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Abstract

This paper is concerned with the design of gain-scheduled controllers
for Linear Parameter-Varying systems. Two alternative LMI charac-
terizations are investigated. Both characterizations are amenable to a
finite number of LMI conditions either via a gridding of the param-
eter range or via grid-free techniques which rely on multi-convexity
concepts. Practicality and implementation issues are discussed and
examples are provided.

1 Introduction

The gain-scheduling problem has been the subject of a great deal of
research over recent years, both from theoretical and practical view-
points. This renewed interest probably stems from the development
of new techniques and software which allow for a more rigorous and
systematic treatment of the gain-scheduling problem. The classical
approach to this problem essentially consists of repeated design syn-
theses associated with some scheduling strategy connecting locally de-
signed controllers. Such schemes, however, lack supporting theories
that guarantee the behavior of the scheduled controller. A signifi-
cant contribution toward the elimination of such weaknesses is the
formulation of the gain-scheduling problem in the context of convex
semi-definite programming [1], an elegant and solidly based branch of
optimization theory [2, 3, 4]. Expressed in terms of Linear Matrix
Inequalities (LMlIs), the gain-scheduling problem is readily and glob-
ally solved using currently available efficient optimization software [5].
LMI techniques now appear as very natural mechanisms for the formu-
lation of gain-scheduling problems as well as for a vast array of other
problems in the control field. Reference [6] gives an overview of the
scope of application of such techniques.

As emphasized in Ho, control theory, a key stage in the characteriza-
tion of gain-scheduled controllers is the search for adequate Lyapunov
functions that establish stability and a performance bound for the
closed-loop system. The LFT gain-scheduling techniques in [7, 8, 9, 10]
or the so-called quadratic gain-scheduled techniques in [11, 12] make
use of a fixed Lyapunov function, as opposed to one which depends
on the scheduled variables, to characterize stability and performance.
According to [13], such approaches are potentially very conservative
because they allow for arbitrary rates of variation in the scheduled vari-
ables. More dramatically, it has been shown in [13] that some systems
are not even quadratically stabilizable, that is, are not stabilizable
on the basis of a single Lyapunov function. A significant improve-
ment over such techniques can be obtained by exploiting the concept
of parameter-dependent Lyapunov functions. This is discussed in the
context of robustness analysis and synthesis in [14, 15, 16] and for the
gain-scheduling problem in [13, 16]. Parameter-dependent Lyapunov
functions allow the incorporation of knowledge on the rate of varia-
tion in the analysis or synthesis technique, and therefore lead to much
less conservative answers. The reader is referred to [17, 13] for earlier
work related to the approaches considered here. The discretization of
continuous-time gain-scheduled controllers is considered in [18].

In this paper we investigate two different techniques: [19, 20] and an
extension of [21, 22] to the gain-scheduling problem. These techniques
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provide a simple and streamlined treatment of the gain-scheduling
problem. The focus is on practical issues of real-time controller cal-
culation and implementation. Refinements directed at overpassing
the gridding phase and reducing conservatism are also explored. The
reader is referred to [23] for a full version of the paper. For notational
simplicity, in long symmetric expressions, terms denoted x are deduced
by symmetry.

2 Output-Feedback Synthesis

In this section we recap some known results on the gain-scheduling
technique with bounded parameter variation rates and point out con-
nections between different approaches. We first give a general charac-
terization of gain-scheduled controllers, the solution to which involves
both intermediate controller matrices and Lyapunov variables X and
Y. This formulation will be referred as the basic characterization, em-
phasizing the fact that it can be easily extended to multiple objective
problems, pole clustering problems, etc... [19, 20]. Next, a second
formulation of gain-scheduled controllers is presented. It will be re-
ferred as the projected characterization, as the intermediate controller
matrices have been eliminated through projections [21]. Reconstruct-
ing the controller state-space data from the projected conditions has
been addressed in [21, 22] for the customary Hs, control problem.
The reconstruction procedure is again described here, in the case of
the gain-scheduling problem, for completeness of the discussion. The
reader is referred to [17, 24, 13] for details, insights and applications
of analogous gain-scheduling techniques.

