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ABSTRACT: Experimental control of block copolymer segregation is ideally achieved by varying
temperature, but in practice, the range of segregation is very restricted. A far greater range can be accessed
by diluting the block copolymer melt with a solvent, assuming the mixture obeys the so-called dilution
approximation. We examine the accuracy of this dilution approximation as a function of solvent quality,
size, and selectivity, using self-consistent field theory (SCFT). Naturally, the solvent quality must be
good or else the solvent is prone to macrophase separation. Furthermore, the solvent size and selectivity
must be sufficiently small so that the solvent distributes evenly throughout the mixture. We conclude by
deriving a simple formula to specify the necessary constraints on the solvent size and selectivity.

I. Introduction
The phase behavior of AB diblock copolymer melts is,

to a good approximation, controlled by the composition
of the molecule f and the product øN, where N is the
degree of polymerization and ø is the usual Flory-
Huggins interaction parameter. The mean-field phase
diagram for AB diblock copolymers is shown in Figure
1. From an experimental point of view, the exploration
of this parameter space is difficult. In particular,
changing either f or N requires the synthesis of an
entirely new molecule. Although ø can be varied by
changing temperature, in general, the range is rather
restricted. If the temperature becomes too high, the
polymer tends to degrade, while if it becomes too low,
the melt solidifies due to either a glass transition or
crystallization.

The difficulty of traversing the f axis of the phase
diagram has been alleviated by a clever one-component
approximation introduced by Bates et al.3 In this case,
two distinct diblock copolymers are synthesized, with
compositions f1 and f2. According to the approximation,
a blend of the two copolymers with volume fraction φ of
the first copolymer behaves equivalently to a neat
diblock copolymer melt with f ) feff, where

Thus, the composition f can be varied continuously
between f1 and f2 by simply adjusting φ. The validity of
this approximation has since been justified by self-
consistent-field theory (SCFT).4 Provided that both
diblock copolymers are of equal volume (i.e., same N)
and similar in composition (i.e., | f1 - f2| j 0.05), the
phase boundaries of the blend accurately coincide with
those of the neat melt. Furthermore, the coexistence
regions in the blend are sufficiently narrow that they
can be safely ignored.

A similar trick to transverse the øN axis of the phase
diagram, known as the dilution approximation, was
proposed long ago by Helfand and Tagami.5 This method
involves diluting the diblock copolymer with a solvent.

Of course, with the addition of a third chemical species,
we now require three independent Flory-Huggins
interaction parameters, øAB, øAS, and øBS, where A, B,
and S denote A-type polymer, B-type polymer, and
solvent, respectively. It is assumed that, for a relatively
neutral solvent (i.e., øAS ≈ øBS), a mixture with volume
fraction φ of copolymer behaves equivalently to a neat
diblock copolymer melt with ø ) øeff, where

This allows the segregation øN to be varied continuously
over a much larger range than could be achieved by just
changing temperature.

The dilution approximation has been used extensively
in experiments.6-13 Its validity relies on the assumption
that the solvent distributes uniformly throughout the
block copolymer structure. However, experiments6 have
indicated that even a slight degree of selectivity can lead
to significant asymmetric swelling of the domains, thus* To whom correspondence should be addressed.

feff ) φf1 + (1 - φ)f2 (1)

Figure 1. Theoretical phase diagram for neat AB diblock
copolymer melts plotted as a function of segregation, øN, and
composition, f.1 The ordered phases are denoted lamellar (L),
gyroid (G), cylindrical (C), and spherical (S). The solid dot
denotes a mean-field critical point, which is ultimately de-
stroyed by fluctuation effects.2 In the dilution approximation,
the diblock copolymer/solvent mixtures are mapped onto this
diagram by setting ø ) øeff ≡ φøAB.

