
A Nearest Neighbor Method for Efficient ICP

Michael Greenspan Guy Godin

Visual Information Technology Group
Institute for Information Technology, National Research Council Canada

Bldg. M50, 1500 Montreal Rd., Ottawa, Ontario, Canada, K1A 0R6
email: firstname.lastname@nrc.ca

Abstract
A novel solution is presented to the Nearest Neighbor Prob-
lem that is specifically tailored for determining correspon-
dences within the Iterative Closest Point Algorithm. The
reference point set P is preprocessed by calculating for
each point ~pi 2 P that neighborhood of points which lie
within a certain distance � of ~pi. The points within each
�-neighborhood are sorted by increasing distance to their
respective ~pi. At runtime, the correspondences are tracked
across iterations, and the previous correspondence is used
as an estimate of the current correspondence. If the esti-
mate satisfies a constraint, called the Spherical Constraint,
then the nearest neighbor falls within the �-neighborhood
of the estimate. A novel theorem, the Ordering Theorem,
is presented which allows the Triangle Inequality to effi-
ciently prune points from the sorted �-neighborhood from
further consideration.

The method has been implemented and is demonstrated
to be more efficient than both the k-d tree and Elias meth-
ods. After �40 iterations, fewer than 2 distance calcula-
tions were required on average per correspondence, which
is close to the theoretical minimum of 1. Furthermore, af-
ter 20 iterations the time expense per iteration was demon-
strated to be negligibly more than simply looping through
the points.
Keywords: nearest neighbor problem, correspondence, it-
erative closest point, triangle inequality

1 Introduction
The Iterative Closest Point Algorithm is overwhelm-

ingly the most widely utilized range data processing
method. First formulated by Besl and McKay [1] and ex-
tended by Chen and Medioni [2], ICP iteratively improves
the registration of two overlapping surfaces by calculating
the unique transformation that minimizes the mean square
distance of the correspondences (the mse) between the two
surfaces. At each iteration, new correspondences are deter-
mined based upon the current relative position of the sur-
faces.

Calculating the correspondences has been reputed to ac-
count for the bulk of the computational expense of ICP. In
their implementation, Besl and McKay reported that de-
termining the correspondences consumed a full 95% of
the runtime. If the two surfaces are represented as point
sets, then establishing the correspondence for each point
is known as the Nearest Neighbor Problem. At each iter-
ation, the correspondent of each point in the floating (i.e.
data) surface is defined as that point in the reference (i.e.
model) surface which it is nearest to. Correspondence can
be defined equivalently when the surfaces are represented
otherwise.

A number of classical general solutions exist to the
Nearest Neighbor Problem, including binning methods
such as k-d tree [3] and Elias [4], and those which make
use of the Triangle Inequality [5, 6, 7]. Implementations
of the ICP typically employ one of these general methods,
with the k-d tree likely being the most widely used.

We present a solution to the Nearest Neighbor Problem
which is specifically tailored to ICP. It is motivated by two
observations. The first is that the correspondence distances
tend to become smaller with each successive ICP iteration.
In the aggregate, this is described by the convergence the-
orem [1], which states that the mse will reduce monoton-
ically with each iteration. The second observation is that
the Triangle Inequality tends to be a more powerful prun-
ing constraint as the correspondence distances reduce.

The method has been formulated here for the case where
both surfaces are represented as point sets, and it is be-
lieved that there are generalizations to other surface repre-
sentations. The reference point set P is preprocessed by
calculating for each ~pi 2 P that neighborhood of points
which lie within a certain distance � of ~pi. The points
within each �-neighborhood are sorted by increasing dis-
tance to their respective ~pi. At runtime, the correspon-
dences are tracked across iterations. If a floating point
ever falls closer than �=2 to the reference point to which
it corresponded in the previous iteration, then its new cor-
respondence will lie within the �-neighborhood of this pre-

vious correspondence. The Triangle Inequality is applied
to the sorted �-neighborhood to efficiently prune out neigh-
borhood points from further consideration [7].