The problem addressed throughout the paper is the following. Suppose
we are given a Linear Parameter-Varying (LPV) plant G(8) with state-
space realization

& = A(8)r+ B1(0)w + Ba(8)u

z = Cl(€)x+D11(€)w+D12(€)u (1)

y = Ca(f)r+ Dan(fw,
where

AE]E{,an7 D12ERPIXm2,and Doq ERP2Xm1

define the problem dimension. The time-varying parameter ¢ :=
(61,---, GL)T as well as its rates of variation 6 are assumed bounded
as follows,

a) each parameter 8; ranges between known extremal values 8. and
g 2
f;:
0:(t) € [6,,8:],

(b) the rate of variation 6, is assumed well-defined at all times and

Vi > 0 (2)

satisfies .
0:(t) € [v;, 7],

where v, < 7; are known lower and upper bounds on ¢;.

Vi > 0 (3)

The first assumption means that the parameter vector 8 is valued in a
hypercube ® with vertex set

Vo= {(91,...,9L)T

b€ 48,0} } . (4)
Similarly, (3) defines a hypercube ®4 of RY with vertices in

T = {(7'1,.. T,E{z,,ﬁz}} . (5)

The gain-scheduled output-feedback control problem consists of find-
ing a dynamic LPV controller, K(#), with state-space equations

~77'L)T



AK(8,0)zx + Br (8, 0)y
Cr(8,0)rx + Dx(8,0)y,
which ensures internal stability and a guaranteed Ly-gain bound ~ for

the closed-loop operator (1)-(6) from the disturbance signal w to the
error signal z, that is

T T
/ 2T zdr < 72/ wdeT7 VT >0
0 0

and all admissible trajectories (6, 9) and zero state initial conditions.
Note that A and Ax have the same dimensions, since we restrict
the discussion to the full-order case.

TK
U

(6)

The formulation of such con-
trollers can be handled via an extension of the Bounded Real Lemma
with quadratic parameter-dependent Lyapunov functions V (zce, 8) =
xZ;P(G)xC[ where z., stands for the state vector of the closed-loop
system. See [13, 14, 15, 19] for details. Note that the controller state-
space matrices are allowed to depend explicitly on the derivative of
the time-varying parameter #. Different techniques to remove the de-
pendence on 6 will be extensively discussed in Section 3, see also [24].

Except the usual smoothness assumptions on the dependence on 6,
the problem data and variables will be unrestricted in the subsequent
derivations. The basic characterization of gain-scheduled controllers
with guaranteed Lgo-gain performance is presented in the next theo-
rem where the dependence of data and variables on 6 and 6 has been
dropped for simplicity.

Theorem 2.1 (Basic Characterization) Consider the LPV plant
governed by (1), with parameter trajectories constrained by (2), (3).
There exists a gain-scheduled output-feedback controller (6) enforc-
ing internal stability and a bound v on the Lo gain of the closed-loop
system (1) and (6), whenever there exist parameter-dependent sym-
metric matrices Y _and X and a parameter-dependent quadruple of
state-space data (Ax,Bg,Ck,Dx) such that for all pairs (6, 9) n
© X ®4 the following infinite-dimensional LMI problem holds,

X+ XA+BrCr+(x) *
AT + A+ ByDgCy —V +AY + BoCr + (%) %
(XBy + Br D21)7” (B1 + Ba Dk D21)"
C1+ D12Dr Oy C1Y 4+ D12Cxk

—~T

*

x <0 (7
I
1] .

In such case, a gain-scheduled controller of the form (6) is readily
obtained with the following two-step scheme:

¢ solve for N, M, the factorization problem
I-Xy =NMT. (9)

¢ compute Ax, Brg, Cx with

Ax = N YXY +NMT + Ax — X(A - BoDrCo)Y
—BrCoY — XBaCr)M ™7 (10)
Bx = N YBx - XByDx) (11)
Cx = (Crx—DrCoY)M™T. (12)
Proof
See [19, 20]. |

Note that since all variables are involved linearly, the constraints (7)
and (8) constitute an LMI system. This system is, however, infinite
due to its dependence on (6, 9) ranging over ® X ®4. Using the Projec-
tion Lemma, detailed in [21], the controller variables can be eliminated,
leading to a characterization involving the variables X and Y, only.
This is presented in the next theorem.

