varied by the devices, 

and the implementations are hardware-based, so they have the highest performance. The 

disadvantages are that they were designed by the manufactures, so we are not able to 

modify the source codes of devices. Furthermore, these devices are always quite 

expensive. 

 

2.2 Software-based Load Balancing Solutions 

2.2.1 DNS-based Approach 

In the distributed web server architectures that use request routing mechanisms on the 

cluster side, there is no additional action to take in the client side. Architecture 

transparency is typically obtained through a single virtual interface to the outside world, 

at least at the URL level. The cluster DNS — the authoritative DNS server for the 

distributed web nodes — translates the symbolic site name (URL) to the IP address of one 

server. This process allows the cluster DNS to implement many policies to select the 

appropriate server and spread client requests. The DNS, however, has a limited control on 

the request reaching the web cluster. Between the client and the cluster DNS, many 

intermediate name servers may cache the logical-name-to-IP-address mapping to reduce 

network traffic. Moreover, the client will also cache the result of address resolution. 

In addition to provide the IP address of a node, the DNS also specifies a validity 

period (Time-To-Live, or TTL) for caching the result of the logical name resolution 

[22,23]. When the TTL expires, the address-mapping request is forwarded to the cluster 



 

 

DNS to obtain the IP address map again; otherwise, an intermediate name server will 

handle the request. Figure 2.3 shows the resolution.  

If an intermediate name server holds a valid mapping for the cluster URL, it 

resolves the address-mapping request without forwarding it to upper level name server. 

Otherwise, the address request reaches the cluster DNS, which selects the IP address of a 

web server and the TTL. The URL-to-IP-address mapping and the TTL value are 

forwarded to all intermediate name servers along the path and to the client. 

We distinguish the DNS-based architectures by the scheduling algorithm that the 

cluster DNS uses. These algorithms are classified by the system state information that the 

DNS uses to select a web server node. 

 

 

 

 

Figure 2.3: DNS-based approach to load balancing. 



 

 

2.2.1.1 System-stateless Algorithms 

The Round-Robin DNS (RR-DNS) approach, first implemented by the National Center 

for Supercomputing Applications (NCSA) to handle increased traffic at its site, is for 

distributed homogeneous web server architecture [3]. NCSA developed a web cluster 

comprising the following entities: a group of loosely coupled web servers to respond to 

HTTP requests; a distributed file system that manages the entire WWW document tree; 

and one primary DNS for the entire web server system. 

NCSA modified the primary DNS for its domain to map addresses by a 

Round-Robin algorithm. The load distribution under the RR-DNS is unbalanced because 

the address-caching mechanism lets the DNS control only a small fraction of requests. An 

uneven distribution of client requests from different domains further adds to the 

imbalance such that many clients from a single domain can be assigned to the same web 

server, which overloads server nodes [24,25]. 

Additional drawbacks result because the algorithm ignores both server capacity and 

availability. With an overloaded or non-operational server, no mechanism can stop the 

clients from trying to access the web site by its cached address continuously. The 

RR-DNS policy’s poor performance needs further study for alternative DNS routing 

schemes that require additional system information. Example of RR-DNS is shown in 

Fig. 2.4. 

www IN A 192.168.1.1

IN A 192.168.1.2

IN A 192.168.1.3

IN A 192.168.1.4

IN A 192.168.1.5

IN A 192.168.1.6

IN A 192.168.1.7

IN A 192.168.1.8
 

Figure 2.4: Configuration of RR-DNS. 



 

 

2.2.1.2 Server-state-based Algorithms 

Knowledge of server state conditions is essential for a high available web server system 

to exclude servers that are unreachable because of fault or congestion. DNS policies, 

combined with a simple feedback alarm mechanism from highly utilized servers, 

effectively avoid web server system overload [24]. The Sun-SCALR framework 

implements a similar approach combined with the RR-DNS policy [26]. 

R. J. Schemers proposed and developed the lbnamed algorithm which make 

scheduling decision based on the web servers current loading [27,28]. The DNS, after 

receiving an address query, selects the least-loaded server. To inhibit address caching at 

name servers, the lbnamed algorithm requires that the DNS sets the TTL value to zero. 

This requirement limits the applicability. 

The lbnamed is a load balancing name server written in Perl. Of course it was 

meant to be a proof of concept that would get added back into BIND [29]. lbnamed 

allows the creation of dynamic groups of hosts that have one name in the DNS name 

space. A host may be in multiple groups at the same time [28].  

The load balancer consists of two perl programs, lbnamed and poller. These 

programs run in parallel and communicate using signals and configuration files. The 

poller program contacts the daemon running on the backend servers being polled. It reads 

a configuration file that tells the poller which backend servers to poll. The poller 

periodically sends out requests and receives the responses asynchronously. After it has 

received all the responses, it dumps the information into a configuration file and sends a 

signal to lbnamed which then reloads its configuration file. If the poller does not receive a 

response from one of the backend servers being polled, it simply removes it from the 

configuration file it feeds to lbnamed. 

The lbnamed reads the configuration file generated by the poller and stores the 

http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#poller-config
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#lbnamed-config


 

 

configuration into its memory. Each group of backend servers is stored in an array, while 

the weights of all the backend servers are stored in one hash table. When a request for a 

particular group comes in the array for that group is sorted based on the weight of each 

backend server in that group. The backend server with lowest weight is then returned as 

the best server. The weight in the corresponding entry is increased.  

To other name servers, lbnamed looks like a standard DNS server, with the 

exception that it does not answer recursive queries. It only handles requests for the 

dynamic groups it maintains. lbnamed gets a normal DNS query and based on the name in 

the query, it selects the best host to return. lbnamed then constructs a standard DNS 

response and sends it back to the client. The TTL value in the response is set to 0 to 

ensure the response from being cached by other name servers which would defeat the 

whole mechanism.  

Backend servers that are going to be polled by the poller need to run a special 

daemon. That daemon responds to poller requests (over UDP) using a simple protocol. 

The protocol format is described in Fig. 2.5. 



 

 

#define PROTO_PORTNUM 4330
#define PROTO_MAXMESG 2048 /* max udp message to receive */
#define PROTO_VERSION 2

typedef enum P_OPS {
    op_lb_info_req =1,  /* load balance info, request and reply */
} p_ops_t;

typedef enum P_STATUS {
    status_request =0, /* a request packet */
    status_ok =1, /* ok */
    status_error =2, /* generic error */
    status_proto_version =3, /* protocol version error */
    status_proto_error =4, /* any other protocol error */
    status_unknown_op =5, /* unknown operation requested */
} p_status_t;

typedef struct {
  u_short   version;  /* protocol version */
  u_short   id; /* requestor's uniq request id */
  u_short   op; /* operation requested */
  u_short   status; /* set on reply */
} P_HEADER,*P_HEADER_PTR;

typedef struct {
  P_HEADER h;
  u_int boot_time;
  u_int current_time;
  u_int user_mtime; /* time user information last changed */
  u_short l1; /* (int) (load*100) */
  u_short l5;
  u_short l15;
  u_short tot_users; /* total number of users logged in */
  u_short uniq_users; /* total number of uniq users */
  u_char  on_console; /* true if somone on console */
  u_char  reserved; /* future use, padding... */
} P_LB_RESPONSE, *P_LB_RESPONSE_PTR;

 

Figure 2.5: lbnamed protocol format. 