Despite the understanding that the correspondence cal-
culation is the rate limiting step, there has been little pre-
vious work reported on techniques for efficient Nearest
Neighbor determination in the context of ICP. An excep-
tion is Simon et al. [8] who used a caching method which
is similar to the Spherical Constraint presented here. For a
given iteration, rather than determining the single nearest
neighbor for each query point, they identified small sets of
�5 nearest neighbors, which they stored in caches associ-
ated with each query point. At the next iteration, assuming
that the incremental transformation was small, it was nec-
essary only to search the respective cache to determine the
correspondence for each transformed query point. They
found this technique to improve the runtime performance
of the k-d tree method.

Blais and Levine [9] used the inverse calibration param-
eters of the acquisition sensor to project the points from
one image onto the reference frame of the other image.
While this method was efficient, it did not identify the true
nearest neighbor correspondences between images.

Other context specific solutions to the Nearest Neigh-
bor problem include Vidal Ruiz et al. [6] which was based
upon the Triangle Inequality. Their method was effec-
tive for moderately small point sets, and was applied to
a speech recognition problem [10]. Nene and Nayar [11]
presented a method which was effective mainly for large
dimensional spaces.

The paper continues as follows: Section 2 covers the
mathematical preliminaries, and the method is described
in detail in Section 3. Section 4 reports the results of an
example designed to illustrate its performance. The paper
concludes in Section 5 with a summary and some future
research directions.

2 Mathematical Preliminaries
In this section, a variation of the Nearest Neighbor Prob-

lem is defined which applies directly to ICP. A condition
called the Spherical Constraint is presented which limits
the neighborhood of points which need be considered in
determining the nearest neighbor. The Triangle Constraint
is also presented which, according to the Ordering Theo-
rem, further reduces the number of potential points.
2.1 Nearest Neighbor Problem

Let P = f~pig
n
1 be a set of n points in a d-dimensional

space, and let ~q be a query point. A statement of the Near-
est Neighbor Problem is:

Find the point ~pc inP which is the minimum dis-
tance from ~q , i.e.

jj~q � ~pcjj � jj~q � ~pijj 8 ~pi 2 P (1)

p
c

p
i

p
c

S

qS

q

Figure 1: Spherical Constraint

We consider here the following variation of the Nearest
Neighbor Problem which, as we shall see, will be useful
for improving the time efficiency of ICP:

Find the point ~pc inP which is the minimum dis-
tance from ~q , given an initial estimate ~̂pc � ~pc.

One option is to simply ignore ~̂pc and solve the conven-
tional Nearest Neighbor Problem using classical methods,
such as k-d tree or Elias. To be relevant, any method which
makes use of ~̂pc must improve upon the efficiency of con-
ventional solution methods.
2.2 Spherical Constraint

A property which we shall call the Spherical Constraint
holds that any point which is closer to ~q than is the current
estimate ~̂pc must lie within the sphere centered on ~̂pc with
radius 2jj~q � ~̂pcjj.

Proposition 1 (Spherical Constraint)

jj~q�~pijj < jj~q�~̂pcjj) jj~̂pc�~pijj < 2jj~q�~̂pcjj (2)

Proof: Let S~q be the sphere centered at ~q with radius

jj~q�~̂pcjj. From the LHS of Eq.(2), ~pi must also lie within
S~q;

jj~q�~pijj < jj~q�~̂pcjj) ~pi 2 S~q (3)

Now let S
~̂pc

be the sphere centered at ~̂pc with radius

2jj~q�~̂pcjj, such that S
~̂pc

completely contains S~q , i.e. S~q �

S
~̂pc

. Then, ~pi 2 S~q � S
~̂pc

, rendering the RHS of Eq.(2).

A 2D diagram of the proof of Proposition 1 is illustrated
in Figure 1.

The Spherical Constraint describes a necessary but not
sufficient condition for closest point identification: there

may well be points which satisfy only the RHS of Eq.(2).
It is nevertheless hypothesized that when the estimate ~̂pc is
sufficiently close to ~pc, the constraint can be used to rule
out many contenders.

2.3 Triangle Inequality
Let points ~pi, ~pj , and ~pk be defined in a metric space,

and let jj~pi � ~pj jj denote the Euclidean distance between ~pi
and ~pj . A statement of the Triangle Inequality is:

jjj~pi�~pj jj�jj~pj�~pkjjj � jj~pi�~pkjj � jj~pi�~pj jj+jj~pj�~pkjj (4)

The equality limit on the lower bound holds when the 3
points are collinear, and ~pj does not lie between ~pi and ~pk.
The equality limit on the upper bound holds when the 3
points are collinear and ~pj does lie between ~pi and ~pk.

