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Abstract— There is a need for new spectrum access protocols
that are opportunistic, flexible and efficient, yet fair. Game
theory provides a framework for analyzing spectrum access,
a problem that involves complex distributed decisions by inde-
pendent spectrum users. We develop a cooperative game theory
model to analyze a scenario where nodes in a multi-hop wireless
network need to agree on a fair allocation of spectrum. We show
that in high interference environments, the utility space of the
game is non-convex, which may make some optimal allocations
unachievable with pure strategies. However, we show that as the
number of channels available increases, the utility space becomes
close to convex and thus optimal allocations become achievable
with pure strategies. We propose the use of the Nash Bargaining
Solution and show that it achieves a good compromise between
fairness and efficiency, using a small number of channels. Finally,
we propose a distributed algorithm for spectrum sharing and
show that it achieves allocations reasonably close to the Nash
Bargaining Solution.

I. INTRODUCTION

Opportunistic spectrum access has become a high priority
research area, since the limited spectrum available is inef-
ficiently utilized. We study the problem where nodes in a
wireless network try to gain access to bandwidth by competi-
tively allocating their own transmission power across multiple
channels. We specifically study the case where no coordinating
entity exists in the network, and nodes need to arrive in a
distributed fashion at a fair and efficient sharing of available
channels. However, we assume the presence of an entity (such
as the FCC) that can enforce agreements between players, as
this is a requirement for cooperative games.

Game theory studies mathematical models of conflict and
cooperation among intelligent and rational decision mak-
ers. Non-cooperative game theory has been used to analyze
wireless networks in [1]-[4]. Iterative water-filling [5] and
interference avoidance [6] can also be viewed as types of non-
cooperative games. In cooperative game models, players co-
ordinate to achieve a mutually desirable solution. Cooperative
game theory for analysis of networks and spectrum sharing
has been studied in [7]-[9]. Different fairness definitions have
been proposed in the literature, including proportional fairness
[10] and max-min fairness [11].

Our primary contribution is to analyze the utility space of
the spectrum sharing game as the number of channels in-
creases and show that the Nash Bargaining Solution achieves
a fair and efficient spectrum allocation. We begin by showing
that in a high interference environment and a finite number
of channels, the utility space of the spectrum sharing game is
non-convex. Non-convexity can lead to optimal points that are

mixed strategies, possibly not achievable with pure strategies'.
We show that by increasing the number of channels available,
the utility space becomes closer to convex and more optimal
points can be achieved with pure strategies. Next, we show that
the NBS allocation provides a reasonable compromise between
efficiency and fairness. We argue what the fair spectrum
allocation should be and show that the NBS achieves it. In our
simulation results we show that maximum NBS efficiency can
be achieved even with a small number of channels. Another
contribution of our work is to propose an algorithm that
can achieve the proposed allocation in a distributed manner,
using only local information. The algorithm focuses not on
implementing a bargaining process between players, but on
arriving at the NBS, since that is the expected outcome of
the bargaining process. To find the NBS point requires the
solution to a non-linear, non-convex optimization problem.
The algorithm implements a distributed approximation to the
optimization problem. In our simulation results, we show that
the algorithm reasonably approximates the NBS allocation
using only information about nodes within approximately two
hops.

The remainder of the paper is organized as follows. Section
II gives a brief description of cooperative game theory and
the NBS. Section III discusses the spectrum sharing problem,
including the game model, the utility space and the NBS in
the context of the spectrum sharing game. Section IV presents
the distributed algorithm and show that it converges. Section
V provides our simulation results. Finally, section VI provides
some concluding remarks.

II. COOPERATIVE GAME THEORY AND NASH BARGAINING

Game theory provides a set of mathematical tools that
are useful in analyzing complex decision problems with
interactions between self-interested decision makers, called
players. The basic component of game theory is a game,
G = (M,A{u;}). M = {1,...N} is the set of players,
A; is the set of actions for player i, A = A; x ... X Ay, and
u; is the objective function, sometimes called utility function,
which player ¢ wishes to maximize. For convenience, the
set of actions for all players except player i is denoted as
A=A x ... xAjg X Ajpq X ... X An.

