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Abstract
This article presents a wavelet coherence investigation of electroencephalograph (EEG) readings acquired from patients with Alz-
heimer disease (AD) and healthy controls. Pairwise electrode wavelet coherence is calculated over each frequency band (delta, theta,
alpha, and beta). For comparing the synchronization fraction of 2 EEG signals, a wavelet coherence fraction is proposed which is defined
as the fraction of the signal time during which the wavelet coherence value is above a certain threshold. One-way analysis of variance
test showsa setof statistically significantdifferences inwavelet coherence betweenADandcontrols. Thewavelet coherence method is
effective for studying cortical connectivity at a high temporal resolution. Compared with other conventional AD coherence studies,
this study takes into account the time–frequency changes in coherence of EEG signals and thus provides more correlational details. A
set of statistically significant differences was found in the wavelet coherence among AD and controls. In particular, temporocentral
regions show a significant decrease in wavelet coherence in AD in the delta band, and the parietal and central regions show significant
declines in cortical connectivity with most of their neighbors in the theta and alpha bands. This research shows that wavelet coherence
can be used as a powerful tool to differentiate between healthy elderly individuals and probable AD patients.
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Introduction

Alzheimer disease (AD) is characterized by 2 histological fea-

tures: amyloid plaques and neurofibrillary tangles. In addition,

it is characterized by a loss of functional connections between

different areas of the brain.1 While modern imaging techniques

are unable to detect the histological features of AD, electroen-

cephalography (EEG) remains a powerful tool providing high

temporal and spatial resolution to study functional connections

within different areas of the brain.2-12 Electroencephalogram

signals are commonly decomposed into subbands: delta

(0-4 Hz), theta (4-8 Hz), alpha (8 to 12 Hz), and beta (12 to

30 Hz). Each of the subbands relates to different functional and

physiological parts of the brain. Adeli et al13 present a spatio-

temporal wavelet chaos methodology for the analysis of EEGs

and their delta, theta, alpha, and beta subbands for discovering

potential markers of abnormality in AD.

Coherence is one way to study cortical connectivity in the

human brain. Recently, Sankari, Adeli, and Adeli14 presented

an EEG coherence study of AD and found statistically signifi-

cant differences in electrode coherence between AD and con-

trols. While conventional coherence remains a common tool

to study cortical connectivity, its drawback is that only spectral

components are observed while temporal data are completely

lost. Hence, time–frequency analysis methods can be used to

study the changes in cortical connectivity over time. One way

to achieve this is by using the short-time Fourier transform

(STFT) where a fixed sliding window provides EEG spectral

analysis within the time covered by this window. Although it

presents spectral and temporal information, STFT has draw-

backs such as a fixed sliding window size which is not optimal

for different signal frequencies. As such, STFT is not the most

suitable approach for EEG studies. A more recent concept used

over the past two decades is wavelet analysis.15-17

In wavelet analysis, a base window function, called a mother

wavelet, is scaled and translated to be used in the analysis of a

time signal.18-21 Wavelet analysis of EEG signals has been

employed by a number of researchers13,22-24 for feature extraction
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or denoising of EEG signals. Torrence and Campo25 proposed a

wavelet coherence (WC) method for the analysis of spectral and

temporal synchronization26 between 2 signals for geophysical

applications in order to incorporate the temporal aspect into their

analysis. Subsequently, other researchers used WC in geophysi-

cal applications.27,28 Lachaux et al22 provided the proof of con-

cept for application of WC in EEG analysis. They applied it

only to a single sample EEG, with no association with any disor-

der. Klein et al29 compare conventional and WC using EEG data

of 26 participants obtained in an experiment on associative learn-

ing. They conclude that WC can detect features of synchrony

undetectable by conventional coherence. Sakkalis et al30 applied

a WC model to EEGs from patients with schizophrenia to study

the ‘‘disconnection syndrome’’ in the brain. The results are con-

sistent with previous neural connection disturbance findings. The

study provides additional information related to the location of

most prominent disconnections.

Adeli et al31 present a review of research performed on com-

putational modeling of AD and its markers with a focus on com-

puter imaging, classification models, connectionist neural

models, and biophysical neural models. Adeli et al32 present a

review of models of computation and analysis of EEGs for diag-

nosis and detection of AD. Their review covers 3 areas: time–

frequency analysis, wavelet analysis, and chaos analysis.