 

2.2.2 Dispatcher-based Approach 

To centralize request scheduling and completely control client-request routing, a network 

component of the web server system acts as a dispatcher. Request routing among servers 

is transparent. Unlike DNS-based architectures, which deal with addresses at the URL 

level, the dispatcher has a single, virtual IP address (IP-SVA).  

The dispatcher uniquely identifies each backend server in the system through a 

private address that can be at different protocol levels, depending on the architecture. We 

differentiate dispatcher-based architectures by routing mechanism — packet 

single-rewriting, packet double-rewriting, HTTP redirection, or server-based HTTP 



 

 

redirection [22]. 

Dispatcher-based architectures typically use simple algorithms to select the web 

server (for example, Round-Robin, server loading) to handle incoming requests. Simple 

algorithms help minimize request processing. 

 

2.2.2.1 Packet Single-Rewriting 

In some architectures, the dispatcher reroutes client-to-server packets by rewriting their IP 

address, such as in the basic TCP router mechanism. The web server cluster consists of a 

group of backend servers and a load balancer that acts as an IP address dispatcher. 

Figure 2.6 outlines the mechanism, in which address i is the IP address of the i-th web 

server. 

 

 

 

Figure 2.6: Packet single-rewriting by the dispatcher. 



 

 

All HTTP client requests reach the dispatcher because the IP-SVA is the only public 

address. The dispatcher selects a backend server for each HTTP request through a 

Round-Robin algorithm and forwards the packet by rewriting the destination IP address 

of each incoming packet. The dispatcher replaces its IP-SVA with the IP address of the 

selected server. Because a request consists of several IP packets, the dispatcher tracks the 

source IP address for every established TCP connection in an address table. The 

dispatcher can thereby route packets regarding the same connection to the same web 

server. 

Furthermore, the web server must replace its IP address with the dispatcher’s 

IP-SVA before sending the response packets to the client. Therefore, the client is not 

aware that its requests are handled by a hidden web server.  

This approach provides high system availability because, when a backend server 

fails, its address can be removed from the dispatcher to prevent further request routing. 

Moreover, the dispatcher architecture can be combined with a DNS-based solution to 

scale from a LAN- to a WAN-distributed web system. 

 

2.2.2.2 Packet Double-Rewriting 

This mechanism also relies on a centralized dispatcher to schedule and control client 

requests but differs from packet single-rewriting in the source address modification of all 

packets between server and client. Packet double-rewriting is based on Network Address 

Translation mechanism published by the Internet Engineering Task Force, as shown in 

Fig. 2.7. The dispatcher receives a client request, selects the web server and modifies the 

IP header of each incoming packet, and also modifies the outgoing packets that compose 

the requested document. 



 

 

 

Figure 2.7: Packet double-rewriting by the dispatcher. 

 

2.2.2.3 HTTP Redirection 

A centralized dispatcher receives all incoming requests and distributes them among the 

web server nodes through the HTTP redirection mechanism. The dispatcher redirects a 

request by specifying the appropriate status code [32] in the response, indicating in its 

header the server address where the client can get the desired document. Such redirection 

is largely transparent; at most, users might notice an increased response time. Unlike most 

dispatcher-based solutions, HTTP redirection does not require IP address modification of 

packets reaching or leaving the web server system. HTTP redirection can be implemented 

with two techniques. 

Server-state-based dispatching: Used by the Distributed Server Groups architecture 

[33]. It adds new methods to HTTP protocol to administer the web system and exchange 

messages between the dispatcher and the servers. Since the dispatcher must be aware of 

the server loading, each server periodically reports the number of processes in its run 

queue and the number of received requests per second. The dispatcher then selects the 



 

 

least-loaded server, as shown in Fig. 2.8. 

Location-based dispatching: Used by Cisco Systems’ Distributed Director [8] 

appliance. It provides two dispatching modes. The first applies the DNS-based approach 

with client and server state information. The second use the HTTP redirection. The 

Distributed Director estimates a client’s server proximity and the node availability with 

algorithms that apply to the DNS-based solution. Client requests are redirected to the 

server that is evaluated as most suitable for each request at a certain time. 

 

 

 

 

Figure 2.8: HTTP redirection. 



 

 

2.2.2.4 Server-based HTTP Redirection 

The scalable server World Wide Web (SWEB) system and similar architectures [34] use a 

two-level distributed scheduler, as shown in Fig. 2.9. Client requests, initially assigned by 

the DNS to a web server, can be reassigned to another server via HTTP redirection. 

Figure 2.9 shows server 1 receiving the client request, then redirecting the request to 

server 2. The first level web server selected by the DNS can be prevented by the caching 

mechanism of the intermediate name servers. 

Redirecting individual client connections is crucial to better load balancing at a fine 

granularity level. In most instances, however, it is preferable to combine client redirection 

with domain redirection [34]. 

The SWEB architecture uses a Round-Robin DNS policy as a first-level scheduler. 

In second-level scheduler, each web server redirects requests according to server selection 

that minimizes the client request’s response time, a value estimated on the basis of server 

processing capabilities and Internet bandwidth/delay. 

 

Figure 2.9: HTTP redirection by the server. 



 

 

These mechanisms imply an overhead of intra-cluster communications, as every 

server must periodically transmit status information to the cluster DNS or other servers. 

But such cost is usually negligible as compared to the client-request-generated network 

traffic. To users, the main drawback of HTTP redirection is the increased response time. 

This is because each redirected request requires a new client-server connection.  

 

2.3 Load Balancing Algorithms 

The load balancing system scheduler makes decisions regarding which backend server to 

be assigned a new connection based on the load balancing algorithms [4,6,7]. Various 

algorithms available are addressed as follows. 

 

2.3.1 Least Connection 

With the least connections algorithm, the number of connections currently open on each 

backend server is measured in real-time. The backend server with the fewest current 

connections is considered to be the best choice for the next client connection request. This 

algorithm is the most self-regulating, with the fastest servers typically getting the most 

connections over time. 

 

2.3.2 Round-Robin 

With the Round-Robin algorithm, new connections are issued to each backend server in 

turn. That is, the first backend server in the group gets the first connection, the second 

backend server gets the next connection, followed by the third backend server, and so on. 

When all the backend servers in this group have received at least one connection, the 

process starts over with the first backend server. 

 



 

 

2.3.3 Minimum Misses 

The minimum misses algorithm is optimized for WAN-link load balancing. It uses IP 

address information in the client request to select a server. The specific IP address 

information used depends on the application. 

For WAN-link load balancing, the client destination IP address is used. All requests 

for a specific IP destination address is sent to the same server. This algorithm is 

particularly useful in caching applications, helping to maximize successful cache hits. 

Best statistical load balancing is achieved when the client IP addresses are spread across a 

broad range of IP subnets. 

For server load balancing, the client source IP address and backend server IP 

address are used. All requests from a specific client are sent to the same backend server. 

This algorithm is useful for applications where client information must be retained on the 

server between sessions. With this algorithm, backend server loading becomes most 

evenly balanced as the number of active clients with different source or destination 

addresses increases. 

 

2.3.4 Hash 

The hash algorithm uses IP address information in the client request to select a backend 

server. The specific IP address information used depends on the application. For 

WAN-link load balancing, the client destination IP address is used. All requests for a 

specific IP destination address will be sent to the same server. This is particularly useful 

for maximizing successful cache hits. 

