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Abstract—This paper provides analytical characterizations of
the impact on the multiple-antenna capacity of several important

[19]. The impact of out-of-cell interference on the capacity, in
turn, has also been studied both through simulation [20], [21]

features that fall outside the standard multiple-antenna model,
namely: i) antenna correlation, ii) Ricean factors, iii) polarization
diversity, and iv) out-of-cell interference; all in the regime of low
signal-to-noise ratio. The interplay of rate, bandwidth, and power
is analyzed in the region of energy per bit close to its minimum
value. The analysis yields practical design lessons for arbitrary
number of antennas in the transmit and receive arrays.

Index Terms—Antenna correlation, channel capacity, cochannel
interference, fading channels, low-power regime, multiple-antenna
arrays, Rayleigh fading, Ricean fading.

[. INTRODUCTION
A. The Multiple-Antenna Problem

HE use of multiple transmit and receive antennas c

and asymptotically in the number of antennas [22]-[25].

In this paper, we study the single-user capacity in the
low-power regime using models that characterize the channel
and noise encountered in typical wireless systems. Focusing on
those scenarios where the transmitter cannot (or chooses not
to) track the channel, analytical insight is derived without the
need to invoke a large number of antennas.

B. The Low-Power Regime

Since efficient bandwidth utilization requires aggressive
frequency reuse across neighboring cells and sectors, high-
capacity wireless systems are—by design—Ilimited by their
Qyn interference. This has two immediate consequences.

enable very large increases in capacity per unit of band- « The noise is dominated by out-of-cell interference, poten-

width. As a result, the multiple-antenna problem has been
propelled to the research forefront in communication theory.
The single-user capacity, in particular, has been thoroughly
studied [1]-[12]. Most such studies, however, are restricted to

tially colored in space and subject to fading, rather than by
thermal noise.

 Since, because of pure geometry, a majority of locations

a highly idealized canonical channel—uncorrelated zero-mean i€ in the periphery of their cells, users must operate very

equal-variance transfer coefficients from each transmit to  Often atlow signal-to-noise rati6lR) while only rarely
each receive antenna—impaired by additive white Gaussian at highSNR.

noise (AWGN). Although an integral solution [2] and even a This second point can be illustrated in the context of emerging
closed-form expression [3] for the capacity of this canonicghird-generation data systems [26], [27], wherein almost 40% of
channel exist, their complexity precludes analytical insighfeographical locations experience receS8R levels below 0
deSpite the SlmpIICIty of the model. With the aid of |arg@B while less than 10% d|sp|ay levels above 10 dB.

random matrix theory, more epriCit formulas for the CapaCity Despite its re|evance, the mu|tip|e_antenna BNMR regime

of this canonical channel can be obtained asymptotically in thgd not been analyzed in depth until [28] where, in contrast with
number of antennas [13]-[15]. Since both the finite as wethost former multiple-antenna analyses, the figure of merit is not
as the asymptotic capacities become particularly revealingtife SNR, but rather the normalized energy per information bit,
the high-power regime, design guidelines and insights int&As shown in [28], the analysis of the I08NR capacity

the capacity benefits that accrue as function of the numberg\ﬁfunction of per-symbdNR may lead to misleading conclu-
channels has been studied mostly through Monte Carlo sigpect the fundamental limit
ulation [16]-[18]. In terms of analysis, random matrix theory
i <C P .
RNy
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W|th c=o0 (Eb _ 5B ) It follows that a system designed tofactor out the scalay/g so as to yield a normalized matr#l,

N NO min . . . .
R E [Tr{HHT}} = nTng.
B = . .
(L) Hence g can be interpreted as the average channel‘gain.
RN,

Whenng = nr or when a particular equation applies to both

~ R 3dB transmitter and receiver, we may uséo refer to the number of
So RI; — % , antennas generically.
¢ ldB ¢ minldB The single-sided spectral density of the noise is denoted by

where the approximation sharpens%sl S Ny = E[||n|?]

nR
and its normalized spatial covariance is defined as

C. Scope 5 2 E[nnT]

In the remainder, we build on and expand the findings of [28] "7 N

using channel and noise models that realistically describe thi@st wireless systems are equipped with pilots that may be used
conditions found in typical multiple-antenna systems. Specifie obtain an estimate of the channel. Indeed, in many3oiR
cally, we consider the impact on capacity of the following feascenarios of interest, the realization Hf can be tracked reli-

tures that fall outside the canonical model: ably as long as its coherence time (in symbols) is sufficiently
« antenna correlation (modeled by separate correlation midge with respect tavr [29]-[31]. We thus focus, throughout
trices at the transmit and receive arrays); the paper, on the coherent regime whikés known at the re-

» Ricean components (modeled by a deterministic matr|x&li'j\$rp':‘rslair;own in [28], noncoherence incurs a severe band-

* antenna polarization (modeled by a polarization matrix | juewise, &, can be estimated at the receiver if its coherence
that accounts for the different power transfers betwegpye is sufficient or, otherwise, the receiver must assume that
co-polarized and orthogonally polarized antennas); ®, = I.

« spatially colored noise (modeled by nondiagonal noise co-The most common and practically appealing signaling strate-
variance matrices); gies at the transmitter array satisfy

* time-varying interference (modeled by noise covariance Elee — Ell=))*] I 5
matrices subject to fading). [z2] = e )

Section Il discusses the models we use to incorporate the abové/hen the transmitter has no knowledge of the channel real-
nonideal features. Section Il derives expressions for the mization, (2) is in fact required to achieve capacity for the canon-
imum energy per bit and the I08\R slope for the general ical channel [2] and for other symmetric situations.

model introduced in Section Il. Section IV analyzes the effects There are two distinct stages in the deployment of a wireless
of antenna correlation and Ricean components on capacity. Sgstem.

tion V studies the capacity with cross-polarization diversity fo- « An early stage where widespread coverage is the main
cusing primarily on the case of two-antenna arrays. Section VI gbjective and, thus, the noise is basically thermal. In such

investigates the impact on capacity of out-of-cell interference,  conditions, the normalized covariance and density of the
which is a source of additive noise that is colored and subjectto  noise are simply given by

fading.

We relegate the proofs of the results to the Appendix, where on =1
we evaluate several moments of the trace of the product of cer- and
tain random matrices which, in addition to serving our purposes, N
0=

may be of independent interest.

with ~ the thermal spectral density per receive antenna.

Il. DEFINITIONS AND MODELS » A mature stage, with high capacity as primordial goal,

A. Definitions where the dominant form of noise is that of interference
from adjacent cells. Unlike thermal noise, interference is
spatially colored and subject to fading. The color tends to
be particularly strong in the downlink, wherein the entire
contribution received from another cell emanates from a

With nt transmit andny receive antennas, a baseband
discrete-time complex-valued model for the multiple-antenna
channel with frequency-flat fading is

Y= \/EH“’ +n 1As we shall see, when antennas with different polarizations are used the
entries of H may not be identically distributed. For now, however, we may
wherez is then-dimensional transmit vector whijeandn are  consider them to be identically distributed, in which case the power of each such

the received and Gaussian noisg-dimensional vectors. The 8" S1:

. . 2In the downlink, the interferers (other base stations) are not moving and,
channel is represented by ther x nr) random matl’IX\/EH, thus, the coherence time @4, is equal to that of . In the uplink, however, the

independent of botle andn. For convenience, we choose taoherence time éd,, is determined by the fastest contributor to the interference.
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single localized source: its base station. We shall presuffibe energy per bit required at a receiver operating at capacity
that, conditioned on its fading, this interference is stiatisfies

Gaussiart. More specifically, the aggregate noise adopts El SNR
the form No = C(SNR) MR-
L
n= Z Ve Hoxp + ny, (3) Although such receivec% is of interest, the main metric
(=1 throughout the paper is thﬁansmitted%, given by
with L the number of interferers;, the signal transmitted E, El|z|?]
by the /th interferer,,/g; H, the channel from such in- No = NoC(SNR)
terferer, andhy, the underlying thermal noise, again with p— SNR

spectral density. The number of transmit antennas at the
/th interferer is denoted by.,. Since the contribution of

each interferer is subject to fading, the short-term covari- ) i @ h
random matrixA4, we define itdispersionas

