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Abstract—This paper provides analytical characterizations of
the impact on the multiple-antenna capacity of several important
features that fall outside the standard multiple-antenna model,
namely: i) antenna correlation, ii) Ricean factors, iii) polarization
diversity, and iv) out-of-cell interference; all in the regime of low
signal-to-noise ratio. The interplay of rate, bandwidth, and power
is analyzed in the region of energy per bit close to its minimum
value. The analysis yields practical design lessons for arbitrary
number of antennas in the transmit and receive arrays.

Index Terms—Antenna correlation, channel capacity, cochannel
interference, fading channels, low-power regime, multiple-antenna
arrays, Rayleigh fading, Ricean fading.

I. INTRODUCTION

A. The Multiple-Antenna Problem

T HE use of multiple transmit and receive antennas can
enable very large increases in capacity per unit of band-

width. As a result, the multiple-antenna problem has been
propelled to the research forefront in communication theory.
The single-user capacity, in particular, has been thoroughly
studied [1]–[12]. Most such studies, however, are restricted to
a highly idealized canonical channel—uncorrelated zero-mean
equal-variance transfer coefficients from each transmit to
each receive antenna—impaired by additive white Gaussian
noise (AWGN). Although an integral solution [2] and even a
closed-form expression [3] for the capacity of this canonical
channel exist, their complexity precludes analytical insight
despite the simplicity of the model. With the aid of large
random matrix theory, more explicit formulas for the capacity
of this canonical channel can be obtained asymptotically in the
number of antennas [13]–[15]. Since both the finite as well
as the asymptotic capacities become particularly revealing in
the high-power regime, design guidelines and insights into
the capacity benefits that accrue as function of the number of
antennas have been drawn mostly in that regime.

Beyond the canonical model, the capacity of more realistic
channels has been studied mostly through Monte Carlo sim-
ulation [16]–[18]. In terms of analysis, random matrix theory
has also been applied to the study of zero-mean channels with
transmit and receive antenna correlations yielding an asymptotic
fixed-point integral solution that, again, provides limited insight
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[19]. The impact of out-of-cell interference on the capacity, in
turn, has also been studied both through simulation [20], [21]
and asymptotically in the number of antennas [22]–[25].

In this paper, we study the single-user capacity in the
low-power regime using models that characterize the channel
and noise encountered in typical wireless systems. Focusing on
those scenarios where the transmitter cannot (or chooses not
to) track the channel, analytical insight is derived without the
need to invoke a large number of antennas.

B. The Low-Power Regime

Since efficient bandwidth utilization requires aggressive
frequency reuse across neighboring cells and sectors, high-
capacity wireless systems are—by design—limited by their
own interference. This has two immediate consequences.

• The noise is dominated by out-of-cell interference, poten-
tially colored in space and subject to fading, rather than by
thermal noise.

• Since, because of pure geometry, a majority of locations
lie in the periphery of their cells, users must operate very
often at low signal-to-noise ratio ( ) while only rarely
at high .

This second point can be illustrated in the context of emerging
third-generation data systems [26], [27], wherein almost 40% of
geographical locations experience receiver levels below 0
dB while less than 10% display levels above 10 dB.

Despite its relevance, the multiple-antenna low- regime
had not been analyzed in depth until [28] where, in contrast with
most former multiple-antenna analyses, the figure of merit is not
the , but rather the normalized energy per information bit,

. As shown in [28], the analysis of the low- capacity
as function of per-symbol may lead to misleading conclu-
sions. Denoting the capacity by , a system with transmit
power , desired rate (in bits/s), and bandwidth must re-
spect the fundamental limit

(1)

Also shown in [28] is that the key performance measures in the
low- regime are (the minimum energy per informa-
tion bit required to convey any positive rate reliably) and, the
capacity slope therein in bits/s/Hz/(3 dB). These two quantities
determine the first-order behavior of the capacity as a function
of (in dB) via

3 dB
(1)
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with . It follows that a system designed to
achieve rate with power requires bandwidth

3 dB

where the approximation sharpens as .

C. Scope

In the remainder, we build on and expand the findings of [28]
using channel and noise models that realistically describe the
conditions found in typical multiple-antenna systems. Specifi-
cally, we consider the impact on capacity of the following fea-
tures that fall outside the canonical model:

• antenna correlation (modeled by separate correlation ma-
trices at the transmit and receive arrays);

• Ricean components (modeled by a deterministic matrix);

• antenna polarization (modeled by a polarization matrix
that accounts for the different power transfers between
co-polarized and orthogonally polarized antennas);

• spatially colored noise (modeled by nondiagonal noise co-
variance matrices);

• time-varying interference (modeled by noise covariance
matrices subject to fading).

Section II discusses the models we use to incorporate the above
nonideal features. Section III derives expressions for the min-
imum energy per bit and the low- slope for the general
model introduced in Section II. Section IV analyzes the effects
of antenna correlation and Ricean components on capacity. Sec-
tion V studies the capacity with cross-polarization diversity fo-
cusing primarily on the case of two-antenna arrays. Section VI
investigates the impact on capacity of out-of-cell interference,
which is a source of additive noise that is colored and subject to
fading.

We relegate the proofs of the results to the Appendix, where
we evaluate several moments of the trace of the product of cer-
tain random matrices which, in addition to serving our purposes,
may be of independent interest.