In a cooperative game, players bargain with each other
before the game is played. If an agreement is reached, players
act according to the agreement reached, otherwise players act
in a non-cooperative way. Note that the agreements reached
must be binding, so players are not allowed to deviate from

' A mixed strategy is composed of a set of possible actions and a probability
distribution over this action space. A pure strategy is a mixed strategy that
consists of a single possible action.
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what is agreed upon. John Nash wrote in his seminal paper
on cooperative games [12] that to understand the outcome
of a bargaining game, we should not focus on trying to
model the bargaining process itself, but instead, we should
list the properties, or axioms, that we expect the outcome
of the bargaining process to exhibit. This way of analyzing
cooperative games is called axiomatic bargaining game theory
[13].

Before we proceed, we need to introduce some terminology.
An agreement point is any action vector a € A that is a
possible outcome of the bargaining process. A disagreement
point is an action vector a € A that is expected to be the
result of non-cooperative play given a failure of the bargaining
process (i.e., what will happen if players cannot come to an
agreement). Clearly, the utility achieved by every player at
any agreement point has to be at least as much as the utility
achieved at the disagreement point. A bargaining solution is
a map that assigns a solution to a given cooperative game.
Following is the bargaining solution proposed by Nash in [12].

Definition 1: Nash Bargaining Solution (NBS). Let U =
{(ui(a))|la € A} be a convex, closed and upper bounded
subset of RY, aq be the disagreement point, u? = wu;(ag) be
the utility of player ¢ achieved at the disagreement point, and
Up = {u € Ulu > u’} be the set of achievable utilities. Then
u* = ¢(U,u’) is a NBS if it meets the following conditions:

1) Individual rationality (IR): u; > u?. That is, u* € Uj.

2) Pareto optimality (PO): If there exists u’ € Uy such that
u; > uf, Vi then u) = uj,Vi.

3) Invariance to affine transformations (INV): if ¢ : RY —
RN, ¢(u) = o with v} = c;u; + dj, ci,d; € Ryc; >
0,Vi, then ¢(¢(U), ¥ (u%)) = ¥(4(U,u?)).

4) Independence of irrelevant alternatives (ITA): if v’ €
V C U and v’ = ¢(U,u) then ¢(V,u’) =u’.

5) Symmetry (SYM): if U is symmetric with respect to ¢
and j, uf = u?, and v’ = ¢(U,u®), then v = .

Conditions 3-5 are the so called fairness axioms. The INV
axiom assures that the solution is invariant if affinely scaled.
The ITA axiom states that if the domain is reduced to a subset
of the domain that contains the NBS, then the NBS is not
changed. The SYM axiom states that the NBS does not depend
on the labels, i.e. if two players have the same disagreement
utility and the same set of feasible utility, then they will
achieve the same NBS utility.

The following theorem, first proposed by Nash for two-
player games [12], and later extended for more than two
players [13], shows how we can find the unique NBS for
convex utility spaces.

Theorem 1: Let I = {i € {1,...N}|Ju € Up,u; > ul} be
the set of players that can achieve a utility strictly greater than
the disagreement utility. The maximizer of the Nash Product
(NP), u*, is the unique NBS:

X 0
u’ = arg max U; — U; ). 1
g max _GI( i — ;) ¢))
2

Theorem 1 states that the convexity of the utility space (U)
is a sufficient condition to guarantee that the maximizer of
the NP is the unique NBS. This condition is sufficient but
not necessary. In other words, there may exist non-convex

utility spaces where the maximizer of the NP is a unique NBS.
Following is a definition of a u’-comprehensive set as well as a
theorem, proposed by [14], that shows that u®-comprehensive
sets are guaranteed to satisfy some of the NBS axioms.

Definition 2: u’-comprehensive. A set S C RY is said to
be uO—comprehensive if X,y € RY such that u® < y <Xx, Vi,
then x € S implies y € S.