= — . 7
o E[Tr{HH'®, '(H)}] C(SNR) "
To conclude this section, a final definition: given anx n)

ance ofn now depends oy, / = 1, ..., L, which we
assemble intdd = [H,|---|H]. With the various in- () = E[Tr{A%}] @®
terferers mutually independent and signaling as in (2), the =" E2[Tr{A}]

normalized covariance of (3) conditioned Ahbecomes Ngte that¢(A) achieves its minimum value (equal 1) when
_ 1 i A is equal to the identity matrix. As we shall see, the dispersion
2. (H) N E [nn ‘H} serves to succinctly quantify how much the channel and noise
L 9 depart from those in the canonical model.
:i Zg[ Elllz| ]HpHT—i—’YI . @
No \ = my ¢ B. Channel Model

It is important to stress that the receiver does not haveThe s_hort-term fgding eqcountgred by wireless systems tends
access td, but only to®, (H). By conveniently defining to be elfther Rayle_lg_h or Ricean in nature and, thus, we model

the entries off as jointly Gaussian. With that, the characteriza-

A Ell|z?) E[Tr{HH]}] tion of H entails simply determining the mean and correlation
Ie =g e . () between its entries. The main diversity mechanisms that impact

) such correlation are
as the average energy per antenna received frondtthe il di iy, based o
interferer, with expectation over both andH,, we can ~ ° SPatial diversity, based on antenna spacing;

write  polarization diversity, based on the use of orthogonal po-
. larizations.
Ny — T Although polarization diversity is known to ensure low levels of
0= Z et : ; .
p correlation [32]-[38] while enabling more compact arrays, the

number of orthogonal polarization states is very small [39] and
noting that, in mature systems,tends to be small with thus polarization diversity remains an auxiliary mechanism to
respect taVy. that of spatial diversity. We shall explore the impact of polariza-
Qn diversity but, by and large, our focus is on spatial diversity.

Given that our noise is, in general, spatially colored, care md _ X
1) Rayleigh Channel:ln the Rayleigh case, the mean of the

be exercised when computing tBMR. The noise power is not g H | h lation b h o
equal on every direction and thus we computeSNR as the entries ofH is zero. The correlation between those entries, in

average of the signal-to-noise ratios along each of the princiﬁﬁfn’ may be represented—in its most generlallform—_as a four-
directions of the noise space (rather than as the average Sithaensmnal tensor. In most cases, though, it is possible to ob-
a

power divided by the average noise power). The recebig in such correlation starting from the local correlation between
is thus found to be transmit antennas and the local correlation between receive an-

) . tennas, separatedyThis separation turns the problem of deter-
El|z|* E[Ix{HH'®,"(H)}] () Mining the correlation between entriesffinto the much more
Ny nTNR conventional problem of determining the correlation between
antennas within a given array.
The correlation coefficients between thg transmit an-

SNR=g

with expectation oveg, H, andH 4 Note that, if®,, = I, (6)

reduces to tennas can be assembled into(ar x nr) matrix ©1 while
2
SNR = g E[”x” ] . 5The use of” andC avoids the abuse of notation of assigning the same symbol
Ny to capacity functions a$NR and f;—g

3The use of multicode or multitone waveforms tends to render the interferencéThis separation applies if the immediate surroundings to each array are re-
Gaussian. Moreover, if the aggregate noise is not Gaussian, this assumptionspitinsible for the correlation between its antennas but have no impact on the
yield a lower bound on the actual capacity. correlation between the antennas at the other end of the link [40], [41].

4The SNR in (6) can also be interpreted as the average signal power divided’Correlation arises from exposure to the same multipath environment
by average noise power, both measured at the output of a noise whitening filfé2]-[45]. If the antennas are very tightly spaced, electromagnetic coupling
that is, after the noise has been balanced across the various spatial dimensalgss.plays a role (it tends to reduce correlation [46], [47]).
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the correlation coefficients between thg receive antennas where the vectorat andag are the transmit and receive array
can be assembled into a corresponding x ngr) matrix®g. responses to a plane wave satisfying
The diagonal elements @1 and®g are, by definition, equal

to one. These matrices, deterministic and Hermitian positive lar|> =ne  llarl® = ng.
semidefinite, can be used to generate properly correlated _ ) )
channelsH via [16], [48], [49] In ann-antenna uniform linear array, for instance

H=0}/’wel?

with W denoting, throughout the paper, a matrix with inde-
pendent zero-mean unit-variance complex Gaussian randomwith d the spacing between adjacent antennas, in wavelengths,
tries. The covariance matrix of each rowHfis thus given by and§, the angle between the array and the Ricean component.

. . T
a—= [17 6j27rd cos 007 s 6j27rd(n—1) cos 00:|

Or while the covariance matrix of each column is giver@ny. 4) Properties: Since a correlation matrix—either transmit
The validity of this correlation model for spatial diversity hasr receive—has unit diagonal elements, its dispersion (8) par-
been experimentally confirmed [50]-[56]. ticularizes to

2) Cross-Polar Discrimination:The use of orthogonal 9
polarizations creates asymmetries: the average power transfer (@) = Tr{67}
between copolarized antennas differs from the average power n

transfer between cross-polarized antennas and, as a resultwhigh we shall refer to as theorrelation numberFor example,
entries of H become nonidentically distributed. These imbalif n = 2
ances can be quantified through the cross-polar discrimination 1
(XPD), denoted byt € [0, 1]. We can define afing x nr) ¢ ([ p]) =1+p%
matrix P containing the power of each entry Hf and write

H=Qo (9§/2W91T/2) Esvr:e useful properties of such correlation number are as fol-
with o indicating Hadamard (element-wise) multiplication and
with @ a matrix whose entries are the square roots of the entrie

p 1

SProperty 1. The correlation number is bounded by

of P,i.e.,P = @ o Q. From the normalization imposed dh, 1<¢(®) <n

the sum of the entries dP is constrained to equal - -
nrT "R with the lower bound achieved if and only if the antennas are
Z Z(P)T:,j = NTNR- (9)  uncorrelated and the upper bound achieved if and only if the
j=1 i=1 antennas are fully correlated.

For example, ifnr = nn Property 2: If a correlation matrix is Toeplitz (as is the case

_ 2 { 1 X} when the array topology follows a uniform regular pattern), the
1+x [& 1 (k, £)th entry of® equalsp(k — ¢) with p(i) denoting the cor-
with X' equal tol if the antennas at either end of the link aréelation coefficient between antennas whose indexes differ by

copolarized. The correlation number is then given by
Notice that (9) puts channels with different power averages -

on an equal footage, i.e., any difference in average power is . 2 N2

removed fromP and H and absorbed intg. (©) =142 > (n=)o@)] (11)
3) Ricean Channel:The channel model can be easily made

Ricean by incorporating an additional deterministic maHix and the eigenvalues @ become, as. — oo, samples of the

i=1

containing unit-magnitude entries [57], [21], [37] discrete Fourier transform of any of its rows [59]. Furthermore,
1 K if the correlation decays faster thar across the array, (11)
= \——ewel? [~ converges to a finite quantit
H Qo( K+16R we,/ " + K+1H°) (10) g q y
S0 that lim () =142 |p(i)|* < o0
E[H] = \/L H, ) ) _
K+1 whereas if the correlation decays no faster thah(as in the

with the RicearK-factor quantifying the ratio between the declassic Jakes model [42], for example) the above sum diverges.
terministic (cohesive) and the random (scattered) energies [S8].property 3: Let O be an(ng x ng) Toeplitz correlation
The termH is typically associated with a line of sight or a dif-matrix and let®, be an(na x ns) principal submatrix of
fracted component and thus Og. (These may be the correlation matrices of an array whose
number of antennas has grown from to ng preserving its
original pattern.) Then

8Although different XPD factors may apply to the deterministic and random
terms [37], the model in (10) suffices for our purposes. ((OB) > ((O4)