II. DEFINITIONS AND MODELS

A. Definitions

With transmit and receive antennas, a baseband
discrete-time complex-valued model for the multiple-antenna
channel with frequency-flat fading is

where is the -dimensional transmit vector whileand are
the received and Gaussian noise-dimensional vectors. The
channel is represented by the random matrix ,
independent of both and . For convenience, we choose to

factor out the scalar so as to yield a normalized matrix,
the average power of whose entries is unity, i.e.,

Hence, can be interpreted as the average channel gain.1

When or when a particular equation applies to both
transmitter and receiver, we may useto refer to the number of
antennas generically.

The single-sided spectral density of the noise is denoted by

and its normalized spatial covariance is defined as

Most wireless systems are equipped with pilots that may be used
to obtain an estimate of the channel. Indeed, in many low-
scenarios of interest, the realization of can be tracked reli-
ably as long as its coherence time (in symbols) is sufficiently
large with respect to [29]–[31]. We thus focus, throughout
the paper, on the coherent regime whereis known at the re-
ceiver. As shown in [28], noncoherence incurs a severe band-
width penalty.

Likewise, can be estimated at the receiver if its coherence
time is sufficient2 or, otherwise, the receiver must assume that

.
The most common and practically appealing signaling strate-

gies at the transmitter array satisfy

(2)

When the transmitter has no knowledge of the channel real-
ization, (2) is in fact required to achieve capacity for the canon-
ical channel [2] and for other symmetric situations.

There are two distinct stages in the deployment of a wireless
system.

• An early stage where widespread coverage is the main
objective and, thus, the noise is basically thermal. In such
conditions, the normalized covariance and density of the
noise are simply given by

and

with the thermal spectral density per receive antenna.

• A mature stage, with high capacity as primordial goal,
where the dominant form of noise is that of interference
from adjacent cells. Unlike thermal noise, interference is
spatially colored and subject to fading. The color tends to
be particularly strong in the downlink, wherein the entire
contribution received from another cell emanates from a

1As we shall see, when antennas with different polarizations are used the
entries of HHH may not be identically distributed. For now, however, we may
consider them to be identically distributed, in which case the power of each such
entry is1.

2In the downlink, the interferers (other base stations) are not moving and,
thus, the coherence time of��� is equal to that ofHHH . In the uplink, however, the
coherence time of��� is determined by the fastest contributor to the interference.
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single localized source: its base station. We shall presume
that, conditioned on its fading, this interference is still
Gaussian.3 More specifically, the aggregate noise adopts
the form

(3)

with the number of interferers, the signal transmitted
by the th interferer, the channel from such in-
terferer, and the underlying thermal noise, again with
spectral density . The number of transmit antennas at the
th interferer is denoted by . Since the contribution of

each interferer is subject to fading, the short-term covari-
ance of now depends on , , which we
assemble into . With the various in-
terferers mutually independent and signaling as in (2), the
normalized covariance of (3) conditioned onbecomes

(4)

It is important to stress that the receiver does not have
access to , but only to . By conveniently defining

(5)

as the average energy per antenna received from theth
interferer, with expectation over both and , we can
write

noting that, in mature systems,tends to be small with
respect to .

Given that our noise is, in general, spatially colored, care must
be exercised when computing the . The noise power is not
equal on every direction and thus we compute the as the
average of the signal-to-noise ratios along each of the principal
directions of the noise space (rather than as the average signal
power divided by the average noise power). The received
is thus found to be

(6)

with expectation over , , and .4 Note that, if , (6)
reduces to

3The use of multicode or multitone waveforms tends to render the interference
Gaussian. Moreover, if the aggregate noise is not Gaussian, this assumption will
yield a lower bound on the actual capacity.

4The in (6) can also be interpreted as the average signal power divided
by average noise power, both measured at the output of a noise whitening filter,
that is, after the noise has been balanced across the various spatial dimensions.

The energy per bit required at a receiver operating at capacity
satisfies5

Although such received is of interest, the main metric
throughout the paper is thetransmitted , given by

(7)

To conclude this section, a final definition: given an ( )
random matrix , we define itsdispersionas

(8)

Note that achieves its minimum value (equal to) when
is equal to the identity matrix. As we shall see, the dispersion

serves to succinctly quantify how much the channel and noise
depart from those in the canonical model.

B. Channel Model

The short-term fading encountered by wireless systems tends
to be either Rayleigh or Ricean in nature and, thus, we model
the entries of as jointly Gaussian. With that, the characteriza-
tion of entails simply determining the mean and correlation
between its entries. The main diversity mechanisms that impact
such correlation are

• spatial diversity, based on antenna spacing;

• polarization diversity, based on the use of orthogonal po-
larizations.

Although polarization diversity is known to ensure low levels of
correlation [32]–[38] while enabling more compact arrays, the
number of orthogonal polarization states is very small [39] and
thus polarization diversity remains an auxiliary mechanism to
that of spatial diversity. We shall explore the impact of polariza-
tion diversity but, by and large, our focus is on spatial diversity.

1) Rayleigh Channel:In the Rayleigh case, the mean of the
entries of is zero. The correlation between those entries, in
turn, may be represented—in its most general form—as a four-
dimensional tensor. In most cases, though, it is possible to ob-
tain such correlation starting from the local correlation between
transmit antennas and the local correlation between receive an-
tennas, separately.6 This separation turns the problem of deter-
mining the correlation between entries ofinto the much more
conventional problem of determining the correlation between
antennas within a given array.7

The correlation coefficients between the transmit an-
tennas can be assembled into an matrix while

5The use ofC and avoids the abuse of notation of assigning the same symbol
to capacity functions of and .

6This separation applies if the immediate surroundings to each array are re-
sponsible for the correlation between its antennas but have no impact on the
correlation between the antennas at the other end of the link [40], [41].

