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Abstract

There has been intense effort in the past decade on developing multi-user re-
ceiver structures which mitigate interference between users in spread-spectrum sys-
tems. While much of this research is performed at the physical layer, the appropriate
power control and choice of signature sequences in conjunction with multiuser receivers
and the resulting network user capacity is not well understood. In this paper we will
focus on a single cell and consider both the uplink and downlink scenarios and as-
sume a synchronous CDMA (S-CDMA) system. We characterize the user capacity of
a single cell with the optimal linear receiver (MMSE receiver). The user capacity of
the system is the maximum number of users per unit processing gain admissible in
the system such that each user has its quality-of-service (QoS) requirement (expressed
in terms of its desired signal-to-interference ratio) met. Our characterization allows
us to describe the user capacity through a simple effective bandwidth characterization:
Users are allowed in the system if and only if the sum of their effective bandwidths is
less than the processing gain of the system. The effective bandwidth of each user is a
simple monotonic function of its QoS requirement. We identify the optimal signature
sequences and power control strategies so that the users meet their QoS requirement.
The optimality is in the sense of minimizing the sum of allocated powers. It turns out
that with this optimal allocation of signature sequences and powers, the linear MMSE
receiver is just the corresponding matched filter for each user. We also characterize the
effect of transmit power constraints on the user capacity.
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1 Introduction

A central problem in the design of wireless networks is how to use the limited resources such
as bandwidth and power most efficiently in order to meet the quality-of-service requirements
of applications in terms of bitrate and loss. To meet these challenges, there have been
intense efforts in developing more sophisticated physical layer communication techniques. A
significant thrust of work has been on developing multiuser receiver structures which mitigate
the interference between users in spread spectrum systems. (See for example [21, 8, 9, 26,

10, 14, 15].)

In this paper, we would like to study the user capacity of a synchronous power-controlled
CDMA system with multiuser receivers. The processing gain represents the degrees of free-
dom in the system. We assume that at the receiver, each user is demodulated using a linear
receiver structure; in particular, we shall focus on the “linear MMSE receiver” ( formally
defined in Section 2; also see [10]). We are interested in the user capacity of both the uplink
(mobiles to base station) and the downlink (base station to mobiles) of this system equipped
with linear MMSE multiuser receiver. We say that a set of users is admissible in the uplink
system with processing gain NV if one can allot signature sequences to the users and control
their received power such that the signal-to-interference (SIR) of each user is greater than its
SIR requirement. We are interested in the problem of characterizing the maximum number
of users per degree of freedom, called the user capacity of the uplink system. Analogous
definitions of admissibility and user capacity can be made for the downlink. For the most
part in this paper we shall focus on the uplink (the downlink scenario turns out to be very
similar and we briefly summarize the results) and our main results are as follows:

1. K users with SIR requirements (31, ..., Ok are admissible in the system with processing
gain N if and only if

K ,
> LI

i=1 L+ 52
This allows us to characterize the admissibility of users via a notion of effective band-
width. If we consider % as the effective bandwidth of a user with SIR requirement

[, then users are admissible if and only if the sum of their effective bandwidths is less
than the processing gain of the system.

2. Our proof of the admissibility of users with SIR requirements (31, ..., B is constructive
in nature, i.e., we explicitly allocate powers and signature sequences so that users’ SIR
requirements are met (such allocations are called valid). Among the class of valid
allocations, we identify the optimal allocation, optimal in the sense of minimizing the
sum of allocated powers. The optimal allocation has the following structure:



(a) A user is said to be oversized if its” effective bandwidth is large relative to the
effective bandwidths of the other users. Oversized users are allocated orthogonal
signature sequences (hence independent channels) and powers proportional to
their SIR requirements.

b) Non-oversized users are allocated sequences that we denote generalized WBE se-
q g
quences. These users are allocated powers proportional to their effective band-

width.

3. With this allocation of signature sequences and powers, the MMSE linear receiver
simplifies (somewhat unexpectedly) to the matched filter for each user. Thus the user
capacity of a system using the a priori inferior matched filter receiver is the same as
that of the system using MMSE linear receiver.

4. In the special case when the SIR requirements of all the users are equal (to say 3),
our main result simplifies to the following: K users are admissible in the system with

processing gain N if and only if
h <1+ !
N 8
Using the optimality (in the sense of minimizing sum of allocated powers) of the allo-
cation scheme, we identify the precise loss in the admissibility of number of users as a

function of the background noise power and the average received power constraint.

In [17], the authors consider the scenario when the signature sequences of the users
are independent and randomly chosen. They show that the SIR of the users of a large
system (with large number of users and large processing gain) converges (in probability) and
analyze the user capacity of the system based on the value to which the SIR converges. It
is interesting to compare the performance of that system with the one considered here when
the sequences are optimally chosen:

1. Under the MMSE receiver, the user capacity of a system using random sequences is
asymptotically identical to that of a system with optimally chosen sequences. This
holds when there are no transmit power constraints, or equivalently, when the back-
ground noise power is low. We will provide an explanation for this phenomenon.

2. Under the conventional matched-filter receiver, a system using random sequences ad-
mits 1 user per degree of freedom less than when the sequences are optimally chosen.
This shows that while the MMSE and the matched-filter receivers have the same per-
formance when the sequences are optimally chosen, the MMSE receiver is much more
robust to the choice of spreading sequences.

3. Under transmit power constraints, systems employing random sequences admit strictly
less users than the corresponding systems with optimal sequences. We quantify pre-
cisely the gap in performance.



In related work, there has been a great deal of research studying the problem of power
control of the users for conventional CDMA systems. Distributed iterative algorithms that
achieve power control of the users is discussed in for example [3] and [5]. These ideas were
extended subsequently to systems with MMSE receivers [18], [7], but they focused on deriving
convergent power control algorithms rather than analyzing the achievable user capacity. The
problem of identifying good signature sequences has been studied in [12] in the context of a
spread-spectrum system with conventional matched filter receiver and equal received power
for all users. In [13], for equal received powers, the problem addressed in an information
theoretic setting is to identify signature sequences for which the sum capacity, the sum of
rates of all the users at which reliable communication can take place, is maximized. To
achieve sum capacity joint processing of the users is required (for example, MMSE receivers
with successive cancellation; see [20]) while in this paper we restrict ourselves to single user
demodulators. Though the problem addressed in [13] is thus different from the problem
addressed in this paper, the optimal sequences turn out to be identical. This statement is
true even for the situation of unequal received powers, as shown by the recent work [23].

An important special case subsumed by our framework is when the signature sequences
are constrained to be chosen from an orthogonal sequence set. This corresponds to dividing
the entire bandwidth into frequency slots (or channels), i.e., a joint FDMA/CDMA system.
In this case the receiver is trivial and both MMSE and matched filter receiver structures co-
incide. Our main result in this framework is as follows: K users each with SIR requirement
(3 are admissible in the system with processing gain N if and only if X' < N|1 + %J We
observe that the maximum number of users admissible per unit processing gain differs from
the earlier results by an integer part. Thus, we identify the gain by using non-orthogonal
codes and multi-user linear receivers; the difference depends on the factor ¥ and the pro-
cessing gain N. In the scenario when users are differentiated by their SIR requirement, we
identify the user capacity of the system.