Proposition 2 (Triangle Constraint)

j jj~q�~̂pcjj � jj~̂pc�~pijj j > jj~q�~pj jj

=) jj~q�~pijj > jj~q�~pj jj (5)

Proof: Reversing the lower bound of Eq.(4) gives
jj~q�~pijj � j jj~q�~̂pcjj � jj~̂pc�~pijj j . Substituting this into
the LHS of Eq.(5) gives:

jj~q�~pijj � j jj~q�~̂pcjj � jj~̂pc�~pijj j > jj~q�~pj jj

which yields RHS.

The Triangle Constraint in the form of Eq.(5) has been
well exploited in solutions to the Nearest Neighbor Prob-
lem [5, 6]. We present here a novel treatment toward this
end which is based upon the following Ordering Theorem.
The main idea of the Ordering Theorem is to arrange the
points by increasing distance to ~̂pc. Any point which vi-
olates the Triangle Constraint can be discounted as a pos-
sible nearest neighbor. Further, as the points are arranged
in increasing order, all subsequent points will necessarily
also violate the Triangle Constraint, and therefore need not
be considered.

Theorem 1 (Ordering Theorem) Let P=f~pign1 be a set
of points which are ordered by increasing distance to some
point ~̂pc:

i < j () jj~pi�~̂pcjj � jj~pj�~̂pcjj (6)

Let there be a point ~pi which is further to ~̂pc than the query
point ~q, i.e. jj~q� ~̂pcjj � jj~pi�~̂pcjj. Then the following rela-
tion holds:

j jj~q�~̂pcjj � jj~pj�~̂pcjj j > jj~q�~pijj

=) jj~q�~pkjj > jj~q�~pijj 8 k � j (7)

Figure 2: Ordering Theorem

Proof: From the lower bound of the Triangle Inequality
(Eq.(4)):

jj~q�~pkjj � j jj~pk�~̂pcjj � jj~q�~̂pcjj j (8)

The ordering of P ensures that ~pk and ~pj are further from
~̂pc than is ~q, so that:

j jj~pk�~̂pcjj � jj~q�~̂pcjj j = jj~pk�~̂pcjj � jj~q�~̂pcjj

� jj~pj�~̂pcjj � jj~q�~̂pcjj (9)

Substituting Eqs.(9) and (8) into the LHS of Eq.(7) gives:

jj~q�~pkjj � jj~pk�~̂pcjj � jj~q�~̂pcjj

� jj~pj�~̂pcjj � jj~q�~̂pcjj > jj~q�~pijj

=) RHS

Corollary 1

j jj~q�~̂pcjj � jj~pj�~̂pcjj j > jj~q�~pkjj

=) jj~q�~pijj > jj~q�~pkjj 8 i � j

The above corollary was used in [7] to accelerate the
performance of binning Nearest Neighbor methods. It is
not applied in the method presented here, and is included
for completeness.

A geometric interpretation of the Ordering Theorem is
illustrated in 2D in Figure 2. The points are shown ordered
by increasing distance to ~̂pc, i.e. f~p1; ~p2:::~pi:::~pj ; ~pk:::g.
For convenience we denote the distance to ~̂pc as Rj =

jj~pj�~̂pcjj and Rq = jj~q�~̂pcjj, and the distance to ~q as
Di= jj~pi�~qjj. Note that ~pi and ~pj are not necessarily con-
secutive, as in Eq.(6). Also, for the sake of illustration the
points are shown emanating from ~̂pc fairly linearly. It is,

however, only their distance from ~̂pc that is important: they
may equivalently be distributed otherwise, as long as their
distance from ~̂pc remains the same.

The three spheres illustrated in Figure 2 are all centered
at ~̂pc. Sphere S0 has radius Rq . Sphere Si

� has radius
Rq � Di, and sphere Si

+ has radius Rq + Di. By the
Ordering Theorem and its Corollary, all points which lie
outside of the shaded annulus defined by S i

+�Si
� will be

further from ~q than is ~pi. That is, all points which lie either
outside of Si

+ or inside of Si
� need not be considered

further.

