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ABSTRACT

The server load balancing architecture is the most efficient way to solve the heavy
loading problem of popular server. There are different solutions in implementing the load
balancing system. In this dissertation, we adopt a flexible registration protocol that can
easily add a new backend server to the load balancing system to share the load. In
addition, the registration protocol also reports the real time backend server loading status
to the load balancing system. So we can use these information to distribute client requests
by any available load balancing algorithms.

The purpose of load balancing algorithm is to improve the load sharing

performance of the popular web server. Most of the load balancing architectures are based

on supporting homogeneous backend seprers=H-.the hardware specifications of backend
X
servers in the system are different, Ia@ system must have a strategy to

fairly dispatch the load to the backendsServer, derive a capacity measurement for
O

connection with certain drop rate can be used as the capacity, but it can not provide fair

heterogeneous backend servers. F al results, the maximum number of
response time for each client requests. Thus, we must consider the capacity not only
depending on drop rate but also on the response time. Using this measurement, the
average response time for all client requests will nearly be the same.

In addition to the definition of capacity, we also use the remaining capacity
algorithm to reduce the hardware cost when the web site does not have frequent burst
requests. We propose the concept of service-on-demand servers, which can bring other
servers such as DNS servers or MAIL servers to join the load balancing system during the
burst traffic period. For example, the course registration system or ticket reservation
systems have burst requests only several times a year. The proposed algorithm can use the

remaining capacity of DNS or MAIL server to share the load in the burst request period.



The simulation results show that using the remaining capacity of both DNS server and
MAIL server can achieve higher performance compared to using another dedicated
backend server.

Due to the different remaining capacities that these servers have, we need an
intelligent mechanism to make the load distribution decision. We propose an algorithm
using the fuzzy decision algorithm to dispatch the client requests to the appropriate
backend server. The CPU idle percentage, the available memory percentage, and the
available connection percentage for each backend servers are the input parameters of our
fuzzy decision algorithm. The most appropriate backend server can thus be determined.
The simulation results show that the fuzzy decision algorithm can achieve higher

performance than other load balancing algorithms.

Keywords: load balance, remaining Jsion, service-on-demand
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the growing popularity of the World Wide Web, the traffic of popular web sites
has grown far beyond the capacity of a single web server. Most popular web sites adopt a
distributed or parallel architecture to alleviate the load for the single server [1]. These
sites can provide higher performance for a large number of client requests [2,3]. Although
the load balancing architecture consists of a number of backend servers, they act as a
single unit. User transparency is implemented to allow clients to issue the requests to the
central unit without knowing the load balancing architecture the web site implemented.

Y m@ an%:on {guration modifications when they

#ﬁh@

Meanwhile, clients do not need

EMS

connect to the load balancing syst

(Domain Name Server) approach [18-29], dispatcher-based approach [30-34], and so on.
In hardware-based and DNS-based approaches, the exact workload of each individual
backend server in the system may not take into consideration which might lead to an
unbalanced load situation. For the DNS-based approach, another major problem is the
DNS query result caching in the intermediate DNS server and the client itself [35]. In this
case, requests from hosts in the same domain may all be served by the same backend
server and may drive that server into overload state.

In the dispatcher-based approach, the central unit is the dispatcher which is
responsible for dispatching the client requests to the most appropriate one among backend

servers. In the server-state dispatching architecture [36], the dispatcher must collect the



status of all the backend servers and make the decision regarding which backend server is
the most appropriate one to serve the request. The decision criteria are based on the status
of backend servers such as CPU loading, memory usage, current number of connections,

and so on [37].

1.2 Motivation

In this dissertation, our focus is on using the dispatcher-based approach to solve the burst
traffic load problem. In some web systems, the workload of web servers is light for most
of the time, but may incur a heavy traffic load during a specific period of time. For
instance, the course registration system and the ticket reservation system will incur burst
traffic during a specific period of time several times a year. During most of the time
s . .

throughout the year, they only have/a v@h raffi¢ load. Although the load balancing
system can efficiently solve the urzt%t! cp i%s, he cost of the backend servers is

—i e

e,

investment in the hardware does not sée %I

the main issue. If we use a po rver as the backend server, the
ost effective. Thus, we proposed to use
some service-on-demand servers as the backend servers prior to the anticipated burst
traffic period. These service-on-demand servers are not dedicated servers for the load
balancing system; in fact they have their routing jobs to do, such as acting as DNS server
or MAIL servers. During the heavy web load period, we initiated the web daemon and
server registration protocol for the DNS server and the MAIL server to cooperate with the
original web server to form the load balancing system. The contents of the web server
were already stored inside a separated disk space or SAN, so we only needed to mount
the file system. In doing so, the dispatcher knows that these additional backend servers

can share the load. In addition to these service-on-demand servers, we can also use the

personal computer in the PC classroom booting up with a live-CD to join the load



balancing system when all of these service-on-demand servers still cannot handle the

traffic load.

1.3 Objective

In our proposed load balancing system, the first issue is the registration process of a new
backend server. Before the burst traffic period, the service-on-demand servers must
register themselves into the load balancing system. The service-on-demand servers start
the process of server registration protocol, which advertise a registration message to
inform the dispatcher that a new backend is ready to serve the client requests. In addition,
the registration protocol of the backend server also reports the update-to-date loading

information to the dispatcher that can be used by the dispatcher to decide which one is the

most appropriate to serve the client qu@ -X‘

7%’ B

In the load balancing sy em ca |es of each backend servers may be

in order to balance the load [38-44]. The weights can be determined by the static factors
such as CPU, memory, and so on. But when considering the fair response time for each
client, we proposed a weighted distributed load balancing algorithm that their initial
weights are determined by the average response time [45-55]. In this proposed algorithm,
the average response time of client requests are nearly the same no matter which backend
server serve the requests.

Although each heterogeneous backend servers have different initial weights, the
current loading information is another important factor in the load balancing system
[56-68]. Some requests need large amount of resource of backend server, but others not.

If the load balancing system dispatches the client request to the most appropriate backend



server just according to the initial weights, the system load will eventually become
unbalance. To avoid this situation, we propose the remaining capacity load balancing
algorithm to dispatch the client request to the most appropriate backend according to the
current loading information of each backend servers [69]. In this algorithm, we use the
CPU idle percentage, available memory, and current connection number to calculate the
remaining capacity of each backend server. The backend server with highest remaining
capacity is the candidate to serve the request. In this remaining capacity algorithm, the
service-on-demand servers can easily join the load balancing system because the
dispatcher dispatches the client request according to the remaining capacity. If the routing

job for the service-on-demand server is heavy, the remaining capacity of this

service-on-demand server is less than others, and the dispatcher will not dispatch the

decision algorithm [70-73] to determine which backend server should respond to the
client request. First, we will collect the status of the backend servers as the input
parameters, such as the CPU idle percentage, available memory percentage, and available
connection percentage. We quantify these features and define the membership functions
for these features. Then, the membership function degree can be used as the parameters
for rule evaluation. After the rule evaluation process, we will get the fuzzy decision
values and fuzzy degree for these input parameters. The final process, defuzzification,
will generate crisp values for these input parameters. The crisp value is used to determine

which backend server is the most appropriate one to serve the incoming client request.



1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 addresses some related works.
Chapter 3 introduces the load balancing algorithms, including the flexible server
registration protocol, the weighted distributed load balancing algorithm, the remaining
capacity load balancing algorithm, and the fuzzy decision load balancing algorithm.
Chapter 4 presents the experimental and simulation results. Chapter 5 states our

conclusions.




CHAPTER 2

RELATED WORKS

In this chapter, we will discuss some backgrounds and related researches about load

balancing architectures and solutions.

2.1 Hardware-based Load Balancing Solutions

2.1.1 High Performance Server
A single server is generally not able to process the burst requests because of the limitation
of hardware performance. The simplest solution is to upgrade its hardware. If the CPU is

too busy, we can add extra CPU(s). If t ory utilization is too high, we can add

disadvantages are the cost and performa ftation of the hardware. Furthermore, the

server is the single point of failure which may not be desired for reliable operation.

2.1.2 Cluster Approach

The second solution is to adopt the cluster approach. The cluster server system consists of
many independent servers that work together. The workload is evenly dispatched to
independent servers by using a proper dispatching algorithm. The advantage of this
approach is that it can add more servers into the cluster easily, and from the client point of
view, the server is still a single unit. The disadvantages are hard to setup and maintain. It

must use some specific hardware and software to group servers as a single unit.



