
A language-mapping approach to action-

oriented development of information systems

Peter Rittgen1

1School of Business and Informatics, University
College of Borås, Borås, Sweden

Correspondence:
Peter Rittgen, School of Business and
Informatics, University College of Borås,
Allégatan 1, Borås 501 90, Sweden.
Tel: þ46 33 435 59 30;
Fax: þ46 33 435 40 07;
E-mail: peter.rittgen@hb.se

Received: 11 May 2005
Revised: 17 December 2005
Accepted: 3 January 2006

Abstract
Two important views in the development of information systems are the action

view and the reaction view which govern the areas of business process

modelling and information systems modelling, respectively. We suggest an
approach to mediate between these partially conflicting views by specifying a

language-mapping framework. In other words, we specify a transition from a

process model with human actors to an IS model with inanimate agents.
European Journal of Information Systems (2006) 15, 70–81.

doi:10.1057/palgrave.ejis.3000597

Keywords: language mapping; DEMO; UML; action view; reaction view

Introduction
In a re-engineering project it is not uncommon to encounter a situation
where none of the available modelling methods can complete the whole
task. We met such a situation in an interorganizational project where we
used one such approach, the language-action perspective, to analyse the
business process. This approach was useful for understanding the business
situation, eliciting problems and proposing the design of an improved
organization. But some of the problems consisted in poor or missing
information system support and we considered that UML would be more
useful for finding solutions to them. That left us with the task of
‘implementing’ our organizational designs, which we developed in DEMO,
in a new language, UML, a task that was by no means straightforward
owing to the fact that both languages represent different views on a system
(the following paragraphs elaborate this point). As a consequence we
developed a language-mapping framework to support this task. In the
remaining sections we introduce the languages involved, develop the
mapping procedure and relate empirical findings regarding this approach.

In the literature on business process modelling the (communicative)
action view plays an important role (Winograd & Flores, 1986). This view
‘states that the major role of an information system is to support
communication within an organization by structuring and coordinating
the actions performed by the organization’s agents. The system is seen as a
medium through which people can perform social actions, such as stating
facts, making promises and giving orders’ (Johannesson, 1995, p. 291).
Contrary to that, the modelling of information systems is often influenced
by a view that we might term ‘reaction view’. According to this view, ‘the
primary purpose of an information system is to provide a model of a
Universe of Discourse (UoD), thereby enabling people to obtain informa-
tion about reality by studying the model. In this respect, an information
system works as a passive repository of data that reflects the structure and
behaviour of the UoD’ (Johannesson, 1995, p. 291).

European Journal of Information Systems (2006) 15, 70–81

& 2006 Operational Research Society Ltd. All rights reserved 0960-085X/06 $30.00

www.palgrave-journals.com/ejis

In the action view, a system consists of a number of
agents (people or organizational units) who interact
with each other by communicating. The basic unit of
communication is a speech act (Austin, 1962; Searle,
1969). An action pair is the smallest sequence of actions
that has an effect in the social world (e.g. establishing a
commitment). It consists of two speech acts: an utterance
and the response (e.g. a request and the promise). On the
third level, the workflow loop (or action workflow,
Medina-Mora et al., 1992) describes a communicative
pattern consisting of two consecutive conversations that
aim at reaching an agreement about (1) the execution of
an action, and (2) the result of that execution. The left
side of Figure 1 shows three examples of workflow loops
that consist of the conversations 1 and 6, 2 and 5 and
3 and 4, respectively. The conversations are executed in
the order of the numbers, that is the workflow loops are
embedded in each other. Higher levels can be defined
such as contract and scenario but the first three are
sufficient for the purpose of this paper.

In the reaction view, object orientation prevails today
in many areas of software engineering. It has largely
replaced the functional paradigm that characterized early
approaches to software engineering (and is still used in
certain areas such as databases). In object orientation, a
system is seen as a collection of objects exchanging
messages. Each object encapsulates data and function-
ality (or structure and behaviour or attributes and
operations). An object is in principal a passive (or
reactive) unit that only acts if it receives a message. It
will then carry out the appropriate operation which
might involve sending messages to other objects. Finally,
it will deliver the result as a reply to the original message
but ‘communication’ is essentially one-way (see Figure 1,
right; the numbers refer to the temporal order of the
messages).

The major conceptual differences between the views
are:

1. The action view describes social systems that consist of
human beings that can both act of their own accord
and react to stimuli from the environment whereas an
object can only react. This is why we have called that
view ‘reaction view’.

2. By performing speech acts, agents create obligations
for themselves or others. Having a conscience they are
fully aware of the consequences of entering into a
commitment and also of not fulfilling an obligation.
An object is not equipped with a conscience so it
cannot commit itself. If an object behaves in the
‘desired’ way this is due to a pre-programmed auto-
matism and not the result of an individual decision
based on free will. An object cannot be responsible for
its ‘actions’.

3. Communicating is not just exchanging messages. We
communicate to achieve a certain purpose for which
we need the help of others. An object sends a message
because its code prescribes this behaviour and the
message is received, processed and ‘answered’ for
precisely the same reason. An object has no intentions.

In short it can be said that the difference between
agents and objects is the same as that between human
beings and machines. In the light of these fundamental
discrepancies it seems doubtful whether a reconciliation
of action view and reaction view can be successful. But
both views play an important role in the development
of information systems as socio-technical systems so
we cannot drop either of them. It would be equally
inadequate to describe a social system in terms of
mindless objects as it would be to describe a technical
artefact such as software in terms of responsible and
conscious agents. But a mere coexistence of both views
is not enough because the social and technical aspects of
an information system are so tightly interwoven that we
cannot neatly separate them into weakly connected areas
of concern, each dominated by its respective view. So we
have to think of ways to ‘mediate’ between both views.
Mediation is in our definition a weaker form of integra-
tion than reconciliation as defined in Johannesson
(1995).

