
CME: A Middleware Architecture for            
Network-Aware Adaptive Applications 

 

Jun-Zhao Sun, Jari Tenhunen, and Jaakko Sauvola 
MediaTeam, Machine Vision and Media Processing Unit, Infotech Oulu 

P.O.Box 4500 4SOINFO, FIN-90570 University of Oulu, Finland 
E-mail: junzhao.sun@ee.oulu.fi 

 
 

Abstract—Network QoS parameters exper ience great fluctuations 
dur ing the execution of network applications. Especially in 
mobile and pervasive computing environments the var iation 
becomes more ser ious. Applications need to adapt their  functions 
to the changing network status. Moreover , an enhanced software 
platform is necessary to provide adaptive network management 
services to upper software components. This paper proposes 
CME, a middleware architecture for  service adaptation based on 
network awareness. CME is structured as the software platform 
both to provide network awareness to applications and to 
manage network resources in an adaptive fashion. The overall 
architecture of CME framework is descr ied. Core components 
include connection monitor , policy manager and connection 
controller . Adaptation mechanisms are introduced in detail. 

I. INTRODUCTION 

Network applications relay on the underlying 
communication infrastructure to provide access to remote 
services and resources. Ideally these applications do not 
concern anything about the networks used and could only focus 
on the service functionalities they provide, but in practice this 
can never be true. Large variations in network quality of 
service (QoS) (e.g. bandwidth, latency, jitter, reliability) may 
occur during the information exchange.  

The situation of variations in network QoS parameters 
becomes to be more serious when two concepts are taken into 
account, network convergence and mobile communications. 
All data networks are converging on IP transport and 
applications are also transforming towards being IP-based. 
However the underlying medium and link accessing techniques 
can be greatly diverse, mobile or fixed, wireless or wired. The 
converged network also mixes different types of traffic, each 
with very different requirements.  

Mobile communications are mostly based on portable 
devices and wireless network connectivity. The end user’s 
terminal can be greatly varying in terms of e.g. processing and 
storage capabilities, input and output capacities, energy 
consumption, and networking technologies. There are different 
wireless access technologies including e.g. WLAN, Bluetooth, 
GSM, GPRS, UMTS, etc. Wireless access networks greatly 
vary by nature, with regard to e.g. error rate, fading, 
interference, etc. User mobility leads to the continuous 
changing of location and environment, network operator and 
service provider, and access networks. Handoff is one main 

source of network variations in terms of packet delay and 
packet loss. As the new computing diagram for the next 
generation mobile computing, pervasive computing [1] 
introduces more variations to network performance where the 
communication technologies could be highly diverse and 
overlapping in a smart space. To specify, one user terminal 
may be equipped with multiple connectivity technologies 
ranging from wireless sensor network and short-range ad hoc 
connection up to local and wide range connections. 

Current QoS model [2] are mainly oriented totally towards 
low-level network parameters such as bandwidth, latency, and 
jitter, targeting to provide a transparent management on 
network transport system to upper applications. However in 
many cases the mechanisms for this model such as resource 
reservation are neither sufficient nor even feasible. There is an 
increasing need for network applications to be aware of the 
variation in network performance and quality. Applications 
should be more intelligent in order to adapt to various network 
environments, e.g. the access technologies being used and the 
greatly changing network status. On the other hand despite the 
differences in the functionalities of the applications, the main 
networking services can still be abstracted to common and 
unified interfaces to be used by diverse applications. 
Adaptation functions need to be rationally distributed into both 
specific applications and a general system platform, and then 
implemented with distinct mechanisms.  

The paper presents CME (Connectivity Management 
Engine), a middleware architecture for adaptive applications 
based on network awareness. CME provides flexible network 
supports to adaptive network applications with a set of 
functions and interfaces. We describe the overall architecture 
of CME in this paper, with the emphasis on the methodology 
of how to make application and network management context 
aware and how to provide adaptive networking services to 
network-aware applications. The rest of the paper is organized 
as follows: Section II presents the overall architecture of 
CME. Section III discusses the context considered in CME 
and the methods of how to realize context awareness. In 
Section IV we discuss the realization of adaptive network 
supports and the utilization of them in the adaptation of 
application. Section V concludes the paper with a discussion 
of future work. 



II. CME ARCHITECTURE 

A. Architecture and Execution Environment 

The CME architecture is illustrated in Figure 1, together 
with other components in the execution environment. The 
execution environment includes the adaptive application as the 
consumer of the CME’s networking services, and underlying 
infrastructure that serves as the necessary supporting modules.  