This paper is organized as follows: In Section 2, we give a precise definition of the uplink
model and of the admissibility of the users. User capacity of the uplink system with linear
MMSE receivers for the situation of equal SIR requirements of the users is identified in
Section 3. In a physical system, the power transmitted by a user is constrained naturally.
In Section 4, we demonstrate the optimality of a particular allocation scheme (developed in
the previous section) in the sense of minimizing sum of allocated powers. This allows us to
precisely quantify the loss in user capacity of the system with a received power constraint.
Section 5 completely generalizes the results of the previous two sections to the situation
when users have different SIR requirements. In Section 6, we will focus on the downlink.
We can ask our admissibility and user capacity region questions in this setup too. As can
be expected, there is a lot of connection between the downlink and uplink scenarios and we
summarize the results. Section 7 focuses on the joint FDMA /CDMA setup that corresponds
to the restriction of signature sequences to be chosen from an orthogonal sequence set and
identifies the user capacity of the system under various settings. Section 8 contains our
conclusions and discusses directions towards future work.



2 Model and Definitions

2.1 Standard Synchronous CDMA Model

We consider a symbol-synchronous CDMA system and focus on the uplink. Following the
standard notation (see Section 2.1 in [22]), the received signal in one symbol interval (of T
time units) can be expressed as:

= iXZSZ (t) —|— n (t) t - [0, T]

Here T is the inverse of the data rate, K is the number of users and s; (¢), t € [0,7] is
the signature waveform of user ¢, and is thought of as an element of L? [0, ], the Hilbert
space of square integrable functlons on [0,T]. The waveform s, ( ), t €10,T] is assumed
to have unit norm. The information transmitted by each user is modeled as zero mean,
independent random variables X, X,,..., Xi. The variance F [X?] is the power at which
user ¢ is received. We denote the received power of user ¢ as p;, the product of the transmit
power of user ¢ and the path gain from user ¢ to the receiver (base station). By the assumption
of perfect power control or equivalently perfect channel estimation, we shall assume that we
can allocate received powers for the users. The process n (¢) is additive white Gaussian noise
independent of the user symbols Xi,..., Xg.

Let the processing gain of the system be N. Following the usual notation (as in Sec-
tion 2.3.6 of [22]), the signature waveforms can then be written as

= si(i) ¢ () e[0T (1)

J=1

where {t(t), t € [0,T]},_,  is an orthonormal set in L?[0,T] and s; (j) is the inner prod-
uct between the waveform of user 7, namely s; (¢) and ; (t). With some abuse of notation,
let us represent the vector of inner products (s; (1),...,s;(N)) as s; the signature sequence
of user 7 (s; is a vector in SN=1. the unit sphere in RN). Tt is well known that the pro-
jections {y;}._, yof yr, 1 €0, T on {tp; (1), t € [0,T]},_,  are sufficient statistics (see
Section 2.9.2 and Chapter 3 of [22]) for the problem of demodulating the user symbols.
Writing Y = (y1,...,yn) as a vector in RY, the received signal, can be written as:

K
Y = ZSZXZ —|— W

=1

where W is an i.i.d Gaussian vector with covariance o?/. independent of the transmitted
symbols. Henceforth we shall consider the allocation of signature sequences for the users.
By a suitable choice of the orthonormal waveform set {¢; (¢),t € [0,T]} the signature

waveforms for the users can be constructed (following (1)).

7=1...N?



Suppose the symbol of user ¢ is decoded using a linear receiver, denoted by ¢; (a vector
in RY), then the signal to interference ratio of user i (SIR;) is

2
SIR; = (consi)pi (2)
o2 (ciyei) + 2 (i 55)" pj

We say that K users are admissible in the system if there is an allocation of positive powers
Pis. .., DK, signature sequences si,...,s5x € St ' and linear receiver structures ¢, ..., cx
such that

SIR;, >3 Vi=1...K

Here 8 > 0 is some fixed SIR requirement of each user that has to be met for satisfactory
performance. Such a choice of powers and signature sequences is called a valid allocation.

2.2 Structure of Optimum linear receiver

It is well known that the MMSE receiver is the optimum linear receiver, optimum in the sense
of maximizing the SIR of each user. While there are many derivations of the structure of the
MMSE receiver (see [10, 17, 18] for example) ¢y, ..., ¢k, we give an elementary derivation of
the same as the argument of a problem of minimizing a convex function over a convex set
below (this will also aid us in developing notation to be used in the characterization of the
user capacity regions):

Fix the user powers py, ..., px, and the signature sequences sy, ...,sx. The optimum re-
ceiver ¢; is one that maximizes SIR;. Now, let S = [sy, $2,...,sx] and D = diag (p1, ..., pK)
and S; = [s1...,8i-1,8i41...,8k] and D; = diag(p1,...,pi—1,Pi41-.-,Px). Let Z;, =
SiD; St + o* and Z = SDS' 4+ o*I and we note that they are positive definite. Let
Z; = U;\;U} for a positive diagonal matrix A; and unitary U;. Also, let SDS* = UAU".
Then,

2
Ciy Si) Pi
max SIR; = max%
ci#0 ci#0 ciZici
_1 _1
wiA; 2Uls;istUA, 2 x; Lo
= p; max where z; = A2U!¢;
1 7 2
% #0 T;%;

Thus the argmax is given by z; = A;%Ufsi and the optimal receiver structure is
ci =77 s; (3)
Hence, under the MMSE receiver,
SIR;, = s'Z 'sip; (4)

1771

= 4 (Z — piSiSE)_l Sipi



Z_ls'stZ_lp'
= s |77V 4 T D) s,
Si ( + 1 —stZ=1sp; b
stZ7sipi
1 —stZ-1s;p;
where we used the following formula in the second step:

N1y, ATlayfAT!
(A—:L'y) =4 —I_l_ytA—lx

whenever the terms exist. Here s!Z7's;p; is strictly less than 1 and thus all the terms are

well defined.

3 Characterization of User Capacity

We shall begin with an elementary calculation of the error of estimation using the MMSE
linear receiver in terms of the signature sequences and powers of the users and derive a
“conservation law” for the estimation errors.

3.1 Conservation law for the MMSE receiver

Recall the channel model in matrix form:
Y=SX+W

where S is the matrix the columns of which are the signature sequences of the users and X
is the vector of transmitted symbols from the users. If X is the vector MMSE estimate of
X, a direct application of the orthogonality principle yields

X = Ds'[SDS' + 0% Y
and the covariance matrix of the error ¢ = X — X is given by
K.=D - DS [SDS" + 0% D (6)

where D = diag(py,...,px) is the covariance matrix of X. It follows that

_L

trace (D_%KED 2) (7)
1 -1 1
= K — trace (DiSt {SDSt—I—UQI} SD5)
= K — trace (SDSt {SDS”L + 02[}_1)
N )\z

- K=Y 0 (8)

=1




where \;’s are the eigenvalues of the matrix SDS*. If we let

E[(X: — X))
Pi

MMSE; =

be the (normalized) minimum mean-square error for user ¢, then (8) becomes

K N s
MMSE;, = K — ‘ 9
2 R Pp v ®)
> K —rank (9) (10)

There is a simple one-one relationship between the normalized minimum mean square error

MMSE; of user ¢ and the SIR achieved by that user, namely SIR; (see (2)). Let X; be the

linear estimate of X; from Y using the linear receiver ¢;, i.e., X; = c!Y. We shall assume

. 2
that ¢; is appropriately normalized so that the error in the estimate F [(oin — XZ') ] is
minimized at o = 1. Then, it can be verified that

1
MMSE;, = ——— 11

In particular, this relation holds when the receiver is the linear MMSE one. Using (9) and
(11), we have

K SIRZ K
— = K- MMSE;
; 1+ SIR, ' 2
N

A

= 12

ZZ:; Ai + o2 (12)

< N (13)

We can now derive the first main result of this paper: the identification of the user
capacity of a single cell S-CDMA system equipped with linear MMSE receiver. We assume
that each user has the same SIR requirement 3. Observe that if the number of users is less
than or equal to the processing gain, the trivial choice of orthogonal signature sequences for
the users ensures arbitrary SIR requirements to be met if we can scale up the power of the
users. Hence, without of loss of generality we shall henceforth assume that the number of
users is greater than the processing gain.