H,= aRaTT
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with equality only if p(i) = 0 Vi. In fact, strict inequality ~ Using the following properties [28] of the determinant of a
holds even ifp(i) = 0 for i > n. Hence, for a given antennasquare matrix4:
spacing and polarization, the correlation number increases with

the number of antennas. di log, det[I + uA]|,—o = Tr{A}
" ,
2
2
[ll. CAPACITY IN THE LOW-POWER REGIME du2 log, det[I + uA]|u=0 = —Tr{A"}
The ergodic capacity, or more precisely, the maximal achiey- . g,
able rate per unit bandwidth under the constraint in (2), can I\:)ﬁee No min 8" be found to be
expressed as a function of tB&lR via B, log, 2 n
- = e — 14
o NO min g E[I{HH'®_ '(H)}] (14
HH'®, " (H
C(SNR)=E |log, det | I+-SNR— : (_1) — while the slope becomes
Lp [Tr{HH @ (H)}]
2
(12) So= (15)

((HH'®.'(H))

whgre the expectations are over the distribution&oind 4. .where we recall the definition @f(-) as the dispersion of a ma-
Notice that our fading model is purposely frequency-flat i in (8). The receivedZ: in turn, equals
nature. In frequency-selective environments, the channel can ' No min’ '

always be decomposed into a number of parallel noninteracting Er
subchannels, each experiencing frequency-flat fading and No o = log, 2
having the same ergodic capacity as the overall channel. m
From C(SNR), the capacity as a function % can be ob- which is approximately-1.59 dB. This value, which represents
tained through a fundamental property of Gaussian noise [28, Theorem 1], is
extremely robust.
C (Eb ) — C(SNR) (13) In the canonical case (copolarized antennas in a Rayleigh un-
0 correlated channel impaired by AWGN), (14) and (15) particu-

. . . larize to
with SNR the solution to (7). Unfortunately, an explicit expres-

sion for C(£2) cannot be obtained from (7), (12), and (13) ex- B, _log.2 1
cept for scalar unfaded channels. Recall, however, that in the No min g ng
low-SNR regime its behavior can be captured through the meand

suresﬁ—gmin andsSy using (1), which in linear scale becomes So =2

nNTNR (16)

nt + ngr

Ny E,

E, f—g from which we observe the following.
C ~ Splog, .

. Thef,—’[;min depends omg, but not onnr. This is a direct

consequence of the total transmit power being constrained
As shown in [28]'%@;1 andS, can be computed from the first while the total captured power increases with the number
and second derivatives 6f(SNR) atSNR = 0 by means of of receive antennas. Therefore, the number of transmit an-
tennas is irrelevant in terms (%mm.

No min

E}, nTNR 1

Nown  gE[Tr{HH'®_'(H)}] C(0)

¢ The slope is symmetric with respectiig andng.
« The slope in the loweNR regime is at least as large as
and the slope at higlsNR [60], given bymin(n, ng), with
. equality only ifnt = ng.
200 ety ony e =
So = 0(0) log, 2. As function of power, rate, and number of antennas, the required
bandwidth in the canonical case is thus
Note that the first-order approximation cqﬁ—g) captures the R/ 1 1 3dB
(5 7e) 7
Vo

second-order behavior in terms 6fSNR). In fact, the first- B = B

order derivative ofC'(SNR) is—by itself—unable to give any

indication about the capacity other than the valueof . . ) )
Itis also noteworthy to point out that, although the Unique c#(ith the term(Pgnr ) representing the total per-symbol power

pacity-achieving distribution is Gaussian, the minimum energpPtured by the receiver. _ o

per bit and optimum slope can be obtained with far simpler sig- Fig. 1_rep_roduces the exact (_:apacny anng.W|th its first-order

naling. For example, a very practical and appealing choice§¥Pression in (1) for the canonical channel with = ng =1

equal-power quaternary phase-shift keying (QPSK) on each ayt holds regardless of whether the channel is known at the receiver and/or the
tenna [28, Theorem 14]. transmitter.

nrt nR

+1.59dB
dB
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4T Proposition 1: Consider a correlated Rayleigh/Ricean
) channel known by the receiver and given by
2 o] [ 1 K
2 _ 1/2 1/2 ¥
H=,/—07"Wé .
%. K + 1 R T + K + 1 aRaT
g
S 2t In AWGN, the £ s
4 antennas
E, _log.2 1 (17)
| single-antenna exadt ] No min g nNr
7 maW'OXimt'on . . .
line while Sy is as shown in (18) at the bottom of the page.
| : : ; | Proof: See Appendix B.
2 -1 0 1 2 3

Remarkably, thek: is unaffected by the existence of an-
E, /N, (dB) . 0 i '
tenna correlation and a Ricean term and, consequently, a first-

Fig. 1. Comparison between the exact capacity as a function of receiv%mer anaIyS|s OC(SNR) fails to reveal their |mpact'. Onlﬁ’g .
energy per bit and its [oNR first-order expression for single-antenna and€flects the structure of the channel. In the remainder of this

four-antenna architectures. section, therefore, we study this slope in detail. Prior to that,
however, we point out that the transmitter and the receiver play
. TABLE | symmetric roles in (18) while (17) is inversely proportional to
i]—‘(’) BELOW WHICH FIRST-ORDER APPROXIMATION DEPARTS BY NO ngr and thus we have.
MORE THAN 10% FROM ACTUAL CAPACITY . . .
antennas | B[ /No | Tocations Corollary 1: If the capacity of a link isC(£), that of the
1 Obl aB 2% reverse link—up to first order—ié(Z—?f—{)).
2 1.9dB 60% . :
" 3dB 72,,/: A. Rayleigh Fading
8 3.4dB 76% For Rayleigh fadingk = 0 and the slope particularizes to
g - 2nrngr (19)
andnt = ngr = 4. The first-order expression is tight for rather 0 nr¢(Or) + nr((O1)

ambitious levels of%. Precisely, the levels below which the _ _ .
difference is less than 10% of the exact capacity are listed\ihere the effects of transmit and receive antenna correlation
Table I, parameterized by the number of transmit and receive @gPear only through the correlation numbers of the transmit and
tennas. Referring back to the emerging data systems descrif&give arrays. This is a powerful result for it indicates that a
in [26], [27], Table | also shows that the first-order expressio¥ingle scalar parameter uniquely quantifies the capacity impact
of a Rayleigh channel is over 90% accurate for a very lar§éan entire correlation matrix. Any two matrices mapping onto
fraction of cell locations, increasingly so as the number of af€ same correlation number are equivalentin terms ofS0lk-
tennas grows. More importantly, these are precisely the loc&apacity.

tions wherein multiple-antenna techniques are more likely to beUsing channel Property 1, it is straightforward to see that the
relevant. slope in (19) satisfies

IV. SPATIAL DIVERSITY IN AWGN 1< 58, _2nTnR_
- nr + NR

IN

When the noise is white and unfaded, either because it is ex-
clusively of thermal origin or else because of the presence adnfirming the intuitive result that antenna correlation can
a large number of comparable-strength interfererse have only diminish the capacity. Although a first-order analysis of
®,, = I. For copolarized antennas, we present the following(SNR) indicates that the lov#NR capacity is unaffected
central result. by correlation [19], this is only true as far as the invariance

By is concerned. At angNR > 0, antenna correlation

f St
10Als0, if the noise is colored but its covariance cannot be estimated by the No mir(lj itv. b h reducti . led b
receiver, the capacity is lower-bounded by what it would be if the noise we es reduce capacity, but such reduction Is not reveale y a

white [61], [62]. first-order analysis.

2TLTTLR(K + 1)2

So = .
1 i
nr¢(Or) + nrC(O1) + K2npng + 2K (RTM N nRu)

(18)

nRr nrp
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Corollary 2: The lowSNR slope is equivalent to that of;! 19
andny' uncorrelated antennas given by 0o
eq __ nr eq NR
n = n = . 0.8 +
() * o ((6r)

Hence, the reciprocals of the transmit and receive correlati
numbers determine the fractionof andng that would result
in the same slope if they were uncorrelated.