3 Application to ICP
The above results can be used to improve the efficiency

of ICP. The main idea is to store the value of the correspon-
dences within an iteration so that they are available at the
next iteration. In preprocessing, a neighborhood is calcu-
lated for each point ~pj in the reference set P. At runtime,
for each point ~qi in the floating set Q, the correspondence
which was determined at the previous iteration is used as an
initial estimate of its current nearest neighbor. The Spher-
ical Constraint is applied to determine whether or not the
nearest neighbor falls within the neighborhood of this es-
timate, and if so, the Triangle Constraint and the Ordering
Theorem are applied to the neighborhood to quickly iden-
tify the correspondence. A pseudocode representation of
the method, which we call Spherical Triangle Constraint
Nearest Neighbor (STCNN), is listed in Figure 3.
3.1 Preprocessing

For each ~pj 2P a neighborhood is calculated compris-
ing those points within P that fall within a distance � of
~pj . This can be accomplished using a k-d tree, Elias, or
other conventional Nearest Neighbor method. We call this
neighborhood the �-neighborhood of ~p j , and store it in a
list which is sorted by increasing distance to ~pj , denoted
by the array ~pj [�]. Each element k stores both the point
identity ~pj [k] and its distance j~pj [k]j to ~pj . For exam-
ple, if the 5th element of ~pj [�] is ~pi, then ~pj [5] = ~pi and
j~pj [5]j = jj~pj�~pijj.

In summary, the properties of an �-neighborhood are:

(membership) ~pi 2 ~pj [�] () jj~pj�~pijj � �

(order) j~pj [a]j < j~pj [b]j () a < b

3.2 Runtime
At runtime, for each ~qi2Q, the nearest neighbor which

was found for ~qi in the previous iteration is used as the
initial estimate ~̂pc. As the location of ~qi has changed since
the last iteration, the value jj~qi�~̂pcjj must be recalculated.

The first step is to determine whether or not the near-
est neighbor of ~qi resides within the �-neighborhood ~̂pc[�],
which is accomplished by applying the Spherical Con-
straint. If � > 2jj~qi�~̂pcjj then the nearest neighbor is

// initialization
for all ~pj 2 P
f

construct ~pj [�]
g

// runtime for iterations > 1
for all ~qi 2 Q
f

~̂pc = ~pc for ~qi from last iteration
minD = jj~qi�~̂pcjj

if (2 minD < �) // Spherical Constraint satisfied
f

k = 1, ~pd = ~̂pc, Done = FALSE

while (Done == FALSE and k � size of ~̂pc[�])
f

if (jjj~qi�~̂pcjj � j~̂pc[k]jj > minD)
f // Triangle Constraint not satisfied

~pc = ~pd
Done = TRUE

g
else // Triangle Constraint satisfied
f

if (jj~qi�~̂pc[k]jj < minD)
f minD = jj~qi�~̂pc[k]jj

~pd = ~̂pc[k]
g

g
k ++

g
~pc = ~pd

g
else // Spherical Constraint not satisfied
f

find ~pc with conventional nearest neighbor method
g

g

Figure 3: STCNN Pseudocode

guaranteed to be a member of ~̂pc[�]. Alternately, if � �
2jj~qi�~̂pcjj then the initial estimate was not tight enough to
restrict the search only to ~̂pc[�], and it is necessary to apply
a conventional method to find the nearest neighbor of ~q i. It
is also necessary to apply a conventional method in the first
iteration where no estimates from previous iterations exist.
We call this conventional method the companion method.

Once the Spherical Constraint has been satisfied, one
option is to simply calculate the distance to each point
in ~̂pc[�]. As � is relatively small, the cardinality of the �-
neighborhood will be small compared to that of P, and so
this will be quite efficient.

