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Abstract

Search is the most heavily used web application in the
world and is still growing at an extraordinary rate. Under-
standing the behaviors of web search engines, therefore, is
becoming increasingly important to the design and deploy-
ment of data center systems hosting search engines. In this
paper, we study three search query traces collected from
real world web search engines in three different search ser-
vice providers. The first part of our study is to uncover the
patterns hidden in the query traces by analyzing the vari-
ations, frequencies, and locality of query requests. Our
analysis reveals that, contradicted to some previous studies,
real-world query traces do not follow well-defined proba-
bility models, such as Poisson distribution and log-normal
distribution. The second part of our study is to deploy the
real query traces and three synthetic traces generated us-
ing probability models proposed by other researchers on
a Nutch based search engine. The measured performance
data from the deployments further confirm that synthetic
traces do not accurately reflect the real traces. We de-
velop an evaluation tool that can collect performance met-
rics on-line with negligible overhead. The performance
metrics include average response time, CPU utilization,
Disk accesses, and cycles-per-instructions, etc. The third
of our study is to compare the search engine with repre-
sentative benchmarks , namely Gridmix, SPECweb2005,
TPC-C, SPECCPU2006, and HPCC, with respect to ba-
sic architecture-level characteristics and performance met-
rics, such as instruction mix, processor pipeline stall break-
down, memory access latency, and disk accesses. The ex-
perimental results show that web search engines have a
high percentage of load/store instructions, but have good
cache/memory performance.

We hope those results presented in this paper will en-
able system designers to gain insights on optimizing systems
hosting search engines.

∗Jianfeng Zhan is the contact person. E-mail: jfzhan@ncic.ac.cn.

1 Introduction

The emergence of popular Internet services, e.g., search,

twitter, and social networks, have accelerated a trend toward

cloud or datacenter computing [13] [28] [27] Driven by the

massive scale of data repositories and the large number of

users, these Internet services all require a massive comput-

ing infrastructure, which Barroso et al. call Warehouse-
scale machines [13]. A web search engine is a typical ex-

ample of such services. It is supported not only by search

service providers, such as Google, Yahoo, and Baidu, but

also by other service providers like social networks and E-

Commerce sites. According to the report of comScore, Inc.

(http://www.comscore.com/), search has become the most

heavily used web mechanism and is an ubiquitous behavior

among Internet users. It is thus important for the designers

of warehouse-scale machines to understand the characteris-

tics of web search engines.

A web search engine is driven by query requests issued

by users over the Internet. In this paper, we call a sequence

of time stamped search queries a workload trace. In addi-

tion, we define a query as the whole string of a user request,

a term as a basic element of a query, a session as a group of

related queries from the same user.

Due to the difficulty of obtaining real workload traces,

many researchers have previously use synthetic traces gen-

erated using some probability models [10] [17] [12]. Prob-

ability models have been successfully applied to traditional

benchmarks, like SPECweb [15] and TPC-C where a work-

load consists of a series of page requests that can be speci-

fied using a transaction matrix containing the probabilities

of transitions from each given page to other pages. Search

engine workload traces largely depend on the (unexpected)

behavior of online users. One of the purposes of our inves-

tigation is to determine if the commonly used probability

models can capture the aspects of a search engine work-

load. Our analysis of three real search traces reveals that

synthetic traces generated according to probability models

are susceptible to significant inaccuracy.

Many efforts have been put into analyzing search

logs [19] [20] and looking for mechanisms to extract ses-

sions from queries. Those efforts have indeed helped us



better understand the behavior of users of search engines.

However, to the best of our knowledge, there has been little

work investigating the implications of real user behaviors

in the performance of web search engines. In this paper, we

use real workload traces from three different search service

providers to study these implications.

As part of our effort, we have developed a compre-

hensive workload characterization tool, named DCAngel,
which is available from [7]. DCAngel can collect, ana-

lyze, and visualize a large number of performance met-

rics, ranging from performance counters such as cycles-per-

instruction and average memory access latency, to quality

of services measurements such as the response time of each

individual query. It also provides easy-to-use interfaces for

users to configure search servers, deploy search engines,

and manage search activities online.