7Correlation arises from exposure to the same multipath environment
[42]–[45]. If the antennas are very tightly spaced, electromagnetic coupling
also plays a role (it tends to reduce correlation [46], [47]).
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the correlation coefficients between the receive antennas
can be assembled into a corresponding matrix .
The diagonal elements of and are, by definition, equal
to one. These matrices, deterministic and Hermitian positive
semidefinite, can be used to generate properly correlated
channels via [16], [48], [49]

with denoting, throughout the paper, a matrix with inde-
pendent zero-mean unit-variance complex Gaussian random en-
tries. The covariance matrix of each row of is thus given by

while the covariance matrix of each column is given by.
The validity of this correlation model for spatial diversity has
been experimentally confirmed [50]–[56].

2) Cross-Polar Discrimination:The use of orthogonal
polarizations creates asymmetries: the average power transfer
between copolarized antennas differs from the average power
transfer between cross-polarized antennas and, as a result, the
entries of become nonidentically distributed. These imbal-
ances can be quantified through the cross-polar discrimination
(XPD), denoted by . We can define an
matrix containing the power of each entry of and write

with indicating Hadamard (element-wise) multiplication and
with a matrix whose entries are the square roots of the entries
of , i.e., . From the normalization imposed on,
the sum of the entries of is constrained to equal

(9)

For example, if

with equal to if the antennas at either end of the link are
copolarized.

Notice that (9) puts channels with different power averages
on an equal footage, i.e., any difference in average power is
removed from and and absorbed into.

3) Ricean Channel:The channel model can be easily made
Ricean by incorporating an additional deterministic matrix
containing unit-magnitude entries [57], [21], [37]

(10)

so that

with the Ricean -factor quantifying the ratio between the de-
terministic (cohesive) and the random (scattered) energies [58].8

The term is typically associated with a line of sight or a dif-
fracted component and thus

8Although different XPD factors may apply to the deterministic and random
terms [37], the model in (10) suffices for our purposes.

where the vectors and are the transmit and receive array
responses to a plane wave satisfying

In an -antenna uniform linear array, for instance

with the spacing between adjacent antennas, in wavelengths,
and the angle between the array and the Ricean component.

4) Properties: Since a correlation matrix—either transmit
or receive—has unit diagonal elements, its dispersion (8) par-
ticularizes to

which we shall refer to as thecorrelation number. For example,
if

Some useful properties of such correlation number are as fol-
lows.

Property 1: The correlation number is bounded by

with the lower bound achieved if and only if the antennas are
uncorrelated and the upper bound achieved if and only if the
antennas are fully correlated.

Property 2: If a correlation matrix is Toeplitz (as is the case
when the array topology follows a uniform regular pattern), the

, th entry of equals with denoting the cor-
relation coefficient between antennas whose indexes differ by.
The correlation number is then given by

(11)

and the eigenvalues of become, as , samples of the
discrete Fourier transform of any of its rows [59]. Furthermore,
if the correlation decays faster than across the array, (11)
converges to a finite quantity

whereas if the correlation decays no faster than(as in the
classic Jakes model [42], for example) the above sum diverges.

Property 3: Let be an Toeplitz correlation
matrix and let be an principal submatrix of

. (These may be the correlation matrices of an array whose
number of antennas has grown from to preserving its
original pattern.) Then



LOZANO et al.: MULTIPLE-ANTENNA CAPACITY IN THE LOW-POWER REGIME 2531

with equality only if . In fact, strict inequality
holds even if for . Hence, for a given antenna
spacing and polarization, the correlation number increases with
the number of antennas.

III. CAPACITY IN THE LOW-POWER REGIME

The ergodic capacity, or more precisely, the maximal achiev-
able rate per unit bandwidth under the constraint in (2), can be
expressed as a function of the via

(12)

where the expectations are over the distributions ofand .
Notice that our fading model is purposely frequency-flat in
nature. In frequency-selective environments, the channel can
always be decomposed into a number of parallel noninteracting
subchannels, each experiencing frequency-flat fading and
having the same ergodic capacity as the overall channel.

From , the capacity as a function of can be ob-
tained through

(13)

with the solution to (7). Unfortunately, an explicit expres-
sion for cannot be obtained from (7), (12), and (13) ex-
cept for scalar unfaded channels. Recall, however, that in the
low- regime its behavior can be captured through the mea-
sures and using (1), which in linear scale becomes

As shown in [28], and can be computed from the first
and second derivatives of ) at by means of

and

Note that the first-order approximation to captures the
second-order behavior in terms of . In fact, the first-
order derivative of is—by itself—unable to give any
indication about the capacity other than the value of .

It is also noteworthy to point out that, although the unique ca-
pacity-achieving distribution is Gaussian, the minimum energy
per bit and optimum slope can be obtained with far simpler sig-
naling. For example, a very practical and appealing choice is
equal-power quaternary phase-shift keying (QPSK) on each an-
tenna [28, Theorem 14].

Using the following properties [28] of the determinant of a
square matrix :

the can be found to be

(14)

while the slope becomes

(15)

where we recall the definition of as the dispersion of a ma-
trix in (8). The received , in turn, equals

which is approximately 1.59 dB. This value, which represents
a fundamental property of Gaussian noise [28, Theorem 1], is
extremely robust.9

In the canonical case (copolarized antennas in a Rayleigh un-
correlated channel impaired by AWGN), (14) and (15) particu-
larize to

and

(16)

from which we observe the following.