3.2 User Capacity Characterization

The following is a complete characterization of the admissibility of the users with equal SIR
requirements and equipped with MMSE receivers.



Theorem 3.1 K users are admissible in the system with processing gain N if and only if

K<N(1—|—%)

Proof Suppose K users are admissible in the system with processing gain N. Then, by
definition, there exist sequences sy,...,sx € SiY, positive powers py,...,px such that for
every user ¢, we have STR; > [3, where the receiver structure is as in (3). Appealing now to

(13), we have the upper bound
K <N (1 + l)

B

To see that this sufficient also, we shall provide an explicit valid allocation scheme:

Suppose K < N (1 + %) Choose the powers to be

0.2

—— Vi=1...K 14
1+%—% i { (14)

p=p=

and sequences such that SS* = %[ Then, using (5), Vi=1... K,

SITR;

o ¢ 27\
m = S (pSS +o [) S p

- -1

= s (%p[—l— 02]) Sip
Np

Kp+ No?

B

L+

Hence for each user ¢, we have SIR; = 8 and the K users are admissible in the system with
processing gain N. We need to show the existence of sequences such that SS* = %]. We
begin with some definitions:

Definition 3.1 For any = = (21,...,2,) € R", let

denote the components of x in decreasing order, called the order statistics of x.

Majorization makes precise the vague notion that the components of a vector x are “less
spread out” or “more nearly equal” than are the components of a vector y by the statement
x 18 majorized by y.



Definition 3.2 For x,y € R", say that « is majorized by y (or y majorizes x) if

Zle xp < Zle yi, F=1...n—1
Dol TR = iy Y]

A comprehensive reference on majorization and its applications is [11]. A simple (trivial,
but important) example of majorization between two vectors is the following:

Example 3.1 For every a € R" such that 30 a; =1,

o 11 1
(a1,...,a,) majorizes (—,—...,—)

’
n n n

It is well known that the sum of diagonal elements of a matrix is equal to the sum of its
eigenvalues. When the matrix is symmetric the precise relationship between the diagonal
elements and the eigenvalues is that of majorization:

Lemma 3.1 (Theorem 9.B.1 and 9.B.2 in [11]) Let H be a symmetric matriz with di-
agonal elements hy, ..., h, and eigenvalues Ay, ..., \, we have

(Mo osAn)  majorizes  (hy, ..., hy)

That h = (h1,...,hy) and X = (A1, ..., A,) cannot be compared by an ordering stronger than

majorization is the consequence of the following converse: If hy > --- > h, and Ay > --- \,
are 2n numbers such that X\ majorizes h, then there exists a real symmetric matriz H with
diagonal elements hy, ..., h, and eigenvalues Ay, ..., \,.

We shall use these notions and results to construct sequences such that 55* = %[ The vector
(1,...,1) in RY is majorized by the vector with N entries equal to % and the remaining
K — N entries equal to 0 (this is a simple application of Example 3.1). Now, appealing

to Lemma 3.1, there exists a symmetric matrix, say P, with unit diagonal entries and

eigenvalues % and 0 with multiplicities (both algebraic and geometric) equal to N and
K — N respectively. Let vy,...,on € RY*E be orthonormal eigenvectors of P corresponding
to the eigenvalue % Denoting the matrix S = [s,..., sk], we allocate sequences for the
users as below:
U1
K | v
S=4=1.
N
ON
Then, note that SS' = %[ These sequences were first identified in [12] (but in their
context the sequences were in {1, —1}N) and the authors referred to such sq,...,sx as WBE
sequences, sequences that meet the so-called Welch Bound Equality (see [25]). We shall
henceforth assume that the WBE sequences are in S L. [ |

10



3.3 Observations of valid allocations

Below, we observe some properties of valid allocations in general and in particular the specific
valid allocation we demonstrated in the proof of Theorem 3.1.

1. Suppose K users are admissible in the system with processing gain N. Let sy,...,sx
be a valid allocation of sequences. Then, with these sequences fixed, among all valid
allocations of powers (i.e., with this allocation SIR; > f3;) there exists a component-wise
minimal power allocation (see [18]) and with this allocation, SIR; = 3;. Hence, when

2

the sequences are WBE sequences, it follows that the power allocation p; = p = H—ij
5N

is the component-wise minimal power solution.

2. We shall now focus on this specific allocation scheme of WBE sequences and corre-
sponding component-wise minimal power. This schemes allocates the smallest sum of
powers among all valid allocations. We shall show this property in Section 4 when we
revisit user capacity with power constraints.

3. With this allocation, the MMSE receiver for user i is given by, following (3),

c; = Zi_lsi

-1
— (02[ + ijsjsz) S5
JF
= (02] — psist + pSSt)_l S
K A\-!
= <02] — psisf + %[) 8;
= as; (15)

where a is a constant (which can be shown to be equal to g) Thus the optimal linear
filter in this situation is just a scaled version of the matched filter. This observation
allows us conclude the user capacity of a system equipped with the a priori inferior
matched filter receiver is the same as that of the linear MMSE reciever:

Corollary 3.2 K users are admissible in the system with processing gain N and
equipped with matched filter receivers if and only if

1
K<NI[1+-=]).
(1+3)
3.4 Comparison with random sequences

It is interesting to compare this result with the corresponding characterization of user ca-
pacity of a system with random signature sequences carried out in [17]. The results in [17]

11



are asymptotic and are valid for a large system (i.e., a system with a large processing gain
and large number of users). We focus on the system where each user has SIR requirement
B3, the number of users is K and the processing gain is N and consider the regime K’ — oo
and N — oo and % — a. Appealing to the results in [17] we conclude:

1. Suppose MMSE linear receivers are used. Then, (Section 5 of [17]) the SIR of each
user converges (in probability) to a constant and (with appropriate power control) this
constant is at least the target requirement 3 if and only if & < 1+ % Thus, for a large
system, this suggests that using random sequences is as good as using the optimal
WBE sequences (in the context of user capacity) for the signature sequences of the
users.

From (10), note that the total normalized MMSE errors of the users is a constant,
independent of the relative powers of the users and depends very weakly on the signa-
ture sequences. To minimize the maximum MMSE among all users (or equivalently,
to maximize the minimum SIRs), it is therefore optimal to have symmetry among the
users such that they have the same MMGSE. This was achieved using equal received
power and the WBE sequences described earlier. However, this “symmetrization” can
also be achieved asymptotically when random sequences are used, since it is shown
in [17] that (with appropriate power control) the SIR’s of all users will converge to
the same number. But maximizing the minimum SIR’s is equivalent to maximizing
the number of users in a system with given equal SIR requirements. Hence, random
sequences and the WBE sequences yield the same user capacity asymptotically.

2. For the scenario of matched filters, following (Section 5 in [17]), the SIR of each user

converges (in probability) to a constant and this constant is at least the requirement
G if and only if a < % Thus 1 user per degree of freedom is lost asymptotically when
random sequences are used. A conservation law similar to the one for MMSE receivers

(as in (13) is lacking for the matched filter receivers.