In this article, a WC investigation of EEG readings acquired

from AD patients and healthy controls is presented. To the best

of the authors’ knowledge, this is the first time WC is applied to

AD data in an attempt to distinguish between AD and controls.

Data Acquisition

The EEGs were obtained from 20 patients (average age of 74)

diagnosed with probable AD per National Institute of Neurolo-

gical and Communicative Disorders and Stroke (NINCDS);

Alzheimer’s Disease and Related Disorders Association

(ADRDA) and Diagnostic and Statistical Manual of Mental

Disorder (Third Edition Revised; DSM-III-R) criteria and 7

healthy (control) participants (average age of 71), using a stan-

dard 10-20 electrode configuration on the scalp.33 Recordings

from 19 scalp electrodes: Fp2, Fp1, F7, F3, Fz, F4, F8, T3,

C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O2, and O1 (Figure 1) are

taken while the participants’ eyes are closed. Temporal beha-

vior is examined by accumulating data at a sampling rate of

128 Hz for epochs of 8 seconds, resulting in time series of

1024 data points. Digital conversion of the measured analog sig-

nal is accomplished with an 8-bit digitizer. A band-pass filter

(0.1-30 Hz, �12 dB/octave roll-off) is used to filter the fre-

quency band of interest. The EEGs are visually inspected and

discriminated to eliminate those time series that contain optical

and muscular artifacts.

Methods

Conventional Coherence

Conventional coherence for 2 signals x and y is defined as the

magnitude square of the cross-spectrum of the signals divided

by the product of the power spectral densities (PSDs) of each

of the signals:

Cxy fð Þ ¼ jWxyj2 fð Þ
Wx fð ÞWy fð Þ ð1Þ

where f is the frequency, Wx is the PSD of x, Wy is the PSD of y,

and Wxy is the cross-spectral density of the 2 signals x and y.

The cross-power spectrum in equation (1) is defined as:

Wxy fð Þ ¼ X fð ÞY � fð Þ ð2Þ

where X(f) is the fast Fourier transform (FFT) of x and Y(f) is the

FFT of y. Throughout this article, the asterisk sign * is used to

denote the complex conjugate operator. Equation (2) requires x

and y to have infinite time support. In practice, signals have lim-

ited time support and equation (2) is typically estimated using a

temporal smoothing operation, such as the weighted overlapping

segment averaging (WOSA).22 The WOSA divides each time

signal into N overlapping partitions, each weighted by a window-

ing function (Hann, Hamming, etc). The FFT is applied to each of

the N segments and an averaging process is used to estimate the

PSDs and the cross-spectral density.

Wavelet Coherence

The definition of coherence presented above is suitable for time

signals with fixed spectral characteristics. Such signals, called

stationary, have a nonvarying FFT spectrum over time.22 The

EEG signals, however, are recordings of brain activities and are

far from being stationary as their spectral characteristics vary

widely over time.29,34,35 Thus, a time-varying spectral
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Figure 1. Nineteen electroencephalogram (EEG) electrodes in the
International 10-20 System.
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coherence is necessary to investigate the changes in cortical

connectivity. In this research continuous wavelet transform

(CWT) is used for time–frequency analysis. The CWT of a

time signal x is defined as36:

CWTxðt; aÞ ¼
ðþ1

�1

xðtÞCt;aðtÞdt ð3Þ

where t is time and Ct,a(t) is a version of the base function

known as mother wavelet that is scaled by a and shifted by t.

As such, the CWT of a time signal is a function of time and

scale a. The scale is related to the central frequency of a shifted

and scaled wavelet. Therefore, when performing CWT analysis

using a particular wavelet, each scale corresponds to a specific

frequency. The reader should refer to Daubechies,36 Mallat,37

and Adeli and Ghosh-Dastidar38 for details of wavelet

transforms.

There is a variety of wavelet functions that differ in shape

and properties. The choice of a wavelet depends on the appli-

cation.39-45 For EEG analysis using WC22,29 as well as other

applications of WC,28 Morlet wavelet has been proved as a

good choice because it has a simple and smooth spectrum and

represents a good balance between time and frequency locali-

zation. Morlet wavelet is defined as (Figure 2):

C0ðtÞ ¼ p�0:25ei2pfte�0:5t2 ð4Þ

The CWT in equation (3) is computed by filtering the time sig-

nal x through time-shifted and scaled versions of equation (4).

Figure 2. Morlet wavelet.