For server load balancing, the client IP address is used. All requests from a specific 

client will be sent to the same backend server. This option is useful for applications where 

client information must be retained between sessions. 



 

 

When selecting a backend server, a mathematical hash of the relevant IP address 

information is used as an index into the list of currently available servers. Any given IP 

address information will always have the same hash result, providing natural persistence, 

as long as the backend server list is stable. However, if a server is added to or leaves the 

system, then a different backend server might be assigned to a subsequent session with 

the same IP address information even though the original server is still available. Open 

connections are not cleared. 

The hash algorithm provides more distributed load balancing than minimum misses 

at any given instant. It should be used if the statistical load balancing achieved using 

minimum misses is not as optimal as desired. If the load balancing statistics with 

minimum misses indicate that one backend server is processing significantly more 

requests over time than other servers, consider using the hash algorithm. 

 

2.3.5 Response Time 

The response time algorithm uses backend server response time to assign sessions to 

servers. The response time between the servers and the load balancer is used as the 

weighting factor. The load balancer monitors and records the amount of time it takes for 

each backend server to reply to a health check to adjust the backend server weights. The 

weights are adjusted so they are inversely proportion to a moving average of response 

time. In such a scenario, a server with half the response time as another server will 

receive a weight twice as large. 

 

2.3.6 Bandwidth 

The bandwidth algorithm uses backend server octet counts to assign sessions to a server. 

The load balancer monitors the number of octets sent between the server and itself. Then, 



 

 

the backend server weights are adjusted so they are inversely proportion to the number of 

octets that the backend server processes during the last interval.  

Backend servers that process more octets are considered to have less available 

bandwidth than those that have processed fewer octets. For example, the backend server 

that processes half the amount of octets over the last interval receives twice the weight of 

other backend servers. The higher the bandwidth used, the smaller the weight assigned to 

the server. Based on this weighting, the subsequent requests go to the backend server with 

the highest amount of free bandwidth. These weights are automatically assigned. 

 



 

 

CHAPTER 3 

LOAD BALANCING ALGORITHMS 

In this chapter, we will discuss our proposed load balancing algorithms. Section 3.1 will 

describe the flexible server registration protocol which enables the backend servers to join 

and leave the load balancing system easily. Section 3.2 will describe the weighted 

distributed load balancing algorithm and how to define the initial weights for 

heterogeneous backend servers. Section 3.3 will describe the remaining capacity load 

balancing algorithm which can be used when the service-on-demand servers join into the 

load balancing system. Section 3.4 will describe the fuzzy decision load balancing 

algorithm which dispatches the client request based on the fuzzy decision mechanism. 

 

3.1 Flexible Server Registration Protocol 

In our proposed server load balancing system, it consists of a dispatcher and a number of 

backend servers that serve the same services. The backend servers must register their 

services to the load balancing system. The dispatcher will maintain the validity of the 

information of those servers. When a request comes from a client, the dispatcher redirects 

the client request to the appropriate backend server by the pre-defined algorithm. 

 

3.1.1 Server Registration Protocol 

William V. Wollman et al. [74] proposed a plug and play server load balancing 

architecture. Their proposed method is described as below. First, the backend server 

registers itself with the dispatcher. The dispatcher will acknowledge the registration of the 

backend server. Next, the server registers its services with the dispatcher. Once the 

backend server issues the service registration request, the dispatcher performs a health 



 

 

check on the service. If the health check success, the dispatcher responses the registration 

acknowledge to the backend server.  

After the initial registration protocol, the backend servers will delivery service 

health status messages to the dispatcher by the heartbeat messages. When the dispatcher 

receives this heartbeat, it will send back an acknowledge message to the backend server. 

In addition, the dispatcher will also perform its own independent health check on the 

registration service. If a service health failure occurs, the dispatcher will automatically 

remove the backend server from the load balancing system. The message flows between 

the backend server and the dispatcher are shown in Fig. 3.1. 
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Figure 3.1: The message flows between dispatcher and backend server.  



 

 

3.1.2 Flexible Registration Protocol 

The goal of our proposed registration protocol is to simplify the registration flows. Our 

registration flow also checks the health status at the same time. The process is described 

as follows. First, if a new backend server is initialized, it will issue an HTTP request to 

itself, that is, localhost. In this step, we not only check the status of backend server, but 

also check the health of the service, ie, HTTP. In addition, the HTTP request also gets 

system information of the backend server, so the response messages will include the real 

time server loading. If the health check of the service failed, nothing will be done. If it 

can get an HTTP response, that means the HTTP service is available, the server will 

insert an entry into the central database. The entry includes the server’s IP address, 

registration time, CPU idle percentage, available memory, current number of connection, 

etc.  

The HTTP request to itself of each backend server is issued periodically. So the 

database always have the current server status information. The dispatcher will 

periodically query the database to get the most updated messages about the backend 

servers. In this protocol, we also check the status of database implicitly to avoid the 

database failure. Figure 3.2 shows the message flows for our proposed registration 

protocol. 
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Figure 3.2: Flexible registration protocol flows. 

If one of the backend servers does not issue registration operation within a specific 

time, the dispatcher will remove that backend server from the load balancing system. 

There are three cases that the backend server will not register to the load balancing 

system. The first case is that the backend server is going to quit from the HTTP service. 

In this case, the backend server will stop registering to the database server. The old entry 

will be removed by the dispatcher in the next maintainance check. In the second case, the 

service daemon or the operating system of the backend server is crashed. The third case 

happens when the network traffic is jammed or the service daemon reaches to its 

maximum capacity. In the later two cases, the backend server can no longer provide the 

service to any new connection. Therefore, we need to remove it from the list of available 

servers to ensure that no new connection will be redirected to it. 

Consider a load balancing system with N backend servers and one dispatcher as 

shown in Fig. 3.3. When a client wants to access a web page, it will issue a DNS query to 

find the IP address of the web server. The DNS server will reply with the IP address of the 



 

 

dispatcher instead of the address of the web server that provides the service. The client 

then issues an HTTP request to the dispatcher, marked as step 1. When the dispatcher 

receives the request, a redirection page will be sent back to the client, marked as step 2. 

The redirection page contains the IP address or domain name of the web server which is 

the most appropriate one to serve this request. The client then issues the HTTP request 

again to the real backend server, marked as step 3. The backend server will then serve the 

client request and transfer document directly to the client in the final step [20]. 
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Figure 3.3: Intelligent forwarding mechanism. 



 

 

3.1.3 Implementation of Flexible Registration Protocol  

The backend server in our load balancing architecture can be added or removed at any 

time. We can register a new backend server and report the real time loading in just one 

step. That is, we can execute only one program on the backend server to register and 

report. In our proposed registration protocol, we can use some servers whose primary 

function is MAIL server, FTP server, or DNS server, etc. to act as the backend server 

prior the burst period and release them after the burst period. For example, during the 

course registration period, almost all the students are focus on the course registration, the 

other servers will have light loading at that time. When we activate the HTTP daemon 

and execute the registration program on those servers, they will join the load balancing 

architecture, and provide the HTTP services to the students. In this case, we can 

efficiently use the resource of all available servers. 

If all the other servers already join the load balancing system, and the system is still 

experienced heavy loading, we can use the PCs in the PC room as the backend servers. In 

this situation, we may use the Konppix Linux distribution [75]. Knoppix is a great Linux 

tool for all skill levels. We can modify the Knoppix Live-CD, install the registration 

program into the Live-CD. When we insert the Live-CD and reboot that computer, the 

computer automatically becomes one of the backend servers. If we have a PC room with 

about 100 personal computers, we can boot them with Knoppix Live-CD, and we will 

have 100 more backend servers. 