The efficiency can be further improved upon by apply-
ing the Triangle Constraint to the ordered points of ~̂pc[�].
The nearest neighbor of ~qi is initially set to be ~̂pc, and we
store its identity in the temporary value ~pd ~̂pc. Using the
information precomputed and stored in ~̂pc[�] we then test
the Triangle Constraint for successive elements, starting at

the first element. If for any k

j jj~qi�~̂pcjj � j~̂pc[k]j j > jj~qi�~pdjj

then by Eq.(5)

jj~qi�~̂pc[k]jj > jj~qi�~pdjj

and so the nearest neighbor cannot be ~̂pc[k]. Furthermore,
as the elements of ~̂pc[�] are sorted by increasing distance
to ~̂pc, from the Ordering Theorem the Triangle Constraint
will also be violated for all subsequent elements (> k) of
~̂pc[�]. The nearest neighbor of ~qi has therefore been identi-
fied as ~pd.

Alternately, if for any element the Triangle Constraint
is satisfied, i.e.

j jj~qi�~̂pcjj � j~̂pc[k]j j � jj~qi�~pdjj

then ~̂pc[k] may indeed be closer to ~qi than is ~pd. Its dis-
tance is calculated, and if it is less than the current value
of jj~qi�~pdjj, then the value of ~pd is updated to ~pd ~̂pc[k].
The test then continues with the next list element.

The search terminates for this ~qi when either the Trian-
gle Constraint is violated, or all elements of ~̂pc[�] have been
visited.

There is a property of ICP which works in favour of the
above conditions being satisfied. The Convergence The-
orem [1] states that the mean square distance of all cor-
respondences (mse) will monotonically reduce with suc-
cessive iterations. On average, the values of jj~qi�~pcjj and
jj~qi�~̂pcjj will therefore tend to reduce with each iteration.
Furthermore, it is the nature of ICP that the first few itera-
tions converge very quickly, resulting in large transforma-
tions of Q, whereas later iterations converge more gradu-
ally, resulting in smaller transformations. When a highly
accurate result is desired (as often is the case) the majority
of the time is spent on iterations where the transformations
are small, which is exactly the situation where STCNN be-
comes most efficient.

4 Example
We have implemented the STCNN method and tested it

on a number of data sets. We present here details of the
results on one representative example, which we believe
typified the performance. The example reference point set
P was a range image containing 94884 points that was ac-
quired with a Biris range sensor. This image is illustrated in
Figure 4. The floating point set Q was an exact copy of P
which had been perturbed to a slightly different initial po-
sition. The rotational offset was 5 degrees about all 3 axes,
and the translational offset in all 3 directions was 10 mm,
which was approximately 1%, 7.5%, and 3% of the extent
of the image along the x-, y-, and z-axes respectively.

a) top view

b) rotated view

Figure 4: Test Image (� 95k points)

The performance of STCNN was compared with imple-
mentations of both the k-d tree and Elias methods. The k-d
tree is a strictly binary tree in which each node represents
a partition of the k-dimensional space. The root of the tree
represents the entire space, and the leaf nodes represent
subspaces containing mutually exclusive small subsets of
P. At any node, only one of the k dimensions is used
as a discriminator, or key, to partition the space. When
the tree is traversed, the single scalar value of the key of ~q
is compared with the node key value, and the appropriate
branch is followed. When a leaf node is encountered, all
of the B points resident in the leaf’s bin are tested against
~q. Depending on the closeness of the match at a leaf node,
and the boundaries of the space partition, the traversal may
backtrack to explore alternate branches.

Whereas the k-d tree method partitions space hierar-
chically and irregularly, the Elias method groups P into
subsets that form regular (congruent and non-overlapping)
subregions. The nearest point to the query point ~q is found
by searching the subregions in order of their proximity to
~q, until the distance to any remaining region is greater than

a) average Ec vs. iterations b) time vs. iterations

Figure 5: Comparison of STCNN, k-d tree, and Elias: B 2 [1; 300], V 2 [40; 100], � 2 [2; 6]

the distance to the nearest point found, or until all subre-
gions have been processed. Points in each searched subre-
gion are exhaustively examined. Simple modifications to
the method allow the search for the K nearest neighbors,
or for all points closer than a threshold distance. The par-
titions are axis-aligned, forming squares in 2-D, cubes in
3-D, or hypercubes in d-D space for d � 4. The only pa-
rameter of the Elias method is the number of bins V t along
each axis t. For our implementation we assume an equal
number of bins per axis, (i.e. Vx=Vy=Vz=V) so that the
total number of bins is equal to V3.