The approach we suggest operates on the language
level. In the next section, we argue for this decision and
present our language of choice for each view, DEMO
and UML, respectively. Assuming the precedence of the
action view over the reaction view we introduce a
framework for mapping DEMO to UML. This involves
both a mapping of the language concepts and a
transformation of the diagram types.

Languages for action view and reaction view
Our approach to mediating between action view and
reaction view proceeds at the language level. On the one
hand this gives us a richer understanding of each view
by examining the details of the concepts of a language
representing this view. In addition, it also offers the
chance to provide more comprehensive and constructive
support for mediation. But on the other hand, each
language will also introduce additional features that are
not a necessary pre-requisite of the respective view. The
results of such an approach should therefore be con-
sidered with care because they might not generalize to allFigure 1 Action view and reaction view.

A language-mapping approach Peter Rittgen 71

European Journal of Information Systems

languages of the action and reaction views. In particular,
the selected languages might not even be ‘typical’
representatives of their respective views.

Regarding the reaction view the task of finding an
appropriate language is not difficult. The software
engineering community has subjected itself to a rigorous
standardization process that resulted in the Unified
Modelling Language (UML). It follows the object-or-
iented paradigm and is widely used in the design of
information systems. Adhering to the reaction view its
focus is more on the technical part of the information
systems than on the organizational (i.e. social) part but
the proponents of UML claim that it can also be used for
the latter. As evidence for this standpoint they mention
use cases and business processes. For the former UML
provides a specific language construct: Use Case Dia-
grams. The latter were originally supposed to be repre-
sented as Activity Diagrams (with swim lanes) but a
language extension called Enterprise Collaboration Archi-
tecture (ECA; OMG, 2004) now takes care of business
processes. Nevertheless, UML does not offer an action
view because the concept of an actor is weakly integrated
and restricted to the role of a user of the information
system. This is rooted in the metamodel of the UML that
does not provide concepts related to social action.
Mechanisms that extend the language, such as stereo-
types, cannot change the metamodel. They can therefore
not extend UML in such a way that it would cover the
action view. The role of the actor in both languages
is argued more thoroughly in the section Concept
mapping.

The situation regarding the action view (or language-
action perspective) is much more complex. The ap-
proaches assuming this view cover a wide range of
epistemological orientations coming from disciplines as
diverse as social sciences, political science, law, linguis-
tics, cognitive science, organizational theory, artificial
intelligence and computer science. They have in com-
mon that they are based on Speech Act Theory (Austin,
1962; Searle, 1969) and the Theory of Communicative
Action (Habermas, 1984). Examples of such approaches
are Conversation-for-Action (Winograd & Flores, 1986),
DiaLaw (Lodder & Herczog, 1995), Multi-Agent Systems
(Dignum & Weigand, 1995; Hulstijn et al., 2004),
Dynamic Essential Modelling of Organizations (DEMO;
DEMO-1: Dietz, 1999; DEMO-2: Liu et al., 2003; Dietz &
Habing, 2004), Action Workflow (Medina-Mora et al.,
1992; Denning & Medina-Mora, 1995; Kethers & Schoop,
2000), Action-Based Modelling (Lehtinen & Lyytinen,
1986), Business Action Theory and SIMM (Goldkuhl &
Röstlinger, 1993; Goldkuhl, 1996; Goldkuhl & Lind,
2004) and Discourse Structures (Johannesson, 1995). As
we aim at finding a language that is suitable for being
mapped to UML we would like it to exhibit certain
external similarities with UML: on the syntactic level it
should provide a diagram-like notation and on the
semantic level it should possess an appropriate degree
of formality. We found that DEMO fulfils these criteria

best. The following sections give short introductions to
both languages.

Dynamic essential modelling of organization
In the action view, the structure of an organization is
understood as a network of commitments. As these
commitments are the result of communication, it follows
that a model of the organization is essentially a model
based on purposeful, communicative acts. In DEMO, all
acts that serve the same purpose are collected in a
transaction in which two roles are engaged: the initiator
and the executor. The definition of a transaction in DEMO
is broader than that given in Introduction. It comes
closer to that of a workflow loop but it also includes a
non-communicative action, namely the agreed action
that the executor performs in the object world. Hence
each transaction is assumed to follow a certain pattern
which is divided into three sequential phases and three
layers. The phases are: order (O), execute (E) and result (R).
The layers are: success, discussion and discourse. On the
success layer the phases are structured as follows. In the
order phase the contract is negotiated. This involves
typically a request being made by the initiator and a
promise by the executor to carry out the request. In the
next phase, the contract is executed which involves
factual changes in the object world (as opposed to the
intersubject world of communication). Finally, in the
result phase the executor states that the agreed result
has been achieved and the initiator accepts this fact. If
anything goes wrong on the success layer, the partici-
pants can decide to move to the discussion or discourse
layer. For details on these layers see (Reijswoud, 1996).

Figure 2 gives an overview of the architecture of DEMO.
The Interaction Model shows actors and their relations to
transactions but abstracts from time. The Business Process
Model, on the other hand, abstracts from the actors but
refines the transactional logic in two ways: it breaks each
transaction into its phases and specifies how they are
ordered causally and conditionally. This allows us to
determine the order of the communicative acts in time.
The Fact Model describes all information that is created

Figure 2 Architecture of DEMO (simplified).

A language-mapping approach Peter Rittgen72

European Journal of Information Systems

or used by an organization. A fact is the result of a
successful transaction and implies that the proposition
of the request has become true. The Interstriction Model
(not shown in Figure 2) is similar to the Interaction
Model but in addition to the communication that is part
of the transactions it also exhibits informative commu-
nication. All models are linked to the Action Model
which gives a detailed account of activities carried out
within a transaction phase (which can also involve links
to other transactions).

Figure 3 gives examples of an Interaction Model and a
Business Process Model. They are taken from (Reijswoud
& Dietz, 1999) and show a part of the business process of
an organization called SGC, a non-profit organization
that mediates consumer complaints in the Netherlands.