Theorem 2: Let U be a non-convex, closed, bounded, and
u’-comprehensive utility space. The maximizer of the NP for
set U satisfies the NBS axioms: INV, IR and IIA.

This result shows that a maximizer of the NP for a u’-
comprehensive set satisfies most of the NBS axioms. Note-
worthy is the fact that the PO axiom is not guaranteed to
be satisfied. This is because a u’-comprehensive set may be
non-convex and in game theory, all possible mixed strategies
(which we may think of as convex combinations of pure
strategies) are considered to be available strategies to the
players. So, it is possible for a mixed strategy to obtain an
expected utility that Pareto dominates the NP maximizer of
the u’-comprehensive set. In the remainder of this manuscript,
when we refer to Pareto optimality with respect to only pure
strategies, we call it Limited Pareto Optimality (LPO). In
the next theorem, we show that under certain conditions, the
maximizer of the NP for a non-convex set can be a unique
NBS.

Theorem 3: Let U be a closed and bounded utility space
and U, be the smallest convex set that contains U (the convex
hull of U). If U has a unique maximizer of the NP, v*, which
coincides with the NP maximizer of U,, u}, then u* is the
unique NBS for U.

Proof: We know that U C U.. Since the unique
maximizer of the NP for both U and U, are the same, this
implies ©* = u, € U. Thus, by the IIA axiom, u* is the
unique NBS for U. ]

Theorem 3 tells us that if a non-convex set coincides
with its convex hull on the maximizer of the NP, then the
NP maximizer of the non-convex set is a NBS. We will
subsequently show that the utility space for the spectrum
sharing problem is u®-comprehensive and not always convex,
but given the right conditions, can be nearly convex. Thus, the
NP maximizer for the spectrum sharing utility space satisfies
most of the NBS axioms and can satisfy all axioms under the
conditions where it is nearly convex.

III. SPECTRUM SHARING

The spectrum sharing problem addresses the issue of how
to allocate the limited available spectrum among multiple
wireless devices. The problem has two important, orthogonal
goals: efficiency and fairness. The allocation of spectrum
should utilize as much of the resource as possible. However,
when utilization is maximized, fairness can be compromised.

Following is a detailed discussion of the spectrum shar-
ing problem. We propose a game model and discuss our
assumptions. We then analyze the resulting utility space of the
game, examine its properties and show that when the available
spectrum is divided into a large enough number of channels,
efficient spectrum allocation is achieved with a pure strategy.
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A. Game Model

The spectrum sharing problem can be modeled as follows.
The available bandwidth is divided equally into multiple chan-
nels. Each wireless device (referred to as node) can transmit
in any combination of channels at any time and can set its
transmit power on each channel. Each transmitting node is
only interested in communicating to a single receiver node.
Receiver nodes do not transmit and thus are not considered
players in the game (since they will act in coordination with
the transmitter).

Let x = {1,..., K} be the set of available channels, B be
the aggregate bandwidth, with each channel having bandwidth
E, and NN be the number of transmitter nodes in the network.
We formulate the spectrum sharing game as follows: M =
{1, . N}, PX = {0 )kexlpf > 0 ZkEXpL < Ppas} and
Px = PX X PE. Let p € PX and u;(p) = C;(p) , where
C;(p) is the Shannon capacity:

k. k

H;
Zlog2 1+02p> 2)
+Z]¢z szJ

where p! is the power transmitted by node i on channel F,
Ppaz is the maximum transmit power, HJ’CL is the channel
gain from j to the receiver of i on channel k, and o2 is the
thermal noise for the entire bandwidth B.

B. Utility Space

This section discusses the properties of the utility space
for the spectrum sharing game. Specifically, we explore the
effect of increasing the number of channels on the utility space.
We show that given enough channels, for any mixed strategy
we can find a pure strategy that achieves a utility at least as
high as the mixed strategy. This result implies that to achieve
efficient spectrum use we need not employ mixed strategies.
This also implies that in the cases where the utility space is not
convex (some mixed strategies are not included in the space),
increasing the number of channels increases the number of
mixed strategies that are included in the set (the space becomes
closer to being convex).

