
Advanced Gain-Scheduling TechniquesFor Uncertain SystemsPierre Apkarian � and Richard J. Adams yAbstractThis paper is concerned with the design of gain-scheduled controllersfor Linear Parameter-Varying systems. Two alternative LMI charac-terizations are investigated. Both characterizations are amenable to a�nite number of LMI conditions either via a gridding of the param-eter range or via grid-free techniques which rely on multi-convexityconcepts. Practicality and implementation issues are discussed andexamples are provided.1 IntroductionThe gain-scheduling problem has been the subject of a great deal ofresearch over recent years, both from theoretical and practical view-points. This renewed interest probably stems from the developmentof new techniques and software which allow for a more rigorous andsystematic treatment of the gain-scheduling problem. The classicalapproach to this problem essentially consists of repeated design syn-theses associated with some scheduling strategy connecting locally de-signed controllers. Such schemes, however, lack supporting theoriesthat guarantee the behavior of the scheduled controller. A signi�-cant contribution toward the elimination of such weaknesses is theformulation of the gain-scheduling problem in the context of convexsemi-de�nite programming [1], an elegant and solidly based branch ofoptimization theory [2, 3, 4]. Expressed in terms of Linear MatrixInequalities (LMIs), the gain-scheduling problem is readily and glob-ally solved using currently available e�cient optimization software [5].LMI techniques now appear as very natural mechanisms for the formu-lation of gain-scheduling problems as well as for a vast array of otherproblems in the control �eld. Reference [6] gives an overview of thescope of application of such techniques.As emphasized in H1 control theory, a key stage in the characteriza-tion of gain-scheduled controllers is the search for adequate Lyapunovfunctions that establish stability and a performance bound for theclosed-loop system. The LFT gain-scheduling techniques in [7, 8, 9, 10]or the so-called quadratic gain-scheduled techniques in [11, 12] makeuse of a �xed Lyapunov function, as opposed to one which dependson the scheduled variables, to characterize stability and performance.According to [13], such approaches are potentially very conservativebecause they allow for arbitrary rates of variation in the scheduled vari-ables. More dramatically, it has been shown in [13] that some systemsare not even quadratically stabilizable, that is, are not stabilizableon the basis of a single Lyapunov function. A signi�cant improve-ment over such techniques can be obtained by exploiting the conceptof parameter-dependent Lyapunov functions. This is discussed in thecontext of robustness analysis and synthesis in [14, 15, 16] and for thegain-scheduling problem in [13, 16]. Parameter-dependent Lyapunovfunctions allow the incorporation of knowledge on the rate of varia-tion in the analysis or synthesis technique, and therefore lead to muchless conservative answers. The reader is referred to [17, 13] for earlierwork related to the approaches considered here. The discretization ofcontinuous-time gain-scheduled controllers is considered in [18].In this paper we investigate two di�erent techniques: [19, 20] and anextension of [21, 22] to the gain-scheduling problem. These techniques�CERT/DERA, 2 Av Ed. Belin, 31055 Toulouse, France.Email: apkarian@cert.fryCERT/DERA, 2 Av Ed. Belin, 31055 Toulouse, France.Email: adams@cert.fr

provide a simple and streamlined treatment of the gain-schedulingproblem. The focus is on practical issues of real-time controller cal-culation and implementation. Re�nements directed at overpassingthe gridding phase and reducing conservatism are also explored. Thereader is referred to [23] for a full version of the paper. For notationalsimplicity, in long symmetric expressions, terms denoted ? are deducedby symmetry.2 Output-Feedback SynthesisIn this section we recap some known results on the gain-schedulingtechnique with bounded parameter variation rates and point out con-nections between di�erent approaches. We �rst give a general charac-terization of gain-scheduled controllers, the solution to which involvesboth intermediate controller matrices and Lyapunov variables X andY . This formulation will be referred as the basic characterization, em-phasizing the fact that it can be easily extended to multiple