The registration program must check the network status, HTTP service, and the 

database server. To simplify the registration protocol, we use a script to do all the function. 

Each backend server use the crond to execute the registration program, that will ensure 

the server is active. The crond will issue a wget to execute a PHP script, which makes 

sure the HTTP service is alive. The entry in the crond is shown in Fig. 3.4. 



 

 

In the registration.php script, it calculates the real time loading such as CPU, 

memory, number of connections, etc, and it inserts these information into the database 

server. This process will guarantee that the database server is running and the connection 

between HTTP server and database server is operational.  

We retrieve the speed of CPU from the command “cpuinfo” which is under /proc 

directory. To retrieve the CPU usage and memory utilization, the “vmstat” is used. We 

also use the “netstat” to get the number of connection for the backend server. These 

information will be sent to the database server during the registration process. The detail 

of registration.php is shown in Fig. 3.5. 

 

 

wget -q --delete-after http://localhost/registration.php

 

Figure 3.4: Cron table for registration. 

 

 

 

$hostaddr = exec('ifconfig eth0 | sed -n 2p | cut -b 21-35 ');
$cpu_idle = exec('vmstat | sed -n 3p | cut -b 74-76 ');
$mem =  exec('vmstat | sed -n 3p | cut -b 13-19 ');
$connect_num = exec('netstat -tn | wc -l | cut -b 1-5');

 

Figure 3.5: Part of the registration.php script to retrieve system information. 



 

 

3.2 Weighted Distributed Load Balancing Algorithm 

In this Section, we consider the heterogeneous backend servers in a load balancing system. 

Due to the different capacities of each backend server, we must define the weights for 

each backend server. The definition factors for each backend server can be considered as 

the maximum number of connections, drop rate, or response time. We will introduce 

some definitions for the weights, and compare the results of each definition. The 

weighted distributed load balancing algorithm is also introduced. 

 

3.2.1 Definition of Capacity 

Assume that there are three heterogeneous backend servers in the load balancing system, 

say S1, S2, and S3. We define the capacities of these servers be C1, C2, and C3, respectively. 

The capacities are the weights of these backend servers. Using the weights in our 

proposed weighted distributed load balancing algorithm, we can accomplish higher 

performance and fair response time for the clients. 

In the definition of capacity, we first need to know the maximum number of 

connections for a single backend server. To define this, we also need to define a threshold 

that the drop rate is below acceptable value. Assume that the clients issue M requests to 

the backend server, the response time of the server will vary in length randomly. The 

response time R for each request is defined as Ri. We partition the possible values into n 

disjoint intervals, {[T0=0,T1), [T1,T2),…, [Tn-1,Tn=∞)}, where T0<T1<…<Tn, and Ri fall 

in the ith interval [Ti-1,Ti). The number of connection for [Ti-1,Ti) is mi, where 

m1+m2+…+mn=M. For user perceived latency, we define the maximum response time 

Rmax as the threshold which fall in the jth interval [Tj-1,Tj). For each request, if the 

response time is higher than the Rmax, we then consider that the request was dropped. We 

define the drop rate when the Rmax fall in the jth interval as in Eq. 3.1. If the drop rate is 



 

 

below certain percentage, we can obtain the maximum number of connections or the 

capacity for that server by Eq. 3.2. 
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For example, if the total number of requests is 500 (M=500). The response time 

have 10 disjoint intervals {[0,0.25), [0.25,0.5), [0.5,0.75), [0.75,1), [1,1.25), [1.25,1.5), 

[1.5,1.75), [1.75,2), [2,2.25), [2.25,∞)}, and the number of responses for each interval is 

{120, 95, 75, 65, 45, 30, 25, 22, 15, 8}. If we define the threshold as 2 seconds, which 

means that Rmax=2, then the drop rate D is (15+8)/500 or 4.6% and the capacity C is 

(120+95+75+65+45+30+25+22) or 477. 

 

3.2.2 Capacity Enhancement for Fair Response Time 

In Section 3.2.1, we define the capacities C1, C2, and C3 for the three servers S1, S2, and S3. 

In the experimental results shown in Section 4.1, we find that the more powerful server S3 

will serve more client requests because we define higher capacity for that server. But in 

the figure of response time analysis, the S3, which serves more client requests, still 

response faster than others. It is not fair in the user perceive latency. We need to consider 

both the drop rate and response time when defined the capacity. Using the same 

environment as above, the drop rate definition is still the same, but we want to modify the 

definition of the capacity. Rather than only consider the drop rate, we use the response 

time as another factor to calculate the capacity. Assume that we define the acceptable 

response time Rmin as the threshold, which means the capacity definition must under the 



 

 

minimum threshold rather than the maximum threshold Rmax. If the Rmin falls in the kth 

interval [Tk-1,Tk), where k < j. We can re-define the capacity as in Eq. 3.3. 
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For the above example, we define the threshold as 1 second, which means that 

Rmin=1, then the capacity C is (120+95+75+65) or 355. Under this definition, the 

experimental results in Section 4.1 show that the average response time for all the servers 

is almost the same. The algorithm for the drop rate and capacity are given as 

 

for each time intervals {[T0=0,T1), [T1,T2),…, [Tn-1,Tn=∞)}  

where the number of connection for [Ti-1,Ti) is mi 

and m1+m2+…+mn=M   

the maximum threshold Rmax is fall in the jth interval [Tj-1,Tj) 

Drop rate D=(mj+mj+1+…+mn)/M 

the minimum threshold Rmin is fall in the kth interval [Tk-1,Tk), where k < j 

Capacity C= m1+m2+…+mk-1 

 

 

3.2.3 Weighted Distributing Load Balancing Algorithm 

In this section, we will show the weighted distributing algorithm used in the load 

balancing system. In our load balancing system, each backend server has different 

capacity. The capacity is the weights of the server. After obtaining the capacity for each 

server, a serverlist table is generated. Figure 3.6 shows an example. 

 



 

 

Server IP Capacity

192.168.1.1

192.168.1.2

3

5

Capacity

192.168.1.1

192.168.1.2

3

5

ServerName ServerPort ServiceCount TotalCount

80

80

0

0

0

0

Generate

 

Figure 3.6: Example of serverlist table. 

 

The IP address of individual backend server is stored in ServerName field. The 

ServerPort field specifies the TCP port number of individual backend server. The 

ServiceCount field stores the current number of connection which was dispatched to that 

backend server, and will be reset to 0 when all entries with ServiceCount equals to 

capacity. The TotalCount field stores the total dispatched number of each backend server. 

When a client issues a request to the dispatcher, the dispatcher retrieves the entry 

from the serverlist table from the database server. We use a simple but elegant method to 

choose the most appropriate entry from the serverlist table. The method is to choose the 

entry with the largest remaining capacity, that is, the entry with largest difference between 

capacity and ServiceCount. If all the remaining capacities are same, the dispatcher will 

return the entry which registered first in the table. Then the ServiceCount of the chosen 

entry will be incremented by one. When all the values of ServiceCount are equal to 



 

 

capacity, the dispatcher will add ServiceCount to TotalCount and reset ServiceCount to 

zero. 