The infrastructure mainly consists of the components under 
the monitoring, control, and query of CME. To network 
monitoring, devices include various network equipments 
ranging from adapter card, modem, and access point, up to 
router and gateway. To network control, protocol entities 
include interfaces for the management of e.g. network device 
drivers, protocol stack, routing table, etc. There are also servers 
for the storage and query of context information. The context 
server can be both locally positioned in an end host and 
globally accessible as a centric server. Section III discusses 
context and context awareness in more detail. 

CME middleware is the software platform above the 
operating system and other resource infrastructure, providing 
adaptive network connectivity management to upper system 
modules and network applications. In particular, connection 
monitor is responsible for the collection of transient network 
information both of a local host and in an end-to-end fashion. 
CME’s caller uses policy manager to express adaptation rules. 
This is an easier way for the utilization of the adaptive services 
provided by CME, in which the application needs only to 
represent the requirements by policies. The detailed processing 
of the adaptation demands can then be left to connection 
controller without the concrete concerns from the applications.  

Connection controller forms the management core of CME 
middleware. The management is realized by the creation and 
maintenance of connection channel. A channel is the logical 
link between physical application components that are located 
in different network devices e.g. terminal or server. Each 
channel uses a specific type of connection to transfer data 
between devices. The connection for one channel can be 
dynamically changed, while leaving the channel unchanged 
and so making applications imperceptible. The application may 
explicitly control each channel if necessary, but in most cases it 
is done implicitly by policy manager. 

The specific adaptation function related to an adaptive 
service should be implemented as part of the application where 
the adaptive activities can be finally determined. The 
adaptation of a provided service can be realized through 
multiple serial stages, including adaptation triggering, approach 
selection and adaptation execution. Adaptation mechanisms are 
first triggered by some specific context according to the 
predefined matching criteria. Then a decision should be made 
on which adaptation approach will be used. Finally, service 
adaptation can be achieved by automatically or manually 
executing a command and/or changing the external behaviors 
(and possibly internal states) of an entity that provide the 
service. CME provides the adaptive network management 
services with a set of APIs to the upper network-aware 
adaptive applications. From CME’s point of view and as the 
caller of the CME’s functions, these applications are mainly 

end service applications but can also be other system level 
platforms at middleware layer e.g. file access system. 

The main feature of the CME architecture is the clear 
partitioning of the whole adaptive functionalities into different 
levels, in which each level only takes care of the functions that 
are most suitable to be concerned by it. The adaptation of the 
end application is separated into the application layer and the 
middleware layer. All the network adaptation mechanisms are 
abstracted and placed onto the CME middleware level, since 
the monitoring and control of network resources are mostly 
convenient to be implemented at this level. Semantic oriented 
adaptation mechanisms are then left to application level. This is 
due to the fact that application knows the content and the media 
that it consumes and processes the best. 

B. Edition and Operation Modes 

1) Edition: The architecture described above includes the 
necessary functions for CME, while in practice there are 
different editions of CME according to the different execution 
domains. Basically two editions of CME can be defined, i.e. 
client CME for mobile host and server CME for server. CME 
functions should be tailored to fit different editions.  

Client CME is mainly used by user terminal, e.g. laptop, 
mobile phone, PDA, etc. Local network context for user 
terminal could be greatly fluctuant. One mobile host can be 
equipped with several network interfaces such as Bluetooth, 
IrDA, WLAN, and GPRS. Availability for each access 
technology is dynamically changing due to user’s movement. 
Network performance may also be greatly fluctuant in terms of 
packet loss, latency, and bandwidth as the result of the wireless 
connection and handoff. Moreover, client CME should 
consider other context information such as energy 
consumption, user preference, and cost. This is mainly due to 
the restrictions in user device capabilities. As a result, functions 
in client CME focus more on the adaptive management of 
networking resources than application level adaptation. In 
particular, the adaptive management of multiple 
communication channels is the main task of client CME.  