Theorem 4: For some x and finite subset SX C PX,
consider a mixed strategy defined by probability distribution
m, such that 7(s) is rational for all s € SX. For any such
mixed strategy, there exists a pure strategy ¢ € PX'| with PX’
associated with a set of channels ’, that yields the same utility
as the mixed strategy. The proof is in Appendix A.

Theorem 4 says that we can replicate any mixed strategy
with a pure strategy”. This result implies that, given enough
channels, we do not need to employ mixed strategies to
achieve efficient spectrum utilization. Another less evident, yet
important, implication is that we can make the utility space
closer to convex by increasing the number of channels. If we
can replicate mixed strategies with pure strategies, we reduce
the number of convex combinations not included in the utility
space and thus make it closer to convex.

2We can only replicate mixed strategies with rational probabilities, but
since rationals are dense in the reals, we can approximate any mixed strategy
arbitrarily closely.
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Fig. 1. Example utility space for 2 player game under high interference

In the remainder of this section, we investigate the behavior
of the utility space as the number of channels increases. For
purposes of illustration, we assume a game with only two
players. For readability, when we graph a utility space, we only
graph the upper boundary of the set (that is, the set includes
all the points enclosed by the upper boundary, the x axis and
the y axis), as the LPO points are all in this boundary.

Figure 1 shows the utility space for the case where both
nodes experience interference stronger than their received
signal strength (H%, > HY,, H}, > HE, Vk), for increasing
values of K. The figure also shows the utility space when all
possible mixed strategies are included (convexified space) for
some values of K.

By examining the utility space for K = 1, we can clearly
see that the boundary of the mixed strategies dominates the
boundary of the pure strategies. This shows that under the
high interference case for K = 1, using mixed strategies can
be more efficient than adopting pure strategies. Now examine
the utility space for K = 4. We notice that the boundary of
this case dominates most of the boundary for the K = 1 case
with mixed strategies. Specifically, the LPO points for K =4
overwhelmingly dominate the mixed strategies for K =
These points are not dominated by the mixed strategies for the
case K = 4, which implies that these points are PO. From the
results of Theorem 4 we would expect the boundary for K = 4
to be at least as efficient as some mixed strategies for the K =
1 case. The overwhelming dominance of the K = 4 over K =
1case is due also in part to an effect that is most noticeable
in high interference environments. When interference is high,
optimal mixed strategies usually involve only a single node
transmitting at a time. By increasing the number of channels,
we allow for frequency separation of transmissions and thus
decrease interference. The decrease in available bandwidth to
each player is more than offset by the decrease in interference.
Corollary 1 formally presents this effect.

Corollary 1: Consider a mixed strategy as Theorem 4, such
that s* > 0 for some k € y implies s =0 for all j # z and
k € x. Also, for every 7 there exists s 6 SX such that s¥ > 0
for some k. For any such mixed strategy, there exists a pure
strategy t € PX'| with PX" associated with a set of channels
X', that yields utility greater than the mixed strategy. The proof
is in Appendix B.

Now compare the boundaries for K = 4 with and without
mixed strategies. We can see that using mixed strategies can
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achieve PO points that are not achievable with pure strategies.
Although these points do not dominate the pure strategy PO
points, it may be desirable to achieve them to meet fairness
objectives. Finally, examine the utility spaces for K > 4. We
can see that as K increases, the pure strategy utility space
has more PO points. A more subtle, yet important effect of
increasing channels is that the utility space becomes closer to
its convex hull. As the utility space becomes convex, we can
achieve more PO points with pure strategies.