 

3.3 Remaining Capacity Load Balancing Algorithm 

Although load balancing system can efficiently distribute the client requests, the cost of 

these backend servers are the main issues. In some cases, the backend servers are not 

always experienced heavy loading. They have heavy request traffic only in a certain time 

period. Some web servers, such as course registration or ticket reservation systems, have 

burst requests only several times a year. In these cases, we can predict the start time of 

burst requests. Thus we can prepare some service-on-demand servers as the backend 

servers before that time. The flexible server registration protocol, described in Section 3.1, 

allows those service-on-demand servers to register and coordinate their services with the 

load balancing system. This architecture uses the registration messages to automatically 

configure a backend server to support the services. In addition, the registration protocol 

also checks the status of the backend server, so that it can report the loading information 

of the backend servers. In our architecture, a new server can register to the load balancing 

system while needed and withdraw themselves from the system after the burst period. 

In this proposed algorithm, there are three heterogeneous servers S1, S2, and S3 in 

the system. Each backend server periodically reports its current load information to the 

dispatcher. The load balancing algorithm calculates the remaining capacities as R1, R2, 

and R3. And then selects the best server i, where Ri = max(R1,R2,R3). If a request T comes 

to the dispatcher, the IP address of backend server Si with the maximum remaining 

capacity Ri will be sent back to the client. We assume that the maximum capacity needed 

by the request T is Tk. If the maximum remaining capacity Ri is less than the request Tk, it 

means that all the backend servers do not have enough remaining capacity to serve the 



 

 

request task Tk. The dispatcher drops this request Tk and return a server busy page to the 

client. When the backend servers finish their previously assigned requests, they will then 

have capacity to serve future requests. 

Assume that the CPU clock-rate of the servers are C1, C2, and C3. The backend 

server i reports the current load information parameters as {ci,mi,ni}, where ci is CPU idle 

percentage, mi is available memory, and ni is current number of connections. We define 

the three membership functions as in Figures 3.7 to 3.9. Then the remaining capacity Ri of 

server Si can be obtained by the following equation.  

 

     iiiii nfmfcCfR 321 ****                (3.4) 

 

 

where α,β,γare weights and α+β+γ=1. In our simulations, we find that the 

CPU has the significant impact for server loading. In the simulation presented in 

Section 4.2, we useα=0.4, β=0.3, γ=0.3 as weights.      

 

 

Figure 3.7: Membership function for CPU. 

 



 

 

 

Figure 3.8: Membership function for Memory. 

 

 

 

Figure 3.9: Membership function for Connection. 



 

 

The pseudo codes for the proposed algorithm are as follows: 

 

Report Phase: 

1. calculate the three parameters {ci,mi,ni} periodically; 

2.  report (ci,mi,ni) for each backend server periodically; 

 

Decision Phase: 

1.      iiiii nfmfcCfR 321 ****   , for each backend server; 

2. Ri=max(R1,R2,R3); 

3. if (Capacity(Ri)) > Require(Tk) 

     send(Tk,Si); 

 else 

     drop(Tk); 

 

3.4 Fuzzy Decision Load Balancing Algorithm 

3.4.1 Feature Selection 

The proposed approach of this section is based on the features of backend servers. So, a 

set of the effective features of the backend server should be selected before the fuzzy 

decision. Some proposed features were selected to create the feature set in our proposed 

approach. 

 

3.4.1.1 CPU Idle Percentage 

The CPU loading of the backend server is one factor that influences the performance of 

the load balancing system. The more loads the backend server has, the less CPU idle 

percentage it has. Thereafter, the CPU idle percentage is our first feature in the fuzzy 

decision mechanism. We define the CPU idle percentage fcpu as 



 

 

                C P Ut h eofpercetageidlethefcpu                  (3.5) 

A larger fcpu value means the higher possibility of available CPU resources that the 

backend server has. Thus, we can define the membership function for fcpu in Fig. 3.10. 

Here, the High CPU Idle means the membership function for a high CPU idle percentage, 

the Medium CPU Idle means the membership function for a medium CPU idle percentage, 

and the Low CPU Idle means the membership function for a low CPU idle percentage. 

 

 

 

 

 

 

Figure 3.10: Membership function for CPU idle percentage. 



 

 

3.4.1.2 Available Memory Percentage 

The memory usage is another important factor that determines the loads of the backend 

server. The more memory the backend server uses, the less capacity the backend server 

has. However, the backend servers may have different memory installed. Thus, we use 

the percentage of available memory as the feature in our fuzzy decision mechanism. 

Assuming that the total memory of the backend server is Mtotal, and the available memory 

of the backend server is Mavail, then we define the available memory percentage fmem as 
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A larger fmem value means the higher possibility of available memory that the 

backend server has. Thus, we can define the membership function for fmem as shown inFig. 

3.11. Here, the High Available Memory means the membership function for a high 

available memory percentage, the Medium Available Memory means the membership 

function for a medium available memory percentage, and the Low Available Memory 

means the membership function for a low available memory percentage. 

 

 

Figure 3.11: Membership function for available memory percentage. 



 

 

3.4.1.3 Available Connection Percentage 

When the current number of connections increases, the performance of the backend 

server tends to decrease. Thus, the current number of connections is the third factor of the 

load balancing system. Assuming that the maximum number of connections for the 

backend server is Cmax, and the current number of connections is Ccur, then we define the 

percentage of available connection fcon as 
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                                (3.7) 

A larger fcon value means the higher possibility of available connections that the 

backend server has. Thus, we can define the membership function for fcon as shown inFig. 

3.12. Here, the High Available Connection means the membership function for a high 

available connection percentage, the Medium Available Connection means the 

membership function for a medium available connection percentage, and the Low 

Available Connection means the membership function for a low available connection 

percentage. 

  

Figure 3.12: Membership function for available connection percentage. 



 

 

3.4.2 Fuzzy Decision Load Balancing Algorithm 

In this section, the proposed load balancing mechanism is introduced, which employs the 

fuzzy decision to decide the appropriate backend server. A fuzzy based approach consists 

of three steps, including the fuzzification, the rule evaluation, and the defuzzification, as 

shown in Fig. 3.13 [76]. 

 

3.4.2.1 Fuzzification 

Based on the membership functions presented in Section 3.4.1, the fuzzy degree can be 

obtained according to the crisp values of the selected features. In order to describe the 

fuzzy decision mechanism, we use the following example. The given CPU idle 

percentage fcpu, the available memory percentage fmem, and the available connection 

percentage fcon are as following. 

fcpu  =  0.72 

fmem =  0.65 

fcon =  0.55 

 

 

Fuzzification 
Rule 

Evaluation
Defuzzification

 

Figure 3.13: Fuzzy decision steps. 



 

 

The degree of membership function can be determined from Figures 3.10 to 3.12. 

Hence, we can obtain the degree of High CPU idle percentage (HCPU), Medium CPU 

idle percentage (MCPU), Low CPU idle percentage (LCPU), High available memory 

percentage (HMEM), Medium available memory percentage (MMEM), Low available 

memory percentage (LMEM), High available connection percentage (HCON), Medium 

available connection percentage (MCON), and Low available connection percentage 

(LCON). These values are shown as below. 