• The depends on , but not on . This is a direct
consequence of the total transmit power being constrained
while the total captured power increases with the number
of receive antennas. Therefore, the number of transmit an-
tennas is irrelevant in terms of .

• The slope is symmetric with respect to and .

• The slope in the low- regime is at least as large as
the slope at high [60], given by , with
equality only if .

As function of power, rate, and number of antennas, the required
bandwidth in the canonical case is thus

3 dB

1.59 dB

with the term representing the total per-symbol power
captured by the receiver.

Fig. 1 reproduces the exact capacity along with its first-order
expression in (1) for the canonical channel with

9It holds regardless of whether the channel is known at the receiver and/or the
transmitter.
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Fig. 1. Comparison between the exact capacity as a function of received
energy per bit and its low-SNR first-order expression for single-antenna and
four-antenna architectures.

TABLE I
BELOW WHICH FIRST-ORDER APPROXIMATION DEPARTS BY NO

MORE THAN 10% FROM ACTUAL CAPACITY

and . The first-order expression is tight for rather
ambitious levels of . Precisely, the levels below which the
difference is less than 10% of the exact capacity are listed in
Table I, parameterized by the number of transmit and receive an-
tennas. Referring back to the emerging data systems described
in [26], [27], Table I also shows that the first-order expression
of a Rayleigh channel is over 90% accurate for a very large
fraction of cell locations, increasingly so as the number of an-
tennas grows. More importantly, these are precisely the loca-
tions wherein multiple-antenna techniques are more likely to be
relevant.

IV. SPATIAL DIVERSITY IN AWGN

When the noise is white and unfaded, either because it is ex-
clusively of thermal origin or else because of the presence of
a large number of comparable-strength interferers,10 we have

. For copolarized antennas, we present the following
central result.

10Also, if the noise is colored but its covariance cannot be estimated by the
receiver, the capacity is lower-bounded by what it would be if the noise were
white [61], [62].

Proposition 1: Consider a correlated Rayleigh/Ricean
channel known by the receiver and given by

In AWGN, the is

(17)

while is as shown in (18) at the bottom of the page.
Proof: See Appendix B.

Remarkably, the is unaffected by the existence of an-
tenna correlation and a Ricean term and, consequently, a first-
order analysis of fails to reveal their impact. Only
reflects the structure of the channel. In the remainder of this
section, therefore, we study this slope in detail. Prior to that,
however, we point out that the transmitter and the receiver play
symmetric roles in (18) while (17) is inversely proportional to

and thus we have.

Corollary 1: If the capacity of a link is , that of the
reverse link—up to first order—is .

A. Rayleigh Fading

For Rayleigh fading, and the slope particularizes to

(19)

where the effects of transmit and receive antenna correlation
appear only through the correlation numbers of the transmit and
receive arrays. This is a powerful result for it indicates that a
single scalar parameter uniquely quantifies the capacity impact
of an entire correlation matrix. Any two matrices mapping onto
the same correlation number are equivalent in terms of low-
capacity.

Using channel Property 1, it is straightforward to see that the
slope in (19) satisfies

confirming the intuitive result that antenna correlation can
only diminish the capacity. Although a first-order analysis of

indicates that the low- capacity is unaffected
by correlation [19], this is only true as far as the invariance
of is concerned. At any , antenna correlation
does reduce capacity, but such reduction is not revealed by a
first-order analysis.

(18)
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Corollary 2: The low- slope is equivalent to that of
and uncorrelated antennas given by

Hence, the reciprocals of the transmit and receive correlation
numbers determine the fraction of and that would result
in the same slope if they were uncorrelated.

Fixing rate and power, the bandwidthrequired with corre-
lation matrices and relative to the canonical bandwidth

required in the absence of correlation is

(20)

Clearly, the impact of correlation in one of the arrays is dimin-
ished if the other array has fewer antennas, in which case the
latter is already constraining the capacity. Conversely, if we fix
the rate and the bandwidth, the power penalty that results from
correlation is

(21)

which, in contrast with (20), depends on the operating point
.

Example 1: Consider and . The low-
capacity in a Rayleigh channel is

with denoting the correlation between both transmit an-
tennas. Remarkably, antenna correlation has a rather limited
impact in this case: with full—unbeknownst to the transmitter—
correlation, 75% of the canonical capacity can nevertheless
be attained at any given . The bandwidth expansion factor
incurred because of correlation, in turn, is

If the correlation matrices are Toeplitz, Property 2 indicates that,
with rate and power , the bandwidth expansion factor due
to correlation converges, as the number of antennas grows, to

(22)
with and the transmit and receive correlation be-
tween antennas whose indexes differ by. If correlation at ei-
ther array does not decay faster than, (22) diverges and thus
the intended rate cannot be achieved with power. Other-
wise, (22) provides a limiting value for the bandwidth expan-
sion factor, a value that is approached as the number of antennas
grows large.

Further insight on the capacity of correlated Rayleigh chan-
nels impaired by AWGN can be gathered from the slope given
by (19) and the fact that the is unaffected.

Fig. 2. Fraction of canonical capacity achievable with uniform linear arrays as
function of the number of antennas(n = n = n). Antenna spacing is 4 and
0.5 wavelengths at base station and terminal, respectively. Angular spectrum is
Gaussian with root-mean-square spread 2at the base and uniform over 360
at the terminal.

Corollary 3: If , the slope particularizes to

This result would seem to indicate—as found asymptotically
in [19]—that the capacity still scales linearly with the number
of antennas, as in the canonical channel, but with a reduced
slope. However, since and are themselves func-
tions of the number of antennas, in the presence of antenna cor-
relation the capacity is, in general, no longer linear on. Only
for may the capacity with correlation grow linearly
with . In the specific case of Toeplitz correlation matrices, this
asymptotic linear scaling requires that (22) be finite [19]. For
such Toeplitz matrices, we can formalize the nonasymptotic be-
havior as follows.