2.1.2.1 Microsoft Windows Cluster
While Windows 2000 represents a dramatic improvement over its predecessors in terms
of the total uptime (availability), reduced system failure (reliability) and ability to add
resources and computers to improve performance (scalability), Windows Server 2003
takes the availability, reliability and scalability of the Windows operating system to the
next level by enhancing existing features and providing new options.

Microsoft clustering technologies are the key to improve availability, reliability and
scalability. With Windows 2000 and Windows Server 2003, Microsoft uses a three-part
clustering strategy.

Network Load Balancing provides failover support for IP-based applications and

services that require high scalability and availability. With Network Load Balancing

components can load balanced over multiple nodes to dramatically enhance the
availability and scalability of software applications.

Server Cluster provides failover support for applications and services that require
high availability, scalability and reliability. With clustering, organizations can make
applications and data available on multiple servers linked together in a cluster

configuration. Backend applications and services are ideal candidates for server cluster.

2.1.2.2 Linux Cluster
Linux Virtual Server (LVS) is a highly scalable and highly available server built on a

cluster of real servers. The architecture of cluster is transparent to end users, and the users



interact with the system as if it were only a single high performance virtual server.

The real servers may be interconnected by high-speed LAN or by geographically
dispersed WAN. The front-end box in front of the real servers is a load balancer, which
schedules requests to the different servers and make parallel services of the cluster to
appear as a virtual service on a single IP address. Scalability is achieved by transparently
adding or removing a node in the cluster. High availability is provided by detecting node
or daemon failures and reconfiguring the system appropriately. The three-tie architecture
consists of :

Load Balancer, the front-end machine of the whole cluster systems, balances
requests from clients among a set of servers. The clients will consider that all the services

is from a single IP address.

2.1.3 Server Switch
During the last few years, an active commercial market for server switching products has
emerged [5]. Many of these products are Ethernet switches supplemented with build-in
processing power to examine the incoming packet and manage service traffic intelligently,
assign requests to servers based on request content, client session, and/or server status.
Server switches and their request routing (server selection) policies play a key role in
managing content and server resources for scalable Internet services [4,6].

Server switching is a technique to virtualize services at the IP level. An ensemble of
servers cooperates to serve the request loading. Clients interact with the service through a

client/server protocol such as HTTP, addressing their request to a virtual IP address



representing the service. The server switch intercepts the incoming traffic and redirects
each request to a specific server according to predefined policies. The set of functioning
servers to choose from may grow and shrink dynamically, allowing a site to manage
server resources locally to adapt to load changes. The switch isolates clients from internal
details of the service structure, so that the ensemble appears to clients as a single virtual
server that is powerful and reliable. Commercial server switches are available from Notel
(Alteon) [7], Cisco (Arrowpoint) [8], Extreme [9], F5 Networks [10], and other
companies.

The Alteon server switch [6,7] recognizes when a client is requesting a new TCP
session by identifying the TCP SYN packet. The request is forwarded to the best available

server, based on the configured load balancing policy. Once the switch determines the

best server, it binds the session te t@se;ﬁ{r’s eal IP address. The server switch

maintains a binding table that assc?a%g é&‘

ession with the real server to which
—i S

The switch replaces the virtual IP address in the IP destination address with the server’s
real IP address and replaces the switch’s MAC address in the destination address field
with the server’s MAC address. Figure 2.1 illustrates how IP addressing substitution takes
place as traffic flows inbound from the client to the real server [11].

After performing the necessary address substitution, the server switch forwards the
connection request to the chosen server. All subsequent packets belonging to that session
undergo the same address substitution process and are forwarded to the same real server
until the switch sees a session termination packet (that is, a TCP FIN packet). Likewise,
the server switch intercepts packets traveling form the real server to the client and

performs the reverse address substitution. It replaces the real server’s actual IP address in



the Network Layer source address field with the virtual IP address and forwards each

modified frame to the client. The process is described in Fig. 2.2.

Packet Flow Direction
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Figure 2.1:
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Figure 2.2: Outgoing session ID substitution.



On the receiving of a TCP FIN packet, the server switch performs the necessary
address substitution and forwards the FIN packet to the appropriate real server, causing
the server to teardown the connection. Then it removes the session-server binding from its
binding table.

The advantages are that the load balancing policies can be varied by the devices,
and the implementations are hardware-based, so they have the highest performance. The
disadvantages are that they were designed by the manufactures, so we are not able to
modify the source codes of devices. Furthermore, these devices are always quite

expensive.

2.2 Software-based Load Balancing Solutions

2.2.1 DNS-based Approach

< \©
In the distributed web server arghite tmse request routing mechanisms on the
-1

cluster side, there is no additi@ in the client side. Architecture
transparency is typically obtained throb;M g virtual interface to the outside world,
at least at the URL level. The cluster DNS — the authoritative DNS server for the
distributed web nodes — translates the symbolic site name (URL) to the IP address of one
server. This process allows the cluster DNS to implement many policies to select the
appropriate server and spread client requests. The DNS, however, has a limited control on
the request reaching the web cluster. Between the client and the cluster DNS, many
intermediate name servers may cache the logical-name-to-1P-address mapping to reduce
network traffic. Moreover, the client will also cache the result of address resolution.

In addition to provide the IP address of a node, the DNS also specifies a validity

period (Time-To-Live, or TTL) for caching the result of the logical name resolution

[22,23]. When the TTL expires, the address-mapping request is forwarded to the cluster



DNS to obtain the IP address map again; otherwise, an intermediate name server will
handle the request. Figure 2.3 shows the resolution.

If an intermediate name server holds a valid mapping for the cluster URL, it
resolves the address-mapping request without forwarding it to upper level name server.
Otherwise, the address request reaches the cluster DNS, which selects the IP address of a
web server and the TTL. The URL-to-IP-address mapping and the TTL value are
forwarded to all intermediate name servers along the path and to the client.

We distinguish the DNS-based architectures by the scheduling algorithm that the
cluster DNS uses. These algorithms are classified by the system state information that the

DNS uses to select a web server node.

1
- Server 1
(IF address 1)
4 5
|
.
User Client Intermediate Cl'—'smzl' DS :
name servers
Step 1 Address request (URL) Server M
Step 1t Address request reaches the DNS (IF address M)
Step 2: Mieb-server IP address, TTL) selection

Step 3: Address mapping (URL -= address 1)
Step 3': Address mapping (URL -= address 1)
Step 4: Document request (address 1)

Step 5: Document response (address 1)

Figure 2.3: DNS-based approach to load balancing.



2.2.1.1 System-stateless Algorithms
The Round-Robin DNS (RR-DNS) approach, first implemented by the National Center
for Supercomputing Applications (NCSA) to handle increased traffic at its site, is for
distributed homogeneous web server architecture [3]. NCSA developed a web cluster
comprising the following entities: a group of loosely coupled web servers to respond to
HTTP requests; a distributed file system that manages the entire WWW document tree;
and one primary DNS for the entire web server system.

NCSA modified the primary DNS for its domain to map addresses by a
Round-Robin algorithm. The load distribution under the RR-DNS is unbalanced because

the address-caching mechanism lets the DNS control only a small fraction of requests. An

uneven distribution of client requests from different domains further adds to the

clients from trying to access the web site by its cached address continuously. The
RR-DNS policy’s poor performance needs further study for alternative DNS routing

schemes that require additional system information. Example of RR-DNS is shown in

Fig. 2.4.
www  IN A 192.168.1.1
IN A 192.168.1.2
IN A 192.168.1.3
IN A 192.168.1.4
IN A 192.168.1.5
IN A 192.168.1.6
IN A 192.168.1.7
IN A 192.168.1.8

Figure 2.4: Configuration of RR-DNS.



2.2.1.2 Server-state-based Algorithms

Knowledge of server state conditions is essential for a high available web server system
to exclude servers that are unreachable because of fault or congestion. DNS policies,
combined with a simple feedback alarm mechanism from highly utilized servers,
effectively avoid web server system overload [24]. The Sun-SCALR framework
implements a similar approach combined with the RR-DNS policy [26].

R. J. Schemers proposed and developed the Ibnamed algorithm which make
scheduling decision based on the web servers current loading [27,28]. The DNS, after
receiving an address query, selects the least-loaded server. To inhibit address caching at
name servers, the Ibnamed algorithm requires that the DNS sets the TTL value to zero.

This requirement limits the applicability.

The Ibnamed is a load balane n@gmﬁer B[ written in Perl. Of course it was
meant to be a proof of concept th#m%e back into BIND [29]. Ibnamed
allows the creation of dynamic ¢ Have one name in the DNS name
space. A host may be in multiple group HMI& s ime [28].