The transactions of the example are as follows:

� T6: Handling_complaint
� T7: Defending_complaint
� T8: Giving_advice
� T9: Passing_judgement

The actor A2, who is responsible for mediating the
claim, requests that actor A6 handles the complaint.
Both A2 and A6 are internal actors (represented by white
boxes). The latter will give the supplier a chance to
defend the complaint, ask an expert to give advice and
request that the committee passes a judgement. S2–S4 are
external actors as the grey boxes show. A simple line
connects the initiator with the transaction, an arrow
points from it to the executor. The grey line represents
the system boundary. Observe that Figure 3 shows only a
fragment of the model.

The right side of Figure 3 contains a part of the Business
Process Model. It shows details of the execution phase of
transaction 6: Handling_complaint. This phase is called
T6/E. From inside it, the transactions T7, T8 and T9 are
started. This is represented by arrows from the initiation
points (small, white circles) to the order phases of the
respective transactions. Solid arrows indicate a causal
relation, dashed ones a conditional relation. The inside of
a phase is viewed as a concurrent region, so all three
triggered transactions could start at the same time if it
were not for the dashed lines. An arrow that is crossed by
a line represents an optional relation. In short: the
supplier is asked to defend the complaint in any case

and the expert is possibly consulted. After T7 (and
possibly T8) have been completed, the committee is
asked to pass judgement. Only when T9/R has been
finished can we also terminate T6/E. Observe that this is
due to the dashed arrow between them. As a rule the
initiation points inside a phase trigger transactions in
an asynchronous manner without waiting for their
completion.

The UML
The specification of the UML (OMG, 2003) is divided
into two parts: semantics and notation. The first part
introduces the concepts of UML with the help of
metamodels and natural language. It is organized in
packages (which are themselves a concept of UML). See
Figure 4 for an overview of the relevant packages.

All concepts for structural models are defined in the
Foundation. They comprise static aspects of a system
such as classes, interfaces and attributes. Based on the
Foundation the elements of the behavioural (dynamic)
models are specified which consist of Common Beha-
viour (such as signals, procedures, instances etc.) and
diagram-specific behaviour (one package for each, see
Figure 4). Their purpose is defined in OMG (2003, p. 2–
92f.) as: ‘The Collaborations package specifies a beha-
vioural context for using model elements to accomplish a
particular task. The Use Case package specifies behaviour
using actors and use cases. The State Machines package
defines behaviour using finite-state transition systems.
The Activity Graphs package defines a special case of a
state machine that is used to model processes. The
Actions package defines behaviour using a detailed model
of computation.’

The notation part of the language specification intro-
duces a number of diagrams that define how the
elements of the semantics packages can be represented
graphically. For the purpose of this paper the relevant
diagrams (and the primary packages they refer to) are:
Collaboration Diagram (Collaborations), Statechart Dia-
gram (State Machines), Activity Diagram (Activity
Graphs) and Class Diagram (Foundation). For a detailed
description of these diagrams refer to OMG (2003).

Figure 3 Examples of an Interaction Model and a Business

Process Model. Figure 4 Architecture of UML (simplified).

A language-mapping approach Peter Rittgen 73

European Journal of Information Systems

A language-mapping framework for DEMO and
UML

A general framework for mapping languages
The Object Management Group (OMG) has suggested an
architecture for language integration that is called Model-
Driven Architecture (MDA; Miller & Mukerji, 2003). In it
a system is specified from three different viewpoints:
computation independent, platform independent and
platform specific. Although the scope of MDA is much
broader, a typical assumption is that all models (views)
can be constructed with the help of only one language,
and UML is the preferred candidate for that role. But
Evans et al. (2003) argue that ‘a truly flexible model-
driven development process should not dictate the
language that practitioners should use to construct
models, even an extensible one. Instead they should be
free to use whichever language is appropriate for their
particular domain and application, particularly as many
languages cannot be shoe-horned into the UML family’.
We follow this argument and suggest extending the
model mapping of MDA (Caplat & Sourrouille, 2003) to
‘language mapping’.

A general framework for mapping a modelling lan-
guage to another one is shown in Figure 5. We distinguish
between the conceptual level and the instance level. On
the conceptual level, we first perform concept mapping.
This step involves finding for each concept of the source
language a matching one in the target language. A
successful match implies that a significant part of the
semantics of the source concept can also be expressed by
the target concept. Note that concept mapping as defined
here does not relate to the one known from (empirical)
social research. For example, the DEMO concept of an
action maps to the UML concept of an action state. The
latter is something that is performed while the system is
in a certain state. As this is very general, it encompasses
the meaning of action in DEMO for which the same
holds, but in addition to that an action is restricted to

being either an objective action in the object world or
a communicative action in the intersubject world (see
section Concept mapping for more details). Note that
such a mapping is not always possible because the target
language might not have a related concept at all or the
‘common denominator’ between both concepts is not a
significant part of the semantics of the source concept
(i.e. the two concepts have very little in common). This
implies that language mapping cannot be done for
any combination of languages, at least not in the way
described here. Moreover, we cannot expect that we
always succeed in establishing a one-to-one correspon-
dence between concepts. Sometimes several source con-
cepts jointly map to one target concept or one source
concept maps to a conjunction of target concepts.

The second step consists of a notational mapping. We
assume that each concept is associated with a notational
element in the respective language so with concept
mapping being done this step is straightforward. The
third and last step is about establishing a relation
between the diagram types of both languages. This step
provides rules for carrying out the actual diagram
transformation on the instance level. In the example of
Figure 5 this step is trivial: it involves only a (slight)
change in the notation and a rearrangement of the six
basic concepts (three node types and three relation types:
solid arc, dashed arc and arrow) into different diagrams.
But for realistic modelling languages the mapping rules
can be much more complex. Typical types of transforma-
tions include:

1. One element has to be mapped to a number of
elements (e.g. a subgraph). This process is called
unfolding.

2. Additional elements (of a different type) have to be
introduced. This process is called element introduc-
tion.

3. Nodes are transformed into arcs (called node inver-
sion) or arcs are transformed into nodes (arc inver-
sion).

4. A substructure of the source language is transformed
into a different substructure of the target language.
This is called graph conversion.

