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Abstract Risk maps summarizing landscape suit-

ability of novel areas for invading species can be

valuable tools for preventing species’ invasions or

controlling their spread, but methods employed for

development of such maps remain variable and

unstandardized. We discuss several considerations

in development of such models, including types of

distributional information that should be used, the

nature of explanatory variables that should be incor-

porated, and caveats regarding model testing and

evaluation. We highlight that, in the case of invasive

species, such distributional predictions should aim to

derive the best hypothesis of the potential distribution

of the species by using (1) all distributional infor-

mation available, including information from both the

native range and other invaded regions; (2) predictors

linked as directly as is feasible to the physiological

requirements of the species; and (3) modelling

procedures that carefully avoid overfitting to the

training data. Finally, model testing and evaluation

should focus on well-predicted presences, and less on

efficient prediction of absences; a k-fold regional

cross-validation test is discussed.

Keywords Biological invasions � Model

validation � Occurrence data � Potential distribution

models

Introduction

Invasive species are colonizer species that have

established populations outside their native distribu-

tional ranges and that have potential to spread and

affect native ecosystems or local human-mediated

systems (Lockwood et al. 2007). Species will be able

to maintain populations in the long term without

immigrational input only in areas meeting their

abiotic (physical) needs and harbouring the appro-

priate biological milieu, but these areas must also be

within their dispersal potential (Pulliam 2000;

Soberón and Peterson 2005). Under this perspective,
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species’ invasions can be conceptualized as the result

of an increase in their dispersal capability, generally

resulting from human activities (Groves and Di Castri

1996). Human-mediated invasion processes are usu-

ally more dynamic, quick, and dramatic than natural

ones (Lockwood et al. 2007), and their ecological and

economic impacts have made them a central issue in

ecology and conservation biology (Bergmans and

Blom 2001).

The invasion process consists of a series of steps,

including transport, establishment, spread, and impact

(Williamson 1996), and different strategies have been

developed to address and mitigate invasions at each

stage (Shigesada and Kawasaki 1997; Parker et al.

1999; Williamson 1999; Davis et al. 2000; Kolar and

Lodge 2002; Cassey et al. 2004; Leung et al. 2004;

Mack 2004; Simberloff et al. 2005). As efforts

focused on management generally cannot prevent

future invasions (Peterson and Vieglais 2001), ecol-

ogists agree on the need for preventive steps, given

that control or eradication of already-established

populations is more difficult and costly (Hobbs and

Humphries 1995; Bax et al. 2001). Preventive steps

for invasive species would be more effective if the set

of environmental conditions within which the species

can have a net positive population increase rate could

be estimated, since the geographic projection of those

conditions provides a preliminary, but reliable,

hypothesis of sites suitable for possible invasion

(Peterson 2003).

The range of ecological conditions within which a

species can maintain such source populations can be

defined as its niche (Hutchinson 1978). Unfortu-

nately, these niche conditions have been defined in

diverse ways with little standardization and a species

may also impact the conditions that allow it to

survive. By stressing different features of the niche,

and considering (or not) impacts of other species in

the definition, very different niche concepts are

obtained. Indeed, the term ‘‘niche’’ has evolved into

a veritable amalgam of meanings, terminology, and

theory (Chase and Leibold 2003; Colwell 1992). For

the purpose of this paper, we use the term in its

Grinnellian sense (Jackson and Overpeck 2000;

Soberón 2007): niches are subsets of a multivariate

space of environmental conditions defined in terms of

variables that are not consumed or affected (at least in

ecologically relevant timespans) by the presence of

the species in question within which the species can

maintain populations without inmigrational subsidy.

The relationships between these environmental sub-

sets and geography are complex, and frequently do

not correspond to expected patterns (Angert 2009); as

a result, it is necessary to understand the caveats

associated with deriving niche estimates from spe-

cies’ occurrences across realized distributions.