objectiveproblems, pole clustering problems, etc... [19, 20]. Next, a secondformulation of gain-scheduled controllers is presented. It will be re-ferred as the projected characterization, as the intermediate controllermatrices have been eliminated through projections [21]. Reconstruct-ing the controller state-space data from the projected conditions hasbeen addressed in [21, 22] for the customary H1 control problem.The reconstruction procedure is again described here, in the case ofthe gain-scheduling problem, for completeness of the discussion. Thereader is referred to [17, 24, 13] for details, insights and applicationsof analogous gain-scheduling techniques.The problem addressed throughout the paper is the following. Supposewe are given a Linear Parameter-Varying (LPV) plant G(�) with state-space realization_x = A(�)x+ B1(�)w + B2(�)uz = C1(�)x+D11(�)w +D12(�)uy = C2(�)x+D21(�)w ; (1)where A 2 Rn�n ; D12 2 Rp1�m2 ;and D21 2Rp2�m1de�ne the problem dimension. The time-varying parameter � :=(�1; � � � ; �L)T as well as its rates of variation _� are assumed boundedas follows,(a) each parameter �i ranges between known extremal values �i and��i: �i(t) 2 [�i; ��i]; 8t � 0 (2)(b) the rate of variation _�i is assumed well-de�ned at all times andsatis�es _�i(t) 2 [�i; ��i]; 8t� 0 (3)where �i � ��i are known lower and upper bounds on _�i.The �rst assumption means that the parameter vector � is valued in ahypercube � with vertex setV := �(�1; : : : ; �L)T : �i 2 f�i; ��ig 	 : (4)Similarly, (3) de�nes a hypercube �d of RL with vertices inT := �(�1; : : : ; �L)T : �i 2 f�i; ��ig 	 : (5)The gain-scheduled output-feedback control problem consists of �nd-ing a dynamic LPV controller, K(�), with state-space equations1



_xK = AK(�; _�)xK + BK(�; _�)yu = CK(�; _�)xK +DK(�; _�)y ; (6)which ensures internal stability and a guaranteed L2-gain bound 
 forthe closed-loop operator (1)-(6) from the disturbance signal w to theerror signal z, that isZ T0 zT zd� � 
2 Z T0 wTwd�; 8T � 0and all admissible trajectories (�; _�) and zero state initial conditions.Note that A and AK have the same dimensions, since we restrictthe discussion to the full-order case. The formulation of such con-trollers can be handled via an extension of the Bounded Real Lemmawith quadratic parameter-dependent Lyapunov functions V (xc`; �) =xTc`P (�)xc` where xc` stands for the state vector of the closed-loopsystem. See [13, 14, 15, 19] for details. Note that the controller state-space matrices are allowed to depend explicitly on the derivative ofthe time-varying parameter �. Di�erent techniques to remove the de-pendence on _� will be extensively discussed in Section 3, see also [24].Except the usual smoothness assumptions on the dependence on �,the problem data and variables will be unrestricted in the subsequentderivations. The basic characterization of gain-scheduled controllerswith guaranteed L2-gain performance is presented in the next theo-rem where the dependence of data and variables on � and _� has beendropped for simplicity.Theorem 2.1 (Basic Characterization) Consider the LPV plantgoverned by (1), with parameter trajectories constrained by (2), (3).There exists a gain-scheduled output-feedback controller (6) enforc-ing internal stability and a bound 
 on the L2 gain of the closed-loopsystem (1) and (6), whenever there exist parameter-dependent sym-metric matrices Y and X and a parameter-dependent quadruple ofstate-space data (bAK ; bBK; bCK ;DK ) such that for all pairs (�; _�) in� ��d the following in�nite-dimensional LMI problem holds,264 _X +XA + bBKC2 + (?) ? ?bATK + A+ B2DKC2 � _Y + AY + B2bCK + (?) ?(XB1 + bBKD21)T (B1 + B2DKD21)T �
IC1 +D12DKC2 C1Y +D12 bCK D11 + D12DKD21???�
I 35 < 0 (7)hX II Y i > 0: (8)In such case, a gain-scheduled controller of the form (6) is readilyobtained with the following two-step scheme:� solve for N, M, the factorization problemI �XY = NMT : (9)� compute AK, BK, CK withAK = N�1(X _Y + N _MT + bAK �X(A �B2DKC2)Y�bBKC2Y �XB2 bCK)M�T (10)BK = N�1(bBK �XB2DK) (11)CK = (bCK �DKC2Y )M�T : (12)ProofSee [19, 20].Note that since all variables are involved linearly, the constraints (7)and (8) constitute an LMI system. This system is, however, in�nitedue to its dependence on (�; _�) ranging over ���d . Using the Projec-tion Lemma, detailed in [21], the controller variables can be eliminated,leading to a characterization involving the variables X and Y , only.This is presented in the next theorem.