Infrastructure 

Connection 
Channels 

Protocol 
Entities 

Network 
Devices 

Adaptive 
Application 

CME 
Middleware 

Adaptation 
Executor 

Adaptation 
Trigger 

Adaptation 
Selector 

Application Function 

Connection 
Controller 

Context 
Server 

Connection 
Monitor 

API 

Figure 1. CME architecture and execution environment 

Policy Manager 



Server CME mainly targets servers for various network 
applications such as web service, information retrieval, file 
access, messaging, etc. The configuration and operation 
environments of a server are relatively stabile, i.e. usually 
server is permanently equipped with network devices and never 
mobile. So local network resources are easy to be managed. On 
the other hand, one server is shared by a huge number of clients 
that come out to be with different characteristics running in 
different surroundings. So for server CME functions mainly 
concern end-to-end network monitoring and cooperating with 
client CMEs to assist the connection control. Specific 
application adaptation mechanisms for intelligent services play 
more important roles than local network resource management. 

2) Operation mode: To manage connection channels is 
one of the core functions of CME, which is realized by 
connection controller. Channel is the logical connection 
between two communication peer entities. According to the 
situation of whether CME resides in both peers or only one 
end, there can be two different operating modes for CME 
architecture, standalone operation mode and collaborative 
operation mode. Note that the different operation modes are 
defined from each channel’s viewpoint. There can be plenty of 
channels connecting to different destinations, which is all 
under the control of the CME in the host. The differences of 
the two operation modes can only be perceived by the CME, 
not the upper applications. 

For CME running under the standalone operation mode, the 
channel can only be manipulated at the local CME end. In this 
case the functions of the CME are heavily tailored and 
simplified. Only some rough information of the peer can be 
collected by connection monitor. To server CME most of the 
channel control functions are reduced to normal operations. As 
for client CME it is still possible to control the channel in an 
adaptive way to a certain extent. Examples include to open a 
new channel with the consideration of policies and to 
dynamically switch connections within an existing channel 
when network context change. If the peer is a mobile host 
moving between different access points and so keeps changing 
the IP address under using, there is no way to rearrange the 
connection with the CME. 

Collaborative operation mode is one the main interests of 
this paper, and it is illustrated in Figure 2. Channels are now 
under the end-to-end control of the CMEs at both sides. This is 
realized by the coordination between the two connection 
controllers with a particular UDP signal link. Moreover, the 
global context server provides another indirect way for the 
cooperation between peers. The collaborative operation mode 
can also benefit connection monitor with respect to the more 
accurate detection of end-to-end network QoS parameters such 
as bandwidth. The detailed collaboration of the two connection 
peers is introduced in the following two sections. 

III. CONTEXT AWARENESS 

CME is essentially a middleware architecture for context-
aware network management and adaptive applications. There 
are two components related to context awareness, i.e. 
connection monitor and context server. 

A. Connection Monitor 

Connection monitor mainly takes care of the collection and 
organization of network configuration and context information. 
This information is then used by applications and connection 
controllers for the purpose of both normal functions and 
adaptation. Both local and end-to-end network information can 
be monitored. Local network information includes: 

• Fixed information, containing information that is the 
same across all the network interfaces in the host, e.g. 
host name, domain name, DNS servers, and node type. 

• Number of network interfaces, due to the fact that a 
modern mobile device may be equipped with multiple 
network interfaces, e.g. Bluetooth, IrDA, modem, 
Ethernet, WLAN, GSM, GPRS, etc. 

• Information of each network interface, including name, 
type, physical and IP addresses, gateway, DHCP 
server, speed, configuration parameters (e.g. dial-up 
number, user account, password, etc.), traffic workload 
at local interface and the access point being used, error 
rate, signal strength, SNR, power consumption, and 
operation status (e.g. available, operable, connecting, 
connected, sleeping, idle, transmitting, receiving, 
unconnected, unreachable, disabled, etc.). 

• Packet statistics information, e.g. received, sent, and 
dropped packets of protocols of e.g. IP, ICMP, TCP, 
and UDP, etc. 

End-to-end network information includes: 

• Connection information, e.g. route availability, best 
route, and for each connection, local address and port, 
as well as remote address and port. 

• Network QoS parameters, e.g. availability, available 
bandwidth, delay, response time, jitter, loss, etc. 

There are three different methods of obtaining these pieces 
of network information from underlying infrastructure. Explicit 
query can be used to ask for network information when the 
monitor needs to know some specific information. Polling is to 
keep fetching context periodically from infrastructure. Event-
driven method is to subscribe some special network events and 
then be informed when they happen. For local information 
when driver interfaces are not sufficient, some probes can be 
used to detect more precise information. For end-to-end 

Peer B Peer A 

Connection 
Controller 

Channel 

Context 
Server Connection 

Controller 

Signal 

Figure 2. Collaborative operation mode of CME 



network information, cooperation between CMEs can be very 
helpful in obtaining more accurate information. The similar 
ways as in obtaining context are adopted for the provision of 
the context information. That is, network information can be 
delivered to the applications and connection controller under 
the explicit query, periodical polling, and event subscription. In 
any case, the connection monitor plays a reactive role, i.e. 
calmly waiting for query or passively reporting event 
occurrence. 