Table 1. Adjacency List

Electrode Adj1 Adj2 Adj3 Adj4 Adj5 Adj6 Adj7 Adj8

1 Fp1 Fp2 F7 F3 Fz

2 Fp2 Fp1 Fz F4 F8
3 F7 Fp1 F3 T3 C3

4 F3 Fp1 F7 Fz T3 C3 Cz
5 Fz Fp1 Fp2 F3 F4 C3 Cz C4

6 F4 Fp2 Fz F8 Cz C4 T4
7 F8 Fp2 F4 C4 T4

8 T3 F7 F3 C3 T5 P3
9 C3 F7 F3 Fz T3 Cz T5 P3 Pz

10 Cz F3 Fz F4 C3 C4 P3 Pz P4
11 C4 Fz F4 F8 Cz T4 Pz P4 T6

12 T4 F4 F8 C4 P4 T6
13 T5 T3 C3 P3 O1

14 P3 T3 C3 Cz T5 Pz O1
15 Pz C3 Cz C4 P3 P4 O1 O2

16 P4 Cz C4 T4 Pz T6 O2
17 T6 C4 T4 P4 O2

18 O1 T5 P3 Pz O2
19 O2 Pz P4 T6 O1

Table 2. Electrode Pairs in the Delta Band Showing Statistically
Significant Differences in the Wavelet Coherence Fraction (CF)
Among Alzheimer disease (AD) Group and Healthy Controls (P < .01)

Electrode Adjacent Electrode Healthy CF AD CF

T3 C3 0.5497 0.1333
T5 0.423 0.0784

C3 T5 0.5504 0.1053

C4 T6 0.6422 0.216
T5 C3 0.5504 0.1053

P3 0.5502 0.1764
T6 O2 0.6256 0.1695
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The wavelet power (WP) of a signal x is defined as the norm

square of the CWT of x:

WPxðt; f Þ ¼ CWTxðt; f Þk k2 ð5Þ

and is a function of time t and wavelet center frequency f. (The

center frequency of a wavelet function is the center of the FFT

spectrum of that particular wavelet function.)

The cross-wavelet transform (XWT) between 2 signals x

and y, a measure of signal areas with high common power, is

defined as:

XWTxyðt; f Þ ¼ CWTxðt; f Þ:CWT�yðt; f Þ: ð6Þ

Similar to conventional coherence and following Torrence and

Webster,27 Lachaux et al,22 and Grinsted et al,28 a smoothing

operation is used to estimate WC. The smoothing operation

depends on the wavelet type and scales used as illustrated

shortly. Smoothing takes place across scale and time axes; it

increases the degree of freedom for each point in the CWT.25

A proper smoothing function for WC application across time

axis Stime is defined for the Morlet wavelet as28:

Stime CWTx t; fð Þð Þ ¼ CWTx t; fð Þ ^ c
�l2

2

1 ð7Þ

where l¼ t/a, c1 is a normalization constant, and ^ refers to the

convolution operator. The smoothing function across scale

Sscale (frequency) axis is defined as28:

Sscale CWTx t; fð Þð Þ ¼ CWTx t; fð Þ ^ c2P 0:6að Þ ð8Þ

where c2 is a normalization constant, and P is the rectangular

function. In practice, the 2 convolutions in equations (7) and (8)

are computed discretely and the normalization coefficients are

determined numerically. The width of the rectangular function

P used in Sscale is determined by the scale-decorrelation length

that is empirically determined to be 0.6 for the Morlet wavelet.25

T3 C3 C4 T5

T6 O2

Figure 3. Electrode pairs in the delta band showing statistically significant differences in the wavelet coherence fraction (CF) among Alzheimer
disease (AD) group and controls (P < .01).

Table 3. Electrode Pairs in the Theta Band Showing Statistically
Significant Differences in the Wavelet Coherence Fraction (CF)
Among Alzheimer disease (AD) Group and Healthy Controls (P < .01)