Theorem 2.2 (Projected Solvability Conditions) Consider theLPV plant governed by (1), with parameter trajectories constrainedby (2) and (3). There exists a gain-scheduled output-feedback con-troller (6) enforcing internal stability and a bound 
 on the L2gain of the closed-loop system (1) and (6), whenever there existparameter-dependent symmetric matrices Y (�) and X(�) such thatfor all pairs (�; _�) in ���d the following in�nite-dimensional LMIproblem holds,h NX 00 I iT " _X +XA + ATX XB1BT1 X �
I CT1DT11C1 D11 �
I # [?] < 0 (13)h NY 00 I iT " � _Y + Y AT + AY Y CT1C1Y �
I B1D11BT1 DT11 �
I # [?] < 0 (14)hX II Y i > 0: (15)where NX and NY designate any bases of the null spaces of[C2 D21 ] and [BT2 DT12 ], respectively.Proof[21].Theorem 2.2 only provides existence conditions for controllers of theform (6). These conditions become necessary and su�cient if we con-�ne the involved Lyapunov functions to the set of quadratic formsV (xc`; �) := xTc`P (�)xc`; with xc` := h xxK i :The controller state space data are easily constructed from X and Yat any value of � using the techniques in [21, 22, 13].It should be noted that in spite of their di�erent structures, the char-acterizations given in Theorems 2.1 and 2.2 are equivalent and canvirtually be used interchangeably for controller synthesis. In contrast,when the focus is on computational complexity or practical implemen-tation, these techniques exhibit signi�cant di�erences. This is dis-cussed in Section 4. Finally, the case where only some parameters �iare subject to constraints on their derivatives is easily handled by re-moving the unconstrained parameters from the matrix functions X(:)and Y (:). The reader may also refer to [25, 23, 26] for a thorough dis-cussion of the practical advantages of the basic technique in dealingwith multi-objective problems.3 Practical Validity of Gain-SchedulingIt must be stressed out that an LPV controller derived from Theorem2.1 or Theorems 2.2 is not gain-scheduled in the usual sense of theterm. Its implementation requires not only the real-time measurementof the parameter �, but also of its time-derivative _�. This is gener-ally prohibitive, since parameter derivatives either are not availableor are di�cult to estimate during system operation. Gain-scheduledcontrollers that do not require a measurement of _� will be called prac-tically valid hereafter. As discussed in [17], there is no systematic andtractable approach for removing the dependence on _� while maintain-ing the generality of Theorems 2.1 or 2.1 and 2.2. As suggested by thecontroller formula (10), a simple but conservative approach has beenproposed in [24]. It consists of restricting the variable Y (�) to _Y = 0,that is, Y not depending on �. This operation amounts to using a�xed Lyapunov function for the parameter-dependent control problemdescribed in (14). It thereby sacri�ces some performance, resulting ina higher 
.Keeping in mind that the dependence of the controller data on _� stemsfrom the term X _Y +N _MT , (10), the general characterization of The-orem 2.1 or 2.2 o�ers additional freedom that is worth pointing out.The discussion is summarized in the next table.