In the following sections we specialize this framework
for DEMO as the source language and UML as the target
language.

Concept mapping
Mapping concepts from one language to another requires
an ontological analysis of both languages and a matching
of corresponding concepts. The Bunge–Wand–Weber
ontology (BWW ontology) is an established tool for
analysing modelling languages. It is based on Mario
Bunge’s ontology (Bunge, 1977, 1979) and was later
adapted by Yair Wand and Ron Weber to the information
systems field (Wand & Weber, 1989, 1995; Weber, 1997).
According to this ontology the world consists of things
that possess properties. Both exist irrespective of theFigure 5 A framework for language mapping.

A language-mapping approach Peter Rittgen74

European Journal of Information Systems

human observer. An intrinsic property belongs to an
individual thing, a mutual property to two or more things.
The observer can only witness attributes that he takes for
the properties of the things he observes. The things
themselves are not observable. The attributes are func-
tions over time (state functions). A class is a set of things
that share a property, a kind is a set of things sharing two
or more properties and a natural kind is a kind where some
of the properties are related by laws. A law is a relation
between properties. A set of attributes used to describe a
set of things with common properties is called a functional
schema. The state of a thing is a complete assignment of
values to all state functions in the functional schema. A
change of state is called an event. A lawful transformation
(or transformation law) defines which events in a thing
that are lawful.

Let us look at five core concepts of DEMO, that is actor,
action, transaction, phase and category, and how they
can be mapped to UML concepts. An analysis of UML
based on the BWW ontology has already been performed
by Evermann & Wand (2001) and Opdahl & Henderson-
Sellers (2002). The interpretation mapping of the respec-
tive UML constructs is shown in columns 2 and 3 in
Table 1, that of the DEMO constructs in columns 1 and 3
of the same table. The resulting mappings from DEMO to
UML are explained in the following sections.

Actor-actor/object The concept of an actor in DEMO is
mapped both to that of an actor and to that of an object
in UML. An actor (in DEMO) is a role that a subject
(human being) plays. An actor (in UML) ‘defines a
coherent set of roles that users of an entity can play
when interacting with the entity. An actor may be
considered to play a separate role with regard to each
use case with which it communicates’ (OMG, 2003, p. 2–
131). In UML an actor can play many roles, in DEMO it
can play only one role (i.e. the actor is the role). But in
UML actors can only interact with the information
system. In DEMO they interact with each other. As use
cases (or a similar notion) are not defined in DEMO, the
mapping actor-actor is valid but not helpful. But if we
also introduce a mapping actor-object we can at least
interpret (or view) the actor as a (re)acting object. This
means that we will lose the mind of the actor but we can
still express a significant part of the semantics of an actor:

the structure and behaviour of the actor are retained in
the object.

Action-action [in an action state] The concept of an
action in DEMO is mapped to that of the same name in
UML. In DEMO actions are divided into communicative
actions and objective actions. Communicative actions
take place in the intersubject world and consist of speech
acts. Objective actions are performed in the object world
and can be material or immaterial. Communicative
actions can lead to changes in the social (intersubject)
world (i.e. creating obligations), objective actions can
lead to changes in the object world (i.e. the creation of
facts). An action state refers to a state (of the system).
Upon entering the state the (entry) action is triggered.
Upon completion of the action the state is left. As the
latter definition does not restrict the type of action it
also encompasses the action concept of the former. In an
Activity Diagram the action is associated with a state
during which the action is executed (action state).

Transaction-sequence of messages (operations) [in a
state] The concept of a transaction in DEMO is mapped
to that of sequence of messages in UML where each
message triggers a corresponding operation. A transac-
tion is a pattern that consists of the conversation for an
(objective) action, the execution of that action and the
conversation for the result (of that action). This concept
has no direct counterpart in UML. Instead it has to be
mapped to a sequence of messages which represent the
speech acts. Technically this is done by unfolding on the
instance level (i.e. transformation interaction model-
collaboration diagram). In the Statechart Diagram a
transaction is represented by a state during which the
messages are passed. When the system enters this state
the transaction is initiated. When the transaction is
finished the system leaves the state.

Category-class The concept of a category in DEMO is
mapped to that of a class in UML. A category is a primal
class (derived classes are used to define roles in DEMO).
Each object is an instance of exactly one category but can
also be an instance of arbitrarily many derived classes. In
UML ‘a class is a description of a set of objects that share
the same attributes, operations, methods, relationships
and semantics’ (OMG, 2003, p. 2–26). A category (as a

Table 1 Interpretation mapping of DEMO and UML constructs

DEMO construct UML construct BWW construct

DEMO-actor UML-actor/UML-object BWW-thing (that acts on the proposed system thing)

DEMO-action UML-action (in an action state) BWW-transformation law that describes a single event

DEMO-transaction UML-sequence of messages (operations) (in a state) BWW-transformation law that describes a process

DEMO-phase UML-sub state BWW-state

DEMO-category UML-class BWW-(functional schema for modelling entities that form the

corresponding) natural kind

A language-mapping approach Peter Rittgen 75

European Journal of Information Systems

primal class) is a class in the sense of this definition.
Categories can have n-ary relations which correspond to
association classes in UML. Categories and their relations
are used to represent facts about the intersubject world
and the object world.