D11 + D12Dk D2y

Theorem 2.2 (Projected Solvability Conditions) Consider the
LPV plant governed by (1), with parameter trajectories constrained
by (2) and (8). There exists a gain-scheduled output-feedback con-
troller (6) enforcing internal stability and a bound ~ on the Ly
gain of the closed-loop system (1) and (6), whenever there exist
parameter-dependent symmetric matrices Y (8) and X(8) such that
for all pairs (6, 9) in © X O4 the following infinite-dimenstonal LMI
problem holds,

Ne |0 17 X+XA+4TX XB ct
[ X ] BT x —AT D1
0 I
C1 D1y -1
N |0 17 Y +vaT +ay vcf B
|: 0 7 :| Cly —’}/I D11
T T
B3 Di; —~I
X I
[I Y] >0. (15)
where Nx and Ny designate any bases of the null spaces of
[Co D3] and [Bg DT2], respectively.
Proof
[21]. |

Theorem 2.2 only provides existence conditions for controllers of the
form (6). These conditions become necessary and sufficient if we con-
fine the involved Lyapunov functions to the set of quadratic forms

V(zee, ) = xZ;P(G)xC[, with Tee :

I
—
]
[ER—

TK

The controller state space data are easily constructed from X and Y
at any value of 6 using the techniques in [21, 22, 13].

It should be noted that in spite of their different structures, the char-
acterizations given in Theorems 2.1 and 2.2 are equivalent and can
virtually be used interchangeably for controller synthesis. In contrast,
when the focus is on computational complexity or practical implemen-
tation, these techniques exhibit significant differences. This is dis-
cussed in Section 4. Finally, the case where only some parameters 6,
are subject to constraints on their derivatives is easily handled by re-
moving the unconstrained parameters from the matrix functions X(.)
and Y(.). The reader may also refer to [25, 23, 26] for a thorough dis-
cussion of the practical advantages of the basic technique in dealing
with multi-objective problems.

3 Practical Validity of Gain-Scheduling

It must be stressed out that an LPV controller derived from Theorem
2.1 or Theorems 2.2 is not gain-scheduled in the usual sense of the
term. Its implementation requires not only the real-time measurement
of the parameter 8, but also of its time-derivative 6. This is gener-
ally prohibitive, since parameter derivatives either are not available
or are difficult to estimate during system operation. Gain-scheduled
controllers that do not require a measurement of 6 will be called prac-
tically valid hereafter. As discussed in [17], there is no systematic and
tractable approach for removing the dependence on 6 while maintain-
ing the generality of Theorems 2.1 or 2.1 and 2.2. As suggested by the
controller formula (10), a simple but conservative approach has been
proposed in [24]. Tt consists of restricting the variable Y (8) to ¥ = 0,
that is, ¥ not depending on 6. This operation amounts to using a
fixed Lyapunov function for the parameter-dependent control problem
described in (14). It thereby sacrifices some performance, resulting in
a higher .

Keeping in mind that the dependence of the controller data on 6 stems
from the term XY + NMT, (10), the general characterization of The-
orem 2.1 or 2.2 offers additional freedom that is worth pointing out.
The discussion is summarized in the next table.

*K]1 <0 (13)

*Kl <0 (14)



vallablce A, 1 vallablco iy, I
% —0 X = X(0),Y =Y (6) NMT =1—- X(8)Y(9)
2® c o, X = X(0),Y :=Y(6) NMT =T- X(8)Y(6)
¢ c o, X =X(6),Y =Y, N =IT-X()Yy, M:=1
¢ c o, X =Xo,Y =Y() | N=I,M:=1-Y(8)X,
2¢ unbounded X =Xy ,Y =Y, NMT =1- XyY,

Table 1: Selection of variables in the gain-scheduled control
problem

In Row #1 of the table, the scheduled variable is assumed constant in
time, a practically valid gain-scheduled controller can theoretically be
constructed using Theorem 2.1 or alternatively Theorem 2.2, for any
matrix functions X(.) and Y (.) of §. Such an approach ignores possi-
ble time variations of # and provides neither performance nor stability
guarantees for the closed-loop system in the face of time-variations.
With the same choice of matrix functions X(.) and Y (.), but the rate
of variations of § being confined to a compact @4, row #2, there is no
known techniques to compute a practically valid gain-scheduled con-
troller. In rows #3 and #4, we have assumed the conservative choices
that X or Y are constant matrix variables. In both cases, the gain-
scheduling problem with bounded variation rates admits practically
valid controller solutions, provided the variables N and M are ade-
quately selected in Theorems 2.1 and 2.2. With further conservatism,
that is, 9 is unbounded, row #5, the problem is again tractable and
solvable using the same techniques. The case of time-varying parame-
ters with bounds on the rate of variation can be constructively handled
by the choices of rows #3 and #4. However, due to the loss of dual-
ity in the variables X and Y| such choices are not equivalent. As a
consequence, there are some problems for which it is better to take a
parameter-dependent X and a constant Y while others will require the
converse. Hence, both alternatives must be tried to get a less conser-
vative design . In the controller construction scheme, the variables N
and M are subject to the algebraic constraint I — XY = NM7 from
which one easily infers the identity

XY + NMT = (XY + NM7T).