Variables X, Y Variables N , Md�dt = 0 X := X(�) ,Y := Y (�) NMT = I �X(�)Y (�)d�dt 2 �d X := X(�) ,Y := Y (�) NMT = I �X(�)Y (�)d�dt 2 �d X := X(�) ,Y := Y0 N := I �X(�)Y0, M := Id�dt 2 �d X := X0 ,Y := Y (�) N := I, M := I � Y (�)X0d�dt unbounded X := X0 ,Y := Y0 NMT = I �X0Y0Table 1: Selection of variables in the gain-scheduled controlproblemIn Row #1 of the table, the scheduled variable is assumed constant intime, a practically valid gain-scheduled controller can theoretically beconstructed using Theorem 2.1 or alternatively Theorem 2.2, for anymatrix functions X(:) and Y (:) of �. Such an approach ignores possi-ble time variations of � and provides neither performance nor stabilityguarantees for the closed-loop system in the face of time-variations.With the same choice of matrix functions X(:) and Y (:), but the rateof variations of � being con�ned to a compact �d , row #2, there is noknown techniques to compute a practically valid gain-scheduled con-troller. In rows #3 and #4, we have assumed the conservative choicesthat X or Y are constant matrix variables. In both cases, the gain-scheduling problem with bounded variation rates admits practicallyvalid controller solutions, provided the variables N and M are ade-quately selected in Theorems 2.1 and 2.2. With further conservatism,that is, _� is unbounded, row #5, the problem is again tractable andsolvable using the same techniques. The case of time-varying parame-ters with bounds on the rate of variation can be constructively handledby the choices of rows #3 and #4. However, due to the loss of dual-ity in the variables X and Y , such choices are not equivalent. As aconsequence, there are some problems for which it is better to take aparameter-dependent X and a constant Y while others will require theconverse. Hence, both alternatives must be tried to get a less conser-vative design . In the controller construction scheme, the variables Nand M are subject to the algebraic constraint I �XY = NMT fromwhich one easily infers the identity_XY + _NMT = �(X _Y + N _MT ):In light of this identity, a practically valid gain-scheduled controller inthe cases of rows #3 and #4 can be derived using the same formulas(11) and (12), but with AK suitably updated toAK = N�1(bAK�X(A�B2DKC2)Y�bBKC2Y �XB2 bCK)M�T : (16)The same formulas are still valid for the case of frozen-in-time param-eters, row #1, and for arbitrarily varying parameters, row #5, thevariables X and Y being replaced by their constant values X0 andY0, in the latter case. Summing up, Table 1 displays all options tohandle any situations from the frozen-in-time parameters to arbitrar-ily time-varying parameters. However, the case in which both X andY depend on � with a bounded _� still resists a convex formulation fora practically valid controller.4 Towards Finite-Dimensional ProblemsEven with the simpli�cations of Table 1 in place, the characterizationsof Theorems 2.1 or 2.2 involve the solution of a convex but in�nite-dimensional and in�nitely constrained problem. This is the price topay for allowing a general parameter dependence in the plant (1). Gen-erally speaking, there is no systematic rule for selecting the functionaldependence of the matrix functions X and Y on �. We are therefore ledto some simple heuristics in order to simplify the computation of solu-tions to the LMI problems (7)-(8) or (13)-(15). A simple but practicaltechnique has been proposed in [13]. The key idea is to \mimic" theparameter dependence of the plant in the Lyapunov function