IV. DISTRIBUTED ALGORITHM

Our goal is to design a distributed algorithm that achieves
the NBS for the spectrum sharing game. We need the algorithm
to operate only with local information and no centralized
control. In this section we show that nodes can be aggregated
into overlapping groups, which we can then leverage to dis-
tribute the computation of the NBS. Nodes within each group
are in close proximity, which allows nodes to only use local
information. Finally, we propose an algorithm for computing
an approximation to the NBS and prove its convergence.

We make the following assumptions:

1) There is an underlying method for information exchange
such that nodes within two hops can communicate
within a time scale shorter than the time scale for
updates to channel allocation.

2) Nodes run the algorithm at random intervals such that
the probability that two or more nodes (within two hops
of each other) run the algorithm simultaneously is small.

3) The execution time of the algorithm is small relative to
the interval between executions of the algorithm.

4) The initial agreement point is 0.

The NBS solution is based on the assumption that all players
in the game bargain as a group to reach a cooperative solution
to the game. This means that in the spectrum sharing game
a node cooperates with all nodes in the network. That is, we
must consider the utility achieved by all nodes in the network
in order to implement the NBS. However, we know that a
node’s effect is limited to other nodes within close proximity.
This allows us to limit the scope of a node’s bargaining to a
subset of the network. Consider the following concept:

Definition 3: Let R > 0 and Rz(i) be the set of receiver
nodes of node ¢. The interference zone (IZ) of node j, with
interference radius R, is defined as IZgr(j) = {i|3k €
Rz(i),distance(j, k) < R,j # k}

The interference zone for node j is the set of transmitter
nodes such that one of their receivers is within distance R of
node j. If we set R to a large enough value, then node i ¢
IZR(j) can ignore node j’s actions. Thus, we can approximate
the utility function of node ¢ as follows:

ko k
Hiip;

K
B

U (p) = — E log, [ 1+ L 3)
Ko + e, Hipp

K

where J; = {j|i € IZr(j)}. This approximation drops the
interference terms from nodes that are far enough away from
node ¢’s receivers such that they cause negligible interference.
Then, the utility function of node i ¢ IZr(j) is independent
of node j’s actions.

Algorithm 1 Distributed NBS Computation
. IZ =iU{j|distance(Rz(j),i) < R,u; > 0}
: oldNP =]];c17u;(p)
p =MaximizeNP(i, [Z,0)
newNP =T];c;5 u;(P)
. if newNP > (1 + tol) * oldN P then
k _ ok
pi =D
. end if

Consider node 7 maximizing the NP while the other nodes’
actions remain constant. Let p’ € P be the current strategy
employed in the network, p; = {p|p € PX,pk = p'¥ Vi # j}
be the set of strategies such that only node j has an action
different from p’, and 12} (j) = IZr(j) U {j}. Then,

max [[ap) = [[ @) xmax J[ ae). @

Per; 1¢1Z5(5) Lierz ()

Equation 4 demonstrates that, by using the approximation for
the utility function, nodes need only consider nodes in their
IZ when maximizing the NP. This result allows us to design
an algorithm to calculate the NP for the entire network only
using local information at each node. We propose Algorithm
1 for calculating the NP, which consists of nodes choosing
their actions so as to maximize the NP of their interference
zone. The algorithm only updates the node’s actions if the
value of the NP is increased by at least tol percent. The
algorithm calls the function MaximizeNP(i,IZ,d), which
calculates the maximum of the NP for all nodes in the 1Z
with respect to node i’s actions, within a neighborhood of
the current operating point of size §. Following is a proof
of convergence for the algorithm. The proof shows that the
algorithm converges, but not to what value it converges to.
In the simulation section, we show that the algorithm indeed
converges to a value close to the NBS.