In light of this identity, a practically valid gain-scheduled controller in
the cases of rows #3 and #4 can be derived using the same formulas
(11) and (12), but with Ax suitably updated to

Ap = N"NAx—X(A—BoDr Ca)Y —BrCoY =X By Cr)M ™7 (16)

The same formulas are still valid for the case of frozen-in-time param-
eters, row #1, and for arbitrarily varying parameters, row #5, the
variables X and Y being replaced by their constant values Xy and
Yy, in the latter case. Summing up, Table 1 displays all options to
handle any situations from the frozen-in-time parameters to arbitrar-
ily time-varying parameters. However, the case in which both X and
Y depend on # with a bounded 6 still resists a convex formulation for
a practically valid controller.

4 Towards Finite-Dimensional Problems

Even with the simplifications of Table 1 in place, the characterizations
of Theorems 2.1 or 2.2 involve the solution of a convex but infinite-
dimensional and infinitely constrained problem. This is the price to
pay for allowing a general parameter dependence in the plant (1). Gen-
erally speaking, there is no systematic rule for selecting the functional
dependence of the matrix functions X and Y on #. We are therefore led
to some simple heuristics in order to simplify the computation of solu-
tions to the LMI problems (7)-(8) or (13)-(15). A simple but practical
technique has been proposed in [13]. The key idea is to “mimic” the
parameter dependence of the plant in the Lyapunov function variables
X and Y. Interestingly, the same idea can be used in the more gen-
eral context of the basic characterization of Theorem 2.1. In return,
this offers new potential approaches for the synthesis of gain-scheduled
controllers with multiple objective constraints (mixed Ho — Hoo, pole
clustering, and others still to find). When the plant state-space data
(1) have an affine expansion in nonlinear and differentiable functions
pi (1 = 1,...,N) of the scheduled variable # a practically useful ap-
proach is to select the quadruple (XK(), gK(.), 8;((.), Dx(.)) and the
pair (X(.), Y (.)) with the very same affine expansion

N N
A(0) = Ao+ Y pi(®)Ar,, X(0) = Xo+_ pi(0)Xi, .. (A7)
i=1 =1

The functional dependence of X and Y being fixed, the matrices XK,O,

XK,,,..., play the role of decision variables in the infinitely constrained
LMI problems (7)-(8) or (13)-(15). A simple remedy for turning such
problems into a finite set of LMIs is to grid the value set of 6 [13].
Since the derivative § appears linearly in the LMIs (7) and (13)-(14),
there is only need to check the extreme points of the set @4 for all
admissible values of #. The reader can consult references [13, 23] for
details.

When restricted to the parameterization (17), the basic and pro-
jected characterizations are no longer equivalent. In the first one,
we have further restrictions on the structure of the quadruple
(Ar(.),Bk(.),Ck(.),DK(.)). As a result, the first approach is gen-
erally more conservative, although we have observed very little differ-
ence in practice. See the application Section 7 for comparisons. From
a complexity viewpoint, the first technique requires a larger number
of scalar variables to be optimized; the number of additional variables
being approximately n(n 4+ mqg 4+ p2 )N, where N is number of nonlin-
ear functions p;. Its scope of application is therefore more restricted.
In contrast, the controller equations resulting from the basic charac-
terization are significantly less complex than those resulting from the
projected characterization. See [23] for details.

Since they offer complementary advantages, the techniques described
above can be used together to yield a more effective methodology.
Confirmed by practical experience, the following rules have proven
useful. All necessary tunings, requiring repeated computations should
be based on the less costly projected technique. The procedure is com-
pleted by running the basic technique, for controller implementation
purposes. Though the last phase may be very slow, it is run only once
in the whole design process.

5 Overpassing the Gridding Phase

As discussed earlier, for LPV systems having a general nonlinear 8
-dependence, there is no systematic technique to overpass the grid-
ding phase, hence making the design more direct. For polynomial
LPV systems, however, it is possible to take advantage of some geo-
metric properties of the functions involved to convert infinitely LMI-
constrained problems into a finite number of LMI constraints. In view
of the preliminary results in [14], this can be done with little induced
extra conservatism. The proposed technique relies on the following
preparatory lemmas.