 

HCPU=0.72, MCPU=0.12, LCPU=0.28 

HMEM=0.65, MMEM=0.4, LMEM=0.35 

HCON=0.55, MCON=0.8, LCON=0.45 

 

3.4.2.2 Rule Evaluation 

The main purpose of rule evaluation is to apply the fuzzy values to the rule base for 

obtaining the fuzzy decision values. Table 3.1 shows the rule base, in which the 

influenced rules are illustrated. Y, PY, PN, and N indicate the Yes, Probably Yes, Probably 

No, and No, respectively, corresponding to the load balancing decision. The degree of 

membership can be assigned the minimum, maximum, or average of the degree of 

membership of the rules. 



 

 

Table 3.1: Load balancing decision rule base. 

CPU idle 
Memory 

available 

Connection 

available 
Decision 

HCPU HMEM HCON Y 

HCPU HMEM MCON Y 

HCPU HMEM LCON PY 

HCPU MMEM HCON Y 

HCPU MMEM MCON Y 

HCPU MMEM LCON PY 

HCPU LMEM HCON PY 

HCPU LMEM MCON PY 

HCPU LMEM LCON PN 

MCPU HMEM HCON PY 

MCPU HMEM MCON PY 

MCPU HMEM LCON PY 

MCPU MMEM HCON PY 

MCPU MMEM MCON PN 

MCPU MMEM LCON PN 

MCPU LMEM HCON PY 

MCPU LMEM MCON PN 

MCPU LMEM LCON PN 

LCPU HMEM HCON PY 

LCPU HMEM MCON PN 

LCPU HMEM LCON PN 

LCPU MMEM HCON PN 

LCPU MMEM MCON N 

LCPU MMEM LCON N 

LCPU LMEM HCON PN 

LCPU LMEM MCON N 

LCPU LMEM LCON N 

 

Since each factor has three membership functions, the combinations have 27 cases 

in total. Each load balancing decision in Tale 3.1 has a decision among Y, PY, PN, and N. 

The fuzzy values are used to evaluate rules for obtaining Fuzzy Decision Values (FDV) by 



 

 

assigning the minimum of the degree of membership of the rules. In this way, the decision 

and the corresponding FDV can be precisely determined, as shown in Table 3.2. 

Table 3.2: Fuzzy decision values. 

Rules FDV 

Rule(HCPU,HMEM,HCON)=Y minimum(HCPU=0.72,HMEM=0.65,HCON=0.55)=0.55 

Rule(HCPU,HMEM,MCON)=Y minimum(HCPU=0.72,HMEM=0.65,MCON=0.8)=0.65 

Rule(HCPU,HMEM,LCON)=PY minimum(HCPU=0.72,HMEM=0.65,LCON=0.45)=0.45 

Rule(HCPU,MMEM,HCON)=Y minimum(HCPU=0.72,MMEM=0.4,HCON=0.55)=0.4 

Rule(HCPU,MMEM,MCON)=PY minimum(HCPU=0.72,MMEM=0.4,MCON=0.8)=0.4 

Rule(HCPU,MMEM,LCON)=PY minimum(HCPU=0.72,MMEM=0.4,LCON=0.45)=0.4 

Rule(HCPU,LMEM,HCON)=PY minimum(HCPU=0.72,LMEM=0.35,HCON=0.55)=0.35 

Rule(HCPU,LMEM,MCON)=PY minimum(HCPU=0.72,LMEM=0.35,MCON=0.8)=0.35 

Rule(HCPU,LMEM,LCON)=PN minimum(HCPU=0.72,LMEM=0.35,LCON=0.45)=0.35 

Rule(MCPU,HMEM,HCON)=Y minimum(MCPU=0.12,HMEM=0.65,HCON=0.55)=0.12 

Rule(MCPU,HMEM,MCON)=PY minimum(MCPU=0.12,HMEM=0.65,MCON=0.8)=0.12 

Rule(MCPU,HMEM,LCON)=PY minimum(MCPU=0.12,HMEM=0.65,LCON=0.45)=0.12 

Rule(MCPU,MMEM,HCON)=PY minimum(MCPU=0.12,MMEM=0.4,HCON=0.55)=0.12 

Rule(MCPU,MMEM,MCON)=PN minimum(MCPU=0.12,MMEM=0.4,MCON=0.8)=0.12 

Rule(MCPU,MMEM,LCON)=PN minimum(MCPU=0.12,MMEM=0.4,LCON=0.45)=0.12 

Rule(MCPU,LMEM,HCON)=PY minimum(MCPU=0.12,LMEM=0.35,HCON=0.55)=0.12 

Rule(MCPU,LMEM,MCON)=PN minimum(MCPU=0.12,LMEM=0.35,MCON=0.8)=0.12 

Rule(MCPU,LMEM,LCON)=PN minimum(MCPU=0.12,LMEM=0.35,LCON=0.45)=0.12 

Rule(LCPU,HMEM,HCON)=PY minimum(LCPU=0.28,HMEM=0.65,HCON=0.55)=0.28 

Rule(LCPU,HMEM,MCON)=PN minimum(LCPU=0.28,HMEM=0.65,MCON=0.8)=0.28 

Rule(LCPU,HMEM,LCON)=PN minimum(LCPU=0.28,HMEM=0.65,LCON=0.45)=0.28 

Rule(LCPU,MMEM,HCON)=PN minimum(LCPU=0.28,MMEM=0.4,HCON=0.55)=0.28 

Rule(LCPU,MMEM,MCON)=N minimum(LCPU=0.28,MMEM=0.4,MCON=0.8)=0.28 

Rule(LCPU,MMEM,LCON)=N minimum(LCPU=0.28,MMEM=0.4,LCON=0.45)=0.28 

Rule(LCPU,LMEM,HCON)=PN minimum(LCPU=0.28,LMEM=0.35,HCON=0.55)=0.28 

Rule(LCPU,LMEM,MCON)=N minimum(LCPU=0.28,LMEM=0.35,MCON=0.8)=0.28 

Rule(LCPU,LMEM,LCON)=N minimum(LCPU=0.28,LMEM=0.35,LCON=0.45)=0.28 



 

 

From Table 3.2, it is shown that the fuzzy decisions have more than one value for 

the degree of membership. Generally, the minimum, maximum, or average of the 

membership degree can be used to obtain the final fuzzy degree. Here, the minimum rule 

evaluation is adopted to obtain the four Fuzzy Degrees (FD) of Y, PY, PN, and N. 

FD(Y) = min(0.55,0.65,0.4,0.4)=0.4 

FD(PY)  = min(0.45,0.4,0.35,0.35,0.12,0.12,0.12,0.12,0.12,0.28)=0.12 

FD(PN)  = min(0.35,0.12,0.12,0.12,0.12,0.28,0.28,0.28,0.28)=0.12 

FD(N)   = min(0.28,0.28,0.28,0.28)=0.28 

 

3.4.2.3 Defuzzification 

In the defuzzification step, a set of weightings are assigned to the four truth values (Y, PY, 

PN, N). For instance, the four weightings may be assigned with the weight of 0.4, 0.3, 0.2, 

and 0.1, respectively. Therefore, the Crisp Value (CV) can be determined based on the FD 

weightings and the degree of the membership. The CV is calculated by Eq. 3.5. 
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where FD(i) and w(i) represent the degree of membership and the weights respectively, in 

which FD(i) belongs to (Y, PY, PN, N). In the example considered above, the CV is 

obtained as  

248.0
1.02.03.04.0

1.0*28.02.0*12.03.0*12.04.0*4.0





CV

 

 

After the CV has been obtained, the backend server with the highest CV is the most 

appropriate one to serve the client request. 