Corollary 4: If the correlation matrices are Toeplitz, the
bandwidth expansion factor increases monotonically as the
number of antennas grows with the antenna spacing preserved.

Hence, even though the canonical capacity increases linearly
with the number of antennas, the penalty associated with an-
tenna correlation compounds and thus only a diminishing frac-
tion of such capacity can be attained. If (22) is finite, this achiev-
able fraction of the canonical capacity approaches a nonzero
asymptote as the number of antennas is driven to infinity [19].

Example 2: Let us consider a base station and a terminal
equipped with uniform linear arrays with antenna spacing
equal to 4 and 0.5 wavelenths, respectively. Consider a
broadside Gaussian power spectrum at the base with a 2
root-mean-square angular spread and a 360uniform spectrum
at the terminal. As shown in Fig. 2, the attainable fraction of
canonical capacity decreases from 100% with down to
74% with . The comparison between the canonical and
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actual capacity slopes is displayed in the inset. As anticipated
by the analysis, the latter is sublinear in the number of antennas.

Experimental data [63], [64] confirms that this progressive
decrease in slope occurs even with non-Toeplitz correlation ma-
trices and beyond the low- regime.

B. Ricean Fading

In Ricean conditions, the presence of a deterministic compo-
nent compounds the effects of antenna correlation. Since the im-
pact of correlation was studied in the previous section, we now
evaluate the impact of this deterministic component by setting

and . According to Proposition 1, the low-
slope becomes

(23)

It is interesting to note that there is no dependence on either
or , that is, no dependence on either the geometry of the

arrays or the direction of departure or arrival of the Ricean com-
ponent. This is not the case in general: if and differ from
the identity, their correlations may favor some directions differ-
ently.

For large , we observe that

(24)

which is the low- slope of a single-antenna unfaded
channel. Together with (17), we can conclude that, in the
low- regime and in the presence of a strong Ricean com-
ponent unknown to the transmitter, multiple transmit antennas
are irrelevant and multiple receive antennas are only relevant
in terms of , but not in terms of slope. It is interesting to
note—from (16) and (24)—that, if (and only if) one or both of
the arrays has a single antenna, the capacity is higher in strong
Ricean channels than in uncorrelated Rayleigh conditions, even
though the transmitter is unaware of the Ricean statistics.

It can also be checked from (23) that, for ,
the slope equals irrespective of . Hence we have the
following.

Corollary 5: With two uncorrelated antennas at both trans-
mitter and receiver

regardless of the possible presence of an unknown Ricean com-
ponent.

V. POLARIZATION DIVERSITY

Before moving onto more elaborate types of noise, we briefly
study the AWGN-limited capacity with polarization diversity
and contrast it with what we learned for spatial diversity. Since,
typically, two orthogonal polarizations are activated, we restrict
our analysis to the case of two-antenna architectures. Readers
interested in a more general characterization encompassing
combinations of polarization and space diversity are referred
to [65]. Straightforward application of (14) and (15) results in
the following proposition.

Proposition 2: Consider two transmit and two receive an-
tennas in a Rayleigh channel, known by the receiver, given by

with

(25)

where is the XPD. In AWGN, the and the slope therein
in bits/s/Hz/(3 dB) are

and

with and the transmit and receive correlation factors.

The following remarks can be made.

• Conditioned on , the is unaffected.11 Thus, in
terms of , the impact of using distinct polarizations
can come only through a difference in average channel
gain. Any decrease in the average power captured by the
receive antennas translates directly onto an increase in

andvice versa. With reference to all antennas being
copolarized, the configuration in (25) with may
cause an increase of up to 3 dB in . In many ap-
plications, however, the transmitter and/or receiver may
be subject to a random orientation and thus spatial diver-
sity configurations may also suffer a polarization power
loss with respect to this reference [66]. Affecting all an-
tennas at the same time, this loss may easily shift by
more than 3 dB, in which case, polarization diversity ap-
pears preferable for it bounds the increase in while
ensuring low correlation and, thus, a good slope. If, in-
stead of thermal, the noise is dominated by interference,
any power loss caused by XPD might apply also to the
interference thereby reducing similarly to the desired
signal. As a result, the low-correlation benefits of polariza-
tion diversity may be reaped without the associated power
penalty, i.e., a good slope can be secured without an in-
crease in .

• Since orthogonally polarized antennas tend to be loosely
correlated, the impact of on the slope is minor. In fact,
if the antennas are fully uncorrelated, thendoes not de-
pend on . As shown in [65, Proposition 3], this reflects
a more general property of certain channels with indepen-
dent nonidentically distributed entries.

VI. SPATIAL DIVERSITY IN THE PRESENCE OFINTERFERENCE

When the noise contains out-of-cell interference, the covari-
ance comes into play and the expressions in Proposition 1
can be generalized. Recall that is known to the receiver, but
not to the transmitter. Recall also, from (4), that in the presence
of out-of-cell interferers each equipped with antennas,

11This finding in fact holds for arbitraryn andn .
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the normalized conditional covariance of the
noise is given by

(26)

with

so that

(27)

Let us define the total number of interfering antennas as

Concentrating on spatial diversity, we shall separately con-
sider—as in the AWGN case—the instances where the channel
(for the user of interest) is Rayleigh and Ricean.