Due to the lack of permission to probe real-world web

search engines, we set up a search server in our lab us-

ing Nutch as the search engine, and SoGou web corpus as

the indices and snapshot data. However, we have obtained

permission to use three real workload traces, one from So-

Gou [1] and the other two from two of the largest search

service providers in China1. We have released the search

system as a benchmark for datacenter computing, which is

named Search and available from [7]. To understand the

three traces, we first analyze the variation, frequency, and

temporal locality of terms, queries, and sessions, and then

attempt to formalize them with two commonly used prob-

ability models: the Poisson distribution and the log-normal

distribution.

To confirm the analytical results, we replay a real work-

load trace and three synthetic workload traces to the search

engine set up in our lab and measure the resulting perfor-

mance of each trace. The three synthetic traces are gener-

ated from the real traces, but with the query rate variation,

request semantics, and temporal locality following proba-

bility distributions. The quantitative numbers that we mea-

sure include quality of service metrics, architecture-level

performance metrics, and OS-level performance metrics.

To help better understand the dynamic behavior of web

search engines, we also compare Search with five other

types of benchmarks, Gridmix (a MapReduce benchmark),

SPECweb2005, TPC-C, SPECcpu2006, and HPCC. We

collect the basic architectural metrics, including instruction

mix, instruction stall breakdown, and memory access la-

tency for each benchmark. The results show that Search

has a number of distinct features, not seen by others bench-

marks. In particular, Search has a high percentage of

load/store instructions, but has one of the best performances

with regarding to the load/store instructions and branch in-

structions.

1Their names cannot be disclosed per the non-disclosure agreements

we have signed.

The rest of the paper is organized as follows. In Sec-

tion. 2, we analyze three real workload traces. in Section.

3, we experiment with both real workload traces and syn-

thetic traces and show system-side differences between per-

forming them. We then present our analysis of architecture-

level characterization of Search by comparing it with other

benchmarks in Section. 4. Section. 5 describes related

work. We conclude in Section. 6 with a summary of our

findings and a discussion of future work.

2 Characterization of Real Workload Traces

In this section, we present the results of our study of

three real workload traces. As mentioned in Section. 1, for

two traces, we cannot disclose their respective source due

to legal concerns. For simplicity, we name the three traces

Abc, SoGou, and Xyz respectively.

Table 1: Source of Three Workload Traces

Abc SoGou Xyz
Size 96MB 146MB 194MB

Total Term s 47662 50448 72883

Total Queries 397918 1724264 733444

Duration 72hours 24hours 24hours

Queries/second 1.26 19.9 12.4

Table. 1 shows the duration of the collection period and

the number of queries in each trace. Those traces contain

only query requests serviced by a single chosen instance of

search engines, and do not contain all the query requests

received by the web search providers during the duration of

collection.

2.1 Methodology

To study the traces, we build a timing model to measure

the rate variation of queries and sessions, a semantic model

to measure the frequency of queries and terms, a locality

model to measure the temporal locality of queries.

Figure.1 shows the control flow diagram of our trace

analysis model. The key characteristics of a search work-

load trace are query sequences and timing sequences. Query

sequences depict the contents in each request. Query con-

tents are determined by the semantic model that character-

izes the frequencies of terms and the combinations of terms

constituting a request. The timing sequences depict the is-

suing intervals of requests, from which we can compute

the fluctuation of query requests. Meanwhile, the order of

query requests is determined by the locality model.
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Figure 1: Characterizing a workload trace.

2.2 Timing Model: Rate Variation

The timing model analyzes the time intervals between

query requests and attempts to find distribution patterns

among intervals. Previous research [17] suggests to use

the Poisson distribution to characterize the rate variation of

queries. The first attempt of our timing model is to find

whether the Poisson distribution can best match a trace. To

achieve this goal, we adopt a chi-square goodness of fit test2

which is used to determine whether sample data are con-

sistent with a hypothesized distribution. The hypothesized

distribution here is the Poisson distribution, and hypoth-

esis (H0) of chi-square goodness of fit is data following

the Poisson distribution. The data are divided into k bins

and the test static is defined as χ2 =
k∑

i=1

(Oi − Ei)
2
/Ei,

where Oi is the observed frequency for bin i and Ei is ex-

pected frequency for bin i. The hypothesis that the data are

from a population with the Poisson distribution is rejected

if χ2 > χ2
(α,k−c), where χ2

(α,k−c) is the chi-square percent

point function with k − c degrees of freedom and a signif-

icance level of α. So we define a refused number (we call

it RN for short) as RN = χ2 − χ2
(α,k−c). We confirm that

data follow the Poission distribution if RN is greater than

0, vice versa. To reduce the effect of the uneven distribu-

tion of network traffic during a full day (e.g., there are typi-

cally a lot more network traffic at early evening than at early

morning), we divide each search log into several segments,

each of which spans one hour. We analyze the distributions

of queries and sessions to check if they fit the Poisson dis-

tribution. We adopt a session partitioning algorithm from

[20].