Electrode
Adjacent
Electrode

Healthy
CF

AD
CF

F3 C3 0.6168 0.3674
Cz 0.5709 0.2826

Fz C3 0.6239 0.3252
Cz 0.6039 0.2866

F4 Cz 0.609 0.2721
C4 0.5824 0.3556

T4 0.5516 0.3135
T3 C3 0.5876 0.312

T5 0.57 0.1861
P3 0.5884 0.1994

C3 Cz 0.66 0.2752
T5 0.5459 0.2053

P3 0.6087 0.2542
Pz 0.6013 0.1505

Cz C4 0.6353 0.3838
P3 0.5831 0.2555

Pz 0.5919 0.2548
P4 0.6074 0.2922

C4 Pz 0.5834 0.1763
P4 0.6 0.2402

T6 0.5751 0.2123
T4 P4 0.5741 0.2875

T6 0.5827 0.3071
T5 P3 0.6164 0.2894

O1 0.6071 0.257
P3 Pz 0.6567 0.2896

O1 0.6279 0.1848
Pz P4 0.6204 0.2651

O1 0.5844 0.2425
O2 0.635 0.1898

P4 O2 0.6147 0.1234
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Having defined the smoothing functions, the WC is defined as:28

WCxy t; fð Þ ¼
jS a�1XWTxy t; fð Þ
� �

j2

S a�1WPx t; fð Þð ÞS a�1WPy t; fð Þ
� � ð9Þ

where the scale inverse a-1 is used to normalize the XWT.27

The Schwartz inequality ensures that WCxy has values between

0 and 1.22 The smoothing operator S is applied such that28:

S wð Þ ¼ Sscale½StimeðW Þ� ð10Þ

Adjacency List and EEG Subbands

The EEG recordings in this research are taken from 19 elec-

trodes in the 10-20 International System (Figure 1). Since

the instantaneous coherence is being investigated via wave-

let analysis, only adjacent (local) electrode pairs are studied

to avoid faulty results due to propagation delays and other

electrical effects observed within a volume conduction

scheme when distal electrodes are considered. Local pairs

of electrodes are defined as electrodes immediately adjacent

O2

F3 Fz F4 T3

C3 Cz C4 T4

T5 P3 Pz P4

T6 O1

Figure 4. Electrode pairs in the theta band showing statistically significant differences in the wavelet coherence fraction (CF) among Alzheimer
disease (AD) group and controls (P < .01).
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on the scalp. Each electrode has 4 to 8 adjacent electrodes

organized in an adjacency list (Table 1).

In this research, WC is investigated within each of the 4

aforementioned subbands separately. The WC fluctuates in

different bands and the fluctuation in the full band-limited

EEG is so large that it does not yield any useful

information.

Adjacency lists for the 19 scalp electrodes are con-

structed (Table 1) and a wavelet coherence fraction ([CF]

detailed below) is calculated for each adjacent electrode

pairs.

Wavelet Coherence Fraction

In this research, an average WC is computed over each of the 4

aforementioned bands by averaging the WC coefficients in

WCxy (t,f) as follows:

AxyðtÞ ¼
1

U � L

ðU

L

WCxyðt; f Þdf ð11Þ

where Axy is the frequency averaged WC function in each

band, and U and L are the upper and lower frequency bounds

of the band, respectively. From this point onward, this function

is referred to simply as WC.

In order to interpret the results of WC, it is necessary to

devise a scheme to compare the results of AD and control

groups quantitatively and qualitatively. In this research, the

authors propose wavelet coherence fraction (CF) for comparing

the synchronization fraction of 2 EEG signals. It is defined as the

fraction of the signal time during which the WC value is above a

certain threshold. As such, CF varies between 0 and 1. The ref-

erence threshold is chosen to be the average of Axy (t) values for

all healthy/control EEGs over time. As such for electrode pairs x

and y, the threshold TB in band B is computed as follows:

TB ¼

PNh

1

mean ½AxyðtÞ�

Nh

ð12Þ

where Nh is the number of control EEGs, mean[Axy] is the

group mean of the frequency averaged WC functions for elec-

trodes x and y of control participants.

Analysis of variance (ANOVA) is applied to find statisti-

cally significant differences between AD and control groups

using P < .01.

Results

Table 2 and Figure 3 present electrode pairs with statistically

significant (P < .01) differences in the delta band, and the group

average CF for AD group and controls. In this band, the AD

group shows a statistically significant (P < .01) decrease in

CF compared with the healthy controls in the left temporocen-

tral and temporoparietal areas, and in the right temporocentral

and temporooccipital areas. In general, the delta band exhibits

the lowest CF values for the AD group compared with all other

frequency bands.

Table 3 and Figure 4 show electrode pairs with statistically

significant (P < .01) differences in the theta band and the group

average CF for AD group and controls. In this band, a decrease

in CF is observed in most local electrode pairs. The AD group

shows decreased values of CF with statistical significance in

both left and right hemispheres. The only electrode pairs that

do not show statistically significant changes in CF values are

frontopolar (Fp1 and Fp2) and frontal electrodes (F7 and F8).