A. Rayleigh Fading

Proposition 3: Consider a correlated Rayleigh channel
known by the receiver and given by

If the normalized conditional covariance of the noise is ,
then

(28)

and

(29)

with expectation over the fading of the interferers,, and with
the function

Proof: See Appendix B.

Using (27), it is easy to prove via Jensen’s inequality that

and, therefore, (28) is upper-bounded by the value it takes when
. Hence we have the following.

Corollary 6: Noise fading and color diminish the minimum
energy necessary to convey information reliably.

Proposition 3 merits some additional observations.

• The function depends only on the noise
fading, not on its color. If is deterministic, that is, if the
interferers are unfaded, we have

and and resemble those found for AWGN with

replaced by . This, of course, reflects the

fact that the receiver can whiten the noise while corre-
lating the received signal. The noise color appears then
through the expected trace of and its disper-
sion, which generalizes the receive correlation number en-
countered in AWGN.

• When the interferers fade, an additional mechanism is at
play, one that was not present in AWGN. In a single-an-
tenna scenario, it is easy to see from Jensen’s inequality
that noise fading can only improve the capacity

(30)
where is a random scalar representing the noise vari-
ance, normalized so that , and the outer ex-
pectation in the left-hand side of (30) is with respect to it.
Nevertheless, as and/or grow, the impact of such
fading subsides rapidly [67] and only the noise color re-
mains relevant.

• For , the capacity behaves exactly as in AWGN-
limited conditions. As its dimensionality grows, the inter-
ference appears white and unfaded to the receiver. Con-
versely, if and grow but their ratio does not, the
noise color remains.

To proceed any further, we need to flesh out the structure of
, which is governed by the relative strength of the various

interferers, , their fading, , their number of antennas, ,
and the relative weight of the underlying thermal noise,. We
therefore make some basic considerations.

• Since we have already studied the AWGN-limited ca-
pacity in detail, in the remainder we seek new insight by
concentrating on the converse scenario: interference-lim-
ited conditions, that is,

• Given that the interferers are located in neighboring cells,
their -factor is usually negligible and it is thus reasonable
to model each individual as Rayleigh.

• In terms of transmit antenna correlation at each interferer,
we postulate two limiting cases.

— Uncorrelated. In this case, the angular spread spanned
at each of the interferers is assumed sufficiently large
and, thus, all degrees of freedom therein are active.

— Fully correlated. This case models situations where
the transmit antennas at each interferer are tightly
correlated because of small angular spread, which is
geometrically reasonable for distant interferers [68].
Consequently, each individual interferer contributes a
single degree of freedom.

In the general case of partial transmit correlation, these
limiting cases serve as bounds.

• The receive antenna correlation experienced by each in-
terference term is allowed to be arbitrary. The analysis,
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however, simplifies if such correlations equal the receive
correlation suffered by the desired signal.

1) Single Interferer: In many instances, particularly in
strong shadow conditions, most of the interference may be con-
tributed by a single neighbor. In the case of a single interferer,
(26) becomes

Let us scrutinize and in the presence of a single inter-
ferer starting with the case where such interferer is uncorrelated.

Proposition 4: Consider the scenario of Proposition 3 with
a single interferer transmitting from uncorrelated antennas.
Let the fading of such interferer be Rayleigh with some arbitrary
correlation at the receiver, that is,

with distributed as . The interference-limited sat-
isfies

(31)
with if and otherwise. The corre-
sponding slope is given by

(32)

where

(33)

(34)

Proof: The key to this proposition is the closed-form eval-
uation of

and

For these evaluations and the complete proof, see Appendix C.

This result reveals that, in the presence of a dominant inter-
ferer, the following holds.

• The receive antenna correlations experienced by signal
and interference, respectively and , compound into
aneffectivecorrelation given by . It is thus equiv-
alent to have the signal experience such effective corre-
lation while the interference experiences none. If the re-

Fig. 3. Capacity versus in the presence of a single interferer plus
thermal AWGN, withn = n = m = 4, parameterized by the inter-
ference-to-thermal ratio.

ceiver correlations experienced by signal and interference
coincide, the net result is no correlation for either.

• For , the vanishes as the interference-to-
thermal ratio grows. This is clearly a direct consequence
of the fact that interference with dimensionality inferior
to the number of receive antennas can be completely sup-
pressed, through mere linear processing, if only is
known [22], [69]. Such interference-limited conditions en-
able reliable communication at negligible levels of nor-
malized energy. More precisely, when noise and interfer-
ence experience identical corerlation at the receiver

and thus, as grows, reliable communiation becomes
feasible if only the received energy per bit is1.59 dB
above the thermal noise, irrespective of the strength of the
interference. The corresponding slope, in turn, is

which, contrasted with (19), indicates that the equivalent
of receive antennas have been spent suppressing the

-dimensional interference and, thus, the slope equals
that which would be experienced with the remaining

receive antennas and the transmit antennas
in the presence of only the underlying thermal noise,.

• When , both the and vanish as the
interference-to-thermal ratio grows without bound. In
this case, however, the slope also approaching zero as the

decreases warns that nonnegligible capacity will
require nonnegligible energy per bit.

Example 3: Displayed in Fig. 3 is the exact capacity with
in the presence of a four-antenna interferer

plus thermal AWGN, with the various curves cor-
responding to different interference-to-thermal ratios. Both the
desired user and the interferer experience Rayleigh fading and
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the same antenna correlation at the receiver. The transmit an-
tennas are uncorrelated. As the interference grows larger than
the thermal AWGN, the capacity shows a clear displacement
toward lower levels of . The slope at , in turn, dimin-
ishes progressively and would approach zero asymptotically.