Proof: Convergence of Algorithm 1. Since P is com-
pact, @;(p) is upper-bounded. Since @;(p) > 0, then the NP is
also upper-bounded. Eq. 4 shows that node ¢, by maximizing
the NP for nodes in its IZ, actually maximizes the NP for the
entire network. So, after a node executes the algorithm, the
value of the NP does not decrease. The value of the NP is
upper-bounded and non-decreasing and thus converges. ]

V. SIMULATION RESULTS

In this section we present our simulation results. All simu-
lations consist of the following setup. There are N transmitter-
receiver pairs of nodes placed randomly in an R, meter by
R, meter square. A receiver is no more than 100m away
from its transmitter. The total bandwidth, B, is evenly divided
into K channels. The propagation loss exponent is 4 and the
root-mean-square (RMS) delay spread is lus. The antenna
gain is 0.01, the maximum transmission power is 100mW,
and the noise level is -80dBm for the entire bandwidth. All
capacity numbers are reported as multiples of B and are
the actual capacity achieved, not the approximation used by
the algorithm. Unless otherwise stated, all simulations are
averaged over 100 randomly chosen network topologies, N =
10 and tol = 2%.
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Fig. 2. Average capacity per node achieved by the NBS. (R, = 200m)

TABLE I
SPECTRUM ALLOCATION SCHEME COMPARISON
N =5, R, = 200m

NBS | MaxSum | MaxMin | WF

Avg u; 1.18 1.31 0.69 1.16
Min u; 0.21 0.02 0.25 0.13
Fairness Score 1.00 0.11 0.69 0.73

In our simulations, we aim to show that the NBS obtains
a fair and efficient spectrum allocation. To achieve this, we
compare the NBS to three other spectrum allocation schemes:
MaxMin, MaxSum and Water-filling. Water-filling is an it-
erative scheme where each node maximizes its own utility
without regard to the utility other nodes achieve. The NBS
and Water-filling algorithms are simulated in a random round
robin fashion.

To measure the relative fairness of a spectrum allocation, we
need a metric that captures how close the allocation obtained
by the algorithm is to the value of the NBS. We propose a
metric, which we call the fairness score, based on the NBS.
The metric attains values between O and 1.0, where a value
of 1.0 indicates a utility allocation equal to the NBS. As the
value decreases, the allocation becomes skewed and thus, less
fair.

Definition 4: Let u* be the utility achieved by the nodes
at the true NBS and u be some ottier utility allocation. The

) ) WO\
fairness score of u is: (Hl = _Zb)
i

A. NBS Efficiency and Fairness

In this section we investigate the spectrum allocation
achieved by the NBS and compare its fairness and efficiency to
those of the other spectrum allocation schemes. In this section,
all NBS values presented are the true NBS points, not the
approximations by the proposed algorithm.

Table I shows the average and minimum of the capacity
achieved for all nodes and the average fairness score, with
R, = 200m and K = 8. We can observe that the average
capacity achieved by the NBS is close to that by MaxSum
and much more than by MaxMin. The NBS also achieves a
minimum capacity very similar to MaxMin and significantly
higher than MaxSum. This shows that NBS balances efficiency
and fairness effectively and significantly better than MaxSum
or MaxMin. Water-filling achieves average utility similar to

Fairness Score

o o

~ d o

a ® &
Round Robin Iterations

e
3

0.65

8 190 2 14 16 18 20
a@=P /aJ
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Fig. 3. Effect of delta on average score. (K = 16, R, = 200m)
NBS, but a much lower minimum capacity and fairness score.
All schemes achieve fairness scores significantly lower than
the optimal. Notable is the score of MaxSum, which is near
zero, as in many cases one player is assigned zero utility.
Figure 2 shows the average capacity per node achieved by
the NBS, for several values of K, with R, = 200m. Since
R, is small relative to the transmission range, we expect
significant contention for the spectrum. As we showed in
the previous section, we see that under a high interference
environment, the average capacity per node increases as the
number of channels increases. We see that after a certain point
(K = 9), the average capacity stops increasing. This is not
surprising, as K = 9 is close to the point where every node can
utilize a single channel exclusively and thus avoid significant
interference.

