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Abstract—This work investigates the maximum sum-rate of
multi-pair MIMO two-way relay channels (TWRCs), in which a
relay is responsible for forwarding information between multiple
pairs of users. In this system, each pair of users forms a TWRC,
and a user exchanges information only with its counterpart in the
same TWRC. We focus on the multi-access channel (MAC) phase
of the two-pair TWRCs. We first put forth a new interpretation of
the space-division (SD) method based on the classical concept of
principal angles in linear algebra. We argue that the signal spaces
of the two users in a TWRC can be divided into the physical-
layer network coding (PNC) signal subspace and the complete
decoding (CD) signal subspace according to the principal angles
between the two signal spaces of different user pairs. Based on
the principal-angle framework, we then propose an extended
SD method to mitigate the interference among the PNC signals
and CD signals. We further derive the optimal decoding strategy
and optimal precoder design principles that maximize the sum-
rate of the MAC phase. The associated optimization problem,
however, is non-convex. We therefore propose a suboptimal
solution for precoder design and analyze the asymptotic rate gap
benchmarked against the cut-set bound. Significant performance
improvements have been observed for the proposed hybrid PNC-
CD system compared with pure complete decoding and pure PNC
decoding.

I. INTRODUCTION

Physical-layer network coding (PNC) [1]-[3] is an emerging
relaying technique for efficient communications over wireless
networks. In PNC, the relay(s) may decode a linear function of
the incoming messages rather than the explicit messages them-
selves. Doing so can potentially boost the network throughput
significantly.

The efficient PNC design for a multiuser two-way relay
channel (TWRC) system, in which multiple users exchange
information in a pairwise manner via a single relay, has
recently attracted much research interest [5]-[11]. Particularly,
the authors in [5], [6] studied the case that the relay is equipped
with a single antenna. Later, several other approaches studied
the case that multiple antennas are equipped at the relay [7]-
[11]. Various design criteria have been proposed to exploit the
benefit of spatial multiplexing provided by the multiple relay
antennas.

The existing work on multiuser TWRCs has two limi-
tations. First, most of these approaches focus on analogue
network coding (ANC) [4]. While ANC has the merit of
implementation simplicity, it suffers from noise amplification
(as denoising is absent at the relay) and power loss at the
relay (as the user signals are linearly superimposed in relay
transmission). It is desirable to use the more sophisticated PNC
set-up to avoid these disadvantages. Second, most existing

approaches only consider the configuration of single antenna at
each user. Multiple antennas at the user ends can create extra
spatial degrees of freedom (DoF), leading to the possibility
of multifold increase in system throughput. However it poses
significant challenges on the joint design of user transceivers
and relay operations.

In this paper, we study the efficient transceiver strategy
for multiuser MIMO TWRCs in which both the relay and
the users are equipped with multiple antennas. Following the
space-division (SD) approach for one-pair MIMO TWRC [13],
we divide the signal space of each user into two subspaces,
one for PNC decoding (in which network-coded messages are
decoded) and the other for complete-decoding (in which user
messages are individually decoded). We formulate a sum-rate
maximization problem for the precoder design of the users
and the relay in the high signal to noise (SNR) regime, and
then simplify it to the optimization of PNC precoders only.
Since the problem is still non-convex, we propose a suboptimal
(but good) solution for it. We analyze the asymptotic rate gap
between the proposed scheme and the cut-set bound. Closed-
form expressions are derived based on the concept of principal
angles [16]. Numerical results demonstrate the superiority of
the proposed scheme compared with the pure PNC or CD
method.

II. PRELIMINARY

We start with a one-pair MIMO TWRC, in which two users
exchange information via a relay. Our target is to give a new
interpretation of the space-division approach [13] from the
perspective of principal angles and principal vectors.

A. One-Pair MIMO TWRC

In the TWRC, the data exchange includes two transmission
phases, namely, the multi-access (MAC) phase and the broad-
cast (BC) phase. It is known that the throughput bottleneck is
the MAC phase, which is our focus in what follows. In the
MAC phase, the received signal at the relay is given by

y = H1F1x1 +H2F2x2 + n (1)

where Hi ∈ Rm×n is the channel matrix between the relay
and the user-i, xi ∈ Rn×1 is a signal vector of user-i with
E[xix

T
i ]=I, Fi∈Rn×n is the corresponding precoding matrix

satisfying the power constraint of tr{FT
i Fi}≤Pi, i ∈ {1, 2},

and n ∈ Rm×1 is the white Gaussian noise vector with the
elements independently drawn from N (0, 1). We assume that
the entries of Hi, i ∈ {1, 2}, are independently drawn. Thus,
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Hi is of full column or row rank, whichever is smaller, with
probability one.

Upon receiving y, the key issue for the relay design is to
determine what to decode. Let C(Hi) be the column space
of Hi. Intuitively, we expect that when C(H1) and C(H2)
are nearly orthogonal, meaning that the signals of the two
users nearly do not interfere with each other, then decoding
both signals explicitly is preferable. Otherwise, if C(H1) and
C(H2) are overlapping to a large extent, a better choice is
to project them onto a common subspace and then decode a
function of the two signals, following the basic idea of PNC
[1]. “Principal angles” characterize the amount of overlapping
between the two column spaces and allows the above intuition
to be made concrete.