4 Power Constraint and User Capacity

Our model has not included any constraints on the allocated received power of the users; we
shall now include a received power constraint in our model. In this section we shall precisely
quantify the loss in the user capacity due to the received power constraint; this loss will be
a function of both, the constraint, and the power of the background Gaussian noise. One
way to justify the constraint on the received power of the users is by considering average
transmit power constraint of the users. If one is able to adopt a model of fading for the users
that is ergodic (with the same mean fading) and independent, an average transmit power
constraint on the users translates into a received power constraint.

12



4.1 User capacity with power constraints

We define admissibility of K users (each having SIR requirement () in the system with
processing gain N and power constraint P as being able to allot ¢ signature sequence s; and
power p; < P for every user such that the achieved STR; (given in (4) is at least the target
value (. If the system has just one user, then, the minimum power required by that single
user to meet its SIR requirement is 302, To prevent a degenerate situation, we shall assume
that P > 0% As before, we assume that the number of users is greater than the processing
gain. Qur main result in this section is to precisely identify the loss in user capacity by
including such a power constraint:

Theorem 4.1 K users (each having SIR requirement 3) are admissible in the system with
processing gain N and average received power constraint P if and only if

1 o?
K<N[l+—-——=
(< (—I_ﬁ P)

Proof We shall first show the necessity: Suppose K users are admissible. Then, there exist
signature sequences si,...,sx € Si¥, positive powers py,...,px < P such that for every
user ¢, we have SIR; > (3. From (12), we have the conservation law

K qIR. N
Zl—l—SIR Z —I—a2 (16)

=1

where A, ..., Ay are the eigenvalues of the matrix SDS*. We note that

tr(A) = tr(SDS)
= tr(D) (17)
where the second equality follows by some algebra and noting that the columns of S have

unit /; norm. Now, if we let p* = % LS K | pi, then the vector (p*,p*,...,p*) is majorized by
the vector (Aq,...,An) (see Example 3.1). We need the following definition:

Definition 4.1 A real valued function ¢ : R" — R is said to be Schur-concave if for all
x,y € R" such that y majorizes v we have ¢ (x) > ¢(y). We say that ¢ is Schur-convex if
—¢ is Schur-concave.

An important class of Schur-convex functions is the following (Theorem 3.C.1 in [11]):

Example 4.1 Ifg: R — R is convex then the symmetric convex function ¢ (x) = 3", g (@;)
is Schur-conver. By definition, if g : R — R is concave then the symmetric concave function

o (x) =301, g(x;) is Schur-concave.

13



Observe that the map = — is concave in x and hence the symmetric concave map

_I_ 2
Ay  AN) = .
( 1, ) N) ; )\i‘I’O-z
is Schur-concave (see Example 4.1). Then we have
N N
A *
Z 2 S Z *p 2
=1 )\Z —I_ g =1 p —I_ g
_ W
- p* + 0-2
By hypothesis, SIR; > (3 and hence,
N *
K< N (18)
1+8 7 pr+o?
which implies that p* > % Since each p; < P it follows that p* < % I‘ . We then
conclude that K < N (1 = — %)
To see this is sufficient also: suppose K < N (1 + 1 %) We shall use the same

allocation scheme as in the proof of Theorem 3.1, namely, signature sequences to be WBE

sequences and powers

0.2

1+1i-K

We have, as in the proof of Theorem 3.1, the achieved SIR of each user is equal to 3. We
only need to Verify that our choice of powers does not exceed the constraint P. Using the

p=p=

prior K < N (1 + 1 ?2) we have for each user power
2
g —
pi = 1 178 S P
[
Thus the K users are admissible in the system. [ |

The proof of the characterization of user capacity allows us to conclude an optimality
property of the specific allocation scheme used above: suppose A users are admissible in the
system with processing gain N. Then for any valid allocation (signature sequences S and
powers p?,...,p%), from (18), we have that

sz > L (19)

I+1-5

For the allocation in the proofs of Theorems 3.1 and 4.1, the lower bound in (19) is met with
equality. We conclude that:

14



1. The allocation of WBE sequences and powers all equal to p = H—Z%’ gives the smallest
5N

sum of recetved powers among all valid allocations. In this sense, this allocation is
optimal.

2. Since with this allocation the MMSE linear receiver for each user is just the corre-
sponding scaled matched filter receiver (as seen in (15)), we have:

Corollary 4.2 K users (each having SIR requirement 3) are admissible in the system
with processing gain N and received power constraint P and equipped with matched

filter receivers if and only if
2
K<N(1—I—l—a—)

g P

4.2 Comparison with Random Sequences

We saw from the comparison in Section 3 that asymptotically (in a large system, where
number of users K' — oo, processing gain N — oo and % — «) there is no loss in user
capacity with MMSE receivers while using random sequences. It is interesting to compare
the results when there is a received power constraint. From the results in [17], we summarize:

1. From Section 5 in [17] we conclude that with a received power constraint P, users have
their SIR requirement 3 achieved (using MMSE receiver) if and only if

2
a<1+%—(1—|—ﬁ)%
The user capacity is thus strictly less than that with optimal sequences, when the
power constraint is finite. To understand why, we can appeal to (9):
K Y
> MMSE; = K — ) pV—

(20)

where );’s are the eigenvalues of the matrix SDS?. When the background noise power
is small compared to the received powers, any set of sequences which symmetrizes the
MMSE for all users are optimal. When o? is non-negligible, good sequences should
also minimize the right hand side as well. The WBE sequences achieve that by making
the eigenvalues least “spread out”, i.e. all the same. Using random sequences, the
eigenvalues are more spread out, resulting in a user capacity penalty when o? is non-
negligible.

2. When matched filters are used, following Section 5 in [17], we conclude that users can

meet their target SIR requirement 3 if and only if a < % — % when the received

power constraint is P. Thus there is a loss in user capacity strictly more than 1 user
per degree of freedom when using random sequences when compared with the user
capacity achieved with optimal sequences.
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5 Multiple Classes, User Capacity, and Optimal Allo-
cations

In this section we shall consider the situation when the users have different SIR requirements
and completely generalize the results of the previous two sections. This level of generality of
allowing users to have different SIR requirements caters to data and voice users, sharing the
common system, requiring different SIR requirements. As earlier, we shall assume, without
loss of generality, that the number of users is bigger than the processing gain.

5.1 User Capacity Characterization

We first define admissibility of K users (with SIR requirements 31, s, ..., Ok) in the system
with processing gain N as being able to allot signature sequences and powers for the users
such that for each user ¢ the SIR achieved by the MMSE receiver for that user (as in (4)) is
greater than or equal to 3; (such allocations are called valid). Our main result of this section
is an analogue of Theorem 3.1; a complete characterization of admissibility:

Theorem 5.1 K users (with SIR requirements 31, Bs, ..., Bk ) are admissible in the system
with processing gain N if and only if

Proof This result motivates the consideration of the quantity % as the effective bandwidth
of a user with SIR requirement 3. Then the criterion of admissibility has a simple interpre-
tation: Users are admissible if and only if the sum of their effective bandwidths is less than

the processing gain of the system. Let us denote the effective bandwidth by e (3) = L.