 

 

CHAPTER 4 

EXPERIMENTAL RESULTS AND PERFORMANCE 

ANALYSIS 

4.1 Weighted Distributed Load Balancing Algorithm 

In our experimental environment, the load balancing system consists of a dispatcher, a 

central database server, and a number of heterogeneous backend servers. A log server is 

installed to keep track of the transaction log between servers and clients. The log server is 

used to check whether the requests are distributed evenly, and we can decide to add new 

backend server if needed. In other words, we must make an effort to achieve the 

maximum performance with existing servers by more sophisticated load balancing 

algorithm before adding extra backend servers. 

The operations of the load balancing system are described as follows. First, 

backend servers register to the database. The database server will generate a serverlist 

table on the database. When client issues request to dispatcher, the dispatcher looks up the 

serverlist table to obtain the IP address of the most appropriate backend server. Then the 

dispatcher returns an HTML document with HTTP header redirection to notify the IP 

address of backend server to the client. After client receives this document, it issues the 

request to the appropriate backend server. The assigned server serves the client requests 

from now on until the transaction finished. 

To verify our proposed system can be applied in the heterogeneous system, we use 

three servers with different computational power as the backend servers. The servers are 

named S1, S2, and S3. Table 4.1 shows the CPU speed of the three backend servers and 

Fig. 4.1 shows the maximum numbers of connection per second for each backend server. 



 

 

Table 4.1: CPU speed for the three backend servers. 

Server name CPU Speed 

S1 1.0G Hz 

S2 1.6G Hz 

S3 2.6G Hz 

 

 

 

Figure 4.1: Maximum number of connections per second. 

Figures 4.2 and 4.3 show the drop rate and the average response time of these three 

backend servers with different abilities. On Figures 4.1 to 4.3, we can observe that the 

high-end backend server, say S3, can handle more client requests at the same time. 

Furthermore, the high-end backend server takes little time to response the same number 

of requests. Based on the experimental results above, we got some conclusions in Table 

4.2. 



 

 

 

Figure 4.2: Comparison of drop rate for each backend servers. 

 

Figure 4.3: Comparison of average response time for each backend servers. 

Table 4.2: The max. number of connections for each backend servers. 

Server CPU Max. connection number 
- Drop rate below 5% 

Max. connection number 
- Drop rate below 5% 

- Avg. response time below 1 second 

S1 1 GHz 360 120 

S2 1.6 GHz 440 200 

S3 2.6 GHz 520 340 



 

 

The next experiment needs to set the capacities for the heterogeneous backend 

servers. The capacities derived from maximum request numbers with less than 5% drop 

rate in Table 4.2 is shown in Table 4.3.  

Figures 4.4 and 4.5 show the experimental results when the capacity ratio of 

S1:S2:S3 is 9:11:13. The highest capacity server S3 can serve more request than the others, 

as shown in Fig. 4.4. Although S3 can server more requests, the average response time is 

still shorter than S1 and S2. In fact, it is unfair for users that connect to our load balancing 

system in first come first serve sequence. The reason is that we define the capacity values 

only considering the drop rate. 

Table 4.3: Capacities of each backend server with drop rate below 5%. 

Server 
Max. request numbers 
- Drop rate below 5% 

Capacity 

S1 360 9 

S2 440 11 

S3 520 13 

 

 

Figure 4.4: Comparison of connection numbers with capacity ratio 9:11:13. 



 

 

 

 

Figure 4.5: Comparison of average response time with capacity ratio 9:11:13. 

 

We consider both drop rate and average response time to get new capacity ratio. 

The new capacity ratio of S1:S2:S3 is 6:10:17, as listed in Table 4.4 which is derived from 

the average response time under 1 second as shown in Table 4.2. Figures 4.6 and 4.7 

show the number of connection and the average response time of these backend servers. 

The values of average response time for the three servers are very close. 

 

Table 4.4: Capacity of each backend server with drop rate below 5% and avg. response 

time below 1 second. 

Server 
Max. connection numbers 
- Drop rate below 5%  

- Avg. response time below 1 second 
Capacity 

S1 120 6 

S2 200 10 

S3 340 17 

 



 

 

 

Figure 4.6: Comparison of connection number with capacity ratio 6:10:17. 

 

Figure 4.7: Comparison of average response time with capacity ratio 6:10:17. 

In the experimental results above, the load balancing system can improve the 

performance. Most of the load balancing systems are based on homogeneous web servers. 

If the hardware specifications of backend servers in the system are different, the load 

balancing system must have a strategy to fairly dispatch the load to the backend servers. 

In this section, we derive a formula to define the capacities for heterogeneous backend 

servers. From the experimental results, the maximum number of connections with certain 



 

 

drop rate can be used as the capacity indicator, but it can not provide fair response time 

for each client requests. Thus, we must consider the capacity not only depending on drop 

rate but also on the response time. Using this measurement, the response time for all 

client requests will nearly be the same.  

 

4.2 Remaining Capacity Load Balancing Algorithm 

To evaluate the performance of the remaining capacity load balancing algorithm, we 

performed simulation using round robin (RR) and least connection (LC) load balancing 

algorithm as well as our proposed remaining capacity (RC) algorithm. The performance 

evaluation includes connection hit rate, server utilization, drop rate, and system 

scalability. 

 

4.2.1 Connection Hit Rate and Server Utilization 

In our simulation environment, we use three backend servers, denoted as S1, S2 and S3. 

The capacities of these three backend server are C1, C2 and C3, where C3 > C2 > C1. We 

generate the client requests from 100 requests per second to 1000 requests per second. 

Figures 4.8 and 4.9 shows the results for the RR algorithm. Figure 4.8 shows the total hit 

number for the three heterogeneous backend servers. According to our environment, the 

S1 has lowest capacity. When the arrival rate of client requests is about 300 requests per 

second, the S1 server does not have enough remaining capacity. If the arrival rate 

increases, the S1 server can only serve the same amount of client requests and begin to 

drop requests. If we continuously increase the arrival rate to about 600 requests per 

second, the second server S2 will not have enough remaining capacity. If the arrival rate is 

up to about 900 requests per second, the third server S3 also runs out of capacity. The 

utilizations of the three servers are shown in Fig. 4.9. At 300 requests per second, the 



 

 

utilization of S1 goes to about 95%. If the arrival rate increases, the server S1 will begin to 

drop requests. 

 

 

Figure 4.8: Comparison of hit rate for RR algorithm. 

 

 

 

Figure 4.9: Comparison of utilization for RR algorithm. 



 

 

Figures 4.10 and 4.11 show the results of the simulation of the LC algorithm. In the 

LC algorithm, the dispatcher will select the server with the least connection. Since we use 

heterogeneous backend servers; the server with least connection may not be able to serve 

extra request because it does not have enough remaining capacity. In this situation, if a 

server with least connection but with 95% loading, the dispatcher will not redirect client 

request to this server. Instead, it redirects the request to the next least loaded server. The 

hit rate of LC algorithm is similar to the RR algorithm. But in this case, the S2 will up to 

95% loading at 500 requests per second and S3 at 700 requests per second. It seems that 

the RR algorithm is better than the LC algorithm. But when we consider the drop rate, we 

can find that the RR algorithm drops more requests than LC algorithm. 

 

 

 

 

Figure 4.10: Comparison of hit rate for LC algorithm. 