B. Principal Angle

Definition 1 (Principal angle [16]) The principal angles of
C(H1) and C(H2), denoted by θ1≤θ2, ..,≤θn∈ [0, π/2] , with
n ≤ m, are defined recursively by

cos (θj) = max
u∈C(H1),v∈C(H2)

uTv = uT
j vj (2)

subject to: ∥u∥2=∥v∥2=1 ,uTuk=0, vTvk=0, k=1, ..., j−
1, where uj and vj are defined as the principal-vector pair of
C(H1) and C(H2), associated with θj . A simple algorithm to
calculate the principal angles is given as follows [16]:

Algorithm 1 (Calculating principal angles and vectors)
Step 1: Compute an orthonormal basis of C(Hi) using QR

decomposition:
Hi = QiRi (3)

where Qi ∈ Rm×n, satisfying QT
i Qi = I, gives the required

orthonormal basis, and Ri ∈ Rn×n is an upper-triangular
matrix, i∈{1, 2}.

Step 2: Compute the compact SVD of QT
1 Q2:

QT
1 Q2 = SΣTT (4)

where S∈Rn×n and T∈Rn×n are orthogonal matrices, and
Σ= diag {σ1, .., σn}= diag {cos θ1, .., cos θn} determines the
principal angles. The principal vectors are then given by U=
[u1, ..,un] = Q1S ∈ Rm×n and V = [v1, ..,vn] = Q2T ∈
Rm×n.

Remark 1: By definition, we have UTV = STQT
1 Q2T =

Σ, which implies that uj ⊥ vk, ∀j ̸= k. Together with uj ⊥
uk and vj ⊥ vk, ∀j ̸= k, we see that span{u1,v1} ⊥ ... ⊥
span{un,vn}, i.e., the channel spaces can be decomposed into
n orthogonal dimension-2 subspaces, each spanned by one
principal vector pair. In each subspace, the angle between uj

and vj is given by θj , i.e., cos θj = uT
j vj .

Remark 2: As both Q1 and Q2 have orthonormal columns,
the singular values of QT

1 Q2 are confined in [0, 1]. Particu-
larly, σj = 0 means that the corresponding uj and vj are
orthogonal; σj = 1 means that uj and vj are parallel. Note
that in the case of m ≤ n, C(H1) = C(H2) = Rm. Then
σ1= ... =σm=1 and {u1=v1, ...,um=vm} can be taken as
any orthonmal basis of Rm.

(a) Completely decoding (b) PNC decoding
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Fig. 1. Geometrical illustration of two decoding strategies

C. Complete Decoding vs. PNC Decoding

We now compare two decoding strategies at the relay,
namely, complete decoding (CD) and PNC decoding. As a
toy example, we assume that each user has one antenna. Then
(1) reduces to

y = h1f1x1 + h2f2x2 + n (5)

where h1 and h2 are channel vectors, xi is a scalar signal of
user-i with E[|xi|2] = 1, and fi is the power control factor
satisfying |fi|2 ≤ Pi, i ∈ {1, 2}. The relay performs either
complete decoding or PNC decoding as shown in Fig. 1.

For complete decoding, the relay first decodes user-1’s sig-
nal x1 by treating x2 as interference; then x1 is canceled from
y, and x2 is decoded. In the high SNR regime, decoding x1

in the first step is equivalent to projecting h1x1 onto the unit
vector pc ∈ span{h1,h2} that is orthogonal to h2, and then
decoding x1 based on the image, as illustrated in Fig. 1(a). Let
θ be the angle between h1 and h2. The asymptotic achievable
sum-rate is given by 1

2 log2(P1∥h1∥2 sin2 θ)+1
2 log2(P2∥h2∥2).

For PNC decoding, the relay first projects both signal
vectors onto a common direction specified by a unit vector pp,
yielding pT

p y=pT
p h1x1+pT

p h2x2+pT
p n, and then performs

nested lattice decoding based on the resulting scalar channel
[14]. It was shown in [13] that the optimal projection direction
is the angular bisector of h1 and h2, as illustrated in Fig.
1(b), and the corresponding high-SNR achievable sum-rate is
1
2 log2(P1∥h1∥2 cos2 θ

2 )+
1
2 log2(P2∥h2∥2 cos2 θ

2 ).
In the above achievable sum-rates, 1

2 log2(P1∥h1∥2)+
1
2 log2(P2∥h2∥2) is actually the sum-rate of the cut-set bound
of (5). Then, it is clear that the rate gap between complete
decoding and the cut-set bound is −1

2 log2sin
2θ, as incurred by

the power loss due to projection; the rate gap between PNC
decoding and the cut-set bound is −log2cos

2 θ
2 , as incurred by

the power loss of projection.
We next extend our discussions to the MIMO set-up in