The load balancer consists of two perl programs, Ibnamed and poller. These
programs run in parallel and communicate using signals and configuration files. The
poller program contacts the daemon running on the backend servers being polled. It reads
a configuration file that tells the poller which backend servers to poll. The poller
periodically sends out requests and receives the responses asynchronously. After it has
received all the responses, it dumps the information into a configuration file and sends a
signal to Ibnamed which then reloads its configuration file. If the poller does not receive a
response from one of the backend servers being polled, it simply removes it from the
configuration file it feeds to Ibnamed.

The Ibnamed reads the configuration file generated by the poller and stores the


http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#poller-config
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html#lbnamed-config

configuration into its memory. Each group of backend servers is stored in an array, while
the weights of all the backend servers are stored in one hash table. When a request for a
particular group comes in the array for that group is sorted based on the weight of each
backend server in that group. The backend server with lowest weight is then returned as
the best server. The weight in the corresponding entry is increased.

To other name servers, Ibnamed looks like a standard DNS server, with the
exception that it does not answer recursive queries. It only handles requests for the
dynamic groups it maintains. Ibnamed gets a normal DNS query and based on the name in
the query, it selects the best host to return. Ibnamed then constructs a standard DNS
response and sends it back to the client. The TTL value in the response is set to O to

ensure the response from being cached by other name servers which would defeat the

whole mechanism.

Backend servers that are mﬁﬁ% the poller need to run a special

daemon. That daemon responds - vr UDP) using a simple protocol.

The protocol format is described in Fig



#define PROTO_PORTNUM 4330
#define PROTO_MAXMESG 2048 /* max udp message to receive */
#define PROTO_VERSION 2

typedef enum P_OPS {
op_Ib_info_req =1, /* load balance info, request and reply */
}p_ops_t;

typedef enum P_STATUS {

status_request =0, /* a request packet */
status_ok =1, /* ok */
status_error =2, I* generic error */
status_proto_version =3, /* protocol version error */
status_proto_error =4, /* any other protocol error */
status_unknown_op =5, /* unknown operation requested */
} p_status_t;
typedef struct {
u_short version; [* protocol version */
u_short id; /* requestor's uniq request id */
u_short op; [* operation requested */
u_short status; /* set on reply */
} P_HEADER,*P_HEADER_PTR;
typedef struct {
P_HEADER h;
u_int boot_time;
u_int current_time;
u_int user_mtime; /* time user information last changed */
u_short I1; /* (int) (load*100) */
u_short I5;
u_short 115;

u_short tot_users;
u_short uniq_users;
u_char on_console;
u_char reserved;

Figure 2.5:

2.2.2 Dispatcher-based Approach
To centralize request scheduling and completely control client-request routing, a network
component of the web server system acts as a dispatcher. Request routing among servers
is transparent. Unlike DNS-based architectures, which deal with addresses at the URL
level, the dispatcher has a single, virtual IP address (IP-SVA).

The dispatcher uniquely identifies each backend server in the system through a
private address that can be at different protocol levels, depending on the architecture. We
differentiate  dispatcher-based architectures by routing mechanism — packet

single-rewriting, packet double-rewriting, HTTP redirection, or server-based HTTP



redirection [22].
Dispatcher-based architectures typically use simple algorithms to select the web
server (for example, Round-Robin, server loading) to handle incoming requests. Simple

algorithms help minimize request processing.

2.2.2.1 Packet Single-Rewriting

In some architectures, the dispatcher reroutes client-to-server packets by rewriting their 1P
address, such as in the basic TCP router mechanism. The web server cluster consists of a
group of backend servers and a load balancer that acts as an IP address dispatcher.
Figure 2.6 outlines the mechanism, in which address i is the IP address of the i-th web

Server.
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Address dispatcher
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User [ Client |— o — - -
[ ]
Step 1: Document reguest {IP-SVA) Server M
Sep 2: Web-server selection {address M)
Step 3: Packet rewriting (IP-SWVA = address 1)

Step 4: Packet routing
Step 5: Packet rewriting (address 1 -= [P-5WA)
Step 6: Document response (IP-54A)

Figure 2.6: Packet single-rewriting by the dispatcher.



All HTTP client requests reach the dispatcher because the IP-SVA is the only public
address. The dispatcher selects a backend server for each HTTP request through a
Round-Robin algorithm and forwards the packet by rewriting the destination IP address
of each incoming packet. The dispatcher replaces its IP-SVA with the IP address of the
selected server. Because a request consists of several IP packets, the dispatcher tracks the
source IP address for every established TCP connection in an address table. The
dispatcher can thereby route packets regarding the same connection to the same web
server.

Furthermore, the web server must replace its IP address with the dispatcher’s
IP-SVA before sending the response packets to the client. Therefore, the client is not

aware that its requests are handled by a hidden web server.

This approach provides high g s@ a\_/Bﬂ-ab ity because, when a backend server
fails, its address can be removed fr%%; é@r p prevent further request routing.

inéd with a DNS-based solution to

2.2.2.2 Packet Double-Rewriting

This mechanism also relies on a centralized dispatcher to schedule and control client
requests but differs from packet single-rewriting in the source address modification of all
packets between server and client. Packet double-rewriting is based on Network Address
Translation mechanism published by the Internet Engineering Task Force, as shown in
Fig. 2.7. The dispatcher receives a client request, selects the web server and modifies the
IP header of each incoming packet, and also modifies the outgoing packets that compose

the requested document.



Server 1
(address 1)

Address
dispatcher

User H Client

Server M

Step 1: Document request (IP-54WA) , )
(address M)

Step 2: Web-server selection

Step 3: Packet rewriting (IP-SVA& - address 1)
Step 4: Packet routing

Step 5: Server sends each packet o the dispatcher

Step 6: Packet rewriting (address 1 -= [P-SVA)
Step 7: Document response ([P-SWA)

Figure 2.7: Packet double-rewriting by the dispatcher.

2.2.2.3 HTTP Redirection

A centralized dispatcher receives ts and distributes them among the

RS
web server nodes through the HTTR ’mmﬁ&, echanism. The dispatcher redirects a
request by specifying the appropriate status code [32] in the response, indicating in its
header the server address where the client can get the desired document. Such redirection
is largely transparent; at most, users might notice an increased response time. Unlike most
dispatcher-based solutions, HTTP redirection does not require IP address modification of
packets reaching or leaving the web server system. HTTP redirection can be implemented
with two techniques.

Server-state-based dispatching: Used by the Distributed Server Groups architecture
[33]. It adds new methods to HTTP protocol to administer the web system and exchange
messages between the dispatcher and the servers. Since the dispatcher must be aware of

the server loading, each server periodically reports the number of processes in its run

queue and the number of received requests per second. The dispatcher then selects the



least-loaded server, as shown in Fig. 2.8.

Location-based dispatching: Used by Cisco Systems’ Distributed Director [8]
appliance. It provides two dispatching modes. The first applies the DNS-based approach
with client and server state information. The second use the HTTP redirection. The
Distributed Director estimates a client’s server proximity and the node availability with
algorithms that apply to the DNS-based solution. Client requests are redirected to the

server that is evaluated as most suitable for each request at a certain time.
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Step 3: HTTP redirection
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Sten 5: Document response faddress 11

Figure 2.8: HTTP redirection.



2.2.2.4 Server-based HTTP Redirection
The scalable server World Wide Web (SWEB) system and similar architectures [34] use a
two-level distributed scheduler, as shown in Fig. 2.9. Client requests, initially assigned by
the DNS to a web server, can be reassigned to another server via HTTP redirection.
Figure 2.9 shows server 1 receiving the client request, then redirecting the request to
server 2. The first level web server selected by the DNS can be prevented by the caching
mechanism of the intermediate name servers.

Redirecting individual client connections is crucial to better load balancing at a fine
granularity level. In most instances, however, it is preferable to combine client redirection
with domain redirection [34].

The SWEB architecture uses a Round-Robin DNS policy as a first-level scheduler.

In second-level scheduler, each web er@edﬁ%ets quests according to server selection

that minimizes the client request’ r&%’ a%al e estimated on the basis of server
== o

processing capabilities and Intern

Server 1
A [address 1)
5
4 Server 2
Y ' (address 2)
User 1 Client Intermediate
name servers -
L ]
-
Step 1: Address request (URL)
Step 17 Address request reaches the DNS ( S‘:'I'y"g" P?‘IJ]
address I
Step 2: (Web-server, TTL) selection ’ . ’

Step 3: Address mapping (LURL -= address 1)
Step 37 Address mapping (URL -= address 1)
Step 4: Document request iaddress 1)

Step 5: Web-server selection

Step G: HTTP redirection

Step 7 Document request (address 2)

Step 8: Docurment response (address 2)

Figure 2.9: HTTP redirection by the server.