145
We shall first show the necessity: since K users are admissible, by definition, there exists
a valid allocation of signature sequences s; and powers p;. Since SIR; > ;, and the effective
bandwidth is a monotonic function of the SIR requirement, from (13) we have

K 6
’ N
; L+ 5 <

We shall show that this is also sufficient by explicitly demonstrating a valid allocation. Say
that a user is oversized' if the effective bandwidth of that user is large relative to the effective
bandwidths of the other users. More precisely, user 7 is defined to be oversized if

Lim1 € (B3) Leoets )y
N = S5 Leay)se(son

e(fBi) > (21)

'We would like to thank Prof. Sergio Verdd for simplifying our presentation by suggesting this terminology.
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Denote the set of oversized users as K. A key observation is the following: K is the unique
subset of users satisfying:

(N= | K |)mine(8) > > e(8;) > (N— | K |)maxe(5;) (22)
1EX jgx 1gK
Some simple observations can now be made:

1. No users are oversized if and only if < SK e(B:) > e(B;) for every user j.

2. When all the SIR requirements are identical, no user is oversized.

3. There can be at most N — 1 oversized users.

4. If a user 1 is oversized then every user with SIR requirement at least [3; is also oversized.
5. A simple algorithm to find KX is the following:

Step 1 Start with £ = ®.

Step 2 If 0 e(B;) = (N— | K |) max;gx e (3;), then terminate.
Step 3 Else, update K = K U {arg max;gx e (5;)} .

Step 4 Return to Step 2.

Let ¢; € RN be the vector (0,0,...,0,1,0,...,0) with the entry 1 being in the ith position.
Then ey,..., ey form an orthonormal basis for R"Y. Recall that the set of oversized users is
K and we know that | K |< N. Consider the following allocation of powers and sequences:

1. For oversized users, we allocate independent channels, i.e., for users in K, we allocate
the signature sequences ey, ..., €. For user i € K, we allocate power p; = 0(3;.

2. For users not in K we shall allocate sequences from the subspace span {e|,c|_|_1, ey eK}
which has dimension N— | K |. From (22), it follows that 3o e (8;) > (N— | K [) e (5))
for all users j € K and hence the vector with K’ — N entries equal to 0 and the other
N— | K | entries equal to N+|}C| >iex € (B;) majorizes the vector (e(8;), Vi € K) (see
Example 3.1). Now, appealing to Lemma 3.1, there exists a symmetric matrix, say
P, with diagonal entries (e (3;), ¥Vj € K) and eigenvalues N+|/C| >jex €(8;) and 0 with
multiplicities (both algebraic and geometric) equal to N— | K [ and K — N respectively.
Let vi,...,on_|x| € RYE=IKl be orthonormal eigenvectors of P corresponding to the
eigenvalue N+|}C| >iex € (B;). Now choose powers for user j ¢ K proportional to its

effective bandwidth,
(N—[K]) o
N— | K | —Zie/ce(@)

Observe that ¢ is positive by the hypothesis S5, e (8;) = =K, lflﬁl < N.

(23)

p; = c-e(B;); where constant ¢ =
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Let D be the diagonal matrix with entries pi, J & K. For ;7 € K, define sequences
§; € RIE-IKD and the matrix S =[5, j € K] as

U1
& CZ;e/ce(ﬁj) U‘z D%
VN= K| '
UN-|K|

Since the diagonal entries of StS are unity, 3; have unit norm, for every 5 € K. Also,
note that
cXjex € (B)
N—| K|

We shall denote such sequences as generalized WBE sequences. Note that when D is
a scaled identity, the sequences reduce to the WBE sequences. Appendix A discusses
the construction of generalized WBE sequences.

SDSt = I (24)

Now allocate signature sequences for users not oversized as follows:
V7 QIC S; = (0,...,0,5]‘) ES{V_I

With this allocation of sequences and powers we now have,

o*diag {1+ 3;, 1 € K} 0
Z:SDSt+02[: c e( 55 25
0 ot 4 meedB) (25)

Substituting in (5),
SIR;, = 3, Yiek

StZ_IS‘p‘
I B Lt :
SIB = s gk
(N=|K])p;
(N=[K [)o? + cXpgr e (Be) = (N=[ K |) p;
= B (26)

Thus each user has its SIR requirement met which completes the proof. [ |

This characterization of admissibility along with the valid allocation scheme above allows
us to make the following remarks:

1. It is interesting to observe that the linearity of the boundary of the user capacity is a
consequence of (10), that the total minimum mean-square errors of the users is a con-
stant independent of the received powers and dependent very weakly on the signature
sequences. This also explains why here, as in the single class case, random sequences
achieve asymptotically (as the processing gain gets large) the same performance as
optimal sequences.
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2. In practice, one can imagine a small number of different SIR requirements of the users
(say two or three). We introduce the notion of different “classes” of users; all users
of the same class have a common SIR requirement. We assume there are L classes
(fixed) and users of class [ have SIR requirement 3;. We know (from Section 3) that NV

degrees of freedom can support L(l + %) N| users each with SIR requirement 3. This

suggests that we could “channelize” the system such that users of different classes do
not interfere with each other and asymptotically achieve a; users of class [ per degree
of freedom whenever Y2 | 28 < 1 This is indeed true and the following statement

1406
can be verified: We can admit at least k; = |oyN — 1 — éj users of class [ in a system
with processing gain N where ay, ..., ay positive such that %, f_ll_%l < 1.

3. We can identify two important situations when there are no oversized users:

(a) When all the SIR requirements are identical, then £ = ®. This is the result
contained in Theorem 3.1.

(b) When there are at least as many users in each class as the processing gain of the
system then it is straightforward to see that that there are no oversized users.
Suppose class [ has K; > N users and Y, {‘_l_l—gll < N. Then, we can make a

familiar valid allocation: signature sequences for the K; users of class [ to be

WBE sequences (this can be done by the hypothesis that K; > N) and powers

the same for every user i of class [ to be pl = p/ = 1—|ﬁ—lﬁl v Z]igrz w7 - Lhe SIR of
T Luj=1 146

user ¢ of class [ is, as in (5) can be verified to be exactly 3. This ensures that for
every class [, K} users of that class are admissible in the system.

4. For the specific valid allocation demonstrated in the proof of Theorem 5.1, we can
calculate the MMSE receiver for the users (from (3)) to be:

c;, = 5 \V/ZEIC
¢ = Zl_lsj \V/.]QIC

~1

= ol + Zpksks}i) S;
k#j

= (02] — pj3j3§ + SDSt)_l 55

= (02] — p]@]@; + gbgt)_l 3; ; from (25)

)1) h s; 3 from (24)

where a; is a constant (which is easily seen to be (1 + ;) (1 — mzkgKe(ﬁk))).
Thus the MMSE receiver is just the scaled matched filter receiver for each user. This
allows us to conclude, exactly as in Section 3, that there is no loss in user capacity
when we restrict the system to use the a priori inferior matched filter. To emphasize:

19



Corollary 5.2 K users (with SIR requirements [31,..., Bk ) are admissible in the sys-
tem with processing gain N and equipped with matched filter receivers if and only if

5.2 Optimal allocation of powers and sequences

We proved Theorem 5.1 by explicitly demonstrating a valid allocation scheme. We shall now
identify the nature of optimality of this allocation scheme. This is a generalization of the
ideas in Section 4 to the situation when users have different SIR requirements.