variablesX and Y . Interestingly, the same idea can be used in the more gen-eral context of the basic characterization of Theorem 2.1. In return,this o�ers new potential approaches for the synthesis of gain-scheduledcontrollers with multiple objective constraints (mixed H2 �H1, poleclustering, and others still to �nd). When the plant state-space data(1) have an a�ne expansion in nonlinear and di�erentiable functions�i (i = 1; : : : ;N) of the scheduled variable � a practically useful ap-proach is to select the quadruple (bAK(:); bBK(:); bCK(:); DK(:)) and thepair (X(:); Y (:)) with the very same a�ne expansion

bAK(�) := bAK;0+ NXi=1 �i(�)bAK;i;X(�) := X0+ NXi=1 �i(�)Xi; : : : (17)The functional dependence of X and Y being �xed, the matrices bAK;0,bAK;i,..., play the role of decision variables in the in�nitely constrainedLMI problems (7)-(8) or (13)-(15). A simple remedy for turning suchproblems into a �nite set of LMIs is to grid the value set of � [13].Since the derivative _� appears linearly in the LMIs (7) and (13)-(14),there is only need to check the extreme points of the set �d for alladmissible values of �. The reader can consult references [13, 23] fordetails.When restricted to the parameterization (17), the basic and pro-jected characterizations are no longer equivalent. In the �rst one,we have further restrictions on the structure of the quadruple(bAK(:); bBK(:); bCK(:);DK(:)). As a result, the �rst approach is gen-erally more conservative, although we have observed very little di�er-ence in practice. See the application Section 7 for comparisons. Froma complexity viewpoint, the �rst technique requires a larger numberof scalar variables to be optimized; the number of additional variablesbeing approximately n(n+m2 + p2)N , where N is number of nonlin-ear functions �i. Its scope of application is therefore more restricted.In contrast, the controller equations resulting from the basic charac-terization are signi�cantly less complex than those resulting from theprojected characterization. See [23] for details.Since they o�er complementary advantages, the techniques describedabove can be used together to yield a more e�ective methodology.Con�rmed by practical experience, the following rules have provenuseful. All necessary tunings, requiring repeated computations shouldbe based on the less costly projected technique. The procedure is com-pleted by running the basic technique, for controller implementationpurposes. Though the last phase may be very slow, it is run only oncein the whole design process.5 Overpassing the Gridding PhaseAs discussed earlier, for LPV systems having a general nonlinear �-dependence, there is no systematic technique to overpass the grid-ding phase, hence making the design more direct. For polynomialLPV systems, however, it is possible to take advantage of some geo-metric properties of the functions involved to convert in�nitely LMI-constrained problems into a �nite number of LMI constraints. In viewof the preliminary results in [14], this can be done with little inducedextra conservatism. The proposed technique relies on the followingpreparatory lemmas.Lemma 5.1 Consider a scalar quadratic function of � 2 RL:f(�1; : : : ; �L) = �0 +Xi �i�i +Xi<j �ij�i�j +Xi 
i�2i (18)Then f(�) is negative (resp. positive) in the hypercube (2) wheneverf(�) < 0; (resp. > 0) 8� 2 V ; (19)and 