Figure.2 shows the refused number’s logarithm value of

each segment of each trace. For query-level tests, most RN
values are greater than zero, which indicates that the rate

variation does not follow the Poisson distribution for most

of time. The same holds true for session-level tests. One

possible explanation of this phenomena is that activities of

2http://itl.nist.gov/div898/handbook/eda/section3/eda35f.htm

online users tend to be bursty and have unpredictable ran-

domness or that it is extremely difficult to capture the be-

havior of online users using one single model.

2.3 Semantic Model: Frequency of Terms
and Queries

One of the best ways to describe the frequency of terms

and queries is Zipf’s law. Zipf’s law [9] states that given a

corpus of natural language utterances, the frequency of any

term is inversely proportional to its rank in the frequency

table. If the frequency of term A is P and the access count

rank of A in a descending order is k, Zipf’s law can be

described by equation log(Pa) = C − S × log(ka), where

C and S are constants. Almeida et al. [10] demonstrated

that the file queries received by a web search server meet

Zipf’s Law.

We calculate P and k of three workload traces on both

the query level and term level. Figure.3 shows the corre-

sponding results. A perfect fit with Zipf’s law would show

a straight line from the upper-left corner to the lower-right

corner. From Figure.3, we can see that the distributions

of the frequency of queries follows Zipf’s Law almost per-

fectly for all traces. While there are some small deviations

for the distribution of the frequency of terms, we can still

consider Zipf’s law a reasonable approximation for the fre-

quency of terms.

2.4 Temporal Locality Model of Query

Measuring the temporal locality of a series of queries

is similar with measuring the temporal locality of a series

of memory accesses. Stack distance [21] is an effective

way to analyze the temporal locality of a series of requests.

Stack distance, also called reuse distance, depicts the num-

ber of different queries between a recurring query. For ex-

ample, considering a sequence of {a1, b1, c1, b2, a2}, there

are three queries a, b, c and the subscript indicates each

query’s occurrence times. The stack distance of a2 is two,

because there are only two distinct queries between a1 and

a2: b and c.
Without losing generality, the temporal locality model

assumes the Least Recently Used (LRU) replacement policy

and calls the buffer that stores the recently used queries the

cache. For a cache capable of saving N recent elements and

storing any element in any location (i.e., fully-associative),

the LRU algorithm can assure that the elements in the cache

are the most recently used N element (Conflict misses in

a cache that is not fully associative may affect the effec-

tiveness of LRU. It, however, does not affect the discus-

sion in this paper. A more detailed discussion about conflict

cache misses is beyond the scope of this paper.). An ele-

ment whose stack distance is smaller then N can hit in the
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(a) Query-level Poisson Test
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(b) Session-level Poisson Test

Figure 2: Poisson Test. Figure.2a and Figure.2b show the refused number’s logarithm value, of which the segment span is 1

hour. We confirm that the sample data follow Poisson distribution if the value is greater than 0, vice versa.
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(a) Query Frequency
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(b) Term Frequency

Figure 3: Zipf’s Law on the Frequency of Terms and Queries.

cache.

In [12], Barford et al. propose to use the log-normal dis-

tribution to approximate the distribution of stack distances

among web requests. We investigate if the same log-normal

distribution can be used to compute the stack distances for

web search queries. Figure.4 shows the miss ratios with

varying cache capacities. It clearly shows that none of the

real traces performs similarly with a trace with a log-normal

distribution.

To conclude this section, our analysis shows that while

Zipf’s law is a good approximation of the frequency of web

search terms and queries, the Poisson distribution is an ill

fit for the rate variation of web search queries and sessions,

and the log-normal distribution is an ill fit for the temporal

locality of web search traces.