These mechanisms imply an overhead of intra-cluster communications, as every
server must periodically transmit status information to the cluster DNS or other servers.
But such cost is usually negligible as compared to the client-request-generated network
traffic. To users, the main drawback of HTTP redirection is the increased response time.

This is because each redirected request requires a new client-server connection.

2.3 Load Balancing Algorithms

The load balancing system scheduler makes decisions regarding which backend server to
be assigned a new connection based on the load balancing algorithms [4,6,7]. Various

algorithms available are addressed as follows.

2.3.1 Least Connection

With the least connections algorit

backend server is measured in

algorithm is the most self-regulating, with the fastest servers typically getting the most

connections over time.

2.3.2 Round-Robin

With the Round-Robin algorithm, new connections are issued to each backend server in
turn. That is, the first backend server in the group gets the first connection, the second
backend server gets the next connection, followed by the third backend server, and so on.
When all the backend servers in this group have received at least one connection, the

process starts over with the first backend server.



2.3.3 Minimum Misses

The minimum misses algorithm is optimized for WAN-link load balancing. It uses IP
address information in the client request to select a server. The specific IP address
information used depends on the application.

For WAN-link load balancing, the client destination IP address is used. All requests
for a specific IP destination address is sent to the same server. This algorithm is
particularly useful in caching applications, helping to maximize successful cache hits.
Best statistical load balancing is achieved when the client IP addresses are spread across a
broad range of IP subnets.

For server load balancing, the client source IP address and backend server IP
address are used. All requests from a specific client are sent to the same backend server.

This algorithm is useful for applica 'n@gerg)&ie

server between sessions. With iZ%,I %e d server loading becomes most
— B

b information must be retained on the
evenly balanced as the number different source or destination

addresses increases.

2.3.4 Hash
The hash algorithm uses IP address information in the client request to select a backend
server. The specific IP address information used depends on the application. For
WAN-link load balancing, the client destination IP address is used. All requests for a
specific IP destination address will be sent to the same server. This is particularly useful
for maximizing successful cache hits.

For server load balancing, the client IP address is used. All requests from a specific
client will be sent to the same backend server. This option is useful for applications where

client information must be retained between sessions.



When selecting a backend server, a mathematical hash of the relevant IP address
information is used as an index into the list of currently available servers. Any given IP
address information will always have the same hash result, providing natural persistence,
as long as the backend server list is stable. However, if a server is added to or leaves the
system, then a different backend server might be assigned to a subsequent session with
the same IP address information even though the original server is still available. Open
connections are not cleared.

The hash algorithm provides more distributed load balancing than minimum misses
at any given instant. It should be used if the statistical load balancing achieved using
minimum misses is not as optimal as desired. If the load balancing statistics with

minimum misses indicate that one backend server is processing significantly more

the hash algorithm.

servers. The response time between the servers and the load balancer is used as the
weighting factor. The load balancer monitors and records the amount of time it takes for
each backend server to reply to a health check to adjust the backend server weights. The
weights are adjusted so they are inversely proportion to a moving average of response
time. In such a scenario, a server with half the response time as another server will

receive a weight twice as large.

2.3.6 Bandwidth
The bandwidth algorithm uses backend server octet counts to assign sessions to a server.

The load balancer monitors the number of octets sent between the server and itself. Then,



the backend server weights are adjusted so they are inversely proportion to the number of
octets that the backend server processes during the last interval.

Backend servers that process more octets are considered to have less available
bandwidth than those that have processed fewer octets. For example, the backend server
that processes half the amount of octets over the last interval receives twice the weight of
other backend servers. The higher the bandwidth used, the smaller the weight assigned to
the server. Based on this weighting, the subsequent requests go to the backend server with

the highest amount of free bandwidth. These weights are automatically assigned.




CHAPTER 3

LOAD BALANCING ALGORITHMS

In this chapter, we will discuss our proposed load balancing algorithms. Section 3.1 will
describe the flexible server registration protocol which enables the backend servers to join
and leave the load balancing system easily. Section 3.2 will describe the weighted
distributed load balancing algorithm and how to define the initial weights for
heterogeneous backend servers. Section 3.3 will describe the remaining capacity load
balancing algorithm which can be used when the service-on-demand servers join into the
load balancing system. Section 3.4 will describe the fuzzy decision load balancing

algorithm which dispatches the client request based on the fuzzy decision mechanism.

e
tioh

3.1 Flexible Server Registr

services to the load balancing system. The dispatcher will maintain the validity of the
information of those servers. When a request comes from a client, the dispatcher redirects

the client request to the appropriate backend server by the pre-defined algorithm.

3.1.1 Server Registration Protocol

William V. Wollman et al. [74] proposed a plug and play server load balancing
architecture. Their proposed method is described as below. First, the backend server
registers itself with the dispatcher. The dispatcher will acknowledge the registration of the
backend server. Next, the server registers its services with the dispatcher. Once the

backend server issues the service registration request, the dispatcher performs a health



check on the service. If the health check success, the dispatcher responses the registration
acknowledge to the backend server.

After the initial registration protocol, the backend servers will delivery service
health status messages to the dispatcher by the heartbeat messages. When the dispatcher
receives this heartbeat, it will send back an acknowledge message to the backend server.
In addition, the dispatcher will also perform its own independent health check on the
registration service. If a service health failure occurs, the dispatcher will automatically
remove the backend server from the load balancing system. The message flows between

the backend server and the dispatcher are shown in Fig. 3.1.

‘-!'h " II i 'V'.
Acknow

Service Reqistration

>
< Service Health Check
< Service Reg Ack

Service Health Heartbeat

™ Periodic
Heartbeat Ack

‘ _ Messages
< Service Health Check

Figure 3.1: The message flows between dispatcher and backend server.



3.1.2 Flexible Registration Protocol

The goal of our proposed registration protocol is to simplify the registration flows. Our
registration flow also checks the health status at the same time. The process is described
as follows. First, if a new backend server is initialized, it will issue an HTTP request to
itself, that is, localhost. In this step, we not only check the status of backend server, but
also check the health of the service, ie, HTTP. In addition, the HTTP request also gets
system information of the backend server, so the response messages will include the real
time server loading. If the health check of the service failed, nothing will be done. If it
can get an HTTP response, that means the HTTP service is available, the server will
insert an entry into the central database. The entry includes the server’s IP address,
registration time, CPU idle percentage, available memory, current number of connection,

etc.

servers. In this protocol, we also check the status of database implicitly to avoid the
database failure. Figure 3.2 shows the message flows for our proposed registration

protocol.



Database Backend Server 2

Dispatcher

1. Backend server health check
2. Register to the database server
3. Dispatcher look up the database

Figure 3.2: Flexible registration protocol flows.
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system. The first case is that the backend

If one of the backend serverg e stration operation within a specific

ryer ffrom the load balancing system.
a

There are three cases that the b ot register to the load balancing
r is going to quit from the HTTP service.
In this case, the backend server will stop registering to the database server. The old entry
will be removed by the dispatcher in the next maintainance check. In the second case, the
service daemon or the operating system of the backend server is crashed. The third case
happens when the network traffic is jammed or the service daemon reaches to its
maximum capacity. In the later two cases, the backend server can no longer provide the
service to any new connection. Therefore, we need to remove it from the list of available
servers to ensure that no new connection will be redirected to it.

Consider a load balancing system with N backend servers and one dispatcher as

shown in Fig. 3.3. When a client wants to access a web page, it will issue a DNS query to

find the IP address of the web server. The DNS server will reply with the IP address of the



dispatcher instead of the address of the web server that provides the service. The client
then issues an HTTP request to the dispatcher, marked as step 1. When the dispatcher
receives the request, a redirection page will be sent back to the client, marked as step 2.
The redirection page contains the IP address or domain name of the web server which is
the most appropriate one to serve this request. The client then issues the HTTP request
again to the real backend server, marked as step 3. The backend server will then serve the

client request and transfer document directly to the client in the final step [20].

Backend Server 1

Backend Server 2

Q S 2. redirect

. Dispatcher
Client

Backend Server N

Figure 3.3: Intelligent forwarding mechanism.