The central and frontal electrodes along the midline of the scalp

(Cz and Fz) in particular show significant decrease in CF with

all neighboring electrodes.

Table 4 and Figure 5 show electrode pairs with statistically

significant (P < .01) differences in the alpha band and the group

average CF for AD group and controls. In the alpha band, a pat-

tern of significant decrease in CF similar to the theta band is

observed in patients with AD. Most electrode pairs show a sta-

tistically significant decrease in CF values with their neighbor-

ing electrodes. The exceptions are frontopolar electrodes (Fp1

and Fp2), frontal electrodes (F7 and F8), and left temporal elec-

trodes (T3 and T5) which do not show a significant change in

CF values when compared with controls. Similar to what is

observed in the theta band, the central midline electrode (Cz)

shows a significant decrease with all its neighbors. A finding

exclusive to this band is that the midline parietal electrode

(Pz) shows a significant decrease with all neighbors except the

left occipital electrode (O1). In general, the alpha band exhibits

Table 4. Electrode Pairs in the Alpha Band Showing Statistically
Significant Differences in the Wavelet Coherence Fraction (CF)
Among Alzheimer disease (AD) and Healthy Controls (P < .01)

Electrode Adjacent Electrode Healthy CF AD CF

F3 C3 0.648 0.3322

Cz 0.6067 0.3104
Fz C3 0.6066 0.323

Cz 0.6408 0.3212

C4 0.6179 0.3892
F4 Cz 0.6304 0.3159

C4 0.6412 0.4008
T4 0.5663 0.3258

C3 Cz 0.6324 0.3541
P3 0.6182 0.3772

Pz 0.6074 0.2729
Cz C4 0.6564 0.3878

P3 0.6002 0.3725
Pz 0.6246 0.3158

P4 0.606 0.3343
C4 Pz 0.612 0.3725

P4 0.6187 0.3158
T6 0.5678 0.3343

T4 P4 0.5725 0.3275
P3 Pz 0.6509 0.4425

O1 0.6459 0.3152
Pz P4 0.665 0.3493

O2 0.6147 0.3326
P4 O2 0.6399 0.2879

O1 O2 0.6383 0.34
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the highest CF values for both AD and control groups

compared with other frequency bands.

Table 5 and Figure 6 show electrode pairs with statistically

significant (P < .01) differences in the beta band and the group

average CF for AD and controls. In this band, the CF values for

controls are generally the lowest compared with other bands,

while the CF values for AD are not the lowest. In the beta band,

most electrode pairs show significant decrease in AD CF values

compared with the control group. Exceptions that do not pres-

ent a significant change in CF values include frontopolar elec-

trodes (Fp1 and Fp2), right frontal electrode (F8), and right

temporal electrode (T4). The parietal midline electrode shows

a significant decrease in CF values with all its neighbors except

(P3). The occipital electrodes (O1 and O2) show significant

O2

F3 Fz F4 C3

Cz C4 T4 P3

Pz P4 T6 O1

Figure 5. Electrode pairs in the alpha band showing statistically significant differences in the wavelet coherence fraction (CF) among Alzheimer
disease (AD) and controls (P < .01).
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decrease in CF values with all their neighbors, a finding that is

unique to the beta band.

In general, the CF values for AD participants are lower than

in controls. Higher values are observed in the delta band in the

frontal–frontopolar electrode pairs, and in the theta and alpha

bands in the frontopolar pairs. However, these values do not

reach statistical significance. The observed decrease in CF

values for AD is manifested differently among neighboring

electrodes within each band.

Discussion

In this research, a wavelet CF is introduced and investigated as

a measure of pairwise EEG electrode synchronization and, hence,

cortical connectivity. In order to compare the AD and control

participants, the CF value is calculated with reference to a thresh-

old value (TB) that depends on the average coherence values of

control participants. As an example, a CF value of 0.6 for a par-

ticular electrode pair indicates that the instantaneous WC of this

pair is 60% of the time above the threshold TB (determined by

healthy controls). The WC method is effective for studying corti-

cal connectivity at a high temporal resolution. Compared with

other conventional AD coherence studies,46-49 this study takes

into account the time–frequency changes in coherence of EEG

signals and thus provides more correlational details.