The key observation used in Section 4 to characterize the optimality of WBE sequences
was (9) which related the eigenvalues of SDS* and the MMSEs of the users (and hence the
attained SIRs of the users; using (11)). We shall now strengthen (9) to obtain the precise
relationship between the eigenvalues of SDS? and the attained SIRs of the users using the
MMSE receiver structure:

Fix K > N, the signature sequence matrix S and the diagonal matrix of user powers
D. Suppose the MMSE receiver structure is used and the attained SIRs of the users are
B1,. .., BKk. Then appealing to (6) and (11) we have that the diagonal entries of the matrix

D3 St [SDS* + 02[]_1 SD? are 145—151 by 145—15\1 Now, if we denote the eigenvalues of SDS? by

AL, ..., Ay it is straightforward to verify that the K x K matrix D3 St [SDS* + 02[]_1 SD3
has N eigenvalues equal to 02A_|_1A1 by UQA_I_NAN and the remaining K — N eigenvalues equal to
0. Hence by an appeal to Lemma 3.1

A AN L & Pr
(02 n )\17 "o 4 )\N70 70) majorizes (1 + ﬁ17 1+ By ( 7)

Observe that the conservation law mentioned in (9) follows directly from (27) above. The
statement that (27) is the precise relationship between the eigenvalues of SDS? and the
attained SIRs of the users is made clear by the following observation:

Suppose we are given yi,...,yny € [0,1) and B1,..., 8k > 0 such that

61 ﬁK )
L+ 507 L+ B

(y1,---,Yn,0,...0) majorizes ( (28)

Then the claim is that there exists an allocation of signature sequences S and user powers

D such that

2 2

SDS* has eigenvalues 79N Yoy 7 IN (29)
L=y I —yn

The attained SIRs of the users are i, ..., Bk (30)
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To see this, consider the following construction of S and D. Given yy,...,yn € [0,1) and
B1, ..., Bk > 0 satisfying (28), by an appeal to Lemma 3.1, there exists a K’ x K symmetric

matrix H with diagonal entries THA lfg and eigenvalues yq,...,yn,0,...,0. Denote
N = f Z’ for each ¢ = 1... N and let A = diag{Aq,..., Ay }. Let U be the K x N matrix
with columns the normahzed eigenvectors of H correspondmg to the eigenvalues yy, ..., yn.
Then .

H=U(A+o%) AU (31)

Define pq, ..., px to be the diagonal entries of the K" x K matrix UAUtand D = diag {p1,...,px }
Now define the signature sequence matrix S by

S =QAU'D 2

for some orthonormal N x N matrix (). Then observe that:

1. The columns of S have unit norm, i.e., S € S.
2. SDS' = QAzUUAZQ! = QAQ! has eigenvalues Ay, ..., Ay be definition.

3. The SIRs attained by the users are 3y, ..., 0x. To see this, note that

DES'[SDS' 4 0?1 SDE = UA (A4 o?1) AR
= H using (31)

B1 Br
14617777 148Kk

and by definition the diagonal entries of H are

Hence by construction we have demonstrated the existence of signature sequences S and
powers D so that both (29) and (30) are met.

We shall now use the observation in (27) and (28) to characterize the optimality of our
signature sequence and power allocation Now suppose we are given that the necessary
condition YK, 1-|—ﬁ Theorem 5.1 there exists some S
and some D such that the achieved SIRS of the users are 31, ..., k. If we denote Aq,..., An
as the eigenvalues of SDS* and y; = Q_M , Vi = 1...N then (28) shows the relationship
between y1,...,yy and Gy,...,Bk. Now,

ipi = tr {SDSLL} see (17)

_ ﬁi o (32)

The lemma below identifies a lower bound on 3% | p;. Recall that the set of oversized users

is denoted by K.
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Lemma 5.1 Let K be the set of oversized users. Given the constraint (28),

mind 3 Y }_ L (N KDY jgre(8))
{;1—% "5 N TR S ) )

Suppose true. Then for any allocation of sequences and powers so that the SIR requirements
of the users are met, (33) can be used in conjunction with (32) to obtain a lower bound on
the sum of allocated received powers:

K | , IN= K ) Ejex e (8))
2P LB NI Y e (3)

It is now straightforward to verify that the sum of powers allocated in the sufficiency proof
of Theorem 5.1 (in (23)) meets this lower bound. Thus, our specific valid allocation of se-
quences and powers is optimal in the above sense of minimizing the sum of allocated powers.
We shall now prove the lemma.

Proof of Lemma 5.1: Let us develop some notation by defining the set over which yy,...,yn
vary. Rewriting (28), let

N = {(yl,...,yN) € RJ_I\_T (Y1, .-, yn,0,...,0) majorizes (e (61)7...76(6]())} (34)

Observe that the map z +— %= is convex and hence the symmetric convex map f(y) =

>N # is Schur-convex (see Definition 4.1 and Example 4.1). Hence if y majorizes § then
fly) > f(y). We now complete the proof of Lemma 5.1 by identifying a “Schur-minimal”

element in V. Let the set of oversize users be denoted by K. Let y* = (y,...,yy) € RJ_IY be

Consider the following claims:

yreN (36)
y majorizes y* Vy € N (37)

Suppose these are true. Then f(y*) is the minimum value of the optimization problem in
(33) and the claim in Lemma 5.1 is now straightforward to verify. We only need to prove

(36) and (37) above.

It is straightforward to verify from the definition of y* and by properties of oversize users
that y* € N. Let y = (y1,...,yn) € N and ypj, ...y denote the order statistics of y
(see Definition 3.1 for the notation). Let fpy,. .., Oix] be the order statistics of 3y,..., Bk.
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By the definition of y* in (35) and properties of oversize users, it can be verified that the
following relation is true among the elements of y*:

K e
Y = max{zllT(ﬁ),e(ﬁ[l])} (38)

K _ Nk * k
7 max { 2z € (Zﬁ\f)— kZZZI al , € (ﬁ[k-l—l]) + Z (e (5[2’]) - yﬁ])} Ve=1...N—1

Hence VE=1... N — 1 we can write

k1 kil e(ﬁ) N k—l k
_— 1 J
ZZ:; Y = max{; € (5[2']) ) ]N 2 Zy }

(39)
K .
Now, since y € N we have N y; = K ¢(3) and hence yn) = w Furthermore,

yn) = € ([3[1]). Hence,
Sisy e (6 .
Yl = max {IT() ¢ (5[11) =Y

We shall complete the proof of the claim that y majorizes y* by induction. Suppose
Sk LY 2 Sk 1 Y[y for some 1 <k < N. Since SN yk_H] = 25‘21 e(B;) — Xr, yp and

1 eB) = iy
Ylk+1] = Yk42] = - - - = Y[N], We have Ylk+1] = ZJ‘ ]é_kz L Hence

k+1 K N k—l
;y[i] EZN1E(£)_I_( )Zy

ZZB1€(5)+ N—k-1
- N —k N —k

Y

Z Y[y by induction hypothesis (40)

=1

Since Y kt! ( 1— ¢ ([3[2])) > 0, from (40), we have

k+1 k+1 e(ﬁ) N k1
;ym > maX{Ze(ﬁm)a JNl —+ Zy[z}

=1

k+1

; yp from (39)

This is true for all k =1... N — 1. Hence y majorizes y* and y* is a Schur-minimal element

of V.