The geographic potential of species’ invasions can

be estimated via so-called ecological niche modelling

procedures (see review by Peterson 2003). Niche

models are correlational techniques aimed at identi-

fying key suites of environmental conditions within

which the species is present, based on occurrence

data and environmental data stored in geographic

information systems. If historical constraints on

dispersal are overcome, additional suitable areas

become available to the species. Such procedures

have been used to assist preventative actions in

tandem with information on propagule pressure to

identify corridors and facilitate control of further

spread (Peterson 2003; Thuiller et al. 2005). In view

of the probable increasing use of these techniques in

the future, we examine key conceptual and method-

ological aspects of niche modelling as applied to

invasive species to enhance the discussion within this

emerging field of research.

Which niches are discovered using

distribution data?

The range of environmental conditions associated

with positive intrinsic growth rates is termed the

fundamental niche (FN), and can probably be

estimated only via experimental (mainly physiolog-

ical) studies (Calosi et al. 2010; Kearney 2006;

Kearney et al. 2009). A species may be able to

survive under environmental conditions existing at a

particular time within the area that is accessible to it

(M in the BAM framework of Soberón and Peterson

2005; Varela et al. 2009); thus, a species can only

potentially inhabit a portion of its FN depending on

the available environmental space (the so-called

potential niche or PN; see Jackson and Overpeck

2000). That is, the FN might be approximated as the

total environmental space encompassed by different

expressions of the PNs through time. Additionally,

within any one PN the species may effectively only

occupy a subset (GO in Fig. 1) of the whole
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environmentally favourable conditions, which corre-

sponds to the realized niche (RN) determined jointly

by environmental conditions (A), biotic factors (B),

and dispersal limitations (M; Svenning and Skov

2004; Soberón 2007).

As a consequence of the partial reciprocity

between niche space and geographic distributions

(the so-called Hutchinsonian duality; see Colwell and

Rangel 2009), the area currently occupied by a

species (the geographic projection of RN, or GO in

Fig. 1) can only provide partial environmental infor-

mation on the full set of environmental conditions

under which a species can survive and reproduce

(A and its subsets GBI, GI.and GEI; see Fig. 1).

Unfortunately, a continuum of disequilibrium at

different spatial scales is the norm in observed

realized distributions of species (Peterson 2003).

Thus, the geographic projection of the niche condi-

tions derived from the occupied area will be biased

not only by the role played by restrictive forces such

as biotic interactions and dispersal limitations on PN,

but also because present-day environmental condi-

tions may frequently represent only a portion of the

full conditions inhabitable by the species (i.e.,

PN \ FN). This fact hinders full estimation of the

FN of species and thus also of their potential

distributions (Colwell and Rangel 2009; Rödder

et al. 2009; Soberón and Nakamura 2009; Godsoe

2010), which constraints dramatically both the types

of data and the techniques that can be used to built

useful risk maps.

Considering that correlative niche modelling tech-

niques focus mostly on the RN, and that the RN is in

fact an unknown subset of the PN, which in turn may

represent only partially the FN, how can we maxi-

mize the capacity to unveil species’ niches from

simple occurrence data? Evidence available regard-

ing similarity of environmental conditions obtained

from native and invaded areas suggests that a

relatively reliable picture of the RN can be obtained

in some cases from analyses of distributional data

(Richardson and Thuiller 2007). On the other hand,

some studies have noted discrepancies in derived

niche conditions among regions that suggest that only

partial niche representations can be obtained from

spatial or temporal data slices (Mau-Crimmins et al.

2006; Broennimann et al. 2007; Varela et al. 2009;

Medley 2010), or that the phenotypic plasticity of the

species is greater than what may be appreciated from

realized distributions (Orr and Smith 1998).

The empirical evidence about invasions is com-

plex (Lambdon et al. 2008), so discrepancies between

Fig. 1 Diagram showing factors affecting distributions of

species (following Soberón and Peterson 2005; Soberón

2007). A, is the geographic area in which the environment is

suitable at a given time, and where the intrinsic growth rate

of the species would be positive (Potential Distribution Area).