Diagram transformation
Figure 6 shows the overall framework for the language
mapping. The DEMO diagrams are represented by
rounded boxes, the UML diagrams by rectangular boxes.
The mapping of concepts is visualized by single-headed
arrows, the transformation of diagrams by double-headed
arrows. Each diagram conversion involves a transforma-
tion of the notation but will also require some more
sophisticated transformation process (e.g. transaction
unfolding). Concurrency explication and class associa-
tion are graph conversions, Signal and Infolink introduc-
tion are element introductions, and Transaction
unfolding is an unfolding in the sense of the general
integration framework.

The Interaction Model introduces actors and transac-
tions. The actors become objects in the Collaboration
Diagram, the transactions are transformed into sequences
of messages (operations) in the same diagram but they
correspond also to states in the Statechart Diagram. The
Business Process Model refines transactions into phases
which in turn become substates of the respective
transaction state in the Statechart Diagram. The basic
elements of the Fact Model are the categories. They
correspond to classes in UML. The Interstriction Model
introduces fact and communication banks to store
records of facts and communication. They also corre-
spond to classes in UML. Actions and wait states in the

Action Model become actions (in action states) and signal
receipts, respectively, in the Activity Diagram.

The Interaction Model is transformed into the Colla-
boration Diagram. Apart from a notational conversion
this requires an unfolding of the transactions, a concept
which has no immediate dynamic counterpart in UML.
Each transaction is split into its communicative acts
which then are represented by messages in UML. An
example of that is given in the next section.

The Business Process Model is transformed into the
Statechart Diagram. Again this involves a change in
notation but also an explication of the inherent con-
current behaviour of a phase. A phase can have many
concurrent initiation points but each state has only one
initial (sub)state. Dividing the state into concurrent
regions is not feasible due to the asynchronous nature
of the threads triggered by the initiation points. Hence
the initial state is forked into as many threads as there are
initiation points that have no arrows pointing at them
(plus one that leads to the final state if no arrow points
to the phase). An arrow pointing at a phase maps to one
pointing at the corresponding final state. If more than
one arrow points at a phase or initiation point the
respective arrows in the Statechart Diagram are joined
by a synchronization bar. Optional relationships map to
guarded transitions. An example for such a transforma-
tion is given in the next section.

The Action Model is transformed into the Activity
Diagram. Apart from the usual notational conversion this
means that a signal receipt has to be introduced into the
Activity Diagram for each wait state that is found in the
Action Model. Likewise, a signal sending is introduced
after the activity that corresponds to the action that is
waited for.

The Fact Model is transformed into the Class Diagram.
This involves that each fact (which is an n-ary relation
between categories) is mapped to an association class that
has associations to each of the classes corresponding to
the categories. That process is called class association.

The Interstriction Model introduces further associa-
tions into the Class Diagram, one for each informational
link between an actor and a transaction, fact bank or
communication bank. We call that process infolink
introduction.

Examples of diagram transformation
Due to the limited space we give examples for the first
two transformations only. Figure 7 shows the Collabora-
tion Diagram (upper half) for the Interaction Model of
Figure 3 (left) and also the Statechart Diagram (lower
half) for the Business Process Model of Figure 3 (right).
Each system or actor of the Interaction Model becomes
an object (instance) in the Collaboration Diagram. A
transaction is represented by a (communication) link that
bears the name of the transaction (i.e. its purpose). This
link is bidirectional (i.e. it does not have an arrowhead
that restricts the navigability) because a transaction
involves communication in both directions, fromFigure 6 Framework for integrating DEMO and UML.

A language-mapping approach Peter Rittgen76

European Journal of Information Systems

initiator to executor and back. This link can now be used
to exchange the messages that correspond to the
communicative acts in DEMO. Each executor has also a
link to itself which means that the execution phase is self-
induced. A request and an accept message are introduced
along the link with arrows that point from the initiator
to the executor. They represent the first and the last
communicative acts of a transaction, respectively. In the
same way, a promise and a state message are attached to
the link. They are passed from the executor to the
initiator and form the second and penultimate speech
acts, respectively. Observe that a Collaboration Diagram
does not require us to specify the order of messages but
we could do so with the help of sequence numbers in
front of the message names.

The lower half of Figure 7 shows the Statechart
Diagram that corresponds to the excerpt from the
Business Process Model of Figure 3. The execution phase
of T6 becomes a state (which itself is a substate of the
transaction state T6). Within T6/E the initial state is
forked into two concurrent threads to trigger transactions
T7: Defending_complaint and T8: Giving_advice. While
T7 is triggered in any case, the transition to T8 is guarded

by [c], which means that the expert is asked to give advice
under a condition that has not yet been specified; the
Business Process Model only indicates that T8 is optional,
not under which circumstances it is carried out. On
completion of T7 (and possibly T8), T9: Passing_judge-
ment is carried out. After that we enter the terminal state
of T6/E which concludes the execution phase of T6.

Empirical studies

An interorganizational case study
The ideas in this paper were inspired by a project we
carried out in spring 2004 together with two companies:
a logistics provider and a large retail chain. The objective
was to model the complex interorganizational business
process as a basis for its reorganization. We found that
the language-action perspective was successful in that
scenario. One of the reasons for this is certainly the
highly interactive nature of the process we studied
where communication is vital and frequent. But LAP also
facilitated understanding among people who not only
came from different organizations but also worked in
different domains: purchase, marketing, inbound and

Figure 7 Collaboration Diagram and Statechart Diagram.

A language-mapping approach Peter Rittgen 77

European Journal of Information Systems

outbound logistics etc. It made a complex process more
transparent to all participants (each of whom provided
only a small puzzle piece to the overall picture) and it
allowed them to discuss in a constructive way possible
options for reorganization. As a result two major areas
for improvement were identified: a tighter integration
between the different information systems of both
companies and a greater accuracy in the forecasts
concerning incoming and outgoing commodity flows.