øeff ) φøAB (2)
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invalidating the dilution approximation. Even with a
perfectly neutral solvent, there is a tendency for the
solvent to accumulate at the interfaces. Huang et al.7
have proposed a straightforward scattering experiment
for qualifying the spatial uniformity of the solvent so
as to assess the validity the dilution approximation.
With appropriate solvents, the dilution approximation
has been successful in predicting domain spacings,8
scattering functions,9 and order-order transitions
(OOT’s).10,11 However, there is clear evidence that it fails
for the order-disorder transition (ODT).10-12

Fredrickson and Leibler14 performed the first theo-
retical test of the dilution approximation by examining
AB diblock copolymers mixed with an athermal neutral
solvent (i.e., øAS ) øBS ) 0). Because their calculation
relied on weak-segregation approximations,15 they fo-
cused on the ODT. Concentrated mixtures (i.e., φ J 0.1)
were modeled using the standard fluctuation-corrected
theory of Fredrickson and Helfand,2 and semidilute
mixtures (i.e., φ j 0.1) were treated by supplementing
this with the blob model.16 Their results predicted that
the position of the ODT would follow the dilution
approximation in the concentrated regime but not in the
semidilute regime. However, we now know that the
ODT disobeys the dilution approximation in both
regimes.10-12 Fredrickson and Leibler also predicted
that the two-phase coexistence regions would be com-
pletely negligible at weak segregations, and, in this case,
experiments agree. Whitmore and co-workers17,18 ex-
tended the test to stronger segregations by examining
concentrated mixtures with good neutral solvent using
self-consistent field theory (SCFT).19 They found that
the dilution approximation was valid for such cases, and
that, in particular, the OOT’s follow the expected
dependence on φ, consistent with experiment.10,11 We
note that their OOT calculations17 did not consider the
possibility of coexistence regions.

These previous calculations focused on the ideal case
where øAS ) øBS. The question still remains, just how
balanced must the solvent interactions be for the
dilution approximation to remain valid. Although Ba-
naszak and Whitmore20 have demonstrated that some
degree of selectivity can be tolerated, they did not
specify how much. Previous studies also overlook the
effect of solvent size. Here, we address both of these
issues using SCFT, ultimately providing a simple
criterion for estimating the limitations on solvent size
and selectivity necessary for the validity of the dilution
approximation.

II. Theory

In this section, we outline the self-consistent field
theory (SCFT) for a mixture of nc AB diblock copolymers
with ns solvent molecules. Each copolymer consists of
N segments of which a fraction f forms the A block. We
assume the mixture is incompressible with each poly-
mer segment occupying a fixed volume F0

-1 and each
solvent molecule taking a volume vs. Thus, the total
volume of the system is V ≡ ncN/F0 + nsvs, the volume
fraction of copolymer is φ ≡ ncN/VF0, and the ratio of
the solvent to polymer size is R ≡ vsF0/N. Furthermore,
we assume that the A and B segments have the same
statistical length a, although it is a trivial matter to
extend our calculations to asymmetric lengths.21

SCFT begins by representing molecular interactions
by effective fields.22 For the present system, there are
three fields

acting on the A segments, B segments, and solvent
molecules, respectively. Here, φA(r), φB(r), and φS(r) are
the standard dimensionless concentrations of these
three respective components. Note that the field for each
component has two contributions due to interactions
with the other two components, and a Lagrange mul-
tiplier field ê(r) to enforce the incompressibility as-
sumption,

The introduction of fields allows us to calculate the
partition functions of the two different molecules. For
the copolymer, we must first parametrize the molecule
with a variable s that increases from 0 to 1 over its
length.22 This allows us to define a partial partition
function, q(r, s), for the (0, s) portion of the chain with
the sth segment fixed at position r. It is evaluated by
solving the modified diffusion equation,

with the initial condition q(r, 0) ) 1.19 A similar partial
partition function, q†(r, s), is then calculated for the (s,
1) portion of the chain. It satisfies eq 7 with the right-
hand side multiplied by -1, and obeys the condition
q†(r, 1) ) 1. In terms of these two functions, the total
partition function for the copolymer molecule is

Because the solvent molecule is treated as a point
particle, its partition function is given by the simple
expression

For a given set of fields, the dimensionless concentra-
tions are

As in any mean-field calculation, the fields must be
adjusted so that these concentrations satisfy the self-
consistent eqs 3-6.