Lemma 5.1 Consider a scalar quadratic function of § € R :

f(01,...,00) = a0+2a191+2ﬁ1j919]‘+2719?

i< g z

(18)

Then f(-) is negative (resp. positive) in the hypercube (2) whenever

f(8) <0, (resp.>0) VOeEV, (19)
and
102
%2569,1;(9)20 (resp. < 0), i=1,...,L. (20)
Proof
A proof of this result can be found in [14]. |

Property (20) is referred to as the multi-convexity (resp. multi-
concavity) property since it merely amounts to expressing that the
function is convex (resp. concave) with respect to each variable 6;
separately. With this lemma, a sufficient condition for checking the
sign invariance of f is reduced to a finite number of linear algebraic
conditions in the polynomial coefficients. A similar result is now pre-

sented for higher-order polynomial functions.

Lemma 5.2 Consider a general polynomial function f(61,...,601)
of arbitrary order. Denote dy the partial degree with respect to the
vartable 0, k = 1,..., L and d the total degree of the polynomsial



function. Then f(-) is negative (resp. positive) in the hypercube (2)
whenever

f(8) <0, (resp. > 0) Yo eV, (21)
and
62m
1) ————f(6) < 0, resp. > 0), VOeEV, 22
Sl aAUE LI (22)
where 4
1S << SIn<L, 1<m<3
2l =k je{l,...,m}}<di, k=12 L
Proof

The proof is obtained by a recursive use of Lemma 5.1 and using the
fact that partial derivative orders exceeding the partial degree of a
variable are immaterial. |

Here again, checking the sign invariance of a general polynomial has
been reduced, potentially conservatively, to a finite number of linear
algebraic constraints on its coefficients. An application of these results
to checking the feasibility of a class of parameterized LMIs is presented.
We are considering polynomially §-dependent LMIs of the form

T(8,7) = ZG[V]My(z) <0,

veJ

(23)

where M, (z) stand for symmetric matrix-valued functions of the de-
cision variable z that are linear in z. The notation [¢] is the vector of
partial degrees [v] = [v1,...,v1] associated with the lexicographically
ordered term

[v] — gv1gv2 vy
ol1 = ovigre oY

, €O =CoVv

and the convention 81% = 1. J is a set of L-tuples of partial degrees
describing the polynomial expansion (23). Checking or invalidating
the feasibilty of (23) in z is not tractable in general since it involves
infinitely many LMI constraints. In virtue of Lemma 5.2, it is possible
to conservatively reduce this problem to a finite number of LMI condi-
tions in z. As before, di and d designate the partial and total degrees
in the matrix polynomial expansion.

Lemma 5.3 Consider the parameterized LMI (23), where 6 ranges
over a hypercube (2). Then the (uncountable infinite number) LMI
conditions

I'(8,z) <0, Vo € ©

hold for some z, whenever the finite famaly of LMI conditions:

(24)

r(6,2) <0, VO eV (25)
- 62m
(1) WF(G,Z) <0, VéeVv, (26)
where 4
1<l € <... <l <L, 1§m§5

2#4{l; =k: je{l,... m}} <dx, k=1,2,...,L.
are feasible for some z.

Proof
Note that condition (24) is equivalent to

eTT(0,2)0 <0, VIO, Vo#£0. (27)

With fixed ¢ and z, Lemma 5.2 is applicable to the function f(6) =
#TT(8,2)z, and the algebraic conditions (21) and (22) enforce the neg-
ativity of f over ®. Repeating the argument for all ¢ # 0 yields the
conditions (25) and (26) that consequently enforce (24), as required.

Lemma 5.3 can be exploited in the context of LPV synthesis, Section 2,
to formulate sufficient solvability conditions in terms of a finite num-
ber of LMI constraints. This can be done for the projected and basic
synthesis techniques with an Ly-gain performance, and more generally
for multi-channel and multi-objective control problems when both the
plant data and the variables X, Y, Agk,...
pendence in . As an illustration, we provide the charaterization for

assume a polynomial de-

an affine problem, keeping in mind that any polynomial dependence
can be handled via Lemma 5.3.

Theorem 5.4 Constder the LPV plant governed by (1), with param-
eter trajectories constrained by (2) and (3) and assume the plant
data (A, B1,C1,D11) are affine in 6. That is,

L
Bio ] § : [ A; B ]
il _I_ 91 il .
Di10 C1,s Di1i

i=1

A(8)

1) Bl(a)] - [ e

D11(8)] ~ | Ci0

Then, there exists a gain-scheduled output-feedback controller (6)
enforcing internal stability and a bound v on the Lo gain of
the closed-loop system (1) and (6), whenever there exist affinely
parameter-dependent matrices X, Y, §K s 8;( and Dg

L L
Y()=Yo+ ) 6:Ys, X(6)=Xo+ ) 60X ..
i=1 i=1

such that the following finite family of LMIs are feasible.