The framework that we have presented helped us in
developing an approach to solve the first problem. The
study proceeded in three steps. In the first step we
analysed from a language-action perspective those parts
of the two businesses that require cooperation. As a result
we created detailed models of information flows and
information dependencies, problem graphs and goal
graphs together with a comprehensive, textual descrip-
tion of the businesses and their problems in relation to
their cooperation. Figure 8 shows a part of the data flows
for Receiving goods.

Both companies operate their own warehouse manage-
ment system. The physical warehouse at the logistics

provider is managed with DISA. During the night a file
detailing the goods received during the day is sent to the
retail chain to update the ‘virtual’ warehouse which is
managed with SAP. This ‘double bookkeeping’ often leads
to inconsistencies between the two databases, for exam-
ple, if a file is not received in order.

In the second step we decided to address one of the
problems that were elicited in the first step, namely that
of integrating the respective information systems. We
did so by developing Interaction Models to bring the
communicative structure to the surface. A simple exam-
ple is shown in Figure 9 (top) concerning the incon-
sistency issue. We thereby identified the respective
warehouse managers as the actors who are responsible
to negotiate and control the synchronization of the
warehouses.

In the third step we used language mapping to create
initial UML models for the design of an appropriate
information system support. Figure 9 (bottom) shows the
part of the Collaboration Diagram for transaction T2:
Register goods. The phases ‘promise’ and ‘accept’ can be
omitted as they are provided for in a framework contract.
In the light of this model we were able to assess that the
‘state’ phase is not implemented in the current system.
As a consequence, a failure in receiving the update file
cannot be recognized by the sender and the file is not
resent.

The language-mapping experiment
In order to check the plausibility of the language-
mapping described in the third section and to get
additional insights we carried out an experiment. We
provided eight master students in their final year with
four DEMO models of a simple order processing. From
January 28 to February 4, 2005, they were supposed to
express all information contained in the DEMO models
with the help of an arbitrary selection of UML diagrams
without any knowledge of the mapping framework. The
resulting models were to be complemented by a ques-
tionnaire consisting of three parts: a table specifying theFigure 8 Data-flow diagram of Receiving goods (excerpt).

Figure 9 Partial Interaction Model (top) and Collaboration Diagram (bottom).

A language-mapping approach Peter Rittgen78

European Journal of Information Systems

concept mapping, a graph detailing the relations between
DEMO and UML diagrams, and some general questions
regarding the mapping process. The results of concept
and diagram mappings are shown in Tables 2 and 3.

Concerning Fact Diagram and Business Process Dia-
gram the empirical results coincide completely with the
proposed language mapping. The Action Diagram has
been translated into an Activity Diagram by most
participants, whereas our conceptual approach suggested
a Statechart Diagram here. But this can also be counted as
an agreement because the Activity Diagram is a special
case of a Statechart Diagram.

The case of the Interaction Diagram is more involved.
The participants of the experiment considered the Use
Case Diagram as the most appropriate counterpart. The
answers to part 3 of the questionnaire suggest that this
choice was motivated by the fact that Use Case Diagrams
are the only ones in UML that make explicit reference to
actors. But empirical studies such as (Maij et al., 2002)
found that the mapping from DEMO to Use Cases is not
straightforward. But nevertheless this indicates that it is
worthwhile to extend the framework to Use Cases.

Related work
The work described in this paper is closely related to that
of Ågerfalk & Eriksson (2004). They share our goal to
develop conceptual models of the information system
from action-oriented business process models. On the
surface the actual approaches to reach this goal seem to

have very little in common but many of the dissim-
ilarities are of a minor nature. For example, Ågerfalk &
Eriksson (2004) use SIMM instead of DEMO to represent
the action view. Only two major differences can be
identified: Ågerfalk & Eriksson (2004) focus primarily on
static target models (Class Diagrams or Entity-Relation-
ship Diagrams) with the ultimate aim of database design
whereas our approach targets both static and dynamic
UML models. But on the other hand do we require that a
complete analysis of the business process in DEMO has
been done, which includes the Fact Diagrams that we
need to derive Class Diagrams. But not every business
analysis includes Fact Diagrams and in such a situation
Ågerfalk & Eriksson (2004), which require only Action
Diagrams, can be a valuable complement to the language-
mapping approach.

Our work can also be seen as a part of situational
method engineering. Method engineering as such has
been introduced by Harmsen et al. (1994) and has its
roots in methodology engineering (Kumar & Welke,
1992). Method engineering has been studied in the
context of the action view (Ågerfalk & Fitzgerald, 2005).
The principal idea behind situational method engineer-
ing (Brinkkemper et al., 1999) is to design a method in
such a way that it fits the requirements of a particular
situation (i.e. a project) as closely as possible. This can be
done in different ways (Ralyté et al., 2003). One way is to
extend an existing method. Another one is to create a
new one from chunks of existing methods by performing
method chunks selection and assembly. The third way is
to construct a new method from scratch with the help
of a suitable metamodel or paradigm. One strategy for
method chunks assembly is called association strategy
that is used when the chunks correspond to two different

Table 2 Concept mapping (summary)

DEMO concept UML concept

Actor Actor, role, swim lane

System System, swim lane

Transaction Use case, activity state, activity

Transaction phase

(O, E, R) Signal, state, operation, actor,

set of activities

Communicative action Actor-use case association, activity

Objective action Activity, state

State Guard, initial state, state, activity,

initial & final state

Wait for state

(Action Diagram) Activity state, synchronisation, state,

activity

Selection

 !
Decision diamond

Causal relation Decision diamond, transition,

(no counterpart)

Optional causal relation Decision diamond, guard,

(no counterpart)

Conditional relation Decision diamond, (no counterpart)

Initiation disk Initial state, transition

Category Object, class

Fact type (unary, binary,

ternary)

Class, association, qualifier,

(no counterpart)

Domain Association, object

Table 3 Diagram mapping

DEMO diagram UML diagram(s)

Fact Diagram Class Diagram (4)

Object Diagram (1)

Both (1)

No mapping (2)

Interaction Diagram Use Case Diagram (5)

Collaboration Diagram+Sequence Diagram

(1)

Use Case Diagram+Sequence Diagram (1)

Use Case Diagram+Sequence Diagram (1)

Business Process

Diagram

Activity Diagram (5)

Use Case Diagram (1)

Both (1)

Sequence Diagram (1)

Action Diagram Activity Diagram (6)

Sequence Diagram (1)

Statechart Diagram (1)

A language-mapping approach Peter Rittgen 79

European Journal of Information Systems

system engineering functionalities. Our work can be seen
as an instantiation of this strategy where the languages,
DEMO and UML, represent different chunks. The aim of
this strategy is to make a bridge between the chunks,
which coincides with the content of this paper.