Fixing rate and power, the bandwidihrequired with corre-
lation matrice®t and©g relative to the canonical bandwidth
Bean required in the absence of correlation is

B nt((Or) + nr((Or)

fraction of uncorrelated capacity

Bean nr + nR . (20) 0.1+ ° 1 2 3 «; 5 6 7 8
Clearly, the impact of correlation in one of the arrays is dimir 0 : : ”: : : : :
ished if the other array has fewer antennas, in which case ! 1 2 3 4 5 6 7 8
latter is already constraining the capacity. Conversely, if we f n

the rate and the bandwidth, the power penalty that results from

correlation is Fig. 2. Fraction of canonical capacity achievable with uniform linear arrays as
function of the number of antennégr = ngr = n). Antenna spacing is 4 and
Plap — Peanlan R (¢(OT)—1 ((Br)-1 0.5 wavelengths at base station and terminal, respectively. Angular spectrum is
T = ﬁ + (21) Gaussian with root-mean-square spreadfthe base and uniform over 360
at the terminal.

nr nRr

which, in contrast with (20), depends on the operating point

(R/B). Corollary 3: If nt = ng = n, the slope particularizes to
Example 1: Considernt = 2 andng = 1. The lowSNR g - 2n
capacity in a Rayleigh channel is 07 ((Or)+ ((O7)
c( L) & log Loy is result would seem to indicate—as found asymptotically
E 4 g E Thi I Id indi found icall
Ny 3+ pr2 °* \log. 2 No in [19]—that the capacity still scales linearly with the number

of antennas, as in the canonical channel, but with a reduced
with p1 denoting the correlation between both transmit ary pe. However, sincé(©r) and((Or) are themselves func-

tennas. Remarkably, antenna correlation has a rather I|m|E s of the number of antennas, in the presence of antenna cor-
impact in this case: with full—unbeknownst to the transmitter— relation the capacity is, in general, no longer lineamo©nly

correla’glon, 75% of _the bcanonlcal cap_acny can neverthel n — oo may the capacity with correlation grow linearly
.be aftained at any g|veﬁg. 'I_'he t_)andw@th expansion faCtorwith n. In the specific case of Toeplitz correlation matrices, this
incurred because of correlation, in turn, is asymptotic linear scaling requires that (22) be finite [19]. For
B |PT|2 such Toeplitz matrices, we can formalize the nonasymptotic be-
B =1+ 3 havior as follows.

. . _ o Corollary 4: If the correlation matrices are Toeplitz, the
If the correlation matrices are Toeplitz, Property 2 indicates thaandwidth expansion factor increases monotonically as the

with rate R and powerP, the bandwidth expansion factor duenumber of antennas grows with the antenna spacing preserved.

to correlation converges, as the number of antennas grows, to i e )
Hence, even though the canonical capacity increases linearly

i s with the number of antennas, the penalty associated with an-
ol p— = R ——— > (nrlor()” + nrlor()*)  tenna correlation compounds and thus only a diminishing frac-
o i=1 (22) tion of such capacity can be attained. If (22) is finite, this achiev-

able fraction of the canonical capacity approaches a nonzero

with and the transmit and receive correlation be-
pr(i) Pr(1) asymptote as the number of antennas is driven to infinity [19].

tween antennas whose indexes differsbyf correlation at ei-
ther array does not decay faster thai, (22) diverges and thus  Example 2: Let us consider a base station and a terminal
the intended ratd? cannot be achieved with powét. Other- equipped with uniform linear arrays with antenna spacing
wise, (22) provides a limiting value for the bandwidth exparequal to 4 and 0.5 wavelenths, respectively. Consider a
sion factor, a value that is approached as the number of anten@mdside Gaussian power spectrum at the base with a 2
grows large. root-mean-square angular spread and & 360form spectrum
Further insight on the capacity of correlated Rayleigh chaat the terminal. As shown in Fig. 2, the attainable fraction of

nels impaired by AWGN can be gathered from the slope giveanonical capacity decreases from 100% with= 1 down to

by (19) and the fact that th%min is unaffected. 74% withn = 8. The comparison between the canonical and
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actual capacity slopes is displayed in the inset. As anticipatedProposition 2: Consider two transmit and two receive an-
by the analysis, the latter is sublinear in the number of antenntsinas in a Rayleigh channel, known by the receiver, given by

Experimental data [63], [64] confirms that this progressive . 1/2 1/2
. . . . H=Qo(ey*'wey?)
decrease in slope occurs even with non-Toeplitz correlation ma-
trices and beyond the lo&NR regime. with
2 1 X
B. Ricean Fading P=1% [X 1} (25)

In Ricean conditions, the presence of a deterministic compo- ) o i
nent compounds the effects of antenna correlation. Since the ffi1ere’ is the XPD. In AWGN, theg> . andthe slope therein
pact of correlation was studied in the previous section, we nd/Pits/s/Hz/(3 dB) are

evaluate the impact of this deterministic component by setting By — log. 2 1
O, = I and®y = I. According to Proposition 1, the lo#NR No min g 2
slope becomes and
2
_ 2(K+1)? Sy = _
So = K2 + (2K 4 1)2ztos (23) 1+(13_‘%)2(|PT|2+|/)R|2)

NTNR
It is interesting to note that there is no dependence on eithéh pr andpr the transmit and receive correlation factors.

ar Or ag, that is, no dependence on either the geometry of thep,o following remarks can be made.
arrays or the direction of departure or arrival of the Ricean com-

ponent. This is not the case in genera®if andOx, differ from » Conditioned ong, the 5=  is unaffected? Thus, in

the identity, their correlations may favor some directions differ-  terms ofﬁ—gmi , the impact of using distinct polarizations

ently. can come onr1y through a difference in average channel
For largeK, we observe that gain. Any decrease in the average power captured by the

) receive antennas translates directly onto an increase in
KILHQO So =2 (24) ]’f,—g ._andvice versaWith reference to all antennas being
co;%i]arized, the configuration in (25) wigti € [0, 1] may
cause an increase of up to 3 dB ﬁ%min. In many ap-
plications, however, the transmitter and/or receiver may
be subject to a random orientation and thus spatial diver-
sity configurations may also suffer a polarization power
loss with respect to this reference [66]. Affecting all an-
tennas atthe same time, this loss may easily %ﬂigin by
more than 3 dB, in which case, polarization diversity ap-
pears preferable for it bounds the increas%oirgn, while
ensuring low correlation and, thus, a good s‘l?)pe. If, in-
stead of thermal, the noise is dominated by interference,
any power loss caused by XPD might apply also to the
interference thereby reducing, similarly to the desired
signal. As aresult, the low-correlation benefits of polariza-
Corollary 5: With two uncorrelated antennas at both trans-  tion diversity may be reaped without the associated power

which is the lowSNR slope of a single-antenna unfaded
channel. Together with (17), we can conclude that, in the
low-SNR regime and in the presence of a strong Ricean com-
ponent unknown to the transmitter, multiple transmit antennas
are irrelevant and multiple receive antennas are only relevant
in terms off—,g ., but not in terms of slope. It is interesting to
note—from (1%>nand (24)—that, if (and only if) one or both of
the arrays has a single antenna, the capacity is higher in strong
Ricean channels than in uncorrelated Rayleigh conditions, even
though the transmitter is unaware of the Ricean statistics.

It can also be checked from (23) that, for = ngr = 2,
the slope equals, = 2 irrespective oK. Hence we have the
following.

mitter and receiver penalty, i.e., a good slope can be secured without an in-
c <Eb> < lo, (2—g E,,) crease ing:
No log, 2 No * Since orthogonally polarized antennas tend to be loosely
regardless of the possible presence of an unknown Ricean com- _correlated, the impact ot on the slope is minor. In fact,
ponent. if the antennas are fully uncorrelated, th&ndoes not de-

pend onY'. As shown in [65, Proposition 3], this reflects
a more general property of certain channels with indepen-
V. POLARIZATION DIVERSITY dent nonidentically distributed entries.

