
FormCracker: Interactive Web-based Form Filling
Laurent Denoue, John Adcock, Scott Carter, Patrick Chiu, Francine Chen

FX Palo Alto Laboratory, Inc.
3400 Hillview Avenue, Building 4

Palo Alto, CA 94304 USA

{denoue,adcock,carter,chiu,chen}@fxpal.com

ABSTRACT
Filling out document forms distributed by email or hosted on the
Web is still problematic and usually requires a printer and scanner.
Users commonly download and print forms, fill them out by hand,
scan and email them. Even if the document is form-enabled (PDFs
with FDF information), to read the file users still have to launch a
separate application which may not be available, especially on
mobile devices.

FormCracker simplifies this process by providing an interactive,
fully web-based document viewer that lets users complete forms
online. Document pages are rendered as images and presented in a
simple HTML-based viewer. When a user clicks in a form-field,
FormCracker identifies the correct form-field type using
lightweight image processing and heuristics based on nearby text.
Users can then seamlessly enter data in form-fields such as text
boxes, check boxes, radio buttons, multiple text lines, and
multiple single-box characters. FormCracker also provides useful
auto-complete features based on the field type, for example a date
picker, a drop-down menu for city names, state lists, and an auto-
complete text box for first and last names. Finally, FormCracker
allows users to save and print the completed document.

In summary, with FormCracker a user can efficiently complete
and reuse any electronic form.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Capture -
document analysis; H.5.2 [Information Interfaces and Presentation
(e.g., HCI)]: User Interfaces; H.3.3 [Information Systems]:
Information Search and Retrieval

General Terms
Algorithms, Human Factors.

Keywords
Form filling, interactive, document processing, image processing.

1. INTRODUCTION
Filling out electronic form documents that have not been
appropriately authored for that purpose can be a cumbersome
process. Filling out a read-only PDF form typically requires the
user to print the document, fill it out by hand, and then scan it
back in. Alternatively, users can import the document into
Acrobat (or other image and or document editing software) and
carefully overlay text boxes and checkmarks over the right
locations on the document pages.

Editable document formats (such as Word) can also be awkward
to use for form-filling tasks. Users can open the document and
edit to enter form data, but must be careful not to alter the original
document content or layout in the process.

These problems can be mitigated by the appropriate use of explicit
form fields in Word and PDF documents, but this is not
commonly done. While many PDFs provided by government
agencies (such as tax returns) are now form-enabled, many forms
distributed by local businesses such as hotels, restaurants, schools,
and sport associations are not. To quantify this observation, we
downloaded 445 PDFs returned by a search on Google for the
query: “ext:pdf registration form”. We checked that each
document was a form, and tested if they were form-enabled by
using the Java library iText [1] to detect the presence of FDF data.
75% (335 out of 445) were not form-enabled.

Figure 1. Even FDF-enabled PDFs make it hard for user to
correctly fill-in a series of single-character fields.

Finally, using even form-enabled PDFs as depicted in Figure 1
can be frustrating; characters do not appear neatly in each
designated box. To enter one letter per box, the user must again
carefully add spaces. Unfortunately, the Form Data Format (FDF)
in this example form authorized a maximum of 26 characters, so
after too many spaces, the user can no longer enter characters for
his/her name.

FormCracker addresses these shortcomings with a web-based,
plugin-free, document viewing and form-filling application. Each
page of a document is converted into an image, and users simply
select a location on a page where data needs to be entered,
whether a text box, the first line of a multi-line field, or a box of a
multiple single-character entry. The user experience resembles
one of filling out a typical web-based form, or FDF-enabled form
within Acrobat, but without the need for a browser plugin or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng2010, September 21–24, 2010, Manchester, United Kingdom.
Copyright 2010 ACM 978-1-4503-0231-9/10/09...$10.00.

external application, or even the need to download the original
document at all.

Below we give an overview of the system and its use, detail the
image processing and text analysis techniques used by
FormCracker to detect form-fields, put the system in the context
of related work, and describe ongoing work to improve the
system.

2. SYSTEM DESCRIPTION
FormCracker is a web-based system that allows users to upload
and fill out forms in Office Documents (including PPT, Doc,
PDF). A bookmarklet and browser add-on also help users quickly
view and fill out documents that are already online at publicly
available URLs.

Upon receiving a document or its URL, FormCracker converts the
document to PDF format using OpenOffice's PDF exporters (if
necessary) and then uses XPDF to render each document page
into an image (PNG or JPEG depending on its size).

Some steps in the FormCracker form-detection process require
extracting the text bounding boxes of each page. This is
accomplished using XPDF’s pdf2html tool or Optical Character
Recognition (OCR) if the source document is an image, such as a
scanned document.

2.1 Form Field Recognition
There are two primary field types to be recognized: text fields, and
selection fields. Text fields allow for typed input, while selection
fields comprise checkboxes and radio buttons which have a binary
on or off state.