6 Downlink and User Capacity

Until now, we have been considering the uplink of the cellular system. In the downlink of
this system there is a single transmitter (the base station) and there are multiple receivers
(the users). We shall first formally define our model and then consider the user capacity of
the downlink.
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6.1 Definitions and Model

Suppose there are K users in the downlink of the system. Let the path gain from the base
station (interchangeably referred to as transmitter) to user i be h;. We suppose that the noise
at the receivers is additive white Gaussian with the same variance o2 per degree of freedom
for each user (there is no loss of generality in this assumption since we can incorporate this
into the path gain parameter h;). We say that K users (with path gains from the base
station being hy,...,hx and each having the same SIR requirement of (3) are admissible in
the downlink of the system with processing gain N if we can allot transmit power p; and
signature sequence s; at the transmitter corresponding to user ¢

piki (si,¢)?
% (ci, ) + > iz Dihi (85, ¢i)

SIR; = 5 > 0 (41)
where ¢; is the MMSE linear receiver given the signature sequences and the powers. Pro-

ceeding as in Section 2.1, it is easy to verify that the optimal (in the sense of maximizing
SIR for each user) linear receiver ¢; for user i is

C; = Z»_lsi (42)

K3

where Z; = C;L—j[ + 24 pj3j3§ and the corresponding STR; with the optimal receiver is
S[RZ = SfZi_lsipi (43)

It is clear that we can make a similar definition of admissibility of the users when the receiver
structure is fixed to be the matched filter. The similarity of the achieved SIR equation (41)
to the corresponding one in the uplink in (2) is apparent. Only the noise variance o in (2)
is replaced now by % If we have no constraints on the allocated power we can “null out”
the additive noise and the admissibility characterization is identical to that of uplink.

6.2 User Capacity Characterization

Theorem 6.1 K users with path gains hy, ..., hx from the base station and each having the
same SIR requirement 3 are admissible in the downlink of the system with processing gain

N if and only if
1
K <N 1—|——).
(13

Proof We shall first show the necessity, on the same lines of the uplink situation. Suppose
the K users are admissible in the downlink. Then, for each user i, there exists signature
sequence s; and transmit power at the base station p; (as a function of the path gains
hi,...,hk) such that the achieved STR of user ¢ (as in (41)) is greater than or equal to 3.
Using (43)

siZ 7 eip > (44)
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Proceeding as in (5), we have, for each user 1,

~ StZA»_lsi i
SfZZ»_lsipi = - lp (45)
1 —siZ7 sip;

where Z = ZZ + p;sist. Recalling the notation developed in Section 2, S = [sy,...,sk| and
D = diag {p1,...,px} and SDS* = UAU. Then we can rewrite Z; = %[+ SDS*. We have,
from (44), that for each user 1,
szi_lsipi > B
1403

Equivalently, we have for each user 1,

2

K3

Denoting h = max® | h;, we have for each user 1,

f s -

o? !
= Sf ( iL [ —|— SDSt) SiPi

Summing up the terms, we have

Kp [ o? !
< |5t (14 5DsY) SD
115 = (h + )
L . »
E—— SDSt(iL[—I—SDS"‘)
< N

To show this is sufficient also: suppose K < N (1 + %) and hq,...,hx be arbitrary
positive real numbers. Allot WBE signature sequences for the users and powers

pi=p=- < Vi=1.. K (46)
h(1+5-5)

where h = minX | h;. Then, S5t = %[ and hence for every user i we have Z; = (% + Bﬁp) 1.
Using (45), Vi=1..., K,




- P AT
TN )

_ s

R e R

> B (48)

where we used the fact that hi, (1 + 3 — %) + % — (# <1 since by hypothesis we have that
K <N (1 + %) and i < h;. Hence the K users are admissible. [ |

Some comments are in order now:

1. A (simple) closed form expression of the allocation that is optimal (in the sense of the
previous sections) seems unattainable. But it is worth emphasizing that our allocation
above has the property that the f signature sequences are allocated (to be WBE se-
quences) independent of the path gains and only the powers are chosen as a function
of the path gain.

2. With matched filter receivers the admissibility is unchanged and we have: K users with
path gains hy, ..., hg from the base station and each having the same SIR requirement
( are admissible in the downlink of the system with processing gain N if and only if

K<N(1—|—%)

3. When users have different SIR requirements, a simple calculation shows: K users with
path gains from the base station hy,...,hx and having SIR requirements 3y,..., Bx
are admissible in the downlink of the system with processing gain N if and only if
K lf—lﬁl < N. The same statement is true when using matched filter receivers instead
of MMSE receivers.

4. For every class [, «; users per unit processing gain of that class are admissible by

“channelizing” the downlink of a large enough system if 3% | f_ll_%l < 1.

7 Joint FDMA /CDMA Case and User Capacity

Traditional multiple-access schemes divide the channel into slots and it is important to note
that we can incorporate a slotted system into our framework. We achieve this by forcing
the signature sequences to be chosen only from an orthogonal sequence set. Then users that
have the same signature sequence are in the same “slot” or “channel” and do not cause
any interference to users in different “channels” due to the orthogonality of the signature
sequences. In this case the receiver is trivial and the MMSE and matched filter receivers
coincide. It is interesting to identify the user capacity in this situation and this exercise will
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enable us to explicitly identify the gain in user capacity by using non-orthogonal signature
sequences. In this section, we identify the user capacity of the slotted system in the variety
of settings. The conclusion we draw from the results is that the user capacity in this case
differs from the earlier one by an integer part of a function of the SIR requirement. The
assumption below is that the signature sequences are now constrained to be chosen from an
orthogonal sequence set (whose linear span has dimension equal to the processing gain of
the system). We first focus on the uplink.

Proposition 7.1 K users each with SIR requirement 3 are admissible in the system having
processing gain N if and only if

K<N(1+%) if|5)=1
K< NLl—I—%J else

Proof Since the sequences are chosen from an orthogonal set, only users having the same
sequence (we shall refer to them as users in the same channel) cause interference to each
other. We shall hence focus on the user capacity for a single channel. K users are admissible
into a channel with SIR requirement (3 if there exist positive powers py,...,p; such that,
analogous to (2),

=— P spvi=1...K (49)

The existence of such powers can be seen to be equivalent to (see Theorem 2.1 in [16])

r(A) <1+ L (50)

8
where r () is the Perron-Frobenius eigenvalue of the argument (which is a non-negative
irreducible matrix; for notation and definition see Chapter 1 in [16]) and A is a K x K
matrix with all entries being equal to 1. Since r(A) = K, the existence of powers satisfying
(49) is equivalent to the number of users K <1+ % Since we have N channels available,

this is equivalent to the total number of users K < N (1 + %) if L%J = % and K < N[1+ %J
else. [ ]

In the general situation when users have arbitrary SIR requirements, we shall summarize
our results without detailing the proofs:

1. We shall focus on a single channel first. K users with SIR requirements (31,. .., g are
admissible in a single channel if and only if

K 6
‘ 1
; L+ 5 <
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2. When there are N channels, a sufficient condition for admissibility of A" users with
SIR requirements 3y, ..., Bk is Y&, lflﬁl < N. A necessary and sufficient condition
for admissibility is there being a way to allot every user to one (among N) channels
such that users within each channel are admissible. A (simple) closed form expression

is eluding us.

Proposition 7.2 K users each with SIR requirement 3 are admissible in the system having
processing gain N and power constraint P if and only if
1 Go?
K<N|[14 - - .
SN+ 5=

Let us consider the single channel first. K users are admissible in the single channel if there

exist positive powers py,...,px each upper bounded by P such that for each user 2
pi
SIR; =
o? + Z];éz P

We can rewrite this in matrix notation as ([ — fj_eﬁt) p > %e where e is a K x 1 vectors
of all ones. As in (50), the existence of such positive powers is seen to be equivalent to

rleey) = K <1+ % Furthermore, under this condition, there is a component wise minimal

power solution, (see Theorem 2.1 in [16]) given by

5 = Bo? ([ ﬁeet)_ .

1+8\ 148
pBo’
= ————— ¢ after some elementary algebra
1+8—Kp3

Thus, K users are admissible in the single channel with power constraint P if and only if

K<1+ % and % < P. This is equivalent to

1 Go?
K<1+—-—
A < —I—ﬁ P

Since there are N channels, we conclude that this is equivalent to the total number of users

(in all the N channels) K < N|[1 + % — GTfJ [ ]

As earlier, we shall state the user capacity for the downlink system in this situation
without detailing the proofs. The proofs can be obtained by an argument similar to the ones
made above.