Conclusion
The purpose of this paper is to suggest one way of
mediating between the action and reaction views by
providing a mapping between their associated languages,
DEMO and UML. This is done by mapping their
respective concepts and eventually transforming dia-
grams of the former into corresponding ones of the
latter. These two languages represent completely different
paradigms: DEMO is an approach that is rooted in human
communication and social action, while UML has its
main roots in computer science. Therefore the transition
from DEMO to UML cannot be performed without loss.
That part of action that is connected with human agency
and the social context is not preserved. A message cannot
persuade an object to do something, nor can it appeal to
an object’s conscience. An object cannot commit itself

and it cannot be held responsible if it does not fulfil a
commitment. Social rules have no meaning in the world
of objects. But there is also another type of loss that is
associated with the way that communication is struc-
tured. DEMO distinguishes different layers of actions,
transactions, phases and speech acts that have no direct
counterpart in UML. As a consequence language actions
have to be unfolded into flat message sequences. This
procedure is not reversible. An inverse mapping from
UML to DEMO, although it is technically possible,
cannot recover the original layered structure of the
DEMO actions.

Given this incompatibility of the paradigms it is not
self-evident that a mapping between these languages can
be accomplished at all. It should be noted, though, that
we have chosen from the set of all language-action
approaches the one that best facilitates an integration
with UML. Other languages of the action view might
prove less suitable. Nevertheless, we hope that our
work can contribute to narrowing the gap between
organizational modelling and the design of information
systems.

About the authors

Peter Rittgen received an M.Sc. in Computer Science
and Computational Linguistics from University Koblenz-
Landau, Germany, and a Ph.D. in Economics and Business
Administration from Frankfurt University, Germany. He is
currently a senior lecturer at the School of Business and

Informatics of the University College of Borås, Sweden.
He has been doing research on business processes and the
development of information systems since 1997 and
published many articles in these areas. For further details
the reader is referred to http://www.adm.hb.se/~PRI/.

References
ÅGERFALK PJ and ERIKSSON O (2004) Action-oriented conceptual model-

ling. European Journal of Information Systems 13(1), 80–92.
ÅGERFALK PJ and FITZGERALD B (2005) Methods as action knowledge:

exploring the concept of method rationale in method construction,
tailoring and use. In Proceedings of EMMSAD’05: Tenth IFIP WG8.1
International Workshop on Exploring Modeling Methods in Systems Analysis
and Design (HALPIN T, KROGSTIE J and SIAU K, Eds), pp 413–426, Porto,
Portugal.

AUSTIN JL (1962) How to Do Things with Words. Oxford University Press,
Oxford, UK.

BRINKKEMPER S, SAEKI M and HARMSEN F (1999) Meta-modelling based
assembly techniques for situational method engineering. Information
Systems 24(3), 209–228.

BUNGE M (1977) Ontology I: the Furniture of the World. Holland,
Dordrecht.

BUNGE M (1979) Ontology II: a World of Systems. Holland, Dordrecht.
CAPLAT G and SOURROUILLE JL (2003) Considerations about model

mapping. In Proceedings of the Workshop in Software Model Engineering
WiSME@UML’2003 (BEZIVIN J and GOGOLLA M, Eds), Online version
available at http://www.metamodel.com/wisme-2003/18.pdf.

DENNING PJ and MEDINA-MORA R (1995) Completing the loops. Interfaces
25(3), 42–57.

DIETZ JLG (1999) Understanding and modelling business processes with
DEMO. In Proceedings of the 18th International Conference on
Conceptual Modelling ER’99 (AKOKA J, BOUZEGHOUB M, COMYN-WATTIAU I
and MÉTAIS E, Eds), pp 188–202, Springer, Berlin, Germany.

DIETZ JLG and HABING N (2004) The notion of business process revisited.
In Proceedings of the OTM Confederated International Conferences,

CoopIS, DOA, and ODBASE (MEERSMAN R and TARI Z, Eds), pp 85–100,
Springer, Berlin, Germany.

DIGNUM F and WEIGAND H (1995) Modelling communication between
cooperative systems. In Proceedings of the Seventh International
Conference on Advanced Information Systems Engineering CaiSE’95 (IIVARI

J, LYYTINEN K and ROSSI M, Eds), pp 140–153, Springer, Berlin, Germany.
EVANS A, MASKERI G, SAMMUT P and WILLANS JS (2003) Building families of

languages for model-driven system development. In Proceedings of the
Workshop in Software Model Engineering WiSME@UML’2003 (BEZIVIN J
and GOGOLLA M, Eds), Online version available at http://www.
metamodel.com/wisme-2003/ 06.pdf.

EVERMANN J and WAND Y (2001) Towards ontologically based semantics
for UML constructs. In Conceptual Modelling – ER 2001 (KUNII HS,
JAJODIA S and SØLVBERGA, Eds), 20th International Conference on
Conceptual Modelling, Yokohama, Japan, November 27–30, 2001,
pp 354–367, Springer, Berlin, Germany.

GOLDKUHL G (1996) Generic business frameworks and action modelling.
In Proceedings of the First International Workshop on Communication
Modelling (DIGNUM F, DIETZ J, VERHAREN E and WEIGAND H, Eds), Electronic
Workshops in Computing, Springer, Berlin, Germany.