3 Performance of Real Traces vs. Synthetic
Traces

In this section, we attempt to quantify the performance

differences between real traces and synthetic traces. We

play one real workload trace and three synthetic traces

on Searchwith the same snapshot data (i.e., information

database). As a point of proof, we use only the trace (from

SoGou) here and then generate three synthetic traces from

the SoGou trace with a new set of parameters for the query

rate variation, frequencies, and temporal locality.

1. The Poisson trace keeps the frequencies and orders

(temporal locality) of the original real trace, but

changes the query rate variation, making it fit with a

Poisson distribution.

2. The hot trace selects the top 1000 queries according to
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(c) Xyz

Figure 4: Temporal Locality of Queries.

their frequencies from the original trace and then repet-

itively replay the 1000 queries 100 times. Meanwhile,

it changes the query rate variation to fit with a Poisson

distribution.

3. The shuffle trace keeps the frequencies of the original

trace, but changes the distribution of stack distance to

fit with a uniform distribution and the query rate to fit

with a Poisson distribution.

3.1 Evaluation Methodology

The evaluation environment includes a web (http) server

and eight search servers, as shown in Figure.5. Each search

server stores a portion of the indices and a portion of the in-

formation database in its local file system. The indices and

database are from Web Corpus-SoGou [2]. The total size

of indices is 16 GB, and the information database contains

32 GB of snapshot data. We split the indices and database

equally into eight segments. To achieve improved perfor-

mance, we distribute two adjacent segments to one search

server, e.g., the (i−1)th and (i)th segments are distributed

to the (i)th search server (the first server stores the first seg-

ment and the last segment). In particular, each search server

stores 4 GB of indices and 8 GB of snapshot data.
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Figure 5: The Architecture of Search

Each web server and search server consists of one Intel

Xeon quad-core E5310 processor and 4 GB of memory and

runs CentOS 5.5 operating system. Table. 2 lists the impor-

tant configuration parameters of each server.

Table 2: Details of Configurations

CPU Type CPU cores

Intel R©Xeon 4cores@1.6G

TLB L1 Cache L2 Cache Memory

256 entries 32K 4M 4G

When the web server receives a user query, it forwards

query to all search servers. Each search server then per-

forms the query and returns a list of documents that match

the query. The web server then merges the lists returned

from search servers into one list and returns the merged list

back to the requesting user.

In order to facilitate our analysis, we have developed

a comprehensive workload characterization tool DCAngel.
DCAngel can collect, analyze, and visualize a large number

of performance metrics, ranging from performance coun-

ters such as cycles-per-instruction and average memory ac-

cess latency to quality of services measurements such as

the response time of each individual query. It also provides

easy-to-use command-line interfaces for users to configure

search servers, deploy search engines, and manage search

activities online.

DCAngel is implemented in Python and uses SQLite33

to manage the collected performance data. SQLite3 allows

users to add new functions to extend SQL. In our case, we

add a number of statistical functions and visual functions.

The statistical functions are used to calculate the standard

deviations and correlation coefficients. The visual functions

are used to plot different kinds of figures. In addition, we

choose matlpotlib as a graphics library for performance data

visualization.

Figure.6 shows the high-level diagram of DCAngel. It

stores performance data in a relational database managed by

SQLite3 that supports the extended SQL statements. Users

can access those data through the extended SQL statements.

3http://www.sqlite.org/
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Figure 6: High Level Disgram of DCAngel.
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Figure 7: Experiment Procedures.

Figure.7 shows the stages of the evaluation process. It

starts with a user input command, which can be divided into

two parts. The first part is tagged with the prefix ”search. . . ”

and contains query information, The second part is tagged

with the prefix ”#web. . . ” and contains machine configura-

tion. DCAngel is also able to work with the our workload

generator tool seamlessly. It interprets input command and

calls the workload generator with proper parameters to cre-

ate the required trace.

After seeing such a command, DCAngel automatically

carries out the evaluation stages. As shown in Figure.7, the

evaluation process consists of four stages — prepare, run,

post, report. In the prepare stage, DCAngel distributes data

and configuration information to servers. In the run stage,

the search engine processes requests coming from the http

server and the monitor collects performance data. Once all

requests in a trace have been serviced, the monitor stops

collecting performance data. In the post stage, performance

data collected in the run stage is copied to a designated host

for further off-line analysis. In the report stage, the system

creates the reports and notifies the users that the experiment

has completed.