wA(r) ) øABNφB(r) + øASNφS(r) + ê(r) (3)

wB(r) ) øABNφA(r) + øBSNφS(r) + ê(r) (4)

wS(r) ) øASNφA(r) + øBSNφB(r) + ê(r) (5)

φA(r) + φB(r) + φS(r) ) 1 (6)

∂

∂s
q(r, s) ) {1

6
a2N∇2q(r, s) - wA(r)q(r, s), if s < f

1
6
a2N∇2q(r, s) - wB(r)q(r, s), if f < s,

(7)

Qc ) ∫dr q(r, s) q†(r, s) (8)

Qs ) ∫ dr exp{-RwS(r)} (9)

φA(r) ) φV
Qc

∫0

f
ds q(r, s) q†(r, s) (10)

φB(r) ) φV
Qc

∫f

1
ds q(r, s) q†(r, s) (11)

φS(r) )
(1 - φ)V

Qs
exp{-RwS(r)} (12)
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Once the fields have been self-consistently deter-
mined, the canonical free energy of the mixture is given
by

For a periodic structure such as the lamellar phase, F
has to be minimized with respect to the domain spacing,
D (see Figure 2). Since our calculation is performed in
the canonical ensemble, the free energy curvature must
also be checked to ensure that d2F/dφ 2 > 0 for all φ. If
the curvature is negative, the mixture will macrophase
separate within an interval determined by a double-
tangent construction.23 Note that the grand-canonical
ensemble24 would be more convenient if macrophase
separation was common, but in the present study it only
occurs once.

III. Results

We begin by displaying in Figure 2 an actual solvent
profile, φS(z), calculated by SCFT, where z denotes the
coordinate normal to the lamellae and D equals the
lamellar period. The dashed curves indicate the A and
B segment profiles of the copolymer, φA(z) and φB(z),
respectively. Naturally, the configurations of individual
copolymer molecules are affected by both the level of
segregation, φA(z) - φB(z), and the solvent distribution,
φS(z). The dilution approximation holds when the first
contribution dominates the second. In mathematical

terms, this requires σAB . σS, where we define the
standard deviations,

As we will demonstrate below, the dilution approxima-
tion is generally accurate when σS/σAB j 0.01, and
remains moderately accurate up to σS/σAB ≈ 0.04.

The vast parameter space (i.e., øABN, øASN, øBSN, R,
f, and φ) of diblock copolymer/solvent mixtures renders
a complete survey of the system impractical. Therefore,
we focus on a single representative diblock copolymer
with øABN ) 50 and f ) 0.5. This segregation is chosen
because it represents the approximate limit for which
a copolymer sample can be disordered without entering
the semidilute regime, where the underlying assump-
tions of SCFT are no longer valid. We have completed
similar studies on a less segregated diblock copolymer
(øN ) 25) as well as asymmetric compositions (f ) 0.4
and 0.3). However, these diblocks did not produce any
notable differences and therefore will not be discussed
in this particular section.

A. Solvent Quality. We begin by examining the
effect of adding a neutral solvent (i.e., øAS ) øBS) of
relative size R ) 0.01 to the diblock copolymer sample.
The phase diagram is plotted in Figure 3 as a function
of copolymer volume fraction, φ, and solvent quality,
1/2(øAS + øBS)F0vs. For a good solvent [i.e., 1/2 (øAS +
øBS)F0vs < 0.5], the lamellar phase disorders at φ )
10.495/øABN ) 0.21 as expected from the dilution
approximation. However, poor solvents tend to mac-
rophase separate causing the order-disorder transition
(ODT) to be replaced by a disordered + lamellar
coexistence region.

To assess the extent over which the dilution ap-
proximation applies, contours of constant σS/σAB are
plotted in the lamellar region of Figure 3. They indicate
that the approximation is most accurate for good
solvents, particularly near the ODT and at high copoly-
mer concentrations. Figure 4 demonstrates that a
reduction in solvent quality causes the solvent to
accumulate at the A/B interfaces. Nevertheless, the
spatial distribution of solvent remains reasonably uni-

Figure 2. Schematic diagram showing the arrangement of
solvent molecules (small open circles) within a diblock copoly-
mer lamellar (L) phase of period D. Below is the solvent
distribution calculated for øABN ) 50, f ) 0.5, øAS ) øBS ) 0, R
) 0.01, and φ ) 0.6. The A and B segment distributions of the
diblock copolymer are indicated with dashed curves.