X+ XA+ BrCh+ (%) * *
(XBy + BxD21)” =1 *x | <0 (28)
C1 + D12 Dk Co (D11 4+ D12DrDo1) —oI
—Y + AY + BoCx + (%) * *
(B1 + BaDxD2)" - * | <0 (29)
C1Y + D12Cx (D11 4+ D12DrDo1) —oI
X I
[1 Y] >0, (30)

XA+ (x) *

AYi + (%)«
BT X; 0

>0 >0 (31
]_ ’ C1,:Ys 0] 20 (1)

for (8,) eV XT andi=1,2,...,L.

5.1 Illustration

We now give a simple illustration of the technique and provide com-
parison results with existing gain-scheduling control approaches. The
LPV plant under consideration is taken from [16] and has the state-
space descripton in LFT format:

o 1 0 0
3925 o Pt | Cams|Wet 4|V

1'/‘ —

z¢ = [1 0]z
y = [1 0]z
We = fzq,

where z, v, y and 6 denote the state vector, the control input, the
measurement output and the scheduled parameter, respectively. Ac-
tuator dynamics v = Si—lu are also incorporated to reflect a more
realistic situation. The synthesis interconnection used in this problem
is depicted in Figure 1, with the following weighting functions

s+ 1

W, = 0.32, 300"

Wg =133 W,=05 W,=10
We are seeking an LPV controller providing internal stability and min-
imal Ly-gain performance between exogeneous and error signals, with
parameter trajectories 6(t) € [—1, 1], t > 0. The syntheses are con-

ducted with 3 different techniques:

¢ the LFT gain-scheduled control technique in [27], suitably mod-
ified to incorporate skew-symmetric scalings. See also [16]. Such
techniques disregard parameter rate of variation constraints.

¢ the gain-scheduling control technique in Section 2, combined
with a gridding of the parameter range.

¢ the gain-scheduling control technique in Section 5 with no grid-
ding.

Recall that the last two approaches exploit informations on the pa-
rameter rate of variation. The achieved performance levels for rate of
variation bounds from 0 to 10 are shown in Figure 2. We can see that
the last two techniques behave as theoretically expected. They pro-
vide far better answers for low rates of variation than the LFT control
approach. The observed gap is likely to be even larger for problems
with multiple scheduled variables. Also interesting is the fact that the
technique based on multi-convexity concepts, hence, with the gridding
ruled out, gives performance levels close to those of the synthesis with
gridding. It therefore provides a potential alternative for problems of
reasonable size.
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The techniques in Sections 2 and 5 are readily modified to handle
problems with structured uncertainties. That is, w and z are related
through a structured operator A. The associated theoretical charac-
terizations involve possibly parameter-dependent scaling matrices but
are not reducible to LMIs. Simple heuristics such as D — K-like it-
erative schemes can however be utilized to improve the design.
[23].

See

7 Two-Link Flexible Manipulator

The gain-scheduled control of a two-link flexible manipulator is a non
trivial problem. The dynamics of such a system include both rigid
body and lightly damped structural modes. The problem is compli-
cated by uncertainty in the high frequency dynamics of the system and
by the variation of dynamics with manipulator geometry. The first of
these complications drives the requirement for closed-loop robust sta-
bility while the second drives the requirement for gain-scheduling. In
addition, a rapid closed-loop response to position commands is de-
sired. The ability of a control synthesis approach to handle the trade-
offs between robustness, performance, and gain scheduling with the
least possible conservatism is thus critical for such a system. Due to
lack of space, the reader is encouraged to consult reference [23] to see
illustrations of concepts and techniques previously introduced.

8 Conclusions

Advanced gain-scheduling design approaches for LPV systems have
been presented with emphasis on the practical goals of reduced com-
putational burden and ease of implementation. Two complementary
LMI characterizations for the calculation of such controllers have been
investigated which, when used together, achieve these two objectives.
The methodology is completed with a grid-free approach and a scaling
technique directed at facilitating the design task and reducing con-
servatism, respectively. The challenging problem of the control of a
two-link flexible manipulator is introduced in this context and used to
demonstrate the validity of the theoretical solutions.
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Figure 2: Guaranteed Ls-performance vs. rate of variation
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