3.1.3 Implementation of Flexible Registration Protocol

The backend server in our load balancing architecture can be added or removed at any
time. We can register a new backend server and report the real time loading in just one
step. That is, we can execute only one program on the backend server to register and
report. In our proposed registration protocol, we can use some servers whose primary
function is MAIL server, FTP server, or DNS server, etc. to act as the backend server
prior the burst period and release them after the burst period. For example, during the
course registration period, almost all the students are focus on the course registration, the
other servers will have light loading at that time. When we activate the HTTP daemon
and execute the registration program on those servers, they will join the load balancing

architecture, and provide the HTTP services to the students. In this case, we can

efficiently use the resource of all avat al@gery}ts.
AN
o Fapeiam
BRI

this situation, we may use the Konpp

If all the other servers alread ging system, and the system is still

experienced heavy loading, we ca room as the backend servers. In
ibution [75]. Knoppix is a great Linux
tool for all skill levels. We can modify the Knoppix Live-CD, install the registration
program into the Live-CD. When we insert the Live-CD and reboot that computer, the
computer automatically becomes one of the backend servers. If we have a PC room with
about 100 personal computers, we can boot them with Knoppix Live-CD, and we will
have 100 more backend servers.

The registration program must check the network status, HTTP service, and the
database server. To simplify the registration protocol, we use a script to do all the function.
Each backend server use the crond to execute the registration program, that will ensure

the server is active. The crond will issue a wget to execute a PHP script, which makes

sure the HTTP service is alive. The entry in the crond is shown in Fig. 3.4.



In the registration.php script, it calculates the real time loading such as CPU,
memory, number of connections, etc, and it inserts these information into the database
server. This process will guarantee that the database server is running and the connection
between HTTP server and database server is operational.

We retrieve the speed of CPU from the command “cpuinfo” which is under /proc
directory. To retrieve the CPU usage and memory utilization, the “vmstat” is used. We
also use the ‘“netstat” to get the number of connection for the backend server. These
information will be sent to the database server during the registration process. The detail

of registration.php is shown in Fig. 3.5.

/.pi':.--:.r\'\
-
. a

$hostaddr = exec('ifconfig ethO | sed -n 2p | cut -b 21-35");
$cpu_idle = exec('vmstat | sed -n 3p | cut -b 74-76 );
$mem = exec(‘'vmstat | sed -n 3p I cut -b 13-19");
$connect_num = exec('netstat -tn | we -1 | cut -b 1-5");

Figure 3.5: Part of the registration.php script to retrieve system information.



3.2 Weighted Distributed Load Balancing Algorithm

In this Section, we consider the heterogeneous backend servers in a load balancing system.
Due to the different capacities of each backend server, we must define the weights for
each backend server. The definition factors for each backend server can be considered as
the maximum number of connections, drop rate, or response time. We will introduce
some definitions for the weights, and compare the results of each definition. The

weighted distributed load balancing algorithm is also introduced.

3.2.1 Definition of Capacity
Assume that there are three heterogeneous backend servers in the load balancing system,

say S, Sy, and S3. We define the capacities of these servers be Cy, C,, and Cs, respectively.

The capacities are the weights of th@ba&(ﬁnd ervers. Using the weights in our

A

proposed weighted distributed lo Igorithm, we can accomplish higher

performance and fair response timg ﬁ}? ~

In the definition of capacity, Ve peet to know the maximum number of
connections for a single backend server. To define this, we also need to define a threshold
that the drop rate is below acceptable value. Assume that the clients issue M requests to
the backend server, the response time of the server will vary in length randomly. The
response time R for each request is defined as R;. We partition the possible values into n
disjoint intervals, {[To=0,T1), [T1,T2),..., [Tn-1,Ta=02°)}, where To<T;<...<T,, and R; fall
in the ith interval [Ti4,Ti). The number of connection for [Ti1,T;) iS m;, where
mi+my+...+m,=M. For user perceived latency, we define the maximum response time
Rmax as the threshold which fall in the jth interval [Tj.,T;). For each request, if the

response time is higher than the Ryax, We then consider that the request was dropped. We

define the drop rate when the Ryax fall in the jth interval as in Eq. 3.1. If the drop rate is



below certain percentage, we can obtain the maximum number of connections or the

capacity for that server by Eq. 3.2.

n

>.m

Drop rate D= i:'j\/l ,wherethe max. thresholdfall in the jthinterval ~ (3.1)

j-1
Capacity C :Zmi,where the max threshold fall in the jthinterval (3.2)
i=1
For example, if the total number of requests is 500 (M=500). The response time
have 10 disjoint intervals {[0,0.25), [0.25,0.5), [0.5,0.75), [0.75,1), [1,1.25), [1.25,1.5),
[1.5,1.75), [1.75,2), [2,2.25), [2.25,°)}, and the number of responses for each interval is

{120, 95, 75, 65, 45, 30, 25, 22, 15, 8}. If we define the threshold as 2 seconds, which

f e@\js _@€+8 00 or 4.6% and the capacity C is

5 ®

or 4
i

means that Rma=2, then the drop

(120+95+75+65+45+30+25+22)

In Section 3.2.1, we define the capacities Cy, C,, and C; for the three servers Sy, S,, and Ss.
In the experimental results shown in Section 4.1, we find that the more powerful server S;
will serve more client requests because we define higher capacity for that server. But in
the figure of response time analysis, the Ss, which serves more client requests, still
response faster than others. It is not fair in the user perceive latency. We need to consider
both the drop rate and response time when defined the capacity. Using the same
environment as above, the drop rate definition is still the same, but we want to modify the
definition of the capacity. Rather than only consider the drop rate, we use the response
time as another factor to calculate the capacity. Assume that we define the acceptable

response time Ryn as the threshold, which means the capacity definition must under the



minimum threshold rather than the maximum threshold Rpmax. If the Rmin falls in the kth

interval [Ty.1,Tk), where k < j. We can re-define the capacity as in Eq. 3.3.

k-1

Capacity C=>)_m,,where the min. threshold fall in the kth interval (3.3)
i=1

For the above example, we define the threshold as 1 second, which means that
Rmin=1, then the capacity C is (120+95+75+65) or 355. Under this definition, the
experimental results in Section 4.1 show that the average response time for all the servers

is almost the same. The algorithm for the drop rate and capacity are given as

for each time intervals {[To=0,T1), [T1,T2),..., [Tn-1,Th=20)}

the minimum threshold Ry, is fall in the kth interval [Ty.1,Tx), where k < j

Capacity C= mp+my+...+my;

3.2.3 Weighted Distributing Load Balancing Algorithm

In this section, we will show the weighted distributing algorithm used in the load
balancing system. In our load balancing system, each backend server has different
capacity. The capacity is the weights of the server. After obtaining the capacity for each

server, a serverlist table is generated. Figure 3.6 shows an example.



Server IP Capacity
192.168.1.1 3
192.168.1.2 S
Generate
ServerName ServerPort Capacity | ServiceCount | TotalCount
192.168.1.1 80 3 0 0
192.168.1.2 80 5 0 0

ServiceCount field stores the current number of connection which was dispatched to that
backend server, and will be reset to 0 when all entries with ServiceCount equals to
capacity. The TotalCount field stores the total dispatched number of each backend server.
When a client issues a request to the dispatcher, the dispatcher retrieves the entry
from the serverlist table from the database server. We use a simple but elegant method to
choose the most appropriate entry from the serverlist table. The method is to choose the
entry with the largest remaining capacity, that is, the entry with largest difference between
capacity and ServiceCount. If all the remaining capacities are same, the dispatcher will
return the entry which registered first in the table. Then the ServiceCount of the chosen

entry will be incremented by one. When all the values of ServiceCount are equal to



capacity, the dispatcher will add ServiceCount to TotalCount and reset ServiceCount to

ZEro.

3.3 Remaining Capacity Load Balancing Algorithm

Although load balancing system can efficiently distribute the client requests, the cost of
these backend servers are the main issues. In some cases, the backend servers are not
always experienced heavy loading. They have heavy request traffic only in a certain time
period. Some web servers, such as course registration or ticket reservation systems, have
burst requests only several times a year. In these cases, we can predict the start time of
burst requests. Thus we can prepare some service-on-demand servers as the backend

servers before that time. The flexible servertegistration protocol, described in Section 3.1,

allows those service-on-demand s
load balancing system. This architec ___;u regls ration messages to automatically
‘F"
configure a backend server to sup
also checks the status of the backend Sefver-56 at it can report the loading information
of the backend servers. In our architecture, a new server can register to the load balancing
system while needed and withdraw themselves from the system after the burst period.