Before moving onto more elaborate types of noise, we briefly
study the AWGN:-limited capacity with polarization diversity VI. SPATIAL DIVERSITY IN THE PRESENCE OANTERFERENCE
and contrast it with what we learned for spatial diversity. Since,
typically, two orthogonal polarizations are activated, we restnctn ced,, comes into play and the expressions in Proposition 1

our analysis to the case of two-antenna architectures. Reacg%rﬁ be generalized. Recall thby, is known to the receiver, but

interested in a more general characterization encompassnéqto the transmitter. Recall also, from (4), that in the presence

n
L out-of-cell interferers each equipped with, antennas,

When the noise contains out-of-cell interference, the covari-

combinations of polarization and space diversity are referr%
to [65]. Straightforward application of (14) and (15) results in

the following proposition. 11This finding in fact holds for arbitrary.r andn .
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L =1,..
noise is given by

L i
@n(ﬁ) :Nio <;I(}H;—Ij"+ﬂ> (26)
with -
L
No=) Ti+v
(=1
so that
E[Tr{®,}] = ngr. (27)

Let us define the total number of interfering antennas as

L
A
ny = E y.

Concentrating on spatial diversity, we shall separately con-
sider—as in the AWGN case—the instances where the channel

(for the user of interest) is Rayleigh and Ricean.

A. Rayleigh Fading

Proposition 3: Consider a correlated Rayleigh channel

known by the receiver and given by
H=e}/’"wel*
If the normalized conditional covariance of the nois@jH),
then
E, _ log, 2 1
Nowin & E[Tr{Or®. (H)}]

(28)

and
So = ___ Zmm ———— (29)
np((Or®, (H)) +nr((O1)p(Or®, (H))
with expectation over the fading of the interferels, and with
the function

B[Tr*{A}]
E2[Tr{A}]
Proof: See Appendix B.

P2

¢(A)

Using (27), it is easy to prove via Jensen'’s inequality that

E[Tr{O®;"}] > ng

and, therefore, (28) is upper-bounded by the value it takes when

®,, = 1. Hence we have the following.

Corollary 6: Noise fading and color diminish the minimum

energy necessary to convey information reliably.

Proposition 3 merits some additional observations.

» The functionw(GRQ,jl(E)) depends only on the noise

fading, not on its color. I is deterministic, that is, if the
interferers are unfaded, we have

o(owes (1)) -1

and 5 Eb in and S, resemble those found for AWGN with
Or replaced byOr P, (H) This, of course, reflects the

., L, the normalized conditional covariance of the
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fact that the receiver can whiten the noise while corre-
lating the received signal. The noise color appears then
through the expected trace ©f;®,, * (H) and its disper-
sion, which generalizes the receive correlation number en-
countered in AWGN.

When the interferers fade, an additional mechanism is at
play, one that was not present in AWGN. In a single-an-
tenna scenario, it is easy to see from Jensen’s inequality
that noise fading can only improve the capacity

2 2
E [k,gz <1 g —ﬁﬂjo])] > 10g2(1 +g it ])

(30)
where®,, is a random scalar representing the noise vari-
ance, normalized so thdt[®,] = 1, and the outer ex-
pectation in the left-hand side of (30) is with respect to it.
Nevertheless, as;, and/orng grow, the impact of such
fading subsides rapidly [67] and only the noise color re-
mains relevant.

For "L — oo, the capacity behaves exactly as in AWGN-
I|m|ted conditions. As its dimensionality grows, the inter-
ference appears white and unfaded to the receiver. Con-
versely, ifny, andng grow but their ratio does not, the
noise color remains.

To proceed any further, we need to flesh out the structure of
®,,, which is governed by the relative strength of the various
interferersZ,, their fading,H, their number of antennas,,

and the relative weight of the underlying thermal noige\We
therefore make some basic considerations.

« Since we have already studied the AWGN-limited ca-

pacity in detail, in the remainder we seek new insight by
concentrating on the converse scenario: interference-lim-
ited conditions, that is,

%ZI@ — OQ.

Given that the interferers are located in neighboring cells,
theirK-factor is usually negligible and itis thus reasonable
to model each individuall, as Rayleigh.

In terms of transmit antenna correlation at each interferer,
we postulate two limiting cases.

— Uncorrelated. In this case, the angular spread spanned
at each of the interferers is assumed sufficiently large
and, thus, all degrees of freedom therein are active.

— Fully correlated. This case models situations where
the transmit antennas at each interferer are tightly
correlated because of small angular spread, which is
geometrically reasonable for distant interferers [68].
Consequently, each individual interferer contributes a
single degree of freedom.

In the general case of partial transmit correlation, these
limiting cases serve as bounds.

The receive antenna correlation experienced by each in-
terference term is allowed to be arbitrary. The analysis,
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however, simplifies if such correlations equal the receive
correlation suffered by the desired signal.

AN

capacity (bits/s/Hz)
x

1) Single Interferer:In many instances, particularly in
strong shadow conditions, most of the interference may be con-
tributed by a single neighbor. In the case of a single interferer,
(26) becomes

1 HlHJ{ Y
Li+y m I+

-o0 dB
-/ (AWGN only)

®,(H,) =

Letus scruumzeﬁ— andsS, in the presence of a single inter-
ferer starting with the case where such interferer is uncorrelated.

Proposition 4: Consider the scenario of Proposition 3 with
a single interferer transmitting from, uncorrelated antennas. -
Let the fading of such interferer be Rayleigh with some arbitrary Ey/N, (dB)
correlation®; at the receiver, that is,

]
o
N
»

Fig. 3. Capacity versusJL in the presence of a single interferer plus
H, = 61/2W thermal AWGN, withnr = ng = m; = 4, parameterized by the inter-

ference-to-thermal ratio.
with W distributed ad¥ . The interference- I|m|te£— sat-

isfies ceiver correlations experienced by signal and interference

E log,, 2 ng { 1 117 coincide, the net result is no correlation for either.
}

lim
(Z:/7) =20 No min g Tr{0rO7'

mi

Form, < ng, the . vanishes as the interference-to-
thermal ratio grows Thls is clearly a direct consequence
of the fact that interference with dimensionality inferior
to the number of receive antennas can be completely sup-

U ((Or)T nd — C(9R91 ) pressed, through mere linear proc_es_sing, if @W is

— + known [22], [69]. Such interference-limited conditions en-

) able reliable communication at negligible levels of nor-

0.6 _1 e U\ | malized energy. More precisely, when noise and interfer-

(@67 Gmr+<<T>>] 32)

(31)
with [z]* = z if z > 0 and[z]" = 0 otherwise. The corre-
sponding slope is given by

(Ti/7)—oe

nR nrt

nR—l

nZ — 1 ence experience identical corerlation at the receiver
where lim ] = log.2 1.
(Zr/7)—oe Y g 7nR
_ma(m1 = nw)_ > ng + 1
- (m1 —ng)2 -1’ my > MR (33) and thus, as2 grows, reliable communiation becomes
- nR feasible if on?y the received energy per bit-isl.59 dB
nRr—my m1 S MR above the thermal noise, irrespective of the strength of the
interference. The corresponding slope, in turn, is
Y | (= D(m — ne) > ng + 1
T =< ng nr(mi —nr +1) > nR (34) lim Sy = 2nr(ngr — mq)
1, my1 < nR. (T1/7)—o0 nr + ((O1)(nr —m1)
Proof: The key to this proposition is the closed-formeval- ~ which, contrasted with (19), indicates that the equivalent
uation of of my receive antennas have been spent suppressing the
o1 mq-dimensional interference and, thus, the slope equals
E[Te{(W.W1)™}] that which would be experienced with the remaining
E[Te{(W,W1)~2}] (nr —m1 ) receive antennas and the transmit antennas
and in the presence of only the underlying thermal noige,
E[T*{(W,WhH~}. « Whenm; = ng, both the£: and S, vanish as the

interference-to-thermal ratlo érows without bound.
this case, however, the slope also approaching zero as the

This result reveals that, in the presence of a dominant inter- ﬁ" . decreases warns that nonnegligible capacity will

ferer, the following holds. requwe nonnegligible energy per bit.