2.1.1 Textfields and multiple-box characters
Upon receiving a coordinate (x,y) on a page, the server binarizes
the corresponding page image using built-in PIL converters from
RGB to binary mode. As shown in Figure 2, FormCracker then
finds the first black pixel below and above the (x,y) location, and
follows these left and right to determine the horizontal extent. If
no upper baseline is found within a reasonable vertical offset
(currently 40 pixels, but this may be adjusted based upon the size
of the fonts in the document), only the bottom baseline is used
and a fixed height is set for the text box.

Figure 2. Searching for field boundaries from a user-selected
point. Text with bounding box shown on the left, baseline

shown on the bottom. Paths of search from the initial selection
are shown in dotted line.

Similarly, FormCracker finds the foreground pixels on the left and
right of the (x,y) location, and then determines the vertical extents
of the form field, making possible the detection of multiple
rectangular single-box characters shown in Figure 3.

FormCracker is not limited to black and white documents,
and can handle forms with a uniform color background.

FormCracker uses the color at the user-selected location and
searches until it identifies a pixels in a different color in each of
the directions.

Figure 3. When a rectangular area is found, FormCracker
tests for similarly sized boxes to the left and right of the first
user-selected point. This allows it to detect the whole set of
multiple-box character fields from a single user selection.

2.1.2 Checkboxes
Checkboxes are detected when a box appears in isolation with an
aspect ratio close to 1:1 and dimension within a threshold (Figure
4).

Figure 4. An example of checkboxes, distinguishable from text
boxes by their aspect ratio and isolated appearance.

Text can also used to identify checkboxes. We found many
examples of square brackets or parentheses used to form
checkboxes. Using XPDF’s pdf2html, FormCracker knows the
location of each character on a page1. Common patterns, such as
“()”, “[]”, and “{ }”, are then identified in the text.

Figure 5. Common text patterns, such as “[]”, used to
represent checkboxes are recognized.

Figure 6. Selection fields that use circling to indicate a choice.
Clicking within the text box selects or deselects the text by

overlaying a circle.

1 If text is not available in the original document, Optical

Character Recognition from Microsoft Office Document
Imaging is performed to get character bounding boxes.

Another commonly used form input method is to provide a list of
brief text choices for the user to choose between by circling their
choice. See Figure 6. To accommodate this situation, when
FormCracker detects a user selection within a text bounding box,
this is interpreted as selecting or deselecting the chosen text. The
server returns the bounds of the text as the form field extent and
indicates the field type as a CIRCLEBOX.

2.2 Rendering form types and editing
After pre-processing the document to extract document images
and text, the system presents an HTML view of each page image.
When the user selects a point on the page, javascript determines
the coordinates of the click and communicates it back to the
server along with the document ID and page number.

The server (currently implemented in Python and Python Imaging
Library) analyses the region surrounding the user selection and
returns back to the client a form type (described in section 2.3)
and its extent. The client creates an HTML DIV element over the
page image and, if the element is a TEXTFIELD or MULTIPLE
BOXED characters, individual sub-DIVs representing one
character each are added as well. In case of a CHECKBOX, or
CIRCLEBOX no further DIV element is created.

Figure 7. FormCracker lets users click inside any character
box and start typing. FormCracker automatically detects

multiple adjacent single character boxes. The cursor is
automatically positioned in the first empty box.

Sub-DIV elements are chained: when the user clicks one, the
javascript client determines which DIV is the first, e.g. in a
TEXTFIELD, and makes it the current DIV. When the user types
a key, the client inserts the corresponding character into this
current DIV and advances to the next DIV in the group. If the
user clicks inside a TEXTFIELD where characters have already

been entered, the cursor is placed in the first empty DIV in the
group.

A default font in a typesize similar to adjacent text is selected for
the entered characters. If the user prefers a different typesize, it
can be modified using the same key sequences used for Office
documents: CTRL+SHIFT+> for increasing the type size and
CTRL+SHIFT+< for decreasing the type size.

When the user clicks on a DIV with a CHECKBOX type, the
client adds (or removes) the image of a check in the inner HTML
of that DIV element. The same technique is used to toggle
CIRCLEBOX buttons, but with a circle image rather than a check.

When a checkbox is found in the page, the server also identifies
and returns to the client the locations of other checkboxes in the
page with similar appearance. The client uses this information to
chain CHECKBOXes, allowing users to tab through them.
BACKSPACE and DELETE keys are also supported, using the
chain of DIV elements, providing users with a familiar typing and
editing experience.

2.3 Form completion
To mimic the experience of filling out online HTML-based forms,
FormCracker can also provide completion support for certain
form types. For example, if the server detects the text string “date”
next to a FORMFIELD, it tells the client to display a tooltip with
the current date below the corresponding DIV; and when the user
presses ENTER, the TEXTFIELD is automatically populated with
the date. Other kinds of completion are supported, such as date
pickers, and lists of countries or states.

FormCracker can also restrict the type of content allowed to be
typed (e.g. alpha or numeric): if a TEXTFIELD is preceded on the
page by the $ sign or immediately followed by %, then only digits
and a decimal point are allowed.