B. Context Server 

CME provides adaptive applications with the capacity of 
network awareness through the information provided by the 
connection monitor. On the other hand, CME by itself realizes 
an adaptive network management by taking both network 
connection information and other rich context information into 
account. The additional context information is organized in 
local and global context server, maintained by other specific 
system software, and then accessed through interfaces by 
connection controller and applications. CME also contributes 
to the content of the two context servers with local network 
information, e.g. to register current network information to 
global context server. However in most of the cases CME just 
queries interesting information from context servers for 
adaptive management. 

1) Local context server: Local host context information is 
organized in local context server, and can only be accessed by 
local CME and applications. Widely speaking the server can 
be a well-defined database with context data stored, or a 
software component that collects context information for 
callers in realtime. There can be various context information in 
the server. CME concerns only those that are related to 
connection management, including: 

• Static network information, e.g. theoretical network 
capacities of each interface (type, typical bandwidth, 
cell size, handoff latency, power consumption, user 
speed, simultaneous user number of the access point), 
operator information, charge model and rate, etc. The 
static features allow a rough comparison between 
interfaces without measuring the runtime performance 
through each interface. This original information is 
generated through another software interface or even 
manually, instead of by connection monitor. 

• User profile related to network management, e.g. user 
preference on particular network interface (default 
interface), priority of each interface, interface selection 
policies, etc. User policies are the way to balance all 
the factors for the interface selection by user 
him/herself. There are also application policies 
specified by each application that is willing to open a 
channel for its traffic flow.  

• End host information, e.g. energy status, velocity, cell 
dwell time, distance to access point, etc. This 
information can be very valuable for the adaptive 
management of network resources. For example when 
the velocity of an end host is too high, the channel may 
maintain the GPRS connection even though a better 

WLAN connection is available, and then reduce the 
quick switch between the two accesses.  

2) Global context server: The global context server is 
basically a distributed or centralized storage that is accessable 
by any authorized terminal or server. Any context information 
can be shared in the server, while CME only concerns those 
related to adaptive connection management. Generally all the 
information collected by connection monitor and local context 
server can be stored in the global context server. However in 
practice the server may only contain some basic and relatively 
steady network information of an end host.  

In particular, the network information stored in the global 
context server can be organized as two hierarchies. The 
primary element is about the host name, how many interfaces it 
is equipped with and the name of each interface. Each 
secondary element describes the type, address, and selection 
priority of one network interface. Each element has also a time 
stamp field to denote the time of the record generation. Local 
connection controller registers the information periodically or 
in case that there is any connection change event. The 
information is mainly used by peer hosts to select an incoming 
interface and to get its current IP address when initializing a 
channel to the host. From this viewpoint the global server 
serves as a dynamic DNS. 

IV. ADAPTATION 

The adaptation mechanisms for the network management in 
CME is mainly realized by policy manager and connection 
controller. In particular as the object model shown in Figure 3, 
the kernel of CME is the connection controller acting as a 
coordinator and executor. 

A. Policy Manager 

CME employs a policy mechanism to ease the adaptive 
management of network resources. Applications can just 
express their adaptation requirements with policies when they 
open new channels, and so totally disregard the detailed 
execution of adaptive mechanisms at the CME. A policy 
denotes the criteria for the selection of the best current network 

Policy Manager 

Policy Policy 

Interface Interface 

Connection Monitor 

Channel Channel Channel Channel 

Connection Controller 

Interface�Channel�Policy 
Context 
Server 

Peer 
Controller 

Figure 3. Object model of CME 



interface. Then the connection controller maintains each 
channel according to the corresponding policy. An application 
can also explicitly control the channel with exposed channel 
control interfaces.  

A policy can be either static or adaptive. A static policy 
explicitly declares the network interface to be used. An 
adaptive policy is used to describe the access selection rule for 
one particular type of traffic flow. An adaptive policy can be 
represented by (traffic class, logic conditions, weighted 
factors). Traffic class can be any value defined in TOS [3], TC 
[4], DS [5] or any application specified value. Logic conditions 
are a series of comparison expressions connected by logic 
operators. Weighted factors are a set of 2-tuple (factor, weight). 
One sub-policy example can be  

(THROUGHPUT, (bandwidth>100kbps) and (delay<5s), 
(cost, 0.2), (power, 0.2), (bandwidth, 0.6)) 

Note that not all the fields are necessary for any policy. Some 
policy could be very simplified, e.g. include only one field. 
Also note that one policy can be shared by many channels. 