The STCNN uses Elias as its companion method, which
is required both for initialization of STCNN and whenever
the Spherical Constraint is not satisfied.

The comparison of the implemented methods was based
upon two metrics. The first metric is denoted Ec, and is a
measure of the number of distance computations which are
explicitly executed. ForP of cardinality n and query point
~q, Ec = n

m
, where m is the number of points for which

jj~q�~pijj was actually computed.
The second metric is the measured runtime to complete

a number of iterations. While Ec is a direct measure of
computational complexity, the runtime is dependent upon
implementation specifics. Each implementation was exe-
cuted on the same platform (a 400 MHz Pentium II) and
compiled with the same compiler options, and a moderate
and equivalent amount of attention was afforded to the op-
timization of each. For example, square root calculations
were avoided wherever possible, but no assembly level
coding or other machine specific techniques were used. It

is believed that these implementations (and therefore the
measured time values) are representative of what a prac-
titioner in the field would typically reproduce. It is also
likely that these results would scale equivalently with any
other implementation optimizations, so long as they were
applied equally across all methods.

That the same data set was used for both P and Q did
not bias the performance of the ICP either for or against
any of the methods. It did produce the effect that exact
correspondences existed for each point, so that it was pos-
sible to identify exactly when the ICP had converged. This
occurred at the iteration where each correspondence re-
mained unchanged and the mse vanished. In the test case,
complete convergence occurred at iteration 86.

Each method was tested over a range of parameter val-
ues. For the k-d tree, the number of points per leaf node
was varied over B 2 [1; 300]. The Elias V parameter was
varied over a range of V 2 [40; 100]. The value of the
STCNN neighborhood epsilon was varied over a range of
� 2 [2; 6] mm. For these values, the average cardinalities
of the �-neighborhoods varied respectively between 13 and
117 points.

The range of results of these tests were plotted in Fig-
ure 5. The time to initialize each method is indicated on
iteration 0 of the time plot in part b). To facilitate vi-
sualization over large ranges of values, each plot com-
prises two distinct linear regions on their y-axes; [0; 5000]
and [5000; 100000] for Ec in part a), and [0; 350] and
[350; 5000] for runtime in part b).

Two benefits of STCNN can be observed from this

k−d tree

0

1000

2000

3000

4000

5000

0 20 40 60 80

av
 E

c

iterations

SCNN

STCNN
50000

100000

Elias

100
0

50

100

150

200

250

0 20 40 60 80
iterations

NULL

Elias

SCNN

STCNN

t (
se

c)

100

a) average Ec vs. iterations b) time vs. iterations

Figure 6: Comparison of Best Results

graph. The first is that, after � 20 iterations, STCNN is
more efficient than either k-d tree or Elias in both Ec and
time. The second benefit is that STCNN is less sensitive
to the selection of the parameter values V and �. Indeed,
most of the variation between the STCNN trials occurred in
the earlier iterations, which were more dependent upon the
Elias companion method. In later iterations, when most or
all points fell within the �-neighborhoods, all of the STCNN
trials had similar performance.

The best performing trials from Figure 5, were replotted
in Figure 6. This occurs at B = 80 for k-d tree, V = 80
for Elias, and V = 60 and � = 3 for STCNN. Note that
the y-axis in part a) comprises two regions; [0; 5000] and
[5000; 100000]. That the optimal value of the number of
bins is less for STCNN than for Elias is attributed to the
role of the companion method. In STCNN initialization,
Elias is used to generate the �-neighborhoods, an operation
which is slightly more efficient for larger bins. The average
cardinality of the �-neighborhood for the value � = 3mm
was 28 points.

After about 40 iterations, Ec > 47442. Given that the
image contained 94884 points, this meant that on aver-
age the distance was explicitly calculated for fewer than
2 points per ~q. This is significantly close to the theoretical
minimum of 1.