NF
kBTF0V

) - φ ln(Qc

V ) - 1 - φ

R
ln(Qs

V ) -

N
V∫dr[øABφA(r)φB(r) + øASφA(r)φS(r) + øBSφB(r)φS(r)]

(13)

Figure 3. Phase diagram for a neutral solvent (øAS ) øBS, R
) 0.01) mixed with a symmetric diblock copolymer (øABN )
50, f ) 0.5) plotted in terms of copolymer volume fraction, φ,
and solvent quality, 1/2(øAS + øBS)F0vs. For good solvents, the
lamellar (L) and disordered phases are separated by a continu-
ous transition, whereas for poor solvents, they are separated
by a two-phase coexistence region. The dashed curves in the
L region represent contours of constant σS/σAB.

σS
2 ≡ 1

D∫0

D
[φS(z) - (1 - φ)]2 dz (14)

σAB
2 ≡ 1

D∫0

D
[φA(z) - φB(z) - φ(2f - 1)]2dz (15)
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form even up to the point where macrophase separation
occurs. This is consistent with previous studies,17,18

suggesting that the dilution approximation is successful
provided the solvent quality is good.

Figure 5 tests the accuracy of the dilution approxima-
tion by comparing the actual lamellar period (solid
curves) to that predicted by the dilution approximation

(dashed curves), i.e., the value obtained from a melt with
ø ) φøAB. As expected, the accuracy correlates well with
σS/σAB. The predictions are accurate to within ∼1% if
σS/σAB < 0.01, and to within ∼3% when σS/σAB < 0.04.

B. Solvent Size. Because of an unfortunate conven-
tion that we will discuss later, the effect of solvent size
has been overlooked in the past. We now examine it for
mixtures of neutral athermal solvent (i.e., øAS ) øBS )
0). Figure 6 shows the resulting phase diagram plotted
as a function of copolymer volume fraction, φ, and
relative solvent size, R ≡ vsF0/N. Again, the dilution
approximation correctly predicts the ODT at φ ) 0.21.
Because the quality of athermal solvents is classified
as good, there are no instances of macrophase separa-
tion.

The contours of constant σS/σAB plotted in the L region
of Figure 6 indicate that the dilution approximation
worsens as the solvent molecules increase in size, even
though the solvent quality remains constant. Indeed,
Figure 7 demonstrates that the larger solvent molecules
have a greater tendency to migrate to the interface.

As before, we test the dilution approximation by
comparing actual and predicted domain spacings. Figure
8 clearly demonstrates that the approximation deterio-
rates as σS/σAB increases. The agreement is again within
∼1% for σS/σAB < 0.01, and ∼3% for σS/σAB < 0.04.

C. Solvent Selectivity. Last, we consider a selective
solvent with øAS ) - øBS and R ) 0.01. Figure 9 shows
the phase diagram plotted as a function of copolymer
volume fraction, φ, and solvent selectivity, (øAS -
øBS)F0vs. In this case, the ODT fails to obey the dilution
approximation. Instead, the selectivity has a stabilizing
effect on the ordered lamellar phase,6,20 pushing the
ODT toward low concentrations (i.e., φ < 0.21).

The contours of constant σS/σAB plotted in the L region
of Figure 9 demonstrate that a slight solvent selectivity
is generally sufficient to invalidate the dilution ap-
proximation. As is clearly evident from Figure 10, this
is because the selectivity has a dramatic effect on the
relative swelling of the A and B domains. We note that
in the region where σS/σAB is large, this asymmetric
swelling could stabilize other ordered phases (i.e., G, C,
and S from Figure 1).10 However, our present interest
lies only in the region where σS/σAB is small, and
therefore, these alternative phases are not considered.