In this proposed algorithm, there are three heterogeneous servers S;, S, and Sz in
the system. Each backend server periodically reports its current load information to the
dispatcher. The load balancing algorithm calculates the remaining capacities as R, Ry,
and R3. And then selects the best server i, where R; = max(R1,R2,R3). If a request T comes
to the dispatcher, the IP address of backend server S; with the maximum remaining
capacity R; will be sent back to the client. We assume that the maximum capacity needed

by the request T is Ty. If the maximum remaining capacity R; is less than the request Ty, it

means that all the backend servers do not have enough remaining capacity to serve the



request task Ty. The dispatcher drops this request Txand return a server busy page to the
client. When the backend servers finish their previously assigned requests, they will then
have capacity to serve future requests.

Assume that the CPU clock-rate of the servers are C;, C, and Cs. The backend
server i reports the current load information parameters as {c;,m;,n;}, where c; is CPU idle
percentage, m; is available memory, and n; is current number of connections. We define
the three membership functions as in Figures 3.7 to 3.9. Then the remaining capacity R; of

server S; can be obtained by the following equation.

R =a*f,(C)*c +8*f,(m)+r*f(n) (3:4)

CPU function: f,
1
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Figure 3.7: Membership function for CPU.



Memory function: f,
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Figure 3.9: Membership function for Connection.




The pseudo codes for the proposed algorithm are as follows:

Report Phase:
1. calculate the three parameters {c;,m;,n;} periodically;

2. report (ci,m;,n;) for each backend server periodically;

Decision Phase:
1. R =a*f,(C)*c, +8*f,(m)+y*f,(n), for each backend server;
2. Ri=max(Ry,Rz,R3);
3. if (Capacity(R;)) > Require(Ty)
send(Ty,Si);
else

drop(T&);

3.4 Fuzzy Decision Load B

3.4.1 Feature Selection

The proposed approach of this section is Based on the features of backend servers. So, a
set of the effective features of the backend server should be selected before the fuzzy
decision. Some proposed features were selected to create the feature set in our proposed

approach.

3.4.1.1 CPU Idle Percentage

The CPU loading of the backend server is one factor that influences the performance of
the load balancing system. The more loads the backend server has, the less CPU idle
percentage it has. Thereafter, the CPU idle percentage is our first feature in the fuzzy

decision mechanism. We define the CPU idle percentage fp, as



f.,, =the idle percetage of theCPU (3.5

A larger feo, value means the higher possibility of available CPU resources that the
backend server has. Thus, we can define the membership function for fep, in Fig. 3.10.
Here, the High CPU Idle means the membership function for a high CPU idle percentage,
the Medium CPU Idle means the membership function for a medium CPU idle percentage,

and the Low CPU Idle means the membership function for a low CPU idle percentage.

m

=¢=High CPU ldle  =ll=Medium CPU Idle Low CPU Idle

0.8

ol

0% 10% 20% 30% 40% 50% 60% 70% 80% 50% 100%

Figure 3.10: Membership function for CPU idle percentage.



3.4.1.2 Available Memory Percentage
The memory usage is another important factor that determines the loads of the backend
server. The more memory the backend server uses, the less capacity the backend server
has. However, the backend servers may have different memory installed. Thus, we use
the percentage of available memory as the feature in our fuzzy decision mechanism.
Assuming that the total memory of the backend server is My, and the available memory
of the backend server is Mayail, then we define the available memory percentage fyem as
_Mava
f o= mz (3.6)
A larger fnem value means the higher possibility of available memory that the

backend server has. Thus, we can define the membership function for fyem as shown inFig.

3.11. Here, the High Available Mg @me Ae membership function for a high

ﬁm%e Memory means the membership

and the Low Available Memory

available memory percentage, the
function for a medium available

means the membership function for a - emory percentage.

=—#—High Available Memory ——Medium Available Memory

Low Available Memory
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Figure 3.11: Membership function for available memory percentage.



3.4.1.3 Available Connection Percentage

When the current number of connections increases, the performance of the backend
server tends to decrease. Thus, the current number of connections is the third factor of the
load balancing system. Assuming that the maximum number of connections for the
backend server is Cnax, and the current number of connections is Cg,r, then we define the

percentage of available connection feo, as

C

f _“max

CC ul (37)

m a X

A larger feon value means the higher possibility of available connections that the
backend server has. Thus, we can define the membership function for fc,, as shown inFig.

3.12. Here, the High Available Connection means the membership function for a high

percentage.

=—4—High Available Connection =— Medium Available Connection

Low Available Connection

X

a
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Figure 3.12: Membership function for available connection percentage.



3.4.2 Fuzzy Decision Load Balancing Algorithm

In this section, the proposed load balancing mechanism is introduced, which employs the
fuzzy decision to decide the appropriate backend server. A fuzzy based approach consists
of three steps, including the fuzzification, the rule evaluation, and the defuzzification, as

shown in Fig. 3.13 [76].

3.4.2.1 Fuzzification

Based on the membership functions presented in Section 3.4.1, the fuzzy degree can be
obtained according to the crisp values of the selected features. In order to describe the
fuzzy decision mechanism, we use the following example. The given CPU idle
percentage fepu, the available memory percentage fnem, and the available connection

percentage feon are as following.

Rule
Evaluation

Fuzzification tm—jp —pp Defuzzification

Figure 3.13: Fuzzy decision steps.



The degree of membership function can be determined from Figures 3.10 to 3.12.
Hence, we can obtain the degree of High CPU idle percentage (HCPU), Medium CPU
idle percentage (MCPU), Low CPU idle percentage (LCPU), High available memory
percentage (HMEM), Medium available memory percentage (MMEM), Low available
memory percentage (LMEM), High available connection percentage (HCON), Medium
available connection percentage (MCON), and Low available connection percentage

(LCON). These values are shown as below.

HCPU=0.72, MCPU=0.12, LCPU=0.28

HMEM=0.65, MMEM=0.4, LMEM=0.35

obtaining the fuzzy decision values. Table 3.1 shows the rule base, in which the

influenced rules are illustrated. Y, PY, PN, and N indicate the Yes, Probably Yes, Probably
No, and No, respectively, corresponding to the load balancing decision. The degree of
membership can be assigned the minimum, maximum, or average of the degree of

membership of the rules.



Table 3.1: Load balancing decision rule base.

CPU idle Memory Connection Decision
available available
HCPU HMEM HCON Y
HCPU HMEM MCON Y
HCPU HMEM LCON PY
HCPU MMEM HCON Y
HCPU MMEM MCON Y
HCPU MMEM LCON PY
HCPU LMEM HCON PY
HCPU LMEM MCON PY
HCPU LMEM LCON PN
MCPU HMEM HCON PY
MCPU HMEM MCON PY
MCPU H_ME'M__"“‘-.._ LCON PY
MCPU IVEM A “Weon PY

MCPU [ A $don PN
M

MCPU LCON PN
MCPU O S~HgON PY
MCPU \ﬂ‘fﬁvﬂmﬂ?} CON PN
MCPU LMEM—1~  LCON PN
LCPU HMEM HCON PY
LCPU HMEM MCON PN
LCPU HMEM LCON PN
LCPU MMEM HCON PN
LCPU MMEM MCON
LCPU MMEM LCON
LCPU LMEM HCON PN
LCPU LMEM MCON
LCPU LMEM LCON

Since each factor has three membership functions, the combinations have 27 cases
in total. Each load balancing decision in Tale 3.1 has a decision among Y, PY, PN, and N.

The fuzzy values are used to evaluate rules for obtaining Fuzzy Decision Values (FDV) by



assigning the minimum of the degree of membership of the rules. In this way, the decision

and the corresponding FDV can be precisely determined, as shown in Table 3.2.

Table 3.2: Fuzzy decision values.