For these evaluations and the complete proof, see Appendix C.

« The receive antenna correlations experienced by signaExample 3: Displayed in Fig. 3 is the exact capacity with
and interference, respectiveBr and®;, compound into nt = nr = 4 in the presence of a four-antenna interferer
aneffectivecorrelation given by@r©7 . Itis thus equiv- (m; = 4) plus thermal AWGN, with the various curves cor-
alent to have the signal experience such effective cormesponding to different interference-to-thermal ratios. Both the
lation while the interference experiences none. If the relesired user and the interferer experience Rayleigh fading and
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the same antenna correlation at the receiver. The transmit gain insight by focusing on the realm of larfefactors, where
tennas are uncorrelated. As the interference grows larger tliha following applies.
the thermal AWGN, the capacity shows a c_Iear dlsp.l"ju.:ememProposition 6: Consider a channel known by the receiver and
toward lower levels ofﬁ—z. The slope at% ., inturn, dimin- iven b
ishes progressively and would approachmznéro asymptotically.g en by

Clearly, the constraint that the transmit antennas at the in- H = agal.
terferer be uncorrelated maximizes the number of degrees of T
freedom within®,,. Any correlation therein can only enhancef the normalized conditional covariance of the nois@jgH),
the noise color and thus the capacity. As shown by the next {gen
sult, in the limit of full correlation, the interference exhibits a

single degree of freedom and, therefore, it is as if the interferer Ly - log, 2 1 _
were equipped with a single transmit antenna. No min g E[Tr{aRaJﬁ@;l(H)}]
Proposition 5: Consider the same scenario of Proposition 4nd
but with them transmit antennas at the interferer fully corre- om
R

lated, that is, Sy =

T '(H
H, 29}/2W111/2 (anan @y (H)

. _ , , with expectation over the fading of the interferels,
wherel is an(m; x m1) matrix whose entries are all unity. The Proof: See Appendix B.

interference-limited values fo% __andS, are given by their
expressions in Proposition 4 with; = 1. The lowSNR capacity is thus uniquely determined by the ex-
Proof: See Appendix D. pected trace and dispersionaﬁa%@;l(ﬂ). Also noteworthy
. ) ) ) is that, unlike in AWGN, the capacity does depend—through

More.generally, partial transmit cc_;rrelauon at tlhe mterferq{R_on the angle of arrival of the Ricean channel component.
results in anequivalentnumber of virtual transmit antennasgyen when the channel fading is uncorrelated across the receive
therein, uncorrelated and with possibly different powers. Theyiennas, the noise color may favor some directions of arrival
number qf such virtual antennas (degrees of freedom withj, respect to others.
®,,), ranging betweei andm, equals the number of nonzero
eigenvalues of said transmit correlation. Their powers, in turn,
are determined by those nonzero eigenvalues.

2) Multiple Interferers: In terms of analysis, we restrictour- For realistic channels and noise models, no insightful ex-
selves to scenarios whefe = 7;, ¢ = 2, ..., L. These sce- pressions for the capacity as function of thNR had been
narios boil down to a scaled version of the single-interferer cafsaind thus far. As shown in this paper, however, in the EMR
above. Specifically, the capacity in the presencelogqual- regime itis possible to circumvent the computatiotf@5NR)
power interferers experiencing identical receive antenna cor@éitirely by posing the capacity as functionfgf. SinceC(£:)
lation equals the capacity in the presence of a sieglévalent is highly linear at lowSNR, its characterization requires only
interferer with that same receive correlation. The energy of tHi0 parameters, namely, tH¢: at which the capacity becomes
equivalent interferer is equal to the sum of energies ofitfire  zero and the slope therein. Throughout the paper, we have de-
terferers and, if the transmit antennas within each ofthetual rived expressions for these parameters using realistic channel
interferers are uncorrelated (resp., fully correlated), the equigd noise models and, from these expressions, we have learned
lent interferer hasy, (resp.,L) uncorrelated antennas. how the single-user capacity is affected by the existence of an-

Reference [64] considers the more general case of multipfana correlation, different polarizations, a Ricean term, fading
unequa|-power interferers and pro\/ides numerical exampﬂgd correlation within the noise, etc. Moreover, these lessons
from which the following messages emerge. have been learned without the need to invoke a large number of

antennas and they are supported by experimental data [64]. We

* The interference-limited capacity in a typical mobile Wirep,5ve found that at IoNR we can draw the following conclu-
less system can differ substantially from its AWGN-lim;qq.

ited counterpart.

VII. CONCLUSION

« The reduction in capacity caused by antenna correlation

can be uniquely quantified through a scalar quantity for

each of the arrays, transmit and receive. These quanti-

ties, which we refer to as theorrelation number®f the

« Transmit correlation is detrimental at the user of interest ~ transmit((©r) and receive((Or) arrays can be easily
but beneficial when exhibited by the interferers. computed.

< With correlated antennas, the capacity in Rayleigh chan-
nels does not grow—unlike in the canonical case—Iin-
When the channel for the desired user is Rice%n,, and early with the number of antennas. In fact, the fraction of

Sy are given by (14) and (15) along with (45) andn(EIY) inthe  canonical capacity achievable in the presence of correla-

Appendix, part B. Since the expressions are quite involved, we tion diminishes, for most array structures, monotonically

» The difference between such capacities grows as the
number of receive antennas increases and/or the number
of transmit antennas at the interferers diminishes.

B. Ricean Fading
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with the number of antennas. (This reduction is sustaineshtrices form a submanifol¥f,, ,, of dimensionn?. The uni-
by empirical data even beyond the I&NXR regime.) form distribution over the submanifol¥f,, ,, is called Haar

« The bandwidth expansion factor brought about by amen%robability) measure. Mat_rice; with this disFribution are thus
correlation in Rayleigh fading equals called Haar or staanrd unltanes..The m.os't important _prop_erty

of the Haar probability measure is that it is left and right in-

n1((ORr) + nr((OT) variant under unitary transformation. This invariance implies

nt + ng that most mixed moments of the entries of a Haar unitary matrix
Sre zero. In particular, we have the following.

In particular, when one array has two antennas with ¢
relation coefficientp, the bandwidth expansion factor is Lemma 1 [70]: Consider the product of the,th power of
equal tol + p? 5. if the other array has uncorrelated (U);, ;, and them,th power of(U); , with U a Haar matrix.

ip,J
antennas, and equal 1o+ p? if the other array also has Wheneverk, ..., k¢, m1, ..., mg < If), and there exist some
two p-correlated antennas. 1 or j such that
« Ifeither the transmitter or the receiver has a single antenna, Z (kp —mp) #0 or Z (kp —mp) #0
the capacity is higher in strong Ricean conditions than in  p:i,=i piip=j
Rayleigh fading. then

If both transmitter and receiver have two antennas, the
capacity is independent of the Ricean factor. E

4
11 (U)i,,5,)" ((UT)jp,z'p) P] =0. (35)
* Modeling outside interference (from other sectors or P
cells) as AWGN may lead to very inaccurate estimates @ a special case, (35) holds whenever the @ﬁgl(/ﬁﬁmp)
the actual capacity. With such interference being spatially odd.
colored and subject to fading, the capacity is always S ] o )
higher—sometimes much higher—than in the presence-€mMma 2 [701: 1 1 < iy, j1, iz, 2 < myia # 42, J1 # J2,
of an equivalent amount of AWGN. andU is a Haar matrix, then

1
« Both color and fading within the noise enhance the ca- E[|(U)i,,, 1= -
pacity. The impact of noise color relates to the ratio be- 4 2
tween the number of significant degrees of freedom in the El|(U)i, 5 "]= m

interference and the number of receive antennas. The im- 2 2 2 2
pact of noise fading, on the other hand, is only significant lUCOEARICOI AN el COPRA RO

when both are small. = 1
n(n+1)