Policy manager is used by applications to supervise policies 
including policy creation and elimination. Policies are then 
accessed by connection controller during the channel 
operations. The evaluation that which interface is currently the 
best to a policy can be done both periodically and immediately 
when special events happen. Some of the application policies 
may conflict with user preference policies stored previously in 
the local context server. We assume that user preferences 
always have the highest priority, which is the normal case. 

B. Connection Controller 

Connection controller is the core component of the CME 
for the final realization of the network management adaptation. 
By acting as a coordinator and executor, it controls the 
activities of local CME components (policy manager and 
connection monitor). At the same time it is also the entity for 
the interaction and cooperation with other related components 
(e.g. context servers) and peer controllers. The functions of the 
connection controller fall into two categories, i.e. information 
maintenance and channel management. 

1) Information maintenance: Connection information 
maintained by connection controller includes both local 
information and global information. Information maintenance 
is used to assist the maintenance of connection channel. For 
local information, connection controller maintains the lists of 
the references of all the interfaces, channels and policies, 
together with the mappings between them. The lists and 
mappings are continuously updated in case of any special 
event (e.g. a channel has switched the connection under using 
or a new channel is opened with a new policy).  

Connection controller maintains global information of the 
end host at the global context server. The controller keeps 
updating the global network context data. This is accomplished 
by registering a new entry or updating an existing entry in the 
global context server. The update is performed periodically or 
when any related event (i.e. changes of numbers and addresses 
of interfaces) happens.  

2) Channel maintenance: The core adaptation mechanism 
of the CME architecture is realized by connection controller 
through adaptively maintaining connection channels. There 
are two activities of the connection controller concerning 
channel maintainence, i.e. channel opening and switching. To 
open a new channel application may provide four parameters: 
target host name, traffic class, channel direction, and policy 
set. Connection controller then queries the global context 
server with the target host name to get the address of a 
preferred network interface of the target host. The best local 
interface is selected according to the policy. A channel can be 
either uni-directional or bi-directional.  

Connection controller periodically re-evaluates the 
mappings between an interface and each channel according to 
the policy used for each channel. Moreover, the re-evaluation is 
also immediately done when special events (e.g. interface up or 
down, channel opened or closed) occur. If, according to the 
policy a better interface is found, then the connection controller 
initializes a channel switching session. The session needs the 
cooperation between controller peers through the signaling 
channel, as shown in Figure 2. One basic rule is that any 
incoming and outgoing connections can only be decided by the 
host itself instead of the peer. The decision is made indirectly 
through global context server for incoming channel, while 
directly by connection controller according to the policy for 
outgoing channel. 

V. CONCLUSIONS 

New middleware is necessary for the optimization of future 
mobile communications as the platform for intelligent services. 
The architecture of CME is proposed in this paper, which is 
aims at providing adaptive network management to network-
aware applications. We then showed the mechanisms for the 
enhancement of both context awareness and adaptation. CME 
is currently a work in progress. We have implemented a 
preliminary prototype based on Java on PDA’s PocketPC 
platform. More functionalities will be implemented gradually 
during the CME’s evolvement. Moreover, CME will be further 
embedded into a broader platform to experience the 
investigation of real context-aware applications. 

ACKNOWLEDGMENT 

Financial support by the National Technology Agency of 
Finland is gratefully acknowledged. 

REFERENCES 
[1] M. Satyanarayanan, “Pervasive computing: vision and challenges,”  

IEEE Personal Communications, vol. 8, no. 4, pp. 10-17, Aug. 2001. 

[2] M. Alam, R. Prasad, and J.R. Farserotu, “Quality of service among IP-
based heterogeneous networks,”  IEEE Personal Communications, vol. 8, 
no. 6, pp. 18 –24, Dec. 2001 

[3] P. Almquist, “Type of service in the Internet Protocol suite,”  IETF RFC 
1349, July 1992. 

[4] S. Deering and R. Hinden, “ Internet Protocol, version 6 (IPv6) 
specification,”  IETF RFC 2460, Dec. 1998 

[5] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the 
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”  
IETF RFC 2474, Dec. 1998. 