(1). Based on the concept of principal angles described in
Subsection B, we propose a heuristic transceiver strategy as
follows. The spatial streams of the two users are partitioned
into n pairs, each pair-j consisting of one signal xi,j from
user-i. For each pair, we choose the beamforming vectors fi,j
(i.e. the j-th column of Fi), such that the received signal
vector Hifi,jxi,j , i ∈ {1, 2} are aligned to the directions
of the principal vector pair {uj ,vj}. This is possible since
uj ∈C(H1) and vj ∈C(H2). Then we expect that the rate gap
can be characterized by the corresponding principal angles
with −1

2 log2 sin
2 θj for complete decoding or −log2 cos

2 θj
2
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for PNC decoding. The above approach gives good intuitions
on connecting the rate gap with the principal angles of C(H1)
and C(H2). However, this approach is not power-efficient
due to its zero-forcing nature, i.e., span{H1f1,j ,H2f2,j} =
span{uj ,vj}⊥span{uk,vk}= span{H1f1,k,H2f2,k}, ∀j ̸=k,
following from Remark 1. To reduce the power loss of zero-
forcing, it is better not to align the signals exactly to the
principal-vector directions. Then, the interference appears in
the dimension-2 subspace spanned by each principal vector
pair, and hence successive interference cancellation is neces-
sary. The details can be found in the space-division approach
proposed in [13]. Furthermore, Theorem 1 of [13] implies that
the following sum-rates are achievable.

Proposition 1: As P1, P2 → ∞, the asymptotically optimal
Fi to maximize the achievable sum-rate satisfies FT

i Fi =
Pi

n I,
i ∈ {1, 2}. Moreover, the rate gap of complete decoding and
PNC decoding with respect to the cut-set bound are given by

Rcs−Rcd −→ −
n∑

j=1

1

2
log2 sin

2 θj (6)

Rcs−Rpnc −→ −
n∑

j=1

log2 cos
2 θj
2

(7)

where Rcs =
2∑

i=1

1
2 log2

∣∣I+ Pi

n HiH
T
i

∣∣ is the sum-rate of the

cut-set bound of the MAC phase in the high SNR regime.
Sketch of proof: Let λj be the j-th largest eigenvalue

of Q1Q
T
1 +Q2Q

T
2 . From [15], λj is related to θj by λj =

1+ cos θj . Then, Proposition 1 follows immediately from
Theorem 1 of [13] by setting the number of PNC streams
to be 0 and n, respectively.

III. SYSTEM MODEL

We now consider the multi-pair MIMO TWRCs. We focus
on the case of two user-pairs, which captures the key issues
involved in the generalization from one pair to multiple pairs.
The system model is similar to the one-pair case. The only
difference is that here two pairs of users, namely, pair-A and
pair-B, simultaneously exchange information via the relay in
a pair-wise manner. Each round of information exchange still
consists of the MAC and BC phases. As in the one-pair case,
we focus on the MAC phase, with the channel model given
by

y=
∑

l∈{A,B}

∑
i∈{1,2}

HliFlixli+n (8)

where Hli ∈Rm×n is the channel matrix for user-i in pair-l;
xli ∈ Rn×1 and Fli ∈ Rn×n are the signal vector and corre-
sponding precoder, with E[xlix

T
li ] = I and tr{FT

liFli} ≤ Pli,
l∈{A,B}, i∈{1, 2}; and n is defined in (1). Upon receiving
y, the relay performs decoding operations. The details will be
elaborated in the next section.

The cut-set bound of the above scheme can be obtained by
a straightforward extension of the results in [6] for multi-pair
SISO TWRCs. Let Rli be the information rate of user-i in

pair-l. Then the rate inequalities related to the MAC phase are
listed below:

Rli≤
1

2
log2

∣∣I+HliQ̄liH
T
li

∣∣ , l∈{A,B} , i∈{1, 2} (9)

RAi+RBj≤
1

2
log2

∣∣I+HAiQ̄AiH
T
Ai+HBjQ̄BjH

T
Bj

∣∣,
i∈{1, 2} , j∈{1, 2} (10)

where Q̄li = FliF
T
li is the channel input covariance of user-i

in pair-l. It can be shown that, at high SNR, the optimal Q̄li

is given by Q̄li=Pli/nI. This cut-set bound will be used as
a benchmark to evaluate our proposed transceiver strategy.

IV. PROPOSED SPACE-DIVISION APPROACH

A. Space-Division Signaling

In this section, we propose a space-division approach for
the multi-pair MIMO TWRCs in (8). In the proposed scheme,
the signal streams of each user are divided into two groups:
one for PNC and the other for CD. As in the one-pair case,
we require that the PNC signals for each user-pair be close
to parallel (as measured by the principal angles) so that they
can be efficiently projected onto common directions for PNC
decoding; and the CD signals in each user-pair be close to
orthogonal. The new challenge is that, when we identify the
PNC and CD directions for each pair, the interference from
the other pair should be taken into account. In what follows,
we develop a solution to this problem.