Rules

FDV

Rule(HCPU,HMEM,HCON)=Y

minimum(HCPU=0.72, HMEM=0.65,HCON=0.55)=0.55

Rule(HCPU,HMEM,MCON)=Y

minimum(HCPU=0.72, HMEM=0.65,MCON=0.8)=0.65

Rule(HCPU,HMEM,LCON)=PY

minimum(HCPU=0.72, HMEM=0.65,LCON=0.45)=0.45

Rule(HCPU,MMEM,HCON)=Y

minimum(HCPU=0.72, MMEM=0.4,HCON=0.55)=0.4

Rule(HCPU,MMEM,MCON)=PY

minimum(HCPU=0.72, MMEM=0.4,MCON=0.8)=0.4

Rule(HCPU,MMEM,LCON)=PY

minimum(HCPU=0.72, MMEM=0.4,LCON=0.45)=0.4

Rule(HCPU,LMEM,HCON)=PY

minimum(HCPU=0.72,LMEM=0.35,HCON=0.55)=0.35

Rule(HCPU,LMEM,MCON)=PY

minimum(HCPU=0.72,LMEM=0.35,MCON=0.8)=0.35

Rule(HCPU,LMEM,LCON)=PN

minimum(HCPU:0.72,LMEM:O.35,LCON:0.45):O.35

Rule(MCPU,HMEM,HCON)=Y

U=0.12, HMEM=0.65,HCON=0.55)=0.12

Rule(MCPU,HMEM,MCON)=PY |

f'&r@-n(%PU\\lZ HMEM=0.65,MCON=0.8)=0.12

Rule(MCPU,HMEM,LCON):PY(

@1 HMEM=0.65,LCON=0.45)=0.12

Rule(MCPU,MMEM,HCON)=PY

=

_mi

:.'__1 ,MMEM=0.4,HCON=0.55)=0.12

Rule(MCPU,MMEM,MCON)=P

,MMEM=0.4,MCON=0.8)=0.12

Rule(MCPU,MMEM,LCON)=PN

mww@ﬁz MMEM=0.4,LCON=0.45)=0.12

Rule(MCPU,LMEM,HCON)=PY

MinimumMCPU=0.12,LMEM=0.35, HCON=0.55)=0.12

Rule(MCPU,LMEM,MCON)=PN

minimum(MCPU=0.12,LMEM=0.35,MCON=0.8)=0.12

Rule(MCPU,LMEM,LCON)=PN

minimum(MCPU=0.12,LMEM=0.35,LCON=0.45)=0.12

Rule(LCPU,HMEM,HCON)=PY

minimum(LCPU=0.28, HMEM=0.65,HCON=0.55)=0.28

Rule(LCPU,HMEM,MCON)=PN

minimum(LCPU=0.28, HMEM=0.65,MCON=0.8)=0.28

Rule(LCPU,HMEM,LCON)=PN

minimum(LCPU=0.28, HMEM=0.65,LCON=0.45)=0.28

Rule(LCPU,MMEM,HCON)=PN

minimum(LCPU=0.28, MMEM=0.4,HCON=0.55)=0.28

Rule(LCPU,MMEM,MCON)=N

minimum(LCPU=0.28, MMEM=0.4,MCON=0.8)=0.28

Rule(LCPU,MMEM,LCON)=N

minimum(LCPU=0.28, MMEM=0.4,LCON=0.45)=0.28

Rule(LCPU,LMEM,HCON)=PN

minimum(LCPU=0.28,LMEM=0.35,HCON=0.55)=0.28

Rule(LCPU,LMEM,MCON)=N

minimum(LCPU=0.28,LMEM=0.35,MCON=0.8)=0.28

Rule(LCPU,LMEM,LCON)=N

minimum(LCPU=0.28,LMEM=0.35,LCON=0.45)=0.28




From Table 3.2, it is shown that the fuzzy decisions have more than one value for
the degree of membership. Generally, the minimum, maximum, or average of the
membership degree can be used to obtain the final fuzzy degree. Here, the minimum rule

evaluation is adopted to obtain the four Fuzzy Degrees (FD) of Y, PY, PN, and N.

FD(Y) = min(0.55,0.65,0.4,0.4)=0.4
FD(PY) = min(0.45,0.4,0.35,0.35,0.12,0.12,0.12,0.12,0.12,0.28)=0.12
FD(PN) =min(0.35,0.12,0.12,0.12,0.12,0.28,0.28,0.28,0.28)=0.12

FD(N)  =min(0.28,0.28,0.28,0.28)=0.28

3.4.2.3 Defuzzification

In the defuzzification step, a set of weightings are assigned to the four truth values (Y, PY,

PN, N). For instance, the four weigjiti gned with the weight of 0.4, 0.3, 0.2,
and 0.1, respectively. Therefore, can be determined based on the FD

weightings and the degree of the M@ s calculated by Eq. 3.5.

ZFD(i)*W(I
cv =- ZW(i) (3.8)

where FD(i) and w(i) represent the degree of membership and the weights respectively, in
which FD(i) belongs to (Y, PY, PN, N). In the example considered above, the CV is

obtained as

* * * *
CV=0'4 0.4+0.12*0.3+0.12*0.2+0.28 0'1=0.248
0.4+0.3+0.2+0.1

After the CV has been obtained, the backend server with the highest CV is the most

appropriate one to serve the client request.



CHAPTER 4

EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

4.1 Weighted Distributed Load Balancing Algorithm

In our experimental environment, the load balancing system consists of a dispatcher, a
central database server, and a number of heterogeneous backend servers. A log server is
installed to keep track of the transaction log between servers and clients. The log server is
used to check whether the requests are distributed evenly, and we can decide to add new

backend server if needed. In other words, we must make an effort to achieve the

The operations of the loag are described as follows. First,

2 S
backend servers register to the da fé’ Eﬂse server will generate a serverlist
table on the database. When client issues request to dispatcher, the dispatcher looks up the
serverlist table to obtain the IP address of the most appropriate backend server. Then the
dispatcher returns an HTML document with HTTP header redirection to notify the IP
address of backend server to the client. After client receives this document, it issues the
request to the appropriate backend server. The assigned server serves the client requests
from now on until the transaction finished.

To verify our proposed system can be applied in the heterogeneous system, we use
three servers with different computational power as the backend servers. The servers are

named Si, Sp, and Ss. Table 4.1 shows the CPU speed of the three backend servers and

Fig. 4.1 shows the maximum numbers of connection per second for each backend server.



Table 4.1: CPU speed for the three backend servers.

Server name CPU Speed
S1 1.0G Hz
S2 1.6G Hz
S3 2.6G Hz

—4—S1 —-S2 S3
400
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0 "‘ | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500 550 600

request number/second

Figure 4.1: Maximum number of connections per second.

Figures 4.2 and 4.3 show the drop rate and the average response time of these three
backend servers with different abilities. On Figures 4.1 to 4.3, we can observe that the
high-end backend server, say Ss, can handle more client requests at the same time.
Furthermore, the high-end backend server takes little time to response the same number
of requests. Based on the experimental results above, we got some conclusions in Table

4.2.
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Figure 4.2: Comparison of drop rate for each backend servers.
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Figure 4.3: Comparison of average response time for each backend servers.

Table 4.2: The max. number of connections for each backend servers.

Max. connection number

Max. connection number

Server | CPU - Drop rate below 5%
= [DID GRS [£2 15 - Avg. response time ;elow 1 second

S; 1 GHz 360 120

S 1.6 GHz 440 200

S3 2.6 GHz 520 340




The next experiment needs to set the capacities for the heterogeneous backend
servers. The capacities derived from maximum request numbers with less than 5% drop
rate in Table 4.2 is shown in Table 4.3.

Figures 4.4 and 4.5 show the experimental results when the capacity ratio of
$1:5,:S3 15 9:11:13. The highest capacity server Sz can serve more request than the others,
as shown in Fig. 4.4. Although Sz can server more requests, the average response time is
still shorter than S; and S,. In fact, it is unfair for users that connect to our load balancing
system in first come first serve sequence. The reason is that we define the capacity values

only considering the drop rate.

Table 4.3: Capacities of each backend server with drop rate below 5%.

Max. request numbers .
SERUET - Drop rate below 5% CralpEety

S1 k h% 9
i E

s; GELN 13

—4—S1 —-S2 S3
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connection number/second

request number/second

Figure 4.4: Comparison of connection numbers with capacity ratio 9:11:13.
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Figure 4.5: Comparison of average response time with capacity ratio 9:11:13.

We consider both drop rate and average_response time to get new capacity ratio.

Table 4.4: Capacity of each backend server with drop rate below 5% and avg. response
time below 1 second.

Max. connection numbers

Server | - Drop rate below 5% Capacity
- Avg. response time below 1 second
S1 120 6
S2 200 10

S3 340 17
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Figure 4.6: Comparison of connection number with capacity ratio 6:10:17.
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Figure 4.7: Comparison of average response time with capacity ratio 6:10:17.

In the experimental results above, the load balancing system can improve the
performance. Most of the load balancing systems are based on homogeneous web servers.
If the hardware specifications of backend servers in the system are different, the load
balancing system must have a strategy to fairly dispatch the load to the backend servers.
In this section, we derive a formula to define the capacities for heterogeneous backend

servers. From the experimental results, the maximum number of connections with certain



drop rate can be used as the capacity indicator, but it can not provide fair response time
for each client requests. Thus, we must consider the capacity not only depending on drop
rate but also on the response time. Using this measurement, the response time for all

client requests will nearly be the same.