» Except to overcome thermal noise in systems wherein the 5 ) 1
orientation of both transmitter and receiver can be con- E0)ir, 5 [Fl0)is, 32 '] = n2—1
trolled, orthogonal polarizations should be used before re- 1
sorting to spatial diversity. ElU0)ir, 5:0)ia, 32 (U)is, o (U)iz, 1] :_M'

It is worth pointing out that in no way do our conclusions hingélsing these properties of the Haar measure, we can prove the
on the choice of defining the capacity slope on a logarithmfollowing result.
scale. Had we instead defined it on a linear scale, similar Obser'l_emma 3:Let A and B be arbitrary Hermitian(n x )

vations would have been drawn [28]. random matrices, mutually independent. I[&tbe a random

qu proof of the. various fqrmulas presented in the PAPELSar matrix independent of andB with V = UBU'. Then
require the evaluation of the first- and second-order moments

of the trace of the product of certain random matrices. To that E[Tr{AV}] = 1 E[Tr{A}]E[Tr{V}] (36)
end, we have found it useful to invoke auxiliary results on n
the mixed moments of Haar-distributed matrices, which havdnile

proven useful in the development of free-probability results in[Tr{(AV)?}]

the theory of large random matrices. 2
- HEE (v - £ pnv)
APPENDIX
E[Tr*{A}] 1
Given a matrixA, we shall us¢A); ; to denote itg, j)th el- t—s 1 E[Tr{V?}] - - E[T*{V}] (37)

ementandA); to denote itsth row. Before proving the various 5,4

properties and propositions contained in the paper, we preseni 204
some auxiliary results that will be invoked throughout. BT {AV}] 5
_ E[Tr{A7}] oy 1 2
A. Auxiliary Results T a2 E[Te{V7}] - n E[Tr{V}]
LetU be an(n x n) matrix such thal/U" = I.U is uniquely E[Tr*{A}] 9 1 2
specified byn? real parameters. As a subspacd®df’, these R BT (V] - n B[V ). (38)
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Proof: SinceA is independent oB andU E [Z |(B)m m|2}
_ i = E[(A)ii(A);,] =
E[Tr{AV}] = Tr{E[A] E[UBU']}. (39) n(n + 1)
U is Haar and, thus, the, j)th element of E[UBU ] is given
by B § (B)mol*| E Eél(B)m,m(B)Ze]
. . — . i * n?—1 B n(n? —1)
(EUBU')), j = E[(U):B(U);}]
=3 Y Bl m(Bmp(U); ] B 2
net i = B[(A):i(A)s) (E - {fj})])
=0i,; Z E[|U): m|2]E[(B)m m]
m=1 while, fori = j
1
=6y, ; n Tr{E[B]} (40) E[(A1/2VA1/2)127,L-]

= E[(A)Zz,,(v)?,z]

where (40) follows from Lemma 2 and whefg; is the Kro-
necker delta. Thusz[UBU ] is a multiple of the identity, i.e.,
e

E[UBU' = % Te{E[B]}I

_ % E[TH{VYI
E|> > (B)mp(B); ((U)im(U);,(U);:0(U)i g

mp Lq
£ |]

which, plugged into (39), proves (36).
Now, letA = QAAQA be the eigenvalue decomposition of
A. Fromthe invariance of the Haar probability measure, we have = E|[(

that
E[Tr{(AV)%}] = E[Tr{AVAV}] + E[(A)FAE | 1Byl |(U)iml*|(V)ip]
= E[Tr{AY?VAVAY/?)] L7
=2 PIMTVATRY ) B0 18 | 3 (Bl (B )i IO,
Whose oxpaciod vl 1 s we et det g e e 2E—f; (B
' S = E[(A)?,,;]( T
E[(AVAY2))
= BlA):i(8)34(V)is] 2 Bl Y (Bal?| B Y <B>m,m<B>zl]
= B[(A)s(A); ) {(Z(U»,mw)m,p(v);p) ] R e
— B[(A)s(A),.] B

(E[1r{B*}] + E[1:*{B})).

E[Y N (B p(B)i y(0)im(U);,(U); (V)4 n(n+1)

o Altogether, the equation at the top of the following page which,

_ E Z| mm| | 1m,|2|(U)j,m|2‘| given that
Tr{B} = Tr{V} and Tr{B*} = Tr{V?}

+ E E m, z m 2 U); >

[(A A)jjl ;pl PP P|(U) ] oroves (37). Finally
+ E[(A)ii(A)j 4

(BB BITP{AV)] = [T {QLAQ VY

_ 2

E| Y (B (B)i o0 (U), (U)(U) =BT {AVY]

ooy’ = E[Tr*{AUABU '}
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E[Tx{(AV)?}] = > E[(AVPVA?)? )

i

= B, (E[TY{B H+ B[Tx {B}]> £ El(A)A); ]]<E[Tr{B N BT {B}])

n(n+1) poy n? —1 n(n? —1)

- ot £ HE L 5 )
: i#j

E[(A)?. . .
+ E[1v*{B}] (Z ([fH)l)] ZM)

_ E[Tx{B*}E[Ty*{A}] n E[T:*{B}]E[Tr{A’}]

n?—1 n(n +1)
n E[Tr{A*})(E[y*{B}] - E[Tx{B"}]) - E[Tx*{B}] E[Tx*{ A}]
n(n? —1)

with the eigenvalue decompositidd = QBABQE. Further Altogether
algebra yields

E[T2{AV})] E[TY*{AV}] = E[Tr{A%}] (

=E (Z(A)i,i(U)iAB(U):‘r>

E[Tt{B*}] E[Tx*{B}]
n(n+1) n(n+1)

E[Tr{B%)] E[TrQ{B}])

|\ n(n? —1) n?—1
E[TY*{B}] E[Tr{B’
- | T 0, (0 A0 As) B {A}]( - fﬂ)
= Z E[(A U):As(U)(U);Ap(U)1)] from which (38) follows easily.
Lemma 4: Given an(n x m) matrix W with independent
+ Z E[( A); 1E[U); AB(U) U); AB(U) )l zero-mean unit-variance complex Gaussian random entries
i#]
Fori # j E[Te{WW'}] =mn

E[Tr{(WW"?Y] = mn(m + n)

E[(U);Ap(U)}(U):AB(U)])] E[T*{WW'Y] = mn(mn + 1).

> (AB)pp(AB)e. (V) |(U);, eIQ]

=F

Lemma 5: Given an(n x m) matrix W with independent

zero-mean unit-variance complex Gaussian random entries as

E|Y(AB)Z, ElY (AB)p,p(AB)/,[] well as an(m x m) matrix D and an(n x n) matrix S, the
R pAL matricesW DW' andW'SW admit the following eigenvalue
 nn+1) n?—1 decomposition:

2 2
_E[BY)] | E[T{B) SR —
n(n? —1) n?—1 oy
WiSW =UNU

while, fori = j,

El(U),; AB(U) (U)As(U))] whereU andU are(n x n) and(m x m) Haar matrices andf

andN are(n x n) and(m x m) random matrices independent

=F

9 5 of U andU, respectively.
Z Z(AB)P7P(AB)“|(U)1?P| (U)i, el ] Proof: This lemma is derived as part of the proof of [70,
bt Theorem 3.2].