1. K users (with path gains from the base station being hq,...,hx) each with SIR re-
quirement  are admissible in the downlink of the system having processing gain N if
and only if

- 1 e 1y _
K<N(1+%) if[1] =
K< N|1+ %J else

1
B
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2. K users (with path gains from the base station being fy, ..., hx) with SIR requirements
81, ..., Bk are admissible in a single channel in the downlink if and only if YK  £i <
1.

=1 145,

8 Conclusions and Future Work

We have characterized the user capacity in a S-CDMA system using linear receiver structures
for both the uplink and the downlink. The effect on user capacity by limitations such as
choice of receiver structure (restriction to matched filter) and transmit power has also been
characterized. User Capacity when there are multiple classes of users has been discussed.
We also identified the signature sequences and the appropriate received powers to choose so
that every point in the user capacity region is attained and identified the optimal nature
of this allocation scheme. Though our model does not make any restrictions on the users’
symbols X;, we have a heavily coded system (such as that of IS-95) in mind and that the
MMSE estimates are used for soft decoding of the users’ raw bits. The desired %b for 1S-95
system is about 3-7dB (see page 183 in [24]) and this corresponds to a SIR requirement of
about 0 = 3.

Most previous studies of multiuser receivers (see [22] for a comprehensive study) are user-
centric. Specifically, typical measures such as near-far resistance focus on the performance
of a single-user in the face of worst-case interference. Different from these works, here,
we consider a network-centric formulation where the users have to simultaneously satisfy
their performance requirements and network-level user capacity is the ultimate performance
measure. Despite the simplistic setting of symbol synchronism and no fading (equivalently,
perfect channel estimation and power control) this formulation allows us to study the fun-
damental tradeoffs between the performance of different users through the allocation of
signature sequences and power control.

We are currently studying the effects of asynchronous reception of the users’ symbols at
the base station and presence of multi-paths. The assumption of perfect power control made
in this paper is relaxed and results here are extended in [1]. The performance of random
sequences in an asynchronous CDMA system appears in [6].

A Existence and Construction of Generalized WBE
Sequences

We have identified generalized WBE sequences as the optimal sequence allocation in Sec-
tion 5. In the proof of Theorem 5.1, we also illustrated a procedure to construct these
sequences. In this appendix we shall discuss some characterizations of these sequences and
mention some open problems. As a reprise, we shall repeat the definition of generalized WBE
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sequences: Fix K > N henceforth. Fix D, the diagonal matrix of user powers py, ..., px.
Let proy = SR, p;. Then, say that sq,...,s5 € SP7, (the unit sphere in RY), are gener-
alized WBE sequences and the matrix S = [s1,...,sx] as a generalized WBE matriz if the
following three conditions are satisfied:

L. The rows of S have the same l; norm, equal to /5.

2. The columns of S have unit {3 norm.

3. The rows of SD? are orthogonal to each other.

Properties 1 and 3 can also be succinctly expressed as SDS* = &etl. When K = N and D is
scaled identity, orthonormal matrices are the only matrices satisfying the above 3 properties.
When K = N and D is not the scaled identity, then there is no generalized WBE matrix.
We shall now generalize this observation to arbitrary K > N:

The matrix D3S5'SD? has the same eigenvalues as SDS along with NV additional zero
. . . . 1 1 ..
eigenvalues. Since the diagonal entries of DzS'SD? are py,...,pum, a necessary condition
for the existence of a generalized WBE matrix S is, by an appeal to Lemma 3.1,

(p;t,...,p;t,(),...,()) majorizes  (p1,...,PK)
which simplifies to Prot > pi, Vi=1,....K (51)
Observe that when K = N, (51) reduces to the condition that p; = py = -+ = px. As

suggested by Lemma 3.1, this condition is also sufficient for the existence of a generalized
WBE matrix S. To see this: suppose (51) holds. Then, by an appeal to Lemma 3.1, there

exists a real symmetric matrix, say P, with diagonal entries py,...,px and eigenvalues &t
and 0 with multiplicities (both geometric and algebraic) N and K — N respectively. Let us
denote the set of such matrices by P and P as an element of this set. Also, let vy,..., vy be

Ptot

< (written as elements

the normalized eigenvectors of P corresponding to the eigenvalue
of R*&, We claim that the definition

U1
Prot U2 _1
S = D™z
N
UN

satisfies the three properties of generalized WBE matrix. Properties (1) and (3) are satisfied
by definition. It is trivial to verify that S*S has unit diagonal entries and hence property (2) is
satisfied also. The important observation is that every generalized WBE matrix is generated

in this way: If S is a generalized WBE matrix, then the N rows of V 2 ,/]%SD% serves

Ptot

as the eigenvectors corresponding to the eigenvalue 2t of some matrix P € P. Also, it is a
trivial observation that, if S is a generalized WBE matrix, then so is ()5 for any orthonormal

30



matrix (), i.e., rotating all the generalized WBE sequences by the same rotation matrix does
not alter their properties.

Given their optimality, it is important to characterize generalized WBE matrices up to an
equivalence class of orthonormal rotations. Such a characterization will aid design questions
such as constructing sequences with entries constrained to be in {4+1,—1} or with a peak
power constraint on the entries. Though we have characterized all generalized WBE matrices
through the eigenvectors of certain positive definite matrices with fixed diagonal entries and
fixed eigenvalues, this characterization does not seem to aid, in a straightforward way, the
answering of the design questions mentioned above. Nevertheless, this has afforded us some
intuition on constructing modified WBE matrices; in [23], we demonstrate a constructive
(iterative, with at most K iterations) algorithm to construct the eigenvectors vy, ..., vy of
the matrix P € P.

For the special case when D is the identity, the matrix S reduces to a WBE matrix and
simple construction schemes are known:

1. WBE matrix goes by the name of tight frames* in the context of over complete ex-
pansions in RY in Wavelets literature (see [2] for a detailed review of tight frames).
The following construction of tight frames is well known: assuming N is odd, the kth
sequence is given by:

2 1 ok | 2nk 2rn(N—-1)k . 20 (N-1)k
”N ﬂ,cos e ,sin e y...,COS 5K ,sin 5K

for | <k < K. When N is even, we construct K sequences as above (replacing N
by N + 1) and ignore the first element (namely %) of each sequence and scale the

N+1
N

resulting sequence by to normalize it. It is easily verified that this constructs
WBE sequences for arbitrary K > N.

2. In [12], the authors construct WBE sequences with entries restricted to {+1, —1} when
K =2 for [ < N.

3. We remark that constructing WBE sequences for every K > N with entries restricted
to {+1,—1} is equivalent to solving the longstanding open problem of constructing
Hadamard matrices for every multiple of 4 (see [4] for details and further references on
this problem).

4. Recently in [19], motivated by the demonstration of the optimal nature of WBE se-
quences, the authors describe a distributed algorithm that updates iteratively the sig-
nature sequences of the users. Given from a initial set of signature sequences for the
users (that has some very weak properties) the authors show that the users’ signature
sequences converge to WBE sequences using this iterative algorithm.

2We would like to thank Vivek Goyal and Prof.Martin Vetterli for pointing this out to us.
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5. When K = N 4 1, based on our characterization of generalized WBE sequences, we

. . 2 .
conjecture that if s1,...,sy41 are WBE sequences, then (s;,s;)" = % for some ¢ and

all j # 1.
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