To achieve full spatial multiplexing, each user transmits n
spatial streams. Without loss of generality, we assume that
within each user-pair l, l∈{A,B}, there are kl pairs of PNC
signals. The remaining n−kl streams are CD signals for each
user in user-pair l. Let xp

li ∈Rkl×1 and xc
li ∈R(n−kl)×1 be the

PNC and CD streams, Fp
li∈Rn×kl and Fc

li∈Rn×(n−kl) be the
corresponding precoding matrices, respectively. Then

xli=
[
(xp

li)
T, (xc

li)
T
]
T and Fli=[Fp

li,F
c
li] . (11)

Note that kl = n, l ∈ {A,B}, corresponds to the pure PNC
method; kl = 0, l ∈ {A,B}, corresponds to the pure CD
method.

Remark 3: We assume that the number of antennas at
the relay (i.e., m) is sufficiently large, so that the degree of
freedom (DoF) of the scheme is limited by the number of
antennas at each user (i.e., n). DoF analysis shows that, to
ensure the validity of the above assumption, we need to set
m≥3n and n≥kl≥max(4n−m, 0). Details are omitted here
due to space limitation and will be provided in a later report.

B. Decoding Order at the Relay

The decoding at the relay consists of four steps. In each step,
either all the CD signals or all the PNC signals of one user-pair
are decoded. Then, there are in total 4! = 24 different choices
of decoding orders. For example, {Ac, Ap, Bc, Bp} means that
the CD signals of pair-A, the PNC signals of pair-A, the CD
signals of pair-B, and the PNC signals of pair-B are decoded
sequentially. Note that once the CD signals are decoded,
they are immediately cancelled from the received signals
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without causing interference to those undecoded signals in
the remaining decoding process; but the decoded PNC signals
can not be cancelled, since only the linear functions of them
are decoded. Clearly, the achievable sum-rate of the scheme
depends on the decoding order at the relay. The optimal
decoding order is given bellow,

Proposition 2: For the space-division approach, the optimal
decoding order for sum-rate maximization satisfies: the first
two steps for complete decoding; the remaining two steps for
PNC decoding. That it, the four possible optimal decoding
orders are

{Ac, Bc, Ap, Bp}, {Ac, Bc, Bp, Ap},
{Bc, Ac, Ap, Bp}, {Bc, Ac, Bp, Ap}. (12)

Proof: To prove Proposition 2, it suffices to establish the
following two points: (i) for any decoding order, if two
consecutive steps decode signals from the same user-pair, then
the order of compete decoding followed by PNC decoding
always achieves a higher sum-rate; (ii) if two consecutive steps
are both for complete decoding (or both for PNC decoding),
swapping these steps does not affect the achievable sum-rate.

Point (i) is true since complete decoding followed by PNC
decoding allows interference cancellation of CD signals prior
to PNC decoding, which implies a higher PNC rate (while the
CD rate remains the same no matter whether CD or PNC
decoding is performed first). Point (ii) is true due to the
following reasons: for the CD case, all the CD signals form
a MAC channel, and it is well-known that the MAC sum-
rate does not dependent on the decoding order; for the PNC
case, the decoding of the PNC signals in one user-pair always
treats the PNC signals from the other pair as interference
(i.e., no interference cancellation is applied), and therefore the
achievable sum-rate does not change, regardless of the PNC
signals of which user-pair are decoded first. This completes
the proof of Proposition 2.

C. Achievable Rate

We now present the achievable rate of the above scheme.
Suppose that at a certain step t (1 ≤ t ≤ 4), the signals
{xs

l1,x
s
l2} of pair-l are to be decoded. Note that s= c means

that the CD signals are decoded at Step t; s= p means that
the PNC signals are decoded at Step t. The relay pre-cancels
the CD signals decoded in the steps prior to Step t (if exists),
yielding

ys
l = Hl1F

s
l1x

s
l1 +Hl2F

s
l2x

s
l2 + esl + n. (13)

In the above, esl is the interference from all the PNC signals
and also from the CD signals of the other pair (if not
decoded yet). For example, suppose that the decoding order is
{Bc, Ac, Ap, Bp}. Then

ecB =
2∑

i=1

HAiF
c
Aix

c
Ai +

∑
l∈{A,B}

2∑
i=1

HliF
p
lix

p
li (14)

ecA =
∑

l∈{A,B}

2∑
i=1

HliF
p
lix

p
li (15)

epA =
2∑

i=1

HBiF
p
Bix

p
Bi (16)

epB =

2∑
i=1

HAiF
p
Aix

p
Ai. (17)

Here we describe an interference whitening approach to give
an asymptotic sum-rate expression based on Proposition 1.
Let Ws

l = E
[
esl (e

s
l )

T
]
+ I be the covariance matrix of the

interference-plus-noise term, i.e., esl+n. Then we left-multiply
ys
l by (Ws

l )
− 1

2 , so that the effective noise ns
l =(Ws

l )
− 1

2 (esl+
n) is an AWGN vector with E

[
ns
l (n

s
l )