This area corresponds to the regions meeting the physiolog-

ical requirements of the species (Potential Niche or PN sensu

Jackson and Overpeck 2000), so PN = FN \ E, where FN is

the fundamental niche of the species and E represents the

existing environmental conditions in the region. B is the

geographic area where biotic interactions are favourable for

species’ existence and M is the geographic area that is

accessible to the species. Thus, G0 is the actual occupied area

(its environments constitute the realized niche or RN) and is

equivalent to A \ B \ M. GI is the geographic area with

favourable biotic and environmental conditions that remains

un-colonized (an invasible area) or A \ B outside of M. GBI

is the geographic area available and presenting favourable

environmental conditions but inappropriate biotic conditions

(a probably invasible area if the species were to have a

plastic response with regards to biotic interactions or if the

required associated species also invade the region). GEI is the

presently inaccessible geographic area with favourable

environmental conditions but unsuitable biotic interactions

(also potentially invasible depending on the species’ capacity

to overcoming existing dispersal limitations and the biotic

response of the species). Finally MI and BI are areas

environmentally unsuitable but accessible or biotically

appropriate, respectively. Although potential distributions

should preferably correspond to the area G0 ? GI ? GBI,

our ignorance of the role played by biotic interactions, as

well as the plastic response of species toward them should

guide the precautionary principle of also including GEI areas.

Thus, without information about the factors that compose B,

it is likely that model extrapolations will include undefined

portions of A
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niches observed on native and invaded distributional

areas may result from a variety of factors like

acclimation and niche evolution (Jiménez-Valverde

and Lobo 2011), or release from competitors and

predators that may also change the RN (Keane and

Crawley 2002). However, other factors can probably

affect these discrepancies more easily: (1) if the

species is not in distributional equilibrium in a region,

the niche models based on distributional data from

that region may not be able to capture the species’

entire environmental potential; and (2) model extrap-

olations depend critically on methodological ques-

tions, such that niche models must be fit appropriately

and not defined overly narrowly, which may explain

apparent niche differences as methodological arte-

facts only (see example described in Peterson and

Nakazawa 2008).

Models for invasive species have to date generally

been trained on native distributional areas (e.g.,

Peterson 2003; Ficetola et al. 2007), which have the

advantage of having a higher probability of being in

distributional equilibrium. However, occurrence data

from invaded regions, which may offer additional

insights of novel environments and biotic contexts,

have been used as well (e.g., Rouget et al. 2004;

Muñoz and Real 2006; Ganeshaiah et al. 2003).

Occurrence information from invaded ranges has

been used principally when data from native regions

are unavailable or costly to obtain. Indeed, in some

cases (e.g., Kluza et al. 2007), the native region may

be unknown, and models based on invaded regions

can be used to predict the geographic origin of the

introductions (Steiner et al. 2008). Although we are

well aware of the perils of training niche models in

regions undergoing invasion and thereby not in

distributional equilibrium (Peterson 2005a), many

invasive species seem to have reached some level of

distributional equilibrium in their new ranges, or at

least encounter local environmental limits that can be

informative for estimating niches. Indeed, some

native ranges (e.g., species endemic to small islands)

may not suffice to characterize the entirety of the

species’ niche.

Additionally, environmentally suitable sites within

the native distributional area may remain unoccupied

because of biotic interactions, metapopulation dynam-

ics, dispersal limitations, or historical constraints

(Ricklefs and Schluter 1993; Hanski 1998; Pulliam

1988, 2000; Soberón and Peterson 2005; Soberón

2007; see Fig. 2). These restrictive forces may, at least

in theory, differ or even be lacking in invaded areas,

allowing the species to inhabit a RN that supercedes the

native-range manifestation, although few credible

demonstrations of this idea have been presented

(Peterson and Nakazawa 2008). Facilitative interac-

tions, ecological and physiological plasticity, and

microevolutionary adaptation may also lead non-

native species to occupy novel environmental condi-

tions in invaded areas (Orr and Smith 1998; Rodrı́guez-

Trelles and Rodrı́guez 1998; Gomulkiewicz et al.