E|Y(AB): , E|Y (AB)p, p(AB), p] Lemma 6: Consider arfn. x m) matrix W with independent
_ P p#L zero-mean unit-variance complex Gaussian random entries. For
n(n+1) n(n + 1) m > n
E[Tr{B?}] E[Tr*{B}] n
. fy-1l| =
n(n + 1) + n(n+1) E [Tr {(WW ) H m—n (41)
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and, form > n +1

p[o {wwh= ] :min<(m—:?)2— 1
n—1
+ m—n~|—1>'

Proof:

gl {wwhY] =np H

with A an arbitrary eigenvalue (()WWT), whose marginal den-
sity is given by the Wishart distribution [2]

1 — BNLTT™( 2
_Z )) Zm—ne—z
n = (k4+m —

7’L
with L7*~™ the corresponding Laguerre polynomial of order
[71]. The expectation can be computed to yield

o [T hAE
o[-

m-—-n

which leads to (41). At the same time

B[ {wwh=2}] =np H
> fa(2)

0 22
mn

(m—n)®—

dz

(m —mn)

and, from the joint density of any two different eigenvalues of

(WWT) given by

2
O e | (S RLETT VLTV
P= n(n—1) ¢ Ic§=:0 (k+m —n)!
n—1 n—1
k'(Lm n m n(/\/))
+Z(k+m—n Z k~|—m—n
k=0 k=0
we find that

o o {oww'r)

B iiE[/\zl/\J

i=1 j=1

(el <n“’—n>E{$D
o[ 2 by [[ I
=@ 3

\

)dzdz

n—1
m—-n+1

L
-n)?2 -1

m—-"n
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B. Proof of Propositions 1, 3, and 6

To prove these results, we first derive general expressions for
__andS, and then particularize them to each of the propo-

smons Notice from (14) and (15) that, in its most general form,

expressng—Omin andsS, entails characterizing the terms

e, '(H)})

Eb

E[Tr{HH' (42)

and
E[Tr{(HH'®,"'(H))*}].

Equation (42) can be expanded, using our channel model, as

(43)

E[Te{HH'®_*(H)}]
- 1 Emiel*we.w'e}/?

K+1
L e, EI )

K+1

@' (H)}]
(44)

From Lemma 5, we have thB(@ W admits the eigenvalue
decomposition

wew' =UBU'

wherel is an(ng X ngr ) Haar random matrix anB is the(ng x
nR) random  eigenvalue matrix independentiofFurthermore,
H and®, ' (H) are statistically independent. Thug,and B
are mutually independent and both are mdependeiaﬁé(H)
Hence, Lemma 3 applies and we can expand the firsttermin (44)
as
E[Tr{e*we,w'el/*s; (H)}]

= E[Tr{WeW'e/’e; (H)ey}]

= E[Tr{UBU'0}/*®;' (H)0}/*}]

— - B[(BY BT (0} "8, (H)8}/")]

= Tr{O1} E[Tr{Or®, ' (H)}]

= nrE[Tr{Or ;" (H)}]
where we have used

E[Tr{B}] = E[Tr{®:W'W}] = ngTr{O1}.

The second term in (44), in turn, expands as

M=
= nTE[Tr{aRaR YH

E[Tr{H,H®, (H [Tr{aRaTaTagé—l(ﬁ)}]

H)}].
Altogether, (42) is given by

nrt

K+1
+ KE[Tr{aRaJ{DL@

E[L{HH'®" (H)}] = (E[Tr{9R<I>; H(H))]

(@)} (45)

Let us now turn our attention to (43), which expands—disre-
garding those terms whose mean is zero—into

E[Tr{(HH'®." (H))*}]
= E[Iv{HH'®; (H)HH'®,' (H)}]
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S s ETe{(0y*we-w'ey e,  (H))}] +2KE[Tr{Or®, ' (H)}]
(K +K13 E[Tr{Orara},®;" (H)apal®r}).  (47)
+ W(E[Tr«HOHT ( ) Using (42) and (43), general expressions for both%he and

1/2 tQl2e-1 (F fa—1,97 slope can be assembled. From these expressmns Proposmon 1
+2B[Tr{O " WO W8 "0, (H)HoH,®, (H)}] is obtained by settin®,, = I. Proposition 3, in turn, is obtained

+2E[Tr{0*Wiey e, (H)ey* by settingk = 0. Finally, Proposition 6 is obtained by letting
Wel/zHT ( VH }]) (46) K — oo.
C. Proof of Proposition 4
Starting from Proposition 3, we need to elaborate on the
E[Tr{(0Y*We.W'el e ! (H))*)] expressions foE[Tr{Or®,'}], cgeRQ,:l), andp(Or®; ).

B - + 112y, The last two requird?[Tr{(@r®, ')?}] and E[Tr* {0z ®, ' }]
= E[r{(WOrW'A)}] = E[Tx{(UBU A)"}]. in addition to the former. In the presence of a single interferer

Applying Lemma 3 twice followed by Lemma 5 and LemWith uncorrelated transmit antennas

Define A 2 /%@, (H)®L/* and notice that

ma 4, we find that 1/2 tal/2 -1
" Vo (};I(Hl):<1+ ) 6, WiWi6," v )
E[Tr{(6f°*We.W'e/’®, ' (H))*}] o m I
= E[Tr{(6r®," (H)) }]TI"2{9T} In the interference-limited regime, we have

+ E[Tr*{0r®, ' (H)}|Tr{O7}. —1
[Tr*{Or (H)}|Tr{®7} lim @ (H1) _ mlel—1/2 (W1WD @1_1/2. (48)
Finally, focus on the last two terms in (46). Define T1/y—e0

From Lemma 5, we have théi¥’; W) admits an eigenvalue
A ~1/2 tp=! 1/2 1
Q =6y ‘I’n (H)H()H n (H )Ox decomposition such that (48) conforms to the structuré ai
Lemma 3, which can be applied to yield

lim E[Tr{Or®,'}]

and apply yet again Lemma 3 to obtain

E[Tr{6)/’'Wew'el/ ;" (151)110151T Y(H)}] T, /o0
= B[TH{UBU'Q)) = - B[Tv{B} E[TH{Q)] = my OO w1
and further II}IVIEOOE[TT{(GRQ_I) }]
E[Tr{©y*'WerW'e/ e, (H)H,H|®," (H))] _ m3E[T{(W, W)~2))
= n2E[Tr{Or®," (H)aRa;in(ﬁ)}]. B nZ —1
Similarly, invoking Lemma 5 we have : <TT2{9R91_1} - i Tf{(9R9f1)2}>
we\’H e (H)H,0\/*W' = uwu' L miEm{(W W)
whereU is an(nr x ng) Haar random matrix an® is an g~ 1
(nr xng) random matrix independent &F. Thus, we can write : (Tr{(eRe; )2 }— Tr2{@R9 })
E[T{eY*w'ey/ e (H )61/2W61/2HT & (H)H,}] lim  E[Tr*{0r®;'}]
= BTAUwU'Y) = L g aypmewy L/fwlgm{(wlwi)—m
to yield - Rl
E[Tr{A}|E[Tr{W}] = ng E[Tr{Or®, " (H)}] (Tr{(eRe_l) }_ Tr {0x6; )}>
E[Tr{®raral®,' (H)ara'O1}]. . m2 E[Tr? {Z(Wllwi) 1}]
nZ —

Putting the pieces together, (43) is given by

— . 1‘2 -1 _L r —1\2
E[T{(HH'®;'(H))?}] (T {Or6;7} — - Tr{(Or0, )})~ (49)

= ﬁ (nE[Tr{(0r®, ' (H))}] Defining
+ Tr{O2) BT (0r 0 (H))] w2 (wwh)
+ K22 E[Tr{(aral ®, ' (H))*}] and
+2Kn2 E[Tr{Or®, " (H)aral®," (H)}] T2y (W)
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we can use the above expressions to obtain
lim (S) <I>;1
g m ((Or®, )
_ "k —((On®,) ;  mR(((OrO; ) 1)
n%{ -1 ”2R -1
lim (S) @;1
(T /o) o ¢(Or )
((Or6;) — 1 nk —((Or6)

= v
n%{—l + n2R—1

T

T

from which the slope in (29) becomes (32). ko > ng,
Lemma 6 yields

E[T}{(WGVVD‘l}}::——EE——

mp —NR

while, form; < ngy

H.H!
lim F |Tr 1771 lI — 0
(Z1/7)—o0 my 1
and thus, altogether
1

E[Te{(W,W])~}] = @

from which, given (49), th% in (31) follows.
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and the same total pow&i . The vectoih, in turn, is given by

T
h= > Wi, Y W)y - > (Wil s
i=1 i=1 i=1

Since the entries o/, are independent zero-mean unit-vari-
ance Gaussian random variables, the entriels afe likewise
and Proposition 4 can be applied simply by settimg= 1.
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