T
]
= I. The effective

channel is given by

(Ws
l )

− 1
2ys

l = H̃s
l1F

s
l1x

s
l1 + H̃s

l2F
s
l2x

s
l2 + ns

l , (18)

where H̃s
li = (Ws

l )
− 1

2Hli, i∈{1, 2}. From Proposition 1, the
rate achieved in the high SNR regime is

Rc
l≈

2∑
i=1

1

2
log2

∣∣∣I+H̃c
liF

c
li(H̃

c
liF

c
li)

T
∣∣∣+n−kl∑

j=1

1

2
log2 sin

2 θcl,j (19)

Rp
l≈

2∑
i=1

1

2
log2

∣∣∣I+H̃p
liF

p
li(H̃

p
liF

p
li)

T
∣∣∣+kl∑

j=1

log2cos
2
θpl,j
2

(20)

where θsl,j is the j-th principal angle between C(H̃s
l1F

s
l1) and

C(H̃s
l2F

s
l2), and Rc

l (or Rp
l ) is the sum-rate of user-pair l’s CD

(or PNC) signals.

V. ASYMPTOTIC PRECODER DESIGN

A. Problem Formulation

We now consider the precoder design to maximize the
achievable sum-rate of the proposed SD approach. Without
loss of generality, let

Fs
li= F̃s

liΓ
s
li, s∈{p, c}, l∈{A,B}, i∈{1, 2} (21)

where F̃p
li∈Rn×kl and F̃c

li∈Rn×(n−kl), satisfying (F̃s
li)

T F̃s
li=

I, specify the beamforming directions of the precoders, and
Γp
li∈Rkl×kl and Γc

li∈R(n−kl)×(n−kl) are for power allocation.
Then the optimization problem for maximizing the sum-rate
of the MAC phase is formulated as follows:

max
F̃s

li,Γ
s
li

∑
l∈{A,B}

∑
s∈{p,c}

Rs
l

s.t. (F̃s
li)

T F̃s
li=I,

tr{(Γp
li)

TΓp
li}+tr{(Γc

li)
TΓc

li}≤Pli,

s∈{p, c}, l∈{A,B}, i∈{1, 2}. (22)

B. Asymptotic Precoder Design

The problem in (22) is in general difficult to solve. For ease
of analysis, we look at the precoder design in the high SNR
regime.

Proposition 3: As Pli → ∞, l ∈ {A,B} and i ∈ {1, 2},
the asymptotically optimal solution to problem (22) satisfies
(F̃c

li)
T F̃p

li=0 and (Γp
li)

TΓp
li=Pli/nI and (Γc

li)
TΓc

li=Pli/nI.
Proof: To prove Proposition 3, it suffices to consider the op-

timality of the precoders for one user in one user-pair by fixing
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those for the other users. Without losing generality, we choose
user-1 of pair-A to be of concern. Then, to prove Proposi-
tion 3, we need to show that, for any given F̃p

A1 (and the
precoders for the other users), the optimal {F̃c

A1,Γ
c
A1,Γ

p
A1}

satisfies (F̃c
A1)

T F̃p
A1 = 0 and (Γp

A1)
TΓp

A1 = PA1/nI and
(Γc

A1)
TΓc

A1 = PA1/nI. From Proposition 2, there are four
optimal decoding orders achieve the same sum-rate. Thus,
without less of generality, we focus on the decoding order
{Bc, Ac, Ap, Bp} in studying the achievable sum-rate.

We first show that Rc
B (i.e., the achievable rate in Step 1)

and Rp
B (i.e., the achievable rate in Step 4) are independent

of {F̃c
A1,Γ

c
A1,Γ

p
A1}. To see this, we recall that Rc

B is the
achievable sum-rate of the CD signals of pair-B by treating ecB
in (14) as the interference. At high SNR, Rc

B only depends on
the interference subspace occupied by ecB (that may be related
to the optimization variables). This interference subspace can
be represented as C(HB1F̃

p
B1) ∪ C(HB2F̃

p
B2) ∪ C(HA1) ∪

C(HA2), by noting that, to achieve full spatial multiplexing,
C(HAiF̃

c
Ai) ∪ C(HAiF̃

p
Ai) = C(HAi), i∈{1, 2}. Thus the in-

terference subspace of ecB is independent of {F̃c
A1,Γ

c
A1,Γ

p
A1}.

We next consider Rp
B . Similarly, at high SNR, Rp

B only
depends on the interference subspace of epB in (17), which is
also independent of {F̃c

A1,Γ
c
A1,Γ

p
A1}. Therefore, there is no

need to consider Rc
B and Rp

B in optimizing {F̃c
A1,Γ

c
A1,Γ

p
A1}.