 

 

 

Figure 4.11: Comparison of utilization for LC algorithm. 

With our proposed RC algorithm shown in Figures 4.12 and 4.13, all the three 

servers will up to 95% loading in 700 requests per second. This means that the three 

heterogeneous backend servers will with 95% loading at the specific arrival rate. In other 

word, the system can serve as much requests as possible with minimum drop rate. When 

the arrival rate is less then 300, the least capable server S1 will serve less connection and 

its utilization will be lower. In this situation, the average response time will be shorter 

than the RR and LC algorithm. 

 

Figure 4.12: Comparison of hit rate for RC algorithm. 



 

 

 

Figure 4.13: Comparison of utilization for RC algorithm. 

4.2.2 Drop Rate Comparison 

When the server reaches its service capacity but the dispatcher still redirects the client 

request to that server, the request will be dropped. An optimal load balancing system must 

have as little drop rate as possible. Now we compare the drop rate for these three load 

balancing algorithms. As shown in Fig. 4.14, the RR algorithm begins to drop client 

request at 300 requests per second, but in the LC and RC algorithm, they begin to drop 

requests at 600 and 700 requests per second, respectively. Because the LC algorithm 

considers only the number of connections, it redirects the request to the backend server 

according to the current number of connections. But with RC algorithm, the remaining 

capacity will be considered, so the request will be redirected to the maximum remaining 

capacity server. Thus the drop rate is less than LC algorithm. 



 

 

 

Figure 4.14: Comparison of drop rate for RR, LC, RC algorithms. 

 

4.2.3 Scalability of the Load Balancing System 

In our load balancing system, we can scale the system by using the remaining capacity of 

other part-time servers. Figure 4.15 is the utilization of only one web server. The web 

server cannot handle over 350 request per second. If we add another web server in the 

system, the utilization for these two web servers is shown in Fig. 4.16, which can serve 

more requests per second. In our proposed architecture, we use the remaining capacities 

of other servers like DNS or MAIL server. Consider using the remaining capacity of DNS 

server, we need to reserve some capacity for its original service, DNS service. In this 

simulation, we reserve 10% of capacity for DNS service, and the other capacity can be 

used as web service. The utilization for one web server plus one DNS server is shown in 

Fig. 4.17. It seems that the performance is not as good as the one shown in Fig. 4.16. Now 

we continue to use the remaining capacity of MAIL server. We must reserve more 

capacity for the MAIL service, say 50%, so the remaining 50% capacity can be used for 

web service. The utilization for one web server plus one DNS server plus one MAIL 

server is shown in Fig. 4.18. 



 

 

Figure 4.19 shows the hit rate for one web server, two web servers, one web server 

plus one DNS server, and one web server plus one DNS server plus one MAIL server. We 

can find that when we use the remaining capacity of both DNS and MAIL server, the hit 

rate is higher than the hit rate of the one with two web servers. It means that if we can use 

the remaining capacities, the performance will be better than use another dedicate web 

server. The drop rate is also compared in Fig. 4.20. When using the remaining capacity of 

both DNS and MAIL servers, the system will begin to drop request about 700 requests 

per second which is also better than adding another dedicated web server. 

 

 

 

 

Figure 4.15: Utilization for one web server. 



 

 

 

Figure 4.16: Utilization for two web servers. 

 

 

 

Figure 4.17: Utilization for Web + DNS. 

 

 

 



 

 

   

Figure 4.18: Utilization for Web + DNS + MAIL. 

 

 

Figure 4.19: Comparison of hit rate for different schemes. 

 



 

 

 

Figure 4.20: Comparison of drop rate for different schemes. 

 

4.3 Fuzzy Decision Load Balancing Algorithm 

In this section, we will present the experimental results for fuzzy decision load balancing 

algorithm. In our first experiment, we use the fuzzy decision mechanism to dispatch the 

client requests. When there is only one web server, the response time at 800 connections 

per second is a little bit over 1.5 seconds. In order to reduce the response time, we tried to 

use two web servers, and the response time at 800 connections per second is reduced to 

about 0.85 seconds. In this architecture, we need bring another dedicated server to the 

load balancing system. If the high traffic volume does not happen regularly, using another 

dedicated web server is not cost effective. Therefore we try to use the DNS server as the 

service-on-demand server to join the load balancing system. The response time at 800 

connections per second is about 1.17 seconds. The results showed that it is no better than 

the case of using another dedicated web server. Then, the MAIL server also being brought 



 

 

into the load balancing system, and the response time at 800 connections per second is 

only about 0.55 seconds. In Fig. 4.21, when the DNS server and the MAIL server joined 

the load balancing system, we achieved a lower average response time when compared to 

using another dedicated web server. 

 

  

Figure 4.21: Comparison of response time for service-on-demand servers. 

The fuzzy decision and the other load balancing algorithms are compared and the 

results are shown in Figures 4.22 and 4.23. In these experiments, the DNS server and the 

MAIL server joined the load balancing system. In Fig. 4.22, the round robin, least 

connection, and hash algorithms dispatched the client requests without considering the 

loading information of backend servers, so the average response times are much higher 

than that of the proposed fuzzy decision mechanism. The response time and bandwidth 

algorithms, which take the current status of backend servers into consideration, shall have 

better performance than the round robin, least connection, and hash. But when comparing 

these two algorithms with our proposed fuzzy decision algorithm, the fuzzy decision 

algorithm is still better than these two, as shown in Fig. 4.23. Because only partial 

capacity of the DNS server and the MAIL server are used to serve the requests from 



 

 

clients, our fuzzy decision mechanism takes the CPU, memory, and connection of 

backend servers into consideration. So we can reduce the average response time. 

 

 

Figure 4.22: Comparison of response time for fuzzy, round robin, least connection, and 

hash algorithms. 

  

Figure 4.23: Comparison of response time for fuzzy, response time, and bandwidth 

algorithms. 



 

 

CHAPTER 5 

CONCLUSIONS 

In this dissertation, we propose some load balancing algorithms to improve the 

performance of web sites. Many researches already proposed useful load balancing 

architectures. Our proposed algorithms are focused on some specific working 

environments. Firstly, if the processing power or the memory of each backend servers are 

different, the initial weights for each backend server are very important. We can use the 

ratio of drop rate as the initial weights to distribute the client request. But the 

experimental results show that the perceive latency for each client are not fair. In order to 

be fair in the perceive latency for each client, we re-define the initial weights according to 

the response time. With this modification, we can see that all of the client can obtain a 

fair average response time regardless of the backend server who serves it. 

Secondly, we want to solve the burst web traffic problem without extra cost 

because most web sites do not have heavy traffic all the time. The service-on-demand 

server, such as DNS server or MAIL server can join the load balancing system when 

needed. When the service-on-demand servers join the system, we use the remaining 

capacity to find out which backend server is the most appropriate one to serve the client 

request. And then dispatch the client request to that backend server. 

In addition to the remaining capacity load balancing algorithm, we want to use 

another intelligent method to decide which backend server is the most appropriate one. 

The fuzzy decision mechanism was adopted to dispatch the client request in our proposed 

fuzzy decision load balancing algorithm. With this intelligent algorithm, we can reduce 

the average response time for all the client requests. The experimental results also show 

that the part-time DNS server plus a MAIL server can achieve higher performance than 



 

 

by adding an additional dedicated web server. 
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