Two other trials were also included in this plot, SCNN
and NULL. The SCNN method was the same as STCNN,
with the exception that it applied only the Spherical Con-
straint, and not the Triangle Constraint. When the Spher-
ical Constraint was satisfied, the distance was therefore
tested for every point in the �-neighborhood. In part a),
this variation is observed to be only slightly more efficient
than Elias by the Ec metric. In part b), it can be seen that
the time efficiency of SCNN is between that of STCNN and
Elias. This confirms that the Triangle Constraint serves to

practically improve the time performance of the method.
The final curve on the plot of Figure 6b), the NULL

method, provides an explanation as to why the difference
in the time performance between STCNN and Elias is not as
great as the orders of magnitude difference observed in E c.
For each iteration, the NULL method simply loops through
all points ~qi 2 Q and assigns the correspondence of ~qi as
~pi. As P = Q, these are in fact the true correspondences,
so that the correct transformation is calculated on the first
iteration, and the identity transformation thereafter. The
significance of the NULL method is that there is no search
for the correspondences, so that the computational expense
is only the overhead of simply looping through the points
inQ. After about 20 iterations, it can be seen that the slope
of STCNN is roughly the same as the slope of NULL. This
means that, within that range, the correspondence compu-
tation of STCNN is contributing a negligible expense over
that of simply looping through the points.

5 Conclusion
We have presented a novel solution to the Nearest

Neighbor Problem which is specifically tailored for use
with ICP. The method is based upon the application of
the Spherical and Triangle Constraints and uses the cor-
respondences determined in the previous iteration as ini-
tial estimates. While the Triangle Inequality has been used
in many other Nearest Neighbor methods, to the authors’
knowledge the Ordering Theorem and its application are a
novel contribution.

The STCNN method has been implemented and demon-
strated to be faster than fairly lean versions of the k-d tree
and Elias methods. At full convergence, which occurred
in the presented example at iteration 86, the time to com-
plete the k-d tree, Elias and STCNN were 943, 251 and 176
seconds respectively. This represented a time savings of
�30% over Elias, and greater than 500% over k-d tree. A

comparison of the Ec metric, which is a measure of the av-
erage number of times the distance was actually calculated,
weighed even more in favour of STCNN. After �40 iter-
ations, fewer than 2 distance calculations where required
per point, which is close to the theoretical minimum of 1.
Further, after 20 iterations, the time expense per iteration
was demonstrated to be only trivially greater than simply
looping through the points without executing any corre-
spondence calculations. We conclude that the cost of the
correspondence calculation in later iterations has been re-
duced so as to be negligible.

In future work, we plan to analyze the complexity ex-
pression of the method. We would also like to generalize
the results to other surface representations, particularly tri-
angles.

References
[1] Paul J. Besl and Neil D. McKay. A method for registration

of 3D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2):239–256, February 1992.

[2] Y. Chen and G.G. Medioni. Object modeling by registration
of multiple range images. Image and Vision Computing,
10(3):145–155, 1992.

[3] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, September 1975.

[4] Ronald L. Rivest. On the optimality of Elias’s algorithm for
performing best-match searches. In Information Processing
74, pages 678–681, 1974.

[5] Keinosuke Fukunaga and Patrenahalli M. Narendra. A
branch and bound algorithm for computing k-nearest neigh-
bors. IEEE Transactions on Computers, pages 750–753,
July 1975.

[6] Enrique Vidal Ruiz. An algorithm for finding nearest neigh-
bors in (approximately) constant time. Pattern Recognition
Letters, 4:145–157, July 1986.

[7] Michael Greenspan, Guy Godin, and Jimmy Talbot. Ac-
celeration of binning nearest neighbor methods. In Vision
Interface 2000, pages 337–344, Montreal, Canada, May 14-
17 2000.

[8] David A. Simon, Martial Hebert, and Takeo Kanade. Real-
time 3-D pose estimation using a high-speed range sensor.
In IEEE Intl. Conf. Robotics and Automation, pages 2235–
2241, San Diego, California, May 8-13 1994.

[9] Gérard Blais and Martin D. Levine. Registering multi-
view range data to create 3D computer objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
17(8):820–824, August 1995.

[10] Enrique Vidal, Hector M. Rulot, Francisco Casacumerta,
and Jose-Miguel Benedi. On the use of a metric-space
search algorithm (AESA) for fast DTW-based recognition
of isolated words. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 36(3):651–660, May 1988.

[11] Sameer A. Nene and Shree K. Nayar. A simple algo-
rithm for nearest neighbor search in high dimensions. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(9):989–1003, September 1997.