Figure 11 demonstrates that the asymmetric swelling
causes a severe failure in the ability of the dilution

Figure 4. Distribution of a neutral solvent (øAS ) øBS, R )
0.01) within the lamellar phase of a symmetric diblock
copolymer (øABN ) 50, f ) 0.5). The top (a) and bottom (b) plots
are for good and Θ solvents, respectively. The polymer profiles
are indicated with dashed curves.

Figure 5. Comparison of the actual lamellar period (solid
curves) to that predicted by the dilution approximation (dashed
curves). Plots a and b correspond to horizontal and vertical
paths across the phase diagram for mixtures of neutral solvent
and symmetric diblock copolymer in Figure 3.

Figure 6. Phase diagram for an athermal neutral solvent (øAS
) øBS ) 0) mixed with symmetric diblock copolymer (øABN )
50, f ) 0.5) plotted in terms of copolymer volume fraction, φ,
and relative solvent size, R ≡ vsF0/N. The solid line denotes a
continuous transition between the lamellar (L) and disordered
phases. The dashed curves in the L region represent contours
of constant σS/σAB.
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approximation to predict the domain spacing. Neverthe-
less, the inaccuracy still correlates with σS/σAB as it did
before; ∼3% accuracy is again achieved if σS/σAB < 0.04,
while ∼1% accuracy requires σS/σAB < 0.01.

IV. Discussion

The reason that uniform solvent distributions give
rise to the dilution approximation is evident from the
mathematical form of eqs 3 and 4 for wA(r) and wB(r).
Since additive constants have no effect on the statistical
mechanics of the copolymer, the solvent contribution to
wA(r) and wB(r) can be ignored in the limit of uniform
φS(r). In that case, eqs 3 and 4 reduce to those of the
neat melt,22 except that, in the mixture, the polymer
concentrations are reduced by a factor φ. However, since
øAB only enters the theory through the field equations
as a factor multiplying the polymer concentrations, the
reduction in polymer concentration is exactly equivalent
to a reduction in øAB by the same factor, φ. Hence, a

diluted mixture with φA(r) + φB(r) ) φ is equivalent to
a melt with ø ) øeff ≡ φøAB.

The necessary conditions for a uniform solvent dis-
tribution follow from eq 12, where it is immediately
obvious that the spatial variations in φS(r) are directly
linked to those in RwS(r). Thus, the need for small R is
clear. It is also not too difficult to see that øAS ≈ øBS is
required, or else the terms øASNφA(r) + øBSNφB(r), in
the expression for wS(r), will exhibit significant oscil-
lations. Notice that the solvent quality is relatively
unimportant, provided that it is not so poor as to cause
macrophase separation. The necessary constraints on
solvent size and selectivity are easily determined from
plots like that in Figure 12, where contours of constant
σS/σAB are plotted as a function of R and |øAS - øBS|F0vs.
High accuracy requires the solvent parameters to fall
within the σS/σAB ≈ 0.01 contour, while moderate
accuracy requires σS/σAB j 0.04.

Figure 7. Distribution of an athermal neutral solvent (øAS )
øBS ) 0) within the lamellar phase of a symmetric diblock
copolymer (øABN ) 50, f ) 0.5). The top (a) and bottom (b) plots
correspond to small and large solvent molecules, respectively.
The polymer profiles are indicated with dashed curves.

Figure 8. Comparison of the actual lamellar period (solid
curves) to that predicted by the dilution approximation (dashed
curves). This plot corresponds to a vertical path across the
phase diagram in Figure 6 for mixtures of athermal neutral
solvent and symmetric diblock copolymer.

Figure 9. Phase diagram for a selective solvent (øAS ) - øBS,
R ) 0.01) mixed with symmetric diblock copolymer (øABN )
50 and f ) 0.5) plotted in terms of copolymer volume fraction,
φ, and solvent selectivity, (øAS - øBS)F0vs. The solid curve
denotes a continuous transition between the lamellar (L) and
disordered phases. The dashed curves in the L region represent
contours of constant σS/σAB.