1999; Davis and Shaw 2001; Thomas et al. 2001;

Bruno et al. 2003; Maron et al. 2004). Thus, as

suggested by a few authors (Welk 2004; Mau-Crim-

mins et al. 2006; Broennimann and Guisan 2008;

Beaumont et al. 2009), an ideal approach to forecasting

species’ invasions would take into consideration all

available information coming from native and invaded

regions, as well as those provided by different time

slices, since it may enhance characterization of the

species’ fundamental niche. Still, it must be empha-

sized that, owing to the impossibility of estimating the

FN accurately, and although incorporation of all

Fig. 2 Schematic representation of a species’ distribution

(modified from Gorodkov 1986a, b; Gaston 2003). The gray
area represents the localities at which a species has been found

(mostly G0). Stippled areas represent favourable regions that

have not been possible to colonize owing to the presence of a

negative biological interaction (GBI) or to the effects of

dispersal constraints (GI). Within the suitable area, absence

localities can also result from demographic processes (Pulliam

1988, 2000), while some sink populations may be maintained

and vagrants found in unsuitable localities (BI-MI) thanks to

immigration from source localities. In the case of invaders we

are interested in predicting as favourable the whole potential

distribution area (the geographic representation of the PN over

an area much broader than just the native distribution)
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available occurrence information may be advanta-

geous, underestimation of species’ potential distribu-

tions when models are projected onto novel conditions

may be the rule rather than the exception.

Occurrence data and modelling techniques

In general, data documenting presences of species are

much more readily available than data documenting

absences (Soberón and Peterson 2005), thanks mainly

to the difficulty of discriminating genuine absence

from inadequate survey effort (MacKenzie et al.

2002; Royle et al. 2005; Anderson 2003; Lobo 2008a;

Gu and Swihart 2004). Considerations that may place

‘presence’ records outside of ecologically suitable

conditions include incorrect identifications, typo-

graphic or other data-entry errors, and poor taxo-

nomic arrangements, all factors that should not be

particularly common. In contrast, myriad factors lead

to no data documenting the presence of a species at a

particular site, when the species could in fact be

present, beginning most simply with the fact that no

species’ distribution has been sampled exhaustively.

Finally, given dispersal limitations (M in the BAM

framework), large suitable areas will exist that will

lack populations of the species: indeed, these areas

are the basis for the occurrence of species’ invasions.

In general, quality assessment of occurrence data is

a sine qua non before any modelling exercise is

started; spatial bias and mis-georeferencing are com-

mon problems (Jiménez-Valverde et al. 2010). On one

hand, if the presence localities are not drawn from

exhaustive environmental and spatial sampling

efforts, biases with respect to environmental dimen-

sions will certainly exist (see, e.g., Hirzel et al. 2001;

Zaniewski et al. 2002; Engler et al. 2004; Kadmon

et al. 2004; Hortal and Lobo 2005; Reese et al. 2005),

which may have profound consequences for estima-

tion of species’ niches (Lobo et al. 2007; Hortal et al.

2008), because missing data might correspond to

important parts of environmental response surfaces.

On the other hand, some presence records may fall far

from ‘‘optimal’’ conditions in environmental space for

the species and can be troublesome (Dennis and

Hardy 1999): some methods simply ignore them (e.g.,

Busby 1991). However, discriminating sink popula-

tions or vagrants from established, reproductive

populations that persist under marginal or suboptimal

conditions can be difficult, particularly when occur-

rence information is drawn from large, heterogeneous,

historical data sets (Graham et al. 2004). But those

environmentally peripheral, but stable, populations

are precisely the records that are most informative

about the limits of tolerance for the species. Hence,

we argue that removing environmentally extreme

occurrence data may not be a desirable automatic

procedure and should be critically assessed: such

information may rather be indispensable in describing

the full environmental potential of the species, and

thus may help approximate the full diversity of areas

and environments at risk of invasion, particularly if

some of the restrictive forces acting on the species on

its native range are relaxed or absent in the invaded

region. Of course, the reliability of these extreme

records has to be assessed to avoid incorporating the

effects of georeferencing errors and mis-identifica-

tions, which may be common in large-scale biodiver-

sity data sets (Jiménez-Valverde et al. 2010).