GOLDKUHL G and LIND M (2004) The generics of business interaction –
emphasizing dynamic features through the BAT model. In Proceedings
of the Ninth International Working Conference on the Language-Action
Perspective on Communication Modelling LAP 2004 (AAKHUS M and LIND

M, Eds), pp. 1–26, Rutgers University, New Brunswick, NJ, USA.
GOLDKUHL G and RöSTLINGER A (1993) Joint elicitation of problems: an

important aspect of change analysis. In Human, Organizational, and
Social Dimensions of Information Systems Development (AVISON D,

A language-mapping approach Peter Rittgen80

European Journal of Information Systems

KENDALL J and DEGROSS J, Eds), North-Holland, Amsterdam, The
Netherlands.

HABERMAS J (1984) The Theory of Communicative Action 1, Reason and the
Rationalization of Society. Beacon Press, Boston, MA, USA.

HARMSEN F, BRINKKEMPER S and OEI H (1994) Situational method
engineering for information system project approaches. In Methods
and Associated Tools for the Information Systems life cycle. Proceedings of
the IFZP WG8.1 Working Conference CRIS’94, Maastricht, September
1994, (VERRIJN STUART AA and OLLE TW, Eds), pp 169–194, North-
Holland, Amsterdam.

HULSTIJN J, DIGNUM F and DASTANI M (2004) Coherence constraints
for agent interaction. In Proceedings of the Workshop on Agent
Communication AAMAS 2004 (EIJK RMv, HUGET MP and DIGNUM F,
Eds), pp 134–152, Springer, Berlin, Germany.

JOHANNESSON P (1995) Representation and communication: a speech act
based approach to information systems design. Information Systems
20(4), 291–303.

KETHERS S and SCHOOP M (2000) Reassessment of the action workflow
approach: empirical results. In Proceedings of the Fifth International
Workshop on the Language-Action Perspective on Communication
Modelling LAP 2000 (SCHOOP M and QUIX C, Eds), pp 151–169, RWTH
Aachen University, Germany.

KUMAR K and WELKE RJ (1992) Methodology engineering: a proposal for
situation-specific methodology construction. In Challenges and Strate-
gies for Research in Systems Development (COTTERMAN WW and SENN JA,
Eds), John Wiley, New York.

LEHTINEN E and LYYTINEN K (1986) An action based model of information
systems. Information Systems 11(4), 299–317.

LIU K, SUN L, BARJIS J and DIETZ JLG (2003) Modelling dynamic behaviour
of business organisations – extension of DEMO from a semiotic
perspective. Knowledge-Based Systems 16(2), 101–111.

LODDER AR and HERCZOG A (1995) DiaLaw – a dialogical framework for
modelling legal reasoning. In Proceedings of the Fifth International
Conference on Artificial Intelligence and Law, pp 146–155, ACM, New
York, NY, USA.

MAIJ E, TOUSSAINT PJ, KALSHOVEN M, POERSCHKE M and ZWETSLOOT-SCHONK

JHM (2002) Use cases and DEMO: aligning functional features of ICT-
infrastructure to business processes. International Journal of Medical
Informatics 65(3), 179–191.

MEDINA-MORA R, WINOGRAD T, FLORES R and FLORES F (1992) The action
workflow approach to workflow management technology. In Proceed-
ings of the Conference on Computer-Supported Cooperative Work CSCW’92
(TURNER J and KRAUT R, Eds), pp 281–288, ACM, New York, NY, USA.

MILLER J and MUKERJI J (2003) MDA Guide Version 1.0.1. OMG, Needham,
MA, USA. Online version available at http://www.omg.org/docs/omg/
03-06-01.pdf.

OMG (2003) Unified Modelling Language Specification: Version 1.5.
OMG, Needham, MA, USA. Online version available at http://
www.omg.org/docs/formal/03-03-01.pdf.

OMG (2004) Enterprise Collaboration Architecture Specification. Version
1.0. OMG, Needham, MA, USA. Online version available at http://
www.uml.org.

OPDAHL AL and HENDERSON-SELLERS B (2002) Ontological evaluation of the
UML using the Bunge–Wand–Weber model. Software and Systems
Modelling 1(1), 43–67.

RALYTÉ J, DENECKèRE R and ROLLAND C (2003) Towards a generic model for
situational method engineering. In Proceedings of 15th International
Conference on Advanced Information Systems Engineering (Caise 2003),
Klagenfurt, Austria, June 16–18, 2003 (EDER J, MISSIKOFF M, Eds),
pp 95–110, Springer-Verlag, Heidelberg, Germany.

REIJSWOUD VEv (1996) The structure of business communication: theory,
model and application. PhD Thesis, TU Delft, The Netherlands.

REIJSWOUD VEv and DIETZ JLG (1999) DEMO Modelling Handbook. TU
Delft, The Netherlands. Online version available at http://www.demo.
nl/documents/handbook.pdf.

SEARLE JR (1969) Speech Acts, an Essay in the Philosophy of Language.
Cambridge University Press, London, UK.

WAND Y and WEBER R (1989) An ontological evaluation of systems analysis
and design methods. In Information Systems Concepts: An In-Depth
Analysis (FALKENBERG ED and LINDGREEN P, Eds), pp 79–107, North-
Holland: Amsterdam, The Netherlands.

WAND Y and WEBER R (1995) On the deep structure of information
systems. Information Systems Journal 5, 203–223.

WEBER R (1997) Ontological Foundations of Information Systems. Coopers
& Lybrand and the Accounting Association of Australia and New
Zealand, Melbourne, Australia.

WINOGRAD T and FLORES F (1986) Understanding Computers and Cognition:
a New Foundation for Design. Ablex, Norwood, NJ, USA.

A language-mapping approach Peter Rittgen 81

European Journal of Information Systems