B. Algorithm Performance

Figure 3 examines the effect of the parameter J, which
controls the amount of the space the algorithm can search
at a given iteration. We can see that as § — oo the algorithm
performs rather poorly. This is because the search space is
unconstrained and the first node to execute the algorithm will
skew the allocation in its favor. By limiting the space each
node can explore at any iteration, it limits the skewing of
the allocation. The figure shows how making ¢ smaller, the
algorithm converges to a higher fairness score. However, this
comes at a cost of slower convergence. The figure shows
the average number of round robin iterations required for the
algorithm to converge. It clearly shows the algorithm requires
more iterations to converge, as 0 decreases. For the rest of the
simulations we set this parameter to § = P,,4,/5, as that is
the point where we have the best compromise between fairness
score and convergence speed.

In Figure 4, we show the performance of the algorithm
as a function of the interference radius. Clearly, we would
like this radius to be as small as possible, so as to minimize
the information exchange required. As expected, the fairness
score increases as R increases. However, we notice that even
when R = 100, the fairness score achieved by the algorithm is
greater than 0.94. This result is encouraging as it tells us that
we can significantly limit the number of nodes involved in the
bargaining process and still achieve a reasonable outcome.
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VI. CONCLUSIONS

The spectrum sharing problem consists of dividing a given
amount of spectrum among many nodes in a way that is
efficient and fair. In this manuscript we have addressed this
problem by formulating a cooperative game model of the
spectrum sharing problem. We analyzed the utility space of
the spectrum sharing game and showed that efficiency is
maximized by increasing the number of channels. We also
showed that the utility space convexifies and thus maximizing
the NP gives us an allocation that approximately satisfies the
NBS axioms. Consequently, we show that the NBS allocation
provides a reasonable compromise between efficiency and
fairness, as it achieves allocations with minimums close to
MinMax and efficiency close to the MaxSum. Finally, we
proposed an algorithm that, with only local information,
approximates the maximization of the NP and show that it
converges quickly to a value close to the true NBS.

APPENDIX

A. Proof of Theorem 4

By construction, for any s € SX and mixed strategy T,
there exists positive numbers ag,3 such that 7(s) = %s
(Zse gx as = [3). We will now find a pure strategy that yields
the same utility as this pure strategy. Let x’' = {1,...,8K}.
Let us partition X’ into disjoint sets ¢s x, s € SX and k € ¥,
with USGSX,kex ¢s,, = X' and with |¢g ;| = as. It is assumed
that for all k' ¢ ¢Sk,Hk = Hf; for all i,j € M. Let us

construct a pure strategy, t € PX, as follows: for each k' € >§: ,

find s, k such that k" € ¢g ) and for each i € M set tf =3

B
Note that ¢ is a valid strategy, as:
BK K K
PED DD DD DLIOD DL 7
k=1 SeSx k=1k'€dg , Sesx k=1
The utility achieved by player ¢ for strategy t, u;(t), is,
HE ¥
S Y B (1Y
Y
SESX k=1k'Cog., ﬁK AR+ 2 Hii t)
H s}

= ZZ > Klog2 1+

SESX k=1 k’6¢s A

= Zasz logy | 1+

SeSx k=1

2 k ok
T+ 2 Higs)
Hk k

ZZZ

2 k ok
T+ Zl;éi Hyis;

= Y w(s)uils)

SeSx

B. Proof of Corollary 1

Let S; X be the set of strategies such that for some k€ x,
s¥ > 0. By construction, [SX| > 0 and [J,c,, SF = 5%,
and thus SY is a proper subset of SX. Now con51der the pure
strategy t € PX" as defined in the above proof. Let 3; =

Y osc sx s < B and let us construct another pure strategy,

v € PX', such that v = ﬁﬁ >t’C
Note that v is a vahd strategy, as:

Sy Y -5 Z

k=1 SeSX k=1k'€dg SeSX

= Ex[ui(s)]

S max

The utility achieved by player i for strategy v, u;(v), is,

Sy Y e
logy 1+ —
Bk
SESX k=1k'Edg ﬁK +Zl;ézH
ks
- Yy Y Klogz L+ =
SeSX k= 1k'€¢sk K
a Hk k
> 32 o (142 - p
SeSX
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