We next consider Rc
A in Step 2 and Rp

A in step 3. We
divide Step 2 into two substeps: first decode the CD signals
of user-2 of pair-A; then decode the CD signals of user-1
of pair-A. (Note that reversing the order leads to the same
sum-rate.) Let Rc

A2 be the achievable rate for the first substep
and Rc

A1 be the achievable rate for the second substep. Then
we have Rc

A =Rc
A2+Rc

A1. At high SNR, Rc
A2 only depends

on the interference subspace in decoding the CD signals
of user-2 of pair-A. This interference subspace is given by
C(HA1) ∪ C(HA2F̃

p
A2) ∪ C(HB1F̃

p
B1) ∪ C(HB2F̃

p
B2), which

is independent of {F̃c
A1,Γ

c
A1,Γ

p
A1}. Then we only need to

analyze Rc
A1+Rp

A, with the effective channel given as

ȳ =HA1F
c
A1x

c
A1+

2∑
i=1

HAiF
p
Aix

p
Ai+epA+n (23)

where ȳ is the remaining signal vector after cancelling the CD
signals of pair-B and user-2 of pair-A from y in (8), and epA
is given in (16).

From (23), we first whiten the interference-plus-noise term
of epA+n, to get the effective channel H̃p

Ai =(Wp
A)

− 1
2HAi,

i∈{1, 2}. We decode user-1 of pair-A by treating other signals
as interference, with the achievable rate given by

Rc
A1=

1

2
log2

∣∣∣∣∣I+H̃p
A1F

c
A1(H̃

p
A1F

c
A1)

T+

2∑
i=1

H̃p
AiF

p
Ai(H̃

p
AiF

p
Ai)

T

∣∣∣∣∣
− 1

2
log2

∣∣∣∣∣I+
2∑

i=1

H̃p
AiF

p
Ai(H̃

p
AiF

p
Ai)

T

∣∣∣∣∣ .
(24)

Then, the CD signal of user-1 of pair-A is cancelled, and we
decode the PNC signals of pair-A. At high SNR, the achievable

rate is given by (20), i.e.

Rp
A=

2∑
i=1

1

2
log2

∣∣∣I+H̃p
AiF

p
Ai(H̃

p
AiF

p
Ai)

T
∣∣∣+ kA∑

j=1

log2cos
2 θ

p
A,j

2
. (25)

In the above, θpA,j is the j-th principal angle of C(H̃p
A1F̃

p
A1)

and C(H̃p
A2F̃

p
A2), and is independent of {F̃c

A1,Γ
c
A1,Γ

p
A1}.

Also, it can be shown that (cf(19))

1

2
log2

∣∣∣∣∣I+
2∑

i=1

H̃p
AiF

p
Ai(H̃

p
AiF

p
Ai)

T

∣∣∣∣∣
≈

2∑
i=1

1

2
log2

∣∣∣I+H̃p
AiF

p
Ai(H̃

p
AiF

p
Ai)

T
∣∣∣+kA∑

j=1

1

2
log2 sin

2 θpA,j .(26)

Combining (24)-(26), we see that maximizing Rc
A1 +

Rp
A over {F̃c

A1,Γ
c
A1,Γ

p
A1} is equivalent to maximizing∣∣∣I+H̃p

A1FA1(H̃
p
A1FA1)

T+H̃p
A2F

p
A2(H̃

p
A2F

p
A2)

T
∣∣∣, by noting

FA1F
T
A1 =Fc

A1(F
c
A1)

T +Fp
A1(F

p
A1)

T . As H̃p
A2F

p
A2 is fixed,

we only need to consider the following optimization problem:

max
F̃c

A1,Γ
c
A1,Γ

p
A1

∣∣I+H̄A1FA1F
T
A1H̄

T
A1

∣∣
s.t. (F̃c

A1)
T F̃c

A1=I,

tr{(Γp
A1)

TΓp
A1}+tr{(Γc

A1)
TΓc

A1}≤ PA1,

l∈{A,B}, i∈{1, 2}. (27)

where H̄A1 = (I+H̃p
A2F

p
A2(H̃

p
A2F

p
A2)

T )−
1
2 H̃p

A1 is the effec-
tive channel after whitening.

Note that at high SNR∣∣I+H̄A1FA1F
T
A1H̄

T
A1

∣∣
≈

∣∣∣H̃T
A1H̃A1FA1F

T
A1

∣∣∣
=

∣∣∣H̃T
A1H̃A1

∣∣∣ ∣∣FA1F
T
A1

∣∣ . (28)

Our problem is simplified to maximize
∣∣FA1F

T
A1

∣∣ =∣∣∣F̃c
A1Γ

c
A1(Γ

c
A1)

T (F̃c
A1)

T +F̃p
A1Γ

p
A1(Γ

p
A1)

T (F̃p
A1)

T
∣∣∣. The opti-

mum is achieved when (FA1)
TFA1 = PA1/nI, or equivalent-

ly (F̃c
A1)

T F̃p
A1=0, (Γc

A1)
TΓc

A1=PA1/nI and (Γp
A1)

TΓp
A1=

PA1/nI. This completes the proof of Proposition 3.