Numerous techniques have been explored for esti-

mating niches and forecasting potential distributions of

species from incomplete occurrence data (Guisan and

Zimmermann 2000; Elith et al. 2006). These tech-

niques generally aim to estimate a mathematical

function linking potential predictor variables to avail-

able occurrence information for the species. They may

be divided, for practical purposes, into those tech-

niques requiring presence-absence occurrence data as

input, including different forms of pseudoabsences

(environmentally unsuitable absences selected at

random from areas where the species has not been

recorded; e.g., Engler et al. 2004; Lobo et al. 2006;

López-Darias et al. 2008) or background data

(absences selected at random from the entire study

area; e.g., Elith et al. 2006), and those that only work

with presence data (Fig. 3). Methods can also be more

or less arbitrarily divided by their algorithmic

approaches. Three extreme cases are statistical meth-

ods (e.g., generalized linear models, generalized

additive models, classification and regression trees,

etc.; see Guisan and Zimmermann 2000 for an

overview); machine-learning methods (e.g., Maxent,

Phillips et al. 2006; GARP, Stockwell and Peters 1999;

artificial neural networks, Olden et al. 2008) and

geometrical methods based on set theory and profiles

of distributions of presence data in environmental

dimensions (BIOCLIM, Busby 1991; Mahalanobis

distance, Farber and Kadmon 2003; Fig. 3).
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These distinctions are to some degree naı̈ve, as

types of data suitable for different methods overlap

broadly, but they help to highlight what we believe is

a relevant polarity: techniques that play down the

importance of absence information may be better

suited to estimation of the ecological and distribu-

tional potential of the species, whereas methods

incorporating absence information more directly may

be more suitable for estimating actual distributions of

species (Jiménez-Valverde et al. 2008; Sutherst and

Bourne 2009; Fig. 3). Contingent factors discussed

above (e.g., biotic interactions, historical events,

disturbance, metapopulation dynamics, dispersal lim-

itation) can cause absences of species from areas that

are environmentally suitable in the native region

(contingent absences; see Fig. 2). Such absences

should ideally not be considered in modelling if the

goal is to estimate the complete area at risk for

invasion. In any case, the only absence information

that could be included in estimating the distributional

potential of invaders is that obtained from localities

with environmental conditions that negate unequiv-

ocally the presence of the species, and that ostensibly

come from within the dispersal potential of the

species (Engler et al. 2004; Lobo et al. 2006, 2010).

In the BAM terminology of Soberón and Peterson

(2005), the only relevant areas would be within M but

outside of A (Fig. 1). Inclusion of such absences,

especially if they are located near to the boundary of

suitable environmental conditions, can facilitate cor-

rect classification of the absence zone by providing

explicit contrasts for the modelling algorithm (Thu-

iller et al. 2004; Austin 2007; Lobo et al. 2010).

Absences that are environmentally very distinct from

the domain defined by presences are safest, but are

not particularly informative (Lobo et al. 2010).

However, discerning which sites fall into each

category of absence is challenging (Lobo et al.

2010). Indeed, even if contingent absences are not

used explicitly in model development, this drawback

exists, because even presence-only methods are not

able to include among the presence data the favour-

able areas submitted to these restrictive forces. This

shortcoming is especially important in describing the

niche of the species when the regions in which these

contingent absences appear have particular environ-

mental conditions not present in the observed area of

distribution.