Clearly, the constraint that the transmit antennas at the in-
terferer be uncorrelated maximizes the number of degrees of
freedom within . Any correlation therein can only enhance
the noise color and thus the capacity. As shown by the next re-
sult, in the limit of full correlation, the interference exhibits a
single degree of freedom and, therefore, it is as if the interferer
were equipped with a single transmit antenna.

Proposition 5: Consider the same scenario of Proposition 4
but with the transmit antennas at the interferer fully corre-
lated, that is,

where is an matrix whose entries are all unity. The
interference-limited values for and are given by their
expressions in Proposition 4 with .

Proof: See Appendix D.

More generally, partial transmit correlation at the interferer
results in anequivalentnumber of virtual transmit antennas
therein, uncorrelated and with possibly different powers. The
number of such virtual antennas (degrees of freedom within

), ranging between and , equals the number of nonzero
eigenvalues of said transmit correlation. Their powers, in turn,
are determined by those nonzero eigenvalues.

2) Multiple Interferers: In terms of analysis, we restrict our-
selves to scenarios where , . These sce-
narios boil down to a scaled version of the single-interferer case
above. Specifically, the capacity in the presence ofequal-
power interferers experiencing identical receive antenna corre-
lation equals the capacity in the presence of a singleequivalent
interferer with that same receive correlation. The energy of this
equivalent interferer is equal to the sum of energies of thein-
terferers and, if the transmit antennas within each of theactual
interferers are uncorrelated (resp., fully correlated), the equiva-
lent interferer has (resp., ) uncorrelated antennas.

Reference [64] considers the more general case of multiple
unequal-power interferers and provides numerical examples
from which the following messages emerge.

• The interference-limited capacity in a typical mobile wire-
less system can differ substantially from its AWGN-lim-
ited counterpart.

• The difference between such capacities grows as the
number of receive antennas increases and/or the number
of transmit antennas at the interferers diminishes.

• Transmit correlation is detrimental at the user of interest
but beneficial when exhibited by the interferers.

B. Ricean Fading

When the channel for the desired user is Ricean, and
are given by (14) and (15) along with (45) and (47) in the

Appendix, part B. Since the expressions are quite involved, we

gain insight by focusing on the realm of large-factors, where
the following applies.

Proposition 6: Consider a channel known by the receiver and
given by

If the normalized conditional covariance of the noise is ,
then

and

with expectation over the fading of the interferers,.
Proof: See Appendix B.

The low- capacity is thus uniquely determined by the ex-
pected trace and dispersion of . Also noteworthy
is that, unlike in AWGN, the capacity does depend—through

—on the angle of arrival of the Ricean channel component.
Even when the channel fading is uncorrelated across the receive
antennas, the noise color may favor some directions of arrival
with respect to others.

VII. CONCLUSION

For realistic channels and noise models, no insightful ex-
pressions for the capacity as function of the had been
found thus far. As shown in this paper, however, in the low-
regime it is possible to circumvent the computation of
entirely by posing the capacity as function of . Since
is highly linear at low , its characterization requires only
two parameters, namely, the at which the capacity becomes
zero and the slope therein. Throughout the paper, we have de-
rived expressions for these parameters using realistic channel
and noise models and, from these expressions, we have learned
how the single-user capacity is affected by the existence of an-
tenna correlation, different polarizations, a Ricean term, fading
and correlation within the noise, etc. Moreover, these lessons
have been learned without the need to invoke a large number of
antennas and they are supported by experimental data [64]. We
have found that at low we can draw the following conclu-
sions.

• The reduction in capacity caused by antenna correlation
can be uniquely quantified through a scalar quantity for
each of the arrays, transmit and receive. These quanti-
ties, which we refer to as thecorrelation numbersof the
transmit and receive arrays can be easily
computed.

• With correlated antennas, the capacity in Rayleigh chan-
nels does not grow—unlike in the canonical case—lin-
early with the number of antennas. In fact, the fraction of
canonical capacity achievable in the presence of correla-
tion diminishes, for most array structures, monotonically
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with the number of antennas. (This reduction is sustained
by empirical data even beyond the low- regime.)

• The bandwidth expansion factor brought about by antenna
correlation in Rayleigh fading equals

In particular, when one array has two antennas with cor-
relation coefficient , the bandwidth expansion factor is
equal to if the other array has uncorrelated
antennas, and equal to if the other array also has
two -correlated antennas.

• If either the transmitter or the receiver has a single antenna,
the capacity is higher in strong Ricean conditions than in
Rayleigh fading.

• If both transmitter and receiver have two antennas, the
capacity is independent of the Ricean factor.

• Modeling outside interference (from other sectors or
cells) as AWGN may lead to very inaccurate estimates of
the actual capacity. With such interference being spatially
colored and subject to fading, the capacity is always
higher—sometimes much higher—than in the presence
of an equivalent amount of AWGN.

• Both color and fading within the noise enhance the ca-
pacity. The impact of noise color relates to the ratio be-
tween the number of significant degrees of freedom in the
interference and the number of receive antennas. The im-
pact of noise fading, on the other hand, is only significant
when both are small.

• Except to overcome thermal noise in systems wherein the
orientation of both transmitter and receiver can be con-
trolled, orthogonal polarizations should be used before re-
sorting to spatial diversity.

It is worth pointing out that in no way do our conclusions hinge
on the choice of defining the capacity slope on a logarithmic
scale. Had we instead defined it on a linear scale, similar obser-
vations would have been drawn [28].