Using conventional coherence to study the EEG of

patients with AD, Besthorn et al46 find no significant differ-

ences between AD group and controls in the delta band. On

the other hand, this study shows a significant decrease in

AD CF values in a set of electrode pairs within the delta

band in the left temporocentral, temporoparietal, and the

right temporocentral and temporooccipital areas of the

brain.

Bablioni et al48 report a decreased frontoparietal coherence

(F3-F4 and P3-P4) in AD patients over the alpha, beta1 (14-16

Hz), and beta2 (20-22 Hz) bands. Jelles et al49 use global conven-

tional coherence as a measure of EEG coherence in AD group.

They find no significant global coherence differences in the delta,

theta, and alpha1 (7-10 Hz) bands, but report a decrease in AD

global coherence in the alpha2 (10-13 Hz) and beta bands. In con-

trast to these 2 studies, this research finds a statistically significant

decrease in WC in all bands, with a specific pattern within each

band. Conventional coherence studies reflect only a single dimen-

sion of coherence, that is, frequency.

Recently, Sankari, Adeli, and Adeli14,50 found a set of statis-

tically significant changes in AD coherence compared with

controls. They reported that electrode F3 shows the least pair-

wise significance in all bands, indicating that electrode F3 is

perhaps not useful for collecting information for diagnosis of

AD. In contrast, this study shows that the WC between F3 and

neighboring electrodes exhibits a statistically significant

decrease in the theta, alpha, and beta bands. This leads to the

conclusion that the WC method is more powerful in detecting

differences in coherence among AD and control groups than

the conventional coherence. The current WC study detects

significant differences between AD participants and controls

Table 5. Electrode Pairs in the Beta Band Showing Statistically Significant Differences in the Wavelet Coherence Fraction (CF) Among
Alzheimer disease (AD) and Healthy Controls (P < .01)

Electrode Adjacent Electrode Healthy CF AD CF

F7 T3 0.5096 0.2794
C3 0.5176 0.2493

F3 T3 0.4826 0.2954
C3 0.5753 0.3112

Cz 0.5861 0.2427

Fz C3 0.5578 0.3284
Cz 0.648 0.2832

F4 Cz 0.5756 0.2778
T3 T5 0.5347 0.2655

C3 Pz 0.5465 0.2885
Cz C4 0.5875 0.3704

Pz 0.5887 0.3372
C4 Pz 0.5558 0.2967

P4 0.5883 0.3307
T6 0.5131 0.2612

T5 P3 0.5731 0.3841
O1 0.5921 0.2889

P3 O1 0.6046 0.2441
Pz P4 0.6035 0.3341

O1 0.5763 0.2878
O2 0.5664 0.2523

P4 T6 0.5745 0.3177
O2 0.5917 0.1831

T6 O2 0.5954 0.266
O1 O2 0.5897 0.2809
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in pairs of electrodes such as C3 and Cz in the theta band, and

O1 in the beta band, not observed in the previous conventional

coherence study reported by the authors.

When compared with the condition of healthy elderly

individuals (controls), the decrease in WC observed in AD

group is attributed to a loss in cortical connectivity in the

AD brain. In general, this loss of connectivity in AD can,

in turn, be attributed to a loss of axonal connections among

different areas of the brain as amyloid plaques and neurofi-

brillary tangles form. This formation hinders the smooth

electric communication between different parts of the brain.

Conclusion

Compared with conventional coherence, WC is a more detailed

way to study cortical connectivity in patients with AD because

O2

F7 F3 Fz F4

T3 C3 Cz C4

T5 P3 Pz P4

T6 O1

Figure 6. Electrode pairs in the beta band showing statistically significant differences in the wavelet coherence fraction (CF) among Alzheimer
disease (AD) and controls (P < .01).
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it incorporates both temporal and spectral information. A set of

statistically significant differences was found in the WC among

AD group and controls. In particular, the temporocentral

regions show significant decrease in WC in AD in the delta

band, and the parietal and central regions show significant

declines in cortical connectivity with most of their neighbors

in the theta and alpha bands. This study further shows that the

beta bands of occipital EEGs are significant for diagnosis of

AD, a finding not noted in the previous research using conven-

tional coherence. To sum it up, studies of WC in local electro-

des provide deeper insights about cortical connectivity in the

brain of AD participants compared to conventional coherence

methods. This article lays the foundation for further studies

to understand the relationship between different parts of the

brain and any disruption in communication pathways indica-

tive of a neural pathology.
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