We use perf [6] to collect hardware performance coun-

ters, and obtain OS metrics through reading Linux /proc

filesystem. The performance metrics we use include three

groups: (i) user-observed performance data — average re-

sponse time and throughput; (ii) OS-level metrics — the av-

erage CPU utilization and the average number of DISK I/O

operations; and (iii) architectural performance data related

to the processor cores and caches.

In addition, we use 10000 queries to warmup the search

engine for each run to eliminate the ramp-up effects.

3.2 User-Observed Performance

3.2.1 Response Time

Figure.8 presents the average query response time for the

real trace and three synthetic traces. A query response time

(Tresponse) consists of two parts. The first part is the time

interval during which the query stays in the waiting queue

(Tqueue). The other part is the time that the search engine

needs to process this query (Tservice).

Relative to three synthetic traces, the real trace has a

higher query rate variation. A higher query variation in-

dicates that more query requests are issued in each time

interval, resulting in more requests in the waiting queue.

Correspondingly, the real trace has a longer response time

than others. The rate variation of the synthetic workload

traces is similar, so their average response time is mainly

decided by the service time. As shown in Section 3.3, for

the hot trace that contains only 1000 distinct queries, the

web servers are able to keep most of the query results in

the caches and the memory. It has the fewest disk accesses

and the shortest average response time. The shuffle trace

keeps the same set of queries but changes the distribution

of stack distance to a uniform distribution, which makes the

stack distance of each query larger than the cache capacity.

It has the worst locality and longest response time among

the synthetic traces.
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Figure 8: The Average Query Response Time.

3.2.2 Throughput

Figure.9 shows the four different traces’ throughput. X-aixs

represents average query rate of the whole trace. Y-aixs

represents the throughput, which we defined as the number

of queries successfully returned to the workload generation

tool per second. For each query, we consider it a successful



query only on condition that its response time is less than

1 second. From Figure.9, we can find that the shuffle trace

has the worst throughput because it has the worst locality;

the Poisson trace has the best throughput because its rate

variation is not so severe as that of the real one. The hot

trace has a good locality and it consumes the CPU resource

more heavily as shown in Figure.10, which has an impact

on the throughput.
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Figure 9: The Throughput of Each Trace.

3.3 OS-level Performance Metrics

Figure.10 presents the cpu utilizations of four workload

traces under evaluation. The hot trace has the highest CPU

utilization, for two reasons. First, it has good memory per-

formance, as discussed in 3.2, and the CPU rarely has to

stop for disk accesses. Second, queries of the hot trace have

by average more hits than queries from other traces. Hav-

ing more hits means more instructions are executed by the

search server and the http server, resulting in higher CPU

utilization.
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Figure 10: CPU Utilizations.

Figure.11 presents the number of disk sector reads per

second. The number of disk accesses is largely dependent

on the locality of terms and queries. It is known from the

discussion above that the hot trace can effectively use the

memory of the search servers and it thus requires very few

disk accesses. On the other hand, the shuffle workload has

a bad temporal locality because the uniform distribution of

the stack distance renders the caching completely ineffec-

tive. It has to perform the largest number of disk accesses.
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Figure 11: Total Number of Disk Sector Reads.

3.4 Instruction-level Performance Metrics

3.4.1 Instruction Mix

Despite the large differences in performance, all four work-

load traces have nearly identical instruction mix, as dis-

played in Figure.12. This phenomena implies that the in-

struction mix is an inherent feature of the algorithm and

implementation of the search engine, is not affected by the

(unpredictable) query requests from users.
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Figure 12: Instruction Mix



3.4.2 Cache Behavior

The miss penalty is the time it takes to replace a block in

the upper level of memory hierarchy with the block we need

from the lower level[18]. Figure.13 shows the average TLB

miss, L1 cache miss, L2 cache miss penalty counted on per-

instruction basis. For each level’s average miss penalty in

Figure.13, we use the following equations to calculate it.