Environmental variables for modelling

To estimate the niche of a species, one would ideally

know beforehand the specific environmental factors

that limit its distribution and determine its fitness, as

well as the shapes of its response curves and

tolerance limits. However, such detailed knowledge

is lacking for the vast majority of species, and may be

generated only by detailed physiological and ecolog-

ical experiments (Kearney and Porter 2004; Kearney

2006; Kilroy et al. 2007). As a consequence, most

users resort not to the most appropriate environmental

variables, but rather to those that are available in

digital formats across broad geographic extents (e.g.,

Hijmans et al. 2005). Users also generally rely on

automatic parameterization and variable-selection

procedures to train correlative niche models, with

the expectation that the variables selected by the

algorithm will serve as effective surrogates of the

genuinely causal ones.

Therefore, some thought should be put into the

process, to assure that the resulting models are robust.

Statistical techniques Machine Learning techniques Profile or geometrical techniques
Presences/absences
Presences/background data
Presences/pseudoabsences
Presences only

RD

PD

Fig. 3 Diagram of types of distributional data for the species of interest and complexity of the modelling technique necessary to

obtain estimations of the realized (RD; black) or the potential (PD; light grey) distribution of species
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Indirect variables (i.e., those not having direct effects

on the physiology of the species) should be avoided,

because associations between these variables and true

causal variables can frequently be location-specific

(Austin 2007). As an example, we can consider the

case of elevation, which is often closely correlated

with species’ occurrences, and can easily be incor-

porated into niche models by automatic variable-

selection procedures, but that has a physiological

‘meaning’ that varies dramatically (3,000 m eleva-

tion in the Tropics holds cloud forest, whereas the

same elevation near the poles would be covered with

snow and ice). Rödder et al. (2009) showed that

models based on variables related directly to the

ecology of the species had higher discrimination

capacity that models based on a random subset of

variables when predicting invaded ranges. A prom-

ising exploratory procedure to identify major envi-

ronmental requirements of species consists of using

Ecological-Niche Factor Analysis or analogous pro-

cedures (ENFA; see Hirzel et al. 2002; Basille et al.

2008; Calenge and Basille 2008; Calenge et al. 2008).

By examining the response of the species to envi-

ronmental variables across the study area, ENFA

calculates both marginality (the ecological distance

between the species’ optimum and the mean condi-

tions within the study area) and specialization (the

ratio of the ecological variance in mean conditions to

that associated with the focal species) of species

against potential predictors, identifying those most

likely to limit the distribution. Variables thus iden-

tified can then be prioritized for inclusion in ecolog-

ical niche models to estimate the potential of

colonization, but inclusion of variables that are

closely related to contingent effects such as dispersal

barriers and biotic interactions should be avoided

(Lobo 2008b).

Given that niches can be complex, but sample

sizes of occurrence data are often small, overfitting

must be avoided carefully (Peterson and Nakazawa

2008). When overfitting, models may reconstruct

training data sets well, but not predict independent

testing data accurately; such models should not be

used to transfer geographic projections onto novel

regions. Modellers thus should avoid overparameter-

ization, and use environmental spaces that are not

overly dimensional (Peterson 2005b; Peterson and

Nakazawa 2008). Environmental variables are fre-

quently highly correlated, which may have complex

effects in automatic variable-selection procedures

(Feinstein 1996). Hence, preliminary multi-collinear-

ity analyses, factor analyses, or other steps to reduce

dimensionality, may help in selecting appropriate

predictors (e.g., Jiménez-Valverde et al. 2007, 2011).

These steps not only simplify the already-complex

procedures of model development, but also assist in

avoiding overfitting. An additional consideration in

order to avoid overfitting is not to consider too much

complex relationships between the occurrence of the

species and the predictors (Jiménez-Valverde et al.

2008) as this would only increase the chances of

accounting for contingent and local factors that

would hamper the transferability capacity of the

models.

Evaluating model predictions

Niche models must be evaluated rigorously prior to any

use in forecasting or risk mapping (Peterson 2005b).