Our proof of the various formulas presented in the paper
require the evaluation of the first- and second-order moments
of the trace of the product of certain random matrices. To that
end, we have found it useful to invoke auxiliary results on
the mixed moments of Haar-distributed matrices, which have
proven useful in the development of free-probability results in
the theory of large random matrices.

APPENDIX

Given a matrix , we shall use to denote its th el-
ement and to denote itsth row. Before proving the various
properties and propositions contained in the paper, we present
some auxiliary results that will be invoked throughout.

A. Auxiliary Results

Let be an matrix such that . is uniquely
specified by real parameters. As a subspace of , these

matrices form a submanifold of dimension . The uni-
form distribution over the submanifold is calledHaar
(probability) measure. Matrices with this distribution are thus
called Haar or standard unitaries. The most important property
of the Haar probability measure is that it is left and right in-
variant under unitary transformation. This invariance implies
that most mixed moments of the entries of a Haar unitary matrix
are zero. In particular, we have the following.

Lemma 1 [70]: Consider the product of the th power of
and the th power of with a Haar matrix.

Whenever , , and there exist some
or such that

or

then

(35)

As a special case, (35) holds whenever the sum
is odd.

Lemma 2 [70]: If , , , , ,
and is a Haar matrix, then

Using these properties of the Haar measure, we can prove the
following result.

Lemma 3: Let and be arbitrary Hermitian
random matrices, mutually independent. Letbe a random
Haar matrix independent of and with . Then

(36)

while

(37)

and

(38)
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Proof: Since is independent of and

(39)

is Haar and, thus, the th element of is given
by

(40)

where (40) follows from Lemma 2 and where is the Kro-
necker delta. Thus, is a multiple of the identity, i.e.,

which, plugged into (39), proves (36).
Now, let be the eigenvalue decomposition of
. From the invariance of the Haar probability measure, we have

that

With some algebraic manipulations and neglecting those terms
whose expected value is zero, we find that, for

while, for

Altogether, the equation at the top of the following page which,
given that

and

proves (37). Finally
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with the eigenvalue decomposition . Further
algebra yields

For

while, for ,

Altogether

from which (38) follows easily.

Lemma 4: Given an matrix with independent
zero-mean unit-variance complex Gaussian random entries

Lemma 5: Given an matrix with independent
zero-mean unit-variance complex Gaussian random entries as
well as an matrix and an matrix , the
matrices and admit the following eigenvalue
decomposition:

where and are and Haar matrices and
and are and random matrices independent
of and , respectively.

Proof: This lemma is derived as part of the proof of [70,
Theorem 3.2].

Lemma 6: Consider an matrix with independent
zero-mean unit-variance complex Gaussian random entries. For

(41)
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and, for

Proof:

with an arbitrary eigenvalue of , whose marginal den-
sity is given by the Wishart distribution [2]

with the corresponding Laguerre polynomial of order
[71]. The expectation can be computed to yield

which leads to (41). At the same time

and, from the joint density of any two different eigenvalues of
given by

we find that

B. Proof of Propositions 1, 3, and 6

To prove these results, we first derive general expressions for
and and then particularize them to each of the propo-

sitions. Notice from (14) and (15) that, in its most general form,
expressing and entails characterizing the terms

(42)

and

(43)

Equation (42) can be expanded, using our channel model, as

(44)

From Lemma 5, we have that admits the eigenvalue
decomposition

where is an Haar random matrix and is the
random eigenvalue matrix independent of. Furthermore,

and are statistically independent. Thus,and
are mutually independent and both are independent of .
Hence, Lemma 3 applies and we can expand the first term in (44)
as

where we have used

The second term in (44), in turn, expands as

Altogether, (42) is given by

(45)

Let us now turn our attention to (43), which expands—disre-
garding those terms whose mean is zero—into
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(46)

Define and notice that

Applying Lemma 3 twice followed by Lemma 5 and Lem-
ma 4, we find that

Finally, focus on the last two terms in (46). Define

and apply yet again Lemma 3 to obtain

and further

Similarly, invoking Lemma 5 we have

where is an Haar random matrix and is an
random matrix independent of. Thus, we can write

to yield

Putting the pieces together, (43) is given by

(47)

Using (42) and (43), general expressions for both the and
slope can be assembled. From these expressions, Proposition 1
is obtained by setting . Proposition 3, in turn, is obtained
by setting . Finally, Proposition 6 is obtained by letting

.

C. Proof of Proposition 4

Starting from Proposition 3, we need to elaborate on the
expressions for , , and .
The last two require and
in addition to the former. In the presence of a single interferer
with uncorrelated transmit antennas

In the interference-limited regime, we have

(48)

From Lemma 5, we have that admits an eigenvalue
decomposition such that (48) conforms to the structure ofin
Lemma 3, which can be applied to yield

(49)

Defining

and
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we can use the above expressions to obtain

from which the slope in (29) becomes (32). For ,
Lemma 6 yields

while, for

and thus, altogether

from which, given (49), the in (31) follows.
For , (33), and (34) are obtained through Lemma

6, whereas, for , they result from

and

D. Proof of Proposition 5

The channel for an interferer with fully correlated transmit
antennas is given by

and thus, prior to applying receive correlations, thecolumns
of the channel matrix are identical and given by the vector.
It is easy to see that the corresponding normalized conditional
covariance is identical to that of a single-antenna in-
terferer with channel

and the same total power . The vector , in turn, is given by

Since the entries of are independent zero-mean unit-vari-
ance Gaussian random variables, the entries ofare likewise
and Proposition 4 can be applied simply by setting .
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