MPL =
NL × PL

Nls
(1)

In Equation (1), The subscript L can be TLB, L1 cache or

L2 cache. So MPL represents the level L’s average miss

penalty per instruction, and NL represents the occurrence

times of level L’s miss. PL represents the penalty of each L
miss happened, and Nls represents the total number of load
and store instructions. From Figure.13, we can find that all

traces have similarly small TLB miss penalty and L1 cache

miss penalty. While they all are affected by the L2 cache

miss noticeably, their L2 cache miss penalty differs signif-

icantly. The shuffle trace has the highest L2 cache miss

penalty due to the poor locality caused by uniformly large

stack distance. The real trace has high rate variations among

its query requests. As different query requests bring differ-

ent sets of data into the L2 cache, the real trace sees a high

L2 cache miss penalty too. The hot trace needs to process

more hits per request as a hot query has more matches than

the Poisson trace. It consequently has a higher L2 cache

penalty than the Poisson trace, which has the lowest L2

cache miss penalty.
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Figure 13: Miss Penalty Per Instructions.

3.4.3 CPI

The CPI of each run is display in Figure.14. Because all

traces have near identical instructions mix, they all have

near identical percentage of load/store instructions. As a

result, the CPI differences of the four traces are mainly de-

cided by the differences in the cache performance.

'
�� 9��$$�� :�
 �#�((�

�4�

�4�

�4�

�4�

�4�

�4�

�4�

�4 

�4!

0
9=

Figure 14: The CPI of each Trace.

To conclude this section, our experimental results show

that synthetic traces exhibit very different performance

characteristics from real traces with respect to miss penalty

per instructions.

4 Architectural characterizations

To put the architectural characteristics of Search into

a better perspective, we compare it with five other types

of benchmarks. In particular, we consider Gridmix,

SPECweb2005, TPC-C, SPECCPU2006, and HPCC in our

study. Gridmix [3]is an open source implementation of

MapReduce based on Hadoop. SPECweb2005 [15] is a

benchmark for evaluating the performance of web servers.

TPC-C [4] is an online transaction processing (OLTP)

benchmark. SPECCPU2006 [5] is a CPU-intensive bench-

mark suite, stressing a system’s processor, memory subsys-

tem and compiler. HPCC [16] is a set of benchmarks target-

ing the performance of high performance computing (HPC)

systems.

The metrics used to evaluate these benchmarks include

instruction mix, processor pipeline stall breakdown, and

cache/memory access latency.

4.1 Instruction Mix

We classify all instructions into four categories:

load/store, branch, integer operations, and float point/SIMD

operations. Please note that some instructions, such as in-

teger or FP operations with indirect memory operands, may

be classified into two categories. As a result, the instruction

numbers reported here are more close to the number of in-

ternal micro operations, not the number of macro architec-

ture instructions. We normalize the total instruction count

to 100%. Figure.15 shows the percentage of each category.

We can draw the following observations from Figure.15.
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Figure 15: Instruction Mix.

1. The instruction mix of SPEC2006Int/SPEC2006Fp is

consistent with what is reported in [24].

2. Only SPEC2006Fp and HPCC benchmarks have

Float/SIMD operations.

3. Search has the highest percentage of load/store instruc-

tions.

4.2 Cache Performance
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Figure 16: Miss Penalties Per Instruction.

Figure.16 presents the per-instruction latency penalty

brought on by TLB misses, L1 cache misses and L2 Cache

misses. The method of calculating the miss penalty is the

same as mentioned in Section 3.4.2. Without surprises,

L2 cache misses have larger impact than L1 cache misses,

which have larger impact than TLB misses. In addition,

the figure shows that the cache performance of the search

engine is second to only TPCC, which indicates that the

caches in the processors work pretty well for the web search

engine.

4.3 Processor pipeline Stall Breakdown
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Figure 17: Correlation Coefficients Between CPI and Each

of the Architecture-Level Metrics.

In order to decide which factors contribute to processor

pipeline stalls, we compute the correlation coefficients be-

tween CPI and each of the architecture-level metrics listed

in the x-axis of Figure.17. Figure.17 contains the mean co-

efficients for all benchmarks. Each correlation coefficient in

this figure is represented by a small black or white square.

A black square means that the coefficient is a negative num-

ber. A white square means that the coefficient is a positive

number. The area of square is proportional to the absolute

value of the corresponding coefficient.

To improve readability of Figure.17, the performance

metrics are ranked according to their correlation coefficients

in a descending order. The eight highest ranking metrics can

be classified into three groups:

1. performance of load/store instructions, including

DTLB miss ratio, DCache miss ratio, L2 Cache miss

ratio, load/store instructions;

2. performance of the buses, including bus utilization,

data bus utilization, and bus burst read ratio;

3. performance of floating point instructions.