3. RELATED WORK
Online services exist [3] [4] which allow the user to augment an
existing PDF document with text and other objects including form
fields, but they require the user to choose the type of field to insert
and to manually size and position the field on the original
document.

Adobe provides a tool to support PDF document authors in
adding form fields to existing PDF documents, but Acrobat’s
“Automatic Form Recognition” [2] functionality still requires
manual authoring and correction to accurately create a form-
enabled PDF, and was designed as a tool for form publishers to
augment their existing documents, not as a tool for end-users to
quickly fill out a form.

Bagley et al. [5] describe a system for making any document
image editable by reconstructing the positions of all the contained
characters, but does not help with form filling.

Other systems [1] [6] address the problem of collecting data from
scanned forms by matching against a library of known form
layouts. The focus is here is on scan-based data entry rather than
the simple ad-hoc form filling afforded by FormCracker.

Most closely related is a system [8] which automatically finds the
boundaries of a form field starting from a user selected location in
a document image. This work differs significantly from

FormCracker in that it requires the user to choose the type of field
(text or checkbox) before selection. Also significantly the fact that
it does not link multiple fields together (such as groups of single
character boxes, and check boxes with similar appearance) for
enhanced document navigation.

4. CONCLUSION AND FUTURE WORK
With FormCracker we have endeavored to design a system to
simplify the electronic form filling task which often proves to be
needlessly complicated due to the difficulty of authoring a proper
electronic form. By bootstrapping the process by having the user
identify the position of the desired form fields on the page,
lightweight image processing to bound and classify those fields is
enabled. We are investigating enhancements to the system to
further improve the user experience.

4.1 Metadata
We are extending FormCracker so that it detects and uses existing
form data within FDF-enabled PDFs because we suspect users
will find the online nature of FormCracker useful even for FDF
enhanced PDF files.

4.2 Interpreting Document Semantics

Figure 8. FormCracker uses lightweight lexical analysis of
nearby text to distinguish radio buttons from checkboxes.

Nearby text can be used to disambiguate between a checkbox
(multiple selections allowed) and a radio button (only one
selection allowed within a group). If mutually exclusive or
antonymic terms, such as “approve” and “deny” in Figure 8, are
associated with checkbox candidates, then the group of selection
boxes can be treated as a radio button group and behave
accordingly.

Tables are another interesting aspect of form filling, especially
when numeric amounts are entered and could be automatically
summed for the user, mimicking what spreadsheet programs
already support.

4.3 Interface Extensions
Another worthwhile extension is to auto-fill fields that are
repeated across multiple pages, such as a name or social security
number which has to be filled out on each page.

It would also be useful for users to override the system’s choices.
For example, radio buttons may be wrongly detected as
checkboxes, or a field detected as a checkbox may in fact need to
contain a single character or number. In this latter case, if the user
types a key, the image of the checkbox could easily be replaced by

what the user typed and the form type changed to a single-
character text field.

Although FormCracker has been robust in identifying boxes and
baselines for entering text for the forms that we have tried, we
plan to implement a method to handle unusual cases, such as a
form with a patterned background or non-existent baseline. The
method we envision is similar to that used in [3] [4] where the user
manually positions the field. This insures that a user will be able
to fill in all forms with FormCracker.

4.4 Collaboration
Finally, we would like to explore the collaborative nature of form
filling: especially inside an enterprise setting where it would be
useful to remember previous users’ actions to help new users fill
out the same form. Similarly, it may be useful to populate the
form with previously entered values, e.g. a book reimbursement
form might contain a field titled “amount spent up to today” and
help the user fill out the new book reimbursement form.

5. REFERENCES
[1] “iText PDF: your Java-PDF library”, Retrieved Jun, 2010.

http://itextpdf.com
[2] Swanson, C. (2007, Sep 29). “Acrobat 8's new Automatic

Form Recognition”.
http://www.creativetechs.com/iq/acrobat_8s_new_automatic
_form_recognition.html

[3] “PDFfiller: On-line PDF form filler, Editor, Type on PDF”,
Retrieved Jun, 2010. http://www.pdffiller.com/

[4] “PDFescape: Free Online PDF Editor, PDF Form Filler &
PDF Viewer”, Retrieved Jun, 2010.
http://www.pdfescape.com

[5] Bagley, S. C. and Kopec, G. E. 1994. Editing images of text.
Commun. ACM 37, 12 (Dec. 1994), 63-72.
http://doi.acm.org/10.1145/198366.198382

[6] Casey, R., Ferguson, D., Mohiuddin, K., and Walach, E.
1992. Intelligent forms processing system. Mach. Vision
Appl. 5, 3 (Jul. 1992), 143-155.
http://dx.doi.org/10.1007/BF02626994

[7] Taylor, S. L., Fritzson, R., and Pastor, J. A. 1995. Extraction
of data from preprinted forms. In Document Image Analysis,
L. O'Gorman and R. Kasturi, Eds. IEEE Computer Society
Press, Los Alamitos, CA, 391-402.

[8] Gugler, S. 1995. Method and apparatus for identifying text
fields and checkboxes in digitized images. US Patent
5815595.