Generally, in invasive species applications, testing is or

should be carried out first within the training region, to

assure significant predictive ability before any transfer

of model parameters to other regions. Ideally, such

initial tests are based on spatially stratified subsets of

the training area, to present serious predictive chal-

lenges to the models (Hortal et al. 2007). Simple

random subsetting or cross-validation does not provide

a particularly difficult challenge for model testing,

given that spatial autocorrelation reduces indepen-

dence of training and testing data sets.

Because of the potential distribution emphasis in

niche modelling, it is necessary to weight Type I and

Type II statistical errors differently (Peterson et al.

2008). In particular, maximization of sensitivity (i.e.,

presences correctly predicted as presences) is desired

(Anderson et al. 2003). Absences, as we have

discussed above, can be caused by several contingent

factors, so specificity (i.e., absences correctly pre-

dicted as absences) should be of less concern if the

focus of the forecasting effort is on identifying

localities that are suitable environmentally for the

species in question. Put another way, overprediction

(false positives), commonly cited as a problem with

niche model results (Fielding and Haworth 1995;

Araújo and Williams 2000; Stockwell and Peterson

2002; Brotons et al. 2004; Stockman et al. 2006)

should be understood as a necessary part of the niche

Use of niche models in invasive species risk assessments 2791

123



modelling process, when it is aimed at estimating the

potential distribution area. Indeed, this ‘error’ is not a

shortcoming when the goal is to identify areas

susceptible to colonization by invasive species

(Peterson 2006); rather, the fact that species rarely

inhabit the entire spatial footprint of their ecologi-

cally suitable potential distributions should be

acknowledged (Peterson 2003), and models trained,

interpreted, and utilized accordingly. This is in fact a

complex issue for the case of invasive species,

because the pool of false positives may frequently

include both suitable areas not yet reached by the

species (not-so-false positives) and true errors inher-

ent in the data or the modelling technique (real false

positives). A partial assessment of more reliable error

might be detecting those false positives that fall

outside the physiological tolerances of the species,

which can be approached by performing spatial

projections of physiological information coming from

empirical studies (e.g., Aragón et al. 2010).

If the invasion has already occurred, or if the

species has already invaded some other region beside

the region of interest, presence data may also be

available from invaded regions, permitting tests of

model predictive success there as well. Here again,

the species may frequently not be in distributional

equilibrium, so focus should also be on optimizing

sensitivity, examining carefully the error rate of

presences, since this measure can inform about our

capacity to estimate the niche of species from

distributional data. Screening distributions of omis-

sion errors (false absences) in the invaded region for

spatially non-random concentrations can help greatly

in detecting possible confounding variables that

should be added to or subtracted from models

(Miller et al. 2004). These ideas echo recent

recommendations based on theoretical considerations

that different kind of errors (omission vs. commis-

sion) should be accorded different weight in tests of

distributional models depending on the question

under consideration (Soberón and Peterson 2005;

Jiménez-Valverde et al. 2008; Lobo et al. 2008;

Peterson et al. 2008).

If enough data are available, we suggest a multi-

step approach for evaluation of niche models for

invasive species based on training and validating

across multiple regions (Fitzpatrick et al. 2007). For

instance, consider a species native to region X that is

already present in regions Y and Z as an invader, and

that is of interest regarding invasive potential in

region W. Initial validation would be carried out

within region X, but then would pass on to a k-fold

regional cross-validation—here, models trained in X

and Y would be tested in Z, models trained in X and

Z would be tested in Y, and models trained in Y and

Z would be tested in X. In this way, it is possible to

evaluate quantitatively the possibility and magnitude

of effects of competitive release or other factors

possibly broadening the species’ ecological potential

as an invader. Finally, all three current distributional

areas can be used to train an overall model to be

projected onto region W of interest as a forecast.