Figure 10. Distribution of a selective solvent (øAS ) - øBS, R
) 0.01) mixed with symmetric diblock copolymer (øABN ) 50,
f ) 0.5). The top (a) and bottom (b) plots correspond to weak
and strong selectivities, respectively. The polymer profiles are
indicated with dashed curves.
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The obvious problem with Figure 12 is that it only
applies to very specific mixtures, i.e., øAS + øBS ) 0.0, φ

) 0.6, øABN ) 50, and f ) 0.5. Fortunately, it is possible
to derive a general expression for estimating small
values of σS/σAB. When σS/σAB is small, we can safely
assume φA(r) + φB(r) ≈ φ, in which case

where the value of the constant is unimportant. In the
spirit of the dilution approximation, φA(r) - φB(r) and
ê(r) can be estimated from neat diblock copolymer melts
using ø ) øeff ≡ φøAB. However, we must account for the
fact that the polymer concentrations are reduced by a
factor φ, and thus eq 16 becomes

where ê0 is the average value of ê(r). For convenience,
the arbitrary constant in eq 16 has been set so that the
average of wS(r) is zero. We also know from eq 12 that

where the Taylor series approximation is valid for σS/
σAB , 1. Since the average of wS(r) has been adjusted
to zero, the normalized concentration is just

Inserting eqs 17 and 19 into eq 14 yields

where Σê and ΣAB are the standard deviations of ê(r)
and φA(r) - φB(r), respectively, evaluated for a neat
diblock copolymer melt with ø ) øeff ≡ φøAB. Note that
the average of [φA(r) - φB(r) - (2f - 1)][ê(r) - ê0] has
been ignored. It is identically zero when f ) 0.5 and
remains negligible even when f * 0.5. On the basis of
the dilution approximation, it also follows that σAB ≈
φΣAB, and thus

The dashed curves in Figure 12 demonstrate that indeed
eq 21 provides an adequate estimate of σS/σAB. Thus,
we can now assess the validity of the dilution ap-
proximation without performing a SCFT calculation. All
we require is the ratio Σê/ΣAB, which is provided in
Figure 13. We note that the derivation of eq 21 does
not assume any particular morphology and thus applies
equally well to nonlamellar phases.

Not only does eq 21 summarize what would otherwise
require a tremendous number of numerical calculations,
but it also allows us to easily understand how the six
parameters of the diblock copolymer/solvent mixtures
influence the validity of the dilution approximation.
Interestingly, the parameters specific to the diblock
copolymer (i.e., øABN and f) only enter indirectly through
their influence on Σê/ΣAB. On the basis of Figure 13, this
ratio depends strongly on the segregation of the corre-
sponding neat diblock copolymer melt but hardly at all
on either its composition f or its morphology. In fact,
we should have expected this. Any tendency for solvent
molecules to preferentially accumulate in either the
A-rich, B-rich, or interfacial region should depend
primarily on the energetics and not on the size or shape
of the domains.

Since the dilution approximation is based on the form
of the self-consistent field equations, we cannot expect
it to apply if the underlying assumptions of SCFT are
not met. For example, SCFT treats the individual
polymer segments as ideal springs, which assumes that
their internal configurations obey random-walks sta-
tistics.22 However, at semidilute concentrations (i.e., φ
∼ 0.1), the polymer chains begin to obey self-avoiding
statistics up to lengths comparable to the distance

Figure 11. Comparison of the actual lamellar period (solid
curves) to that predicted by the dilution approximation (dashed
curves). Plots (a) and (b) correspond to horizontal and vertical
paths across the phase diagram in Figure 9 for mixtures of
selective solvent and symmetric diblock copolymer.