4.2 Remaining Capacity Load Balancing Algorithm

To evaluate the performance of the remaining capacity load balancing algorithm, we
performed simulation using round robin (RR) and least connection (LC) load balancing
algorithm as well as our proposed remaining capacity (RC) algorithm. The performance
evaluation includes connection hit rate, server utilization, drop rate, and system

scalability.

|
erz/%: 1Z

4.2.1 Connection Hit Rate and

generate the client requests from 100 requests per second to 1000 requests per second.
Figures 4.8 and 4.9 shows the results for the RR algorithm. Figure 4.8 shows the total hit
number for the three heterogeneous backend servers. According to our environment, the
S; has lowest capacity. When the arrival rate of client requests is about 300 requests per
second, the S; server does not have enough remaining capacity. If the arrival rate
increases, the S; server can only serve the same amount of client requests and begin to
drop requests. If we continuously increase the arrival rate to about 600 requests per
second, the second server S, will not have enough remaining capacity. If the arrival rate is
up to about 900 requests per second, the third server S; also runs out of capacity. The

utilizations of the three servers are shown in Fig. 4.9. At 300 requests per second, the



utilization of S; goes to about 95%. If the arrival rate increases, the server S; will begin to

drop requests.
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Figure 4.8: Com r RR algorithm.
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Figure 4.9: Comparison of utilization for RR algorithm.



Figures 4.10 and 4.11 show the results of the simulation of the LC algorithm. In the
LC algorithm, the dispatcher will select the server with the least connection. Since we use
heterogeneous backend servers; the server with least connection may not be able to serve
extra request because it does not have enough remaining capacity. In this situation, if a
server with least connection but with 95% loading, the dispatcher will not redirect client
request to this server. Instead, it redirects the request to the next least loaded server. The
hit rate of LC algorithm is similar to the RR algorithm. But in this case, the S, will up to
95% loading at 500 requests per second and Ss at 700 requests per second. It seems that
the RR algorithm is better than the LC algorithm. But when we consider the drop rate, we

can find that the RR algorithm drops more requests than LC algorithm.
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Figure 4.10: Comparison of hit rate for LC algorithm.
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Figure 4.11: Comparison of utilization for LC algorithm.

With our proposed RC algorithm shown in Figures 4.12 and 4.13, all the three

servers will up to 95% loading in 70Q.-fequests.per second. This means that the three

its utilization will be lower. In this situatior, the average response time will be shorter

than the RR and LC algorithm.
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Figure 4.12: Comparison of hit rate for RC algorithm.



—4—S1 —-S2 S3

100% It

80% /
60% /./ /

40% /.’ /

20%

0 200 400 600 800 1000

utilization

request number/second

Figure 4.13: Comparison of utilization for RC algorithm.

4.2.2 Drop Rate Comparison

When the server reaches its service capaei the dispatcher still redirects the client

request to that server, the request optimal load balancing system must

have as little drop rate as possibje..I\ e pare the drop rate for these three load
k.

-+ o

balancing algorithms. As shown RR algorithm begins to drop client

request at 300 requests per second, but in C and RC algorithm, they begin to drop
requests at 600 and 700 requests per second, respectively. Because the LC algorithm
considers only the number of connections, it redirects the request to the backend server
according to the current number of connections. But with RC algorithm, the remaining

capacity will be considered, so the request will be redirected to the maximum remaining

capacity server. Thus the drop rate is less than LC algorithm.
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Figure 4.14: Comparison of drop rate for RR, LC, RC algorithms.

4.2.3 Scalability of the Load Balancing System

In our load balancing system, we cg sc@thoas?ste \ by using the remaining capacity of

more requests per second. In our proposed architecture, we use the remaining capacities
of other servers like DNS or MAIL server. Consider using the remaining capacity of DNS
server, we need to reserve some capacity for its original service, DNS service. In this
simulation, we reserve 10% of capacity for DNS service, and the other capacity can be
used as web service. The utilization for one web server plus one DNS server is shown in
Fig. 4.17. It seems that the performance is not as good as the one shown in Fig. 4.16. Now
we continue to use the remaining capacity of MAIL server. We must reserve more
capacity for the MAIL service, say 50%, so the remaining 50% capacity can be used for
web service. The utilization for one web server plus one DNS server plus one MAIL

server is shown in Fig. 4.18.



Figure 4.19 shows the hit rate for one web server, two web servers, one web server
plus one DNS server, and one web server plus one DNS server plus one MAIL server. We
can find that when we use the remaining capacity of both DNS and MAIL server, the hit
rate is higher than the hit rate of the one with two web servers. It means that if we can use
the remaining capacities, the performance will be better than use another dedicate web
server. The drop rate is also compared in Fig. 4.20. When using the remaining capacity of
both DNS and MAIL servers, the system will begin to drop request about 700 requests

per second which is also better than adding another dedicated web server.
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Figure 4.15: Utilization for one web server.
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Figure 4.16: Utilization for two web servers.
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Figure 4.17: Utilization for Web + DNS.
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Figure 4.19: Comparison of hit rate for different schemes.
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In this section, we will present the experimental results for fuzzy decision load balancing
algorithm. In our first experiment, we use the fuzzy decision mechanism to dispatch the
client requests. When there is only one web server, the response time at 800 connections
per second is a little bit over 1.5 seconds. In order to reduce the response time, we tried to
use two web servers, and the response time at 800 connections per second is reduced to
about 0.85 seconds. In this architecture, we need bring another dedicated server to the
load balancing system. If the high traffic volume does not happen regularly, using another
dedicated web server is not cost effective. Therefore we try to use the DNS server as the
service-on-demand server to join the load balancing system. The response time at 800
connections per second is about 1.17 seconds. The results showed that it is no better than

the case of using another dedicated web server. Then, the MAIL server also being brought



into the load balancing system, and the response time at 800 connections per second is
only about 0.55 seconds. In Fig. 4.21, when the DNS server and the MAIL server joined
the load balancing system, we achieved a lower average response time when compared to

using another dedicated web server.

—4—Web -EB-Web*2 Web+DNS —=—Web+DNS+Mail
1.6
2 14
S 1.2
Q
..3.. 1.0
£ 08
= 06
2 0.4
8 0.2
(%5 ]
2 0.0
o O O O O O O 0O O O 0O O O oo o o
QO 1 O MO 1NN O N O o ;N o 1n o
T =« NN MMM T T o WO W NI~ 0
connection/second

o

2 P ]
@P& UNN @ ervice-on-demand servers.

The fuzzy decision and the other load balancing algorithms are compared and the

Figure 4.21: Comparison

results are shown in Figures 4.22 and 4.23. In these experiments, the DNS server and the
MAIL server joined the load balancing system. In Fig. 4.22, the round robin, least
connection, and hash algorithms dispatched the client requests without considering the
loading information of backend servers, so the average response times are much higher
than that of the proposed fuzzy decision mechanism. The response time and bandwidth
algorithms, which take the current status of backend servers into consideration, shall have
better performance than the round robin, least connection, and hash. But when comparing
these two algorithms with our proposed fuzzy decision algorithm, the fuzzy decision
algorithm is still better than these two, as shown in Fig. 4.23. Because only partial

capacity of the DNS server and the MAIL server are used to serve the requests from



clients, our fuzzy decision mechanism takes the CPU, memory, and connection of

backend servers into consideration. So we can reduce the average response time.
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Figure 4.23: Comparison of response time for fuzzy, response time, and bandwidth

algorithms.



CHAPTER S

CONCLUSIONS

In this dissertation, we propose some load balancing algorithms to improve the
performance of web sites. Many researches already proposed useful load balancing
architectures. Our proposed algorithms are focused on some specific working
environments. Firstly, if the processing power or the memory of each backend servers are
different, the initial weights for each backend server are very important. We can use the
ratio of drop rate as the initial weights to distribute the client request. But the

experimental results show that the perceive latency for each client are not fair. In order to

be fair in the perceive latency for each client, we re-define the initial weights according to

server, such as DNS server or MAIL server can join the load balancing system when
needed. When the service-on-demand servers join the system, we use the remaining
capacity to find out which backend server is the most appropriate one to serve the client
request. And then dispatch the client request to that backend server.

In addition to the remaining capacity load balancing algorithm, we want to use
another intelligent method to decide which backend server is the most appropriate one.
The fuzzy decision mechanism was adopted to dispatch the client request in our proposed
fuzzy decision load balancing algorithm. With this intelligent algorithm, we can reduce
the average response time for all the client requests. The experimental results also show

that the part-time DNS server plus a MAIL server can achieve higher performance than



by adding an additional dedicated web server.
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