C. Approximate Design of PNC Precoders

With Proposition 3, the precoder optimization problem in
(22) reduces to

max
F̃p

li

∑
l∈{A,B}

∑
s∈{p,c}

Rs
l

s.t. (F̃p
li)

T F̃p
li=I, l∈{A,B}, i∈{1, 2}. (29)

Problem (29) is still difficult to solve. Here we propose an
approximate solution. First, instead of maximizing the sum-
rate in (29), we target at maximizing the sum-rate of PNC
decoding, i.e., Rp

A+R
p
B . Then we only need to study the signal

model involved in PNC decoding:

yp
l=

2∑
i=1

√
PAi

n
HAiF̃

p
Aix

p
Ai+

2∑
i=1

√
PBi

n
HBiF̃

p
Bix

p
Bi+n. (30)
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In the above, Γp
li =

√
Pli/nI, ∀l, i are assumed, since we

are only interested in the precoder design at high SNR. Now
consider the PNC decoding of pair-l, l ∈ {A,B} by treating
the other pair as interference. Recall that Wp

l is the covariance
matrix of the interference-plus-noise term. Then we have

(Wp
l )

− 1
2yp

l =

√
Pl1

n
H̃p

l1F
p
l1x

p
l1+

√
Pl2

n
H̃p

l2F
p
l2x

p
l2+n

p
l . (31)

Clearly, C(H̃p
liF̃

p
li) ⊂ C(H̃p

li), ∀ l, i. As inspired by the SD
approach for the one-pair case, our purpose for the design of
F̃p

li is to ensure that C(H̃p
l1F̃

p
l1) and C(H̃p

l2F̃
p
l2) are as parallel

to each other as possible. Therefore, we choose F̃p
li such that

the PNC signal space C(H̃p
l1F̃

p
l1) is aligned to the subspace

spanned by the kl principal vector pairs with corresponding
the first kl principal angles of C(H̃p

l1), i.e.

C(H̃p
liF̃

p
li) = C(Ũkl

l ) and C(H̃p
liF̃

p
li) = C(Ṽkl

l ) (32)

where Ũkl

l = [ũl,1, ..., ũl,kl
] and Ṽkl

l = [ṽl,1, ..., ṽl,kl
], with

ũl,j and ṽl,j being the j-th principal vector of H̃p
l1 and H̃p

l2.
We have the following proposition.

Proposition 4: The orthonormal matrix F̃p
li, i ∈ {1, 2},

satisfying (32), are given by

F̃p
l1 = Al1U

kl

l

[
(Ukl

l )TA2
l1U

kl

l

]− 1
2

(33)

F̃p
l2 = Al2V

kl

l

[
(Vkl

l )TA2
l2V

kl

l

]− 1
2

(34)

where Ali = [(H̃p
li)

T H̃p
li]

−1.
Proof: Since C(H̃p

liF̃
p
li) = C(Ũkl

l ), we can write that
H̃p

liF̃
p
li = Ukl

l Gl1, where Gl1 ∈ Rkl×k1 . Then F̃p
l1 =

[(H̃p
li)

T H̃p
li]

−1Ukl

l Gl1. Since (F̃p
l1)

T F̃p
l1 = I and Gl1 is in-

vertible, we have Gl1=
[
(Ukl

l )TA2
l1U

kl

l

]− 1
2

. The expression

of F̃p
l2 can be derived similarly. This concludes the proof of

Proposition 4.
It is worth noting that we cannot directly obtain F̃p

l1 and
F̃p

l2 from (33) and (34). The reason is that the PNC decoders
for the two user-pairs are coupled with each other. To see

this, we recall that Wp
A=

2∑
i=1

√
PBi

n H̃p
BiF̃

p
Bi(H̃

p
BiF̃

p
Bi)

T +I.

Therefore, F̃p
Ai depends on F̃p

Bi. Similarly, F̃p
Bi depends on

F̃p
Ai. To decouple these two precoders, we choose Wp

A =
2∑

i=1

√
PBi

n H̃p
Bi(H̃

p
Bi)

T+I in determining F̃p
Ai (using (33) and

(34)), and then determine F̃p
Bi based on F̃p

Ai. Of course, we
can alternatively first design F̃p

Bi and then design F̃p
Ai. We

choose the one with a higher achievable rate in simulation.
Once the PNC precoders are obtained, we can directly deter-
mine the CD precoders using Proposition 3.

D. Asymptotic Rate Analysis

As mentioned before, when m ≥ 3n, the proposed SD
approach achieves the same DoF as the cut-set bound does.
We next investigate the rate gap between the proposed SD
approach and the cut-set bound in the high SNR regime from
the viewpoint of principal angles.

We start with introducing some notations. Let

C=
∑

l∈{A,B}

∑
i∈{1,2}

{
1

2
log2

∣∣∣∣I+ Pli

n
HliH

T
li

∣∣∣∣}. (35)

Let HliF
s
li = Hs

li, ∀s, l, i; θ{li,l̄̄i},j be the principal angles
of C(Hli) and C(Hl̄̄i); θ{lis,l̄̄is̄},j be the principal angles
of C(Hs

li) and C(Hs̄
l̄̄i
); θ{lis,l̄s̄},j be the principal angles of

C(Hs
li) and C([Hs̄

l̄1
,Hs̄

l̄2
]); θ{lis,ls̄ l̄s̄},j be the principal angles

of C(Hs
li) and C([Hs̄

l1,H
s̄
l2,H

s̄
l̄1
,Hs̄

l̄2
]), where s ∈ {p, c},

l ∈ {A,B}, i ∈ {1, 2}, and s̄, l̄, and ī are respectively the
complements of s, l, and i.