Figure 12. Contours of constant σS/σAB for mixtures of
selective solvent (øAS ) - øBS) and symmetric diblock copolymer
(øABN ) 50, f ) 0.5). The solid curves correspond to full SCFT
calculations, while the dashed curves are obtained from eq 21
using Σê/ΣAB ) 4.355.

wS(r) ≈ 1
2
(øAS - øBS)N(φA(r) - φB(r)) + ê(r) +

constant (16)

wS(r) ≈ 1
2

φ(øAS - øBS)N[φA(r) - φB(r) - (2f - 1)] +

[ê(r) - ê0] (17)

φS(r)∝ exp{-RwS(r)} ≈ 1 - RwS(r) (18)

φS(r) ≈ (1 - φ)(1 - RwS(r)) (19)

σS
2 ) (12(1 - φ)φ(øAS - øBS)F0vsΣAB)2

+ ((1 - φ)ΣêR)2

(20)

( σS

σAB
)2

) (1 - φ

2
(øAS - øBS)F0vs)2

+ (1 - φ

φ

Σê

ΣAB
R)2

(21)
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between interchain contacts.16 Indeed, calculations by
Fredrickson and Leibler14 and by Olvera de la Cruz26

using the blob model predict that the simple dilution
approximation does not apply at semidilute concentra-
tions. Experiments27 agree with this conclusion, al-
though they also suggest that the predictions from the
blob model are qualitatively inaccurate.

The validity of SCFT also assumes that the polymer
and solvent molecules are randomly mixed on the local
scale, or, in other words, that the short-range polymer-
solvent correlations are weak. This is because SCFT
assumes, for example, 〈φ̂A(r)φ̂S(r)〉 ≈ φA(r)φS(r), where
φ̂A(r) and φ̂S(r) are instantaneous concentrations and
φA(r) ≡ 〈φ̂A(r)〉 and φS(r) ≡ 〈φ̂S(r)〉 are the ensemble-
averaged concentrations. To avoid strong correlations,
the energy difference, ∆E ) kBTøASF0vs, between placing
a single solvent molecule in an A-rich region and a
solvent-rich region should not exceed the thermal
energy, kBT. Thus, we require øASF0vs J - 1, and
similarly øBSF0vs J - 1.

It is well-known that SCFT is inaccurate near the
mean-field critical point in Figure 1, because it ignores
important Brazovskii fluctuations.22 Nevertheless, the
fluctuation-corrected calculation by Fredrickson and
Leibler14 suggests that the dilution approximation
remains valid along the ODT for concentrated mixtures.
However, experiments10-12 have strongly disputed this
claim. This, in fact, supports emerging evidence28 that
the current method2 of correcting for fluctuations is
unreliable.22

In this paper, we have deviated from the standard
convention for polymer solutions of setting the reference
volume, F0

-1, equal to the volume of a solvent molecule,
vs. Although this practice is completely legitimate, it is
also a recipe for confusion,25 since the value chosen for
F0 affects the Flory-Huggins interaction parameters,
the polymerization indices, and the statistical segment
lengths (i.e., ø, N, and a). Instinctively, we might expect
that if the same diblock copolymer was mixed with two
different solvents (e.g., diblock + toluene and diblock
+ cyclohexane), then the block copolymer parameters,
øAB, N, and a, would remain the same for both mixtures.
However, this is not the case when the reference volume
has to change to match the solvent size. Furthermore,
the practice of setting F0

-1 ) vs obscures the dependence
of solvent size, vs, on the phase behavior, which explains
why its effect has been overlooked in the past. Now that

continuum models have replaced lattice models, it seems
best to abandon the convention of setting F0vs ) 1.

V. Conclusion

The present study has theoretically examined the
validity of the dilution approximation as a tool for
lowering the level of segregation, øN, in a block copoly-
mer melt. According to this approximation, a mixture
with copolymer volume fraction φ behaves equivalently
to a neat diblock copolymer melt with ø ) øeff ≡ φøAB.
The validity of this approximation hinges on the as-
sumption that the solvent distribution, φS(r), is uniform
relative to the polymer segregation, φA(r) - φB(r). More
specifically, the dilution approximation is generally
accurate provided σS/σAB j 0.01, where σS and σAB are
the standard deviations of φS(r) and φA(r) - φB(r),
respectively. In fact, the accuracy remains reasonable
even up to σS/σAB ≈ 0.04.