i = 12 @2f@�i2 (�) � 0 (resp. � 0); i = 1; : : : ; L : (20)ProofA proof of this result can be found in [14].Property (20) is referred to as the multi-convexity (resp. multi-concavity) property since it merely amounts to expressing that thefunction is convex (resp. concave) with respect to each variable �iseparately. With this lemma, a su�cient condition for checking thesign invariance of f is reduced to a �nite number of linear algebraicconditions in the polynomial coe�cients. A similar result is now pre-sented for higher-order polynomial functions.Lemma 5.2 Consider a general polynomial function f(�1; : : : ; �L)of arbitrary order. Denote dk the partial degree with respect to thevariable �k, k = 1; : : : ; L and d the total degree of the polynomial



function. Then f(�) is negative (resp. positive) in the hypercube (2)whenever f(�) < 0; (resp. > 0) 8� 2 V ; (21)and (�1)m @2m@�2l1 : : : @�2lm f(�) � 0; (resp. � 0); 8� 2 V ; (22)where 1 � l1 � l2 � : : : � lm � L; 1 � m � d22#flj = k : j 2 f1; : : : ;mgg � dk; k = 1; 2; : : : ; L:ProofThe proof is obtained by a recursive use of Lemma 5.1 and using thefact that partial derivative orders exceeding the partial degree of avariable are immaterial.Here again, checking the sign invariance of a general polynomial hasbeen reduced, potentially conservatively, to a �nite number of linearalgebraic constraints on its coe�cients. An application of these resultsto checking the feasibility of a class of parameterized LMIs is presented.We are considering polynomially �-dependent LMIs of the form�(�; z) :=X�2J �[�]M�(z) < 0 ; (23)where M�(z) stand for symmetric matrix-valued functions of the de-cision variable z that are linear in z. The notation [�] is the vector ofpartial degrees [�] = [�1 ; : : : ; �L] associated with the lexicographicallyordered term �[�] = ��11 ��22 : : : ��LL ; � 2 � = CoVand the convention �[0] = 1. J is a set of L-tuples of partial degreesdescribing the polynomial expansion (23). Checking or invalidatingthe feasibilty of (23) in z is not tractable in general since it involvesin�nitely many LMI constraints. In virtue of Lemma 5.2, it is possibleto conservatively reduce this problem to a �nite number of LMI condi-tions in z. As before, dk and d designate the partial and total degreesin the matrix polynomial expansion.Lemma 5.3 Consider the parameterized LMI (23), where � rangesover a hypercube (2). Then the (uncountable in�nite number) LMIconditions �(�; z) < 0; 8� 2 � (24)hold for some z, whenever the �nite family of LMI conditions:�(�; z) < 0; 8� 2 V (25)(�1)m @2m@�2l1 : : : @�2lm �(�; z) � 0; 8� 2 V ; (26)where 1 � l1 � l2 � : : : � lm � L; 1 � m � d22#flj = k : j 2 f1; : : : ;mgg � dk; k = 1; 2; : : : ; L:are feasible for some z.ProofNote that condition (24) is equivalent toxT�(�; z)x < 0; 8� 2 �; 8x 6= 0 : (27)With �xed x and z, Lemma 5.2 is applicable to the function f(�) =xT�(�;z)x, and the algebraic conditions (21) and (22) enforce the neg-ativity of f over �. Repeating the argument for all x 6= 0 yields theconditions (25) and (26) that consequently enforce (24), as required.Lemma 5.3 can be exploited in the context of LPV synthesis, Section 2,to formulate su�cient solvability conditions in terms of a �nite num-ber of LMI constraints. This can be done for the projected and basicsynthesis techniques with an L2-gain performance, and more generallyfor multi-channel and multi-objective control problems when both theplant data and the variables X, Y , bAK ,... assume a polynomial de-pendence in �. As an illustration, we provide the charaterization foran a�ne problem, keeping in mind that any polynomial dependencecan be handled via Lemma 5.3.