The regionalized k-fold cross-validation recom-

mended here is a variation on the customary valida-

tion or cross-validation approach, but one in which

data subsets are chosen spatially rather than ran-

domly. In a normal k-fold cross-validation, data are

split randomly into k subsets, the model trained based

on k - 1 subsets, and predictions tested on the

remaining subset; the process is repeated until each

subset has been used for testing. In this case, we

subset the data regionally, using each major distri-

butional area as a subset. This approach mimics the

forecasting situation almost exactly: one has knowl-

edge of the species’ ecological ‘behaviour’ in one or

several regions, but would like to forecast its

behaviour in yet another—the k-fold partitioning

manipulation directly tests the ability of the models to

achieve this goal. At the end of the process, one has a

quantitative measure of ability to predict the species’

invasive potential in k regions, and can thereby

evaluate one’s likely success in understanding its

invasion of a (k ? 1)th region.

Evaluation of model predictions cannot be reduced

to a simple discrimination power analysis. Among the

many sources of uncertainty that affect niche mod-

elling (Elith et al. 2002; Rocchini et al. 2010), two are

of special relevance to invasion risk assessment. First,

extrapolation beyond environmental limits in the

training data is a dangerous and potentially unreliable

practice; thus, it is advisable to highlight areas where

the niche models are being applied to novel combi-

nations of environmental variables, such that their

predictions may have a relatively high degree of

uncertainty (Fitzpatrick and Hargrove 2009; Elith

et al. 2010; Jiménez-Valverde et al. 2011). Second,

when correlational modelling methods are used, the

correlation structure among environmental variables
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must be similar across regions (Jiménez-Valverde

et al. 2009). The constancy of the correlation

structure can be assessed using, for example, Mantel

tests between correlation matrices (e.g., Jiménez-

Valverde et al. 2011); further ideas for mapping the

information associated to this source of uncertainty

can be found in Elith et al. (2010).

Concluding remarks

We do not recommend rejecting taxonomically reli-

able occurrence data based on environmental novelty,

as very important information regarding the full

environmental domain that the species can inhabit

may be discarded. Predictions of potential distribu-

tions of invasive species should be considered as risk

maps, in which overprediction is a desirable property

that reflects the very nature of invasive species.

Predicting actual distributions require true-absence

information (Jiménez-Valverde et al. 2008; Václavı́k

and Meentemeyer 2009; Lobo et al. 2010), but we

suggest avoiding the use of absence data in estimating

potential distributions as those required in invader risk

maps; because they can misrepresent actually suitable

areas, erroneously transfer specific contingent factors,

transfer drawbacks from one region to another, and

bias model predictions. If possible, independent vari-

ables used in modelling should be linked as directly as

possible to the physiology (or other mechanistic

processes) of the target species. Although recent

tendencies in niche modelling have been towards

more complex modelling approaches (Elith et al.

2006), relatively simple techniques can be most

adequate to estimate the geographic representation of

the fundamental niche (see Sutherst and Bourne 2009).

Finally, focus should be on generating a geographic

representation of the potential distribution of the

invader, which requires special evaluation and testing

procedures: in absence of physiological data, inde-

pendent data documenting presences correctly pre-

dicted as presences should be more powerful to

estimate the accuracy of such models than other

information. Despite our emphasis on the importance

of maximizing the information content of the occur-

rence data and the preference of overprediction as

opposed to underprediction when dealing with inva-

sive species, the costs and losses of both types of errors

must be assessed carefully. For example, if the costs of

preventive actions are much higher than losses caused

by the species’ invasion, then overprediction may be

not as valuable as in the opposite situation.

Niche models can be extremely useful in exploring a

number of biodiversity phenomena, but each applica-

tion has different requirements in terms of input

information, output content, and interpretation of

results (Peterson 2006; Jiménez-Valverde et al.

2008). We have discussed important considerations

for forecasting potential distributions of invasive

species in novel regions. As we have seen, uncertainty

is a key feature in the process. The fact that distribu-

tions inform only partially about species’ niches

simply because distributions are the spatial projections

of many different contingent forces, difficulty in

selection of appropriate predictors, filtering of occur-

rence data, and variation in the results depending on the

modelling technique, makes necessary the collabora-

tion between specialists on different disciplines.
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