For a given copolymer sample, the effect of an added
solvent depends on its average quality (føAS + (1 -
f)øBS)F0vs, its relative size R ≡ vsF0/N, and its selectivity
(øAS - øBS)F0vs. The validity of the dilution approxima-
tion first requires the solvent quality to be good [i.e.,
(føAS + (1 - f)øBS)F0vs < 0.5], or else the solvent is prone
to macrophase separation from the copolymer. Second,
the above constraint on σS/σAB requires the solvent size
and selectivity to be sufficiently small as determined
by eq 21 using the ratio Σê/ΣAB plotted in Figure 13. This
latter ratio depends strongly on the effective segrega-
tion, øeffN, but hardly at all on the diblock composition,
f, or the symmetry of the morphology.

Even if the above criteria are met, we cannot expect
the dilution approximation to apply when the assump-
tions of SCFT are not fulfilled. For example, the
approximation is expected to fail when the copolymer
concentration becomes semidilute (i.e., φ j 0.1), since
this causes the local polymer configurations to switch
from random-walk to self-avoiding statistics. Further-
more, if the solvent is too good (i.e., øASF0vs j - 1 or
øBSF0vs j - 1), the strong polymer-solvent correlations
will invalidate the local mixing assumption used to
approximate the internal energy. Because SCFT ignores
fluctuation effects, our conclusions cannot be extended
to the ODT. Indeed, experiments12 have demonstrated
that the dilution approximation fails in this regime.
Nevertheless, there remains a wide range of parameter
space where the dilution approximation can be trusted,
and thus it still constitutes a valuable tool for manipu-
lating block copolymer segregation.
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Appendix: Analytical Determination of the
ODT

Fredrickson and Leibler14 derived analytical expres-
sions for the mean-field ODT using the random phase
approximation. Here, we show that equivalent expres-
sions emerge more simply by performing a first-order
harmonic approximation of the SCFT equations. To

Figure 13. Ratio of the standard deviations for ê(r) and
φA(r) - φB(r) calculated for a neat diblock copolymer melt as
a function of segregation, øN, at three different compositions,
f. The solid and dashed curves are calculated for lamellar and
cylindrical morphologies, respectively. The values to be in-
serted into eq 21 are obtained by setting ø ) øeff ≡ φøAB.
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start, the fields, concentrations, and partial partition
functions are approximated as

where k ≡ 2π/D and R represents A, B, or S. Then from
the modified diffusion eq 7, it follows that

where x ≡ k2a2N/6. Furthermore, the initial condition
q(z, 0) ) 1 implies that q0(0) ) 1 and q1(0) ) 0. At this
point, we solve eq 27 for q1(s) using the approximation
q0(s) ≈ 1, and then we solve eq 26 to improve the
approximation for q0(s). This provides us with

where

Repeating this procedure for q†(z, s) gives

With these relationships, we evaluate the partition
functions of the copolymer and solvent to quadratic
order in the fields:

where S11 ) g(f, x), S22 ) g(1 - f, x), and S12 ) h(f, x)
h(1 - f, x). The concentrations are then found by
differentiating eqs 32 and 33 according to

Inverting these equations for the fields gives

where det(S) ) S11S22 - S12
2. Now, it is just a matter

of inserting the above expressions for Qc, Qs, wA(r),
wB(r), and wS(r) into the free energy equation, eq 13,
expanding the logarithms, and replacing φS,1 by - (φA,1
+ φB,1) to arrive at the simple expression

where F0 is the free energy of the uniform disordered
phase and

Given the functional form of eq 40, it immediately
follows that the disordered state (i.e., φA,1 ) φB,1 ) 0) is
metastable (i.e., is a local minimum) if and only if

for all x ≡ k2a2N/6. The spinodal, which coincides with
the lamellar to disorder transition, occurs at the first
point where an x exists such that R11R22 ) R12

2. This
special value of x is labeled x*, and is related to the
lamellar period in the vicinity of the ODT by D ) 2πa
xN/6x*. Furthermore, the ratio φA,1/φB,1 near the ODT
is given by -R11/R22, from which it follows that

Indeed, these results all match up perfectly with our
full SCFT calculations.
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