Theorem 5.4 Consider the LPV plant governed by (1), with param-eter trajectories constrained by (2) and (3) and assume the plantdata (A;B1; C1; D11) are a�ne in �. That is,h A(�) B1(�)C1(�) D11(�)i = h A0 B1;0C1;0 D11;0 i+ LXi=1 �i h Ai B1;iC1;i D11;i i :Then, there exists a gain-scheduled output-feedback controller (6)enforcing internal stability and a bound 
 on the L2 gain ofthe closed-loop system (1) and (6), whenever there exist a�nelyparameter-dependent matrices X, Y , bBK , bCK and DKY (�) = Y0 + LPi=1 �iYi; X(�) = X0 + LPi=1 �iXi : : :such that the following �nite family of LMIs are feasible." _X +XA + bBKC2 + (?) ? ?(XB1 + bBKD21)T �
I ?C1 +D12DKC2 (D11 +D12DKD21) �
I # < 0 (28)"� _Y + AY + B2bCK + (?) ? ?(B1 + B2DKD21)T �
I ?C1Y +D12bCK (D11 +D12DKD21) �
I # < 0 (29)hX II Y i > 0; (30)hXiAi + (?) ?BT1;iXi 0i � 0; hAiYi + (?) ?C1;iYi 0i � 0 (31)for (�; _�) 2 V � T and i = 1;2; : : : ; L.5.1 IllustrationWe now give a simple illustration of the technique and provide com-parison results with existing gain-scheduling control approaches. TheLPV plant under consideration is taken from [16] and has the state-space descripton in LFT format:_x = h 0 1�3:25 0i x+ h 0�2:75iw� + h 01ivz� = [ 1 0 ] xy = [ 1 0 ] xw� = �z� ;where x, v, y and � denote the state vector, the control input, themeasurement output and the scheduled parameter, respectively. Ac-tuator dynamics v = 1s+1u are also incorporated to re
ect a morerealistic situation. The synthesis interconnection used in this problemis depicted in Figure 1, with the following weighting functionsWu = 0:32; Wd = 1:33; Wp = 0:5; Wn = 10 s+ 1s+ 200 :We are seeking an LPV controller providing internal stability and min-imal L2-gain performance between exogeneous and error signals, withparameter trajectories �(t) 2 [�1; 1]; t � 0. The syntheses are con-ducted with 3 di�erent techniques:� the LFT gain-scheduled control technique in [27], suitably mod-i�ed to incorporate skew-symmetric scalings. See also [16]. Suchtechniques disregard parameter rate of variation constraints.� the gain-scheduling control technique in Section 2, combinedwith a gridding of the parameter range.� the gain-scheduling control technique in Section 5 with no grid-ding.Recall that the last two approaches exploit informations on the pa-rameter rate of variation. The achieved performance levels for rate ofvariation bounds from 0 to 10 are shown in Figure 2. We can see thatthe last two techniques behave as theoretically expected. They pro-vide far better answers for low rates of variation than the LFT controlapproach. The observed gap is likely to be even larger for problemswith multiple scheduled variables. Also interesting is the fact that thetechnique based on multi-convexity concepts, hence, with the griddingruled out, gives performance levels close to those of the synthesis withgridding. It therefore provides a potential alternative for problems ofreasonable size.



6 Reducing Conservatism by ScalingThe techniques in Sections 2 and 5 are readily modi�ed to handleproblems with structured uncertainties. That is, w and z are relatedthrough a structured operator �. The associated theoretical charac-terizations involve possibly parameter-dependent scaling matrices butare not reducible to LMIs. Simple heuristics such as D � K-like it-erative schemes can however be utilized to improve the design. See[23].7 Two-Link Flexible ManipulatorThe gain-scheduled control of a two-link 
exible manipulator is a nontrivial problem. The dynamics of such a system include both rigidbody and lightly damped structural modes. The problem is compli-cated by uncertainty in the high frequency dynamics of the system andby the variation of dynamics with manipulator geometry. The �rst ofthese complications drives the requirement for closed-loop robust sta-bility while the second drives the requirement for gain-scheduling. Inaddition, a rapid closed-loop response to position commands is de-sired. The ability of a control synthesis approach to handle the trade-o�s between robustness, performance, and gain scheduling with theleast possible conservatism is thus critical for such a system. Due tolack of space, the reader is encouraged to consult reference [23] to seeillustrations of concepts and techniques previously introduced.8 ConclusionsAdvanced gain-scheduling design approaches for LPV systems havebeen presented with emphasis on the practical goals of reduced com-putational burden and ease of implementation. Two complementaryLMI characterizations for the calculation of such controllers have beeninvestigated which, when used together, achieve these two objectives.The methodology is completed with a grid-free approach and a scalingtechnique directed at facilitating the design task and reducing con-servatism, respectively. The challenging problem of the control of atwo-link 
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 Figure 2: Guaranteed L2-performance vs. rate of variationLFT control (solid); synthesis with gridding (dashed); nogridding (dotted)