Proposition 5: The asymptotic rate RSD of the proposed
SD approach satisfies C−RSD → ∆SD, as Pli → ∞, ∀l, i,
with

∆SD =−
∑

l∈{A,B}

∑
i∈{1,2}

n−kl∑
j=1

[
1

2
log2sin

2 θ{lic,ApBp},j

]

−
∑

i∈{1,2}

n−kA∑
j=1

[
1

2
log2sin

2 θ{Aic,Bc},j

]

−
∑

i∈{1,2}

kA∑
j=1

[
1

2
log2sin

2 θ{Aip,Bp},j

]

−
∑

i∈{1,2}

kB∑
j=1

[
1

2
log2sin

2 θ{Bip,Ap},j

]

−
∑

l∈{A,B}

n−kl∑
j=1

[
1

2
log2sin

2 θ{l1c,l2c},j

]

−
∑

l∈{A,B}

kl∑
j=1

[
log2cos

2 θ{l1p,l2p},j

2

]
. (36)

Remark 4: Note that ∆SD depends on the choice of kl (i.e.
the number of PNC spatial streams for pair-l, l∈{A,B}). This
implies that ∆SD can be minimized by enumerating over all
possible choices of kA and kB .

Proposition 6: The asymptotic cut-set bound satisfies C−
RCS → ∆CS , as Pli → ∞, ∀l, i, with

∆CS =max

{
−

2∑
i=1

n∑
j=1

[
1

2
log2sin

2 θ{Ai,Bi},j

]
,

−
2∑

i=1

n∑
j=1

[
1

2
log2sin

2 θ{Ai,B{3−i}},j

]}
. (37)

The proofs of Propositions 5 and 6 are straightforward but
tedious. We omit the details here due to space limitation.
With Propositions 5 and 6, we can readily obtain the rate gap
between the proposed SD method and the cut-set bound.

VI. NUMERICAL RESULTS

In this section, numerical results are provided to demon-
strate. In Fig. 2, we compare the rate of the SD method with
the cut-set bound, the pure PNC method (kl=n) and the pure
CD method (kl = 0). We assume Pli = P , for l ∈ {A,B},
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Fig. 2. Rate comparison of three different methods and the cut-set bound

i ∈ {1, 2}, and equal power allocation is also assumed for
each spatial stream. Two cases of antenna configuration are
considered: {m=7, n=2} and {m=14, n=4}. We see that
the SD method has at least 2.4 dB (for n=2) and 2.2 dB (for
n=4) power gain compared with the pure PNC method and
CD method, and has 2.6 dB (for n=2) and 2.8 dB (for n=4)
rate gap compared with the cut-set bound. Note that the pure
CD method performs better than the pure PNC method at low
SNR, and the case is reversed at high SNR.

Fig. 3 illustrates the asymptotical rate gap between the SD
method and the cut-set bound at high SNR. The number of
user antennas varies from 1 to 4, while the number of relay
antennas from 3 to 18. Note that we only consider the antenna
set-up of m≥3n, in which the DoF of the system is n per user.
From Fig. 3, for m=3n, 4n, 5n, the rate gap is about 1.2 bits,
0.33 bits, 0.21 bits per user-antenna, respectively. The results
also show that, for fixed n, the rate gap vanishes as increasing
the number of relay antenna. This is expected since the user
channels tend to be orthogonal to each other as m → ∞.

VII. CONCLUSION

In this paper, based on the concept of principal angles, we
develop an extended space-division approach for the MAC
phase of two-pair TWRCs over a single relay. We provide
the optimal decoding strategy and optimal precoder design
principles for the maximization of the sum-rate. Due to its
non-convex nature, we propose a sub-optimal precoder design
algorithm and derive the closed-form expression of the rate
gap with respect to the cut-set bound in the high SNR regime.
In two case studies, numerical results show that the proposed
SD method outperforms the pure PNC and CD methods with
more than 2dB power improvement.

Apart from the detailed results, an important contribution
of this paper is the use of the classical concept of principal
angles in linear algebra to delineate the PNC and CD decoding
methods in optimal multi-pair TWRCs design. In particular,
this tool gives us a systematic way to study the interplay
between signal and interference alignments in the existence
of multiple users. Going forward, there are many interesting
directions for further exploration. For example, this paper only
focuses on the MAC phase. The precoder design for the BC
phase is needed to complete the overall design. In addition,
the design in this paper is guided by the asymptotic analysis
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Fig. 3. Rate gap between the SD method and the cut-set bound

targeted for the high SNR regime. The studies for the low and
medium SNR regimes remain to be conducted.
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