The conclusion here is that the performance of these bench-

marks is largely decided by the performance of load/store

instructions, the buses, and FP instructions.

Figure.18 presents the processor pipeline stalls. From

this figure, we can make the following observations.

1. Search has a low percentages of branch stalls, con-

sistent with the fact it has the smallest percentage of

branch operations.

2. Search typically has a low percentage of load/store

stalls, despite that it has a high percentage of load/store

operations. This result is again consistent with the

aforementioned good cache performance of Search.
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Figure 18: The Breakdown of Processor Pipeline Stalls,

where Branch is short for Branch Miss Prediction, ROB
is short for Reorder Buffer Full, RS is short for Reservation

Station Full, and LDST is short for Load/Store Buffer Full

3. All benchmarks suffer significantly for the shortage of

reservation stations, indicating enlarging the reserva-

tion stations may be an effective way to gain perfor-

mance boost for all types of applications.
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Figure 19: CPI.

Figure.19 presents the CPIs of all benchmarks. It shows

that the CPI of Search is smaller than that of other bench-

marks but TPCC. This is because Search has almost no

FP/SIMD instructions that typically demand longer latency

and smaller instruction throughput and has excellent mem-

ory access performance as discussed above.

To conclude this section, our experiments demonstrate

that Search is rich in load/store instructions but does not

contain as many branch instructions as others, and the exist-

ing processor caches work well with the web search engine.

5 Related Work

There have been a number of research activities on the

web workload generators. Httperf [23] provides a flexi-

ble facility for generating various Http workloads and mea-

suring the performance of web servers. It also provides a

mechanism to replay the generated traces according to the

designated request rate and distribution. Flood [25] is an-

other Http workload generator, used mainly for the satu-

rated performance tests, and it does not provide knobs that

allow users to control the time intervals between requests.

Surge [12] is a Http workload generator for synthetic traces.

It is based on the analytical models of the behavior of web

users.

There also have been multiple attempts to generate killer

benchmarks for web search engines. SearchGen [11] is a

benchmark for the search engine in the context of scien-

tific literature digital library. Its workloads are generated

according to an analytical model. Michael et al. [22] ana-

lyze behaviors of search engine systems with different con-

figuration. They, however, do not compare real workloads

with synthetic workloads.

YCSB [14] is Yahoo’s Cloud Serving Benchmark frame-

work with the focus on benchmarking the new generation

of cloud data serving systems. It also uses synthetic work-

loads.

Our previous work proposes a precise, scalable and on-

line request tracing for multi-tier services [26], which will

further help understand the workload characterization.

6 Conclusion And Future Work

One of the key contributions of our work is that we have

used three real query traces collected from different web

search service providers. We analyzed the variation, fre-

quency, and temporal locality of terms, queries, and ses-

sions of the real traces. The results demonstrate that nei-

ther the Poisson distribution nor the log-normal distribution

can accurately capture the key elements of real traces, thus

proving that any synthetic traces generated using these dis-

tributions are susceptible to significant errors when being

used in evaluating the performance of web search engines.

However, our study does demonstrate that the frequencies

of terms and queries often fit well with Zipf’s law.

To confirm the analytical results, we create three syn-

thetic traces from the real traces, using the rate variation,

request semantics, and temporal locality enforced by desig-

nated probability models. We replay the real trace and syn-

thetic trace onto a search engine in our lab and measured

the resulting performance of each trace. The experimental

results confirm that the synthetic traces all have significant

deviation from real traces with respect to miss penalty per

instruction.



We released the web search engine plus the data and the

workload trace as a benchmark for datacenter and cloud

computing, named Search. To better understand the dy-

namic behavior of web search engines, we also compare

Search with five other types of benchmarks. We collect

the basic architectural metrics, including instruction mix,

instruction stall breakdown, and TLB/Cache miss penalty

for each benchmark. The results show that Search has one

of the best performances regarding to the load/store instruc-

tions and branch instructions.

We find that real workload, application, and data are all

important for characterizing datacenter systems. Internet

service companies indeed own big data, and real applica-

tions, however they would not like to share data or appli-

cation with research communities for commercial confiden-

tiality, which is a data lock-in issue. We are being building a

testbed for datacenter and cloud computing, which is avail-

able from [8]. The testbed will provide real big data, appli-

cation, and live workloads for both architecture and system

research communities.
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