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The Semantic Web and Internet of Things visions are cormgrigiward the so-called Semantic
Web of Things (SWoT). It aims to enable smart semantic-ethhpplications and services in
ubiquitous contexts. Due to architectural and performassees, it is currently impractical
to use existing Semantic Web reasoners. They are resounseroing and are basically opti-
mized for standard inference tasks on large ontologies.h®wraontrary, SWoT use cases gen-
erally require quick decision support through semanticctmagking in resource-constrained
environments. This paper presents Mini-ME, a novel molriference engine designed from
the ground up for the SWoT. It supports Semantic Web teclgiedoand implements both
standard (subsumption, satisfiability, classificatiorg aon-standard (abduction, contraction,
covering) inference services for moderately expressiverMedge bases. In addition to an
architectural and functional description, usage scesai@ presented and an experimental
performance evaluation is provided both on a PC testbednstgather popular Semantic Web
reasoners) and on a smartphone.

Introduction tion andsatisfiabilitycheck. Furthermore, mobile computing
) ) platforms €.g, smartphones, tablets) are still constrained by
Semantic Web technologies have been acknowledged 4%, rqwargsoftware limitations with respect to typical setups
tools to promote interoperability and intelligent informa ¢, Semantic Web reasoning engines. In fact, architectural
tion proces;ing in ubiquitous computing. chnarios inelud 5 performance issuesfect the porting of current OWL-
supply chain management, u-commerce (Liu, 2013; Rutayaqed reasoners, designed for the Semantic Web, to mobile

Di Noia, Di Sciascio, Piscitelli, & Scioscia, 2007), peer- javices (Yus, Bobed, Esteban, Bobillo, & Mena, 2013).
to-peer resource discovery (Ruta, Di Sciascio, & Scioscia, ’ ' ’ ’ ’

2011) and so on. The increasing computational resources This paper presentdini-ME (the Mini Matchmaking En-
and communicationsfiectiveness of mobile devices enable gine), a compact matchmaker and reasoner for théN
ubiquitous processing and exchange of rich and structure@Attributive Language with unqualified Number restrictin
information for context-aware resource discovery and-deciDescription Logic (DL). It is aimed to semantic matchmak-
sion support. The Semantic Web and the Internet of Thinging for resourcservice discovery in mobile and ubiquitous
paradigms are converging more and more toward the soeontexts, although itis also a general-purpose Semantic We
called Semantic Web of Things (SWoT) (Scioscia & Ruta,inference engine. The reduced expressivity of the logical
2009; Pfisterer et al., 2011). It enables semantic-enhancédnguage is compensated by an increased mobility level and
pervasive computing by embedding intelligence into ordi-provided quality of the resource discovery. Optimized non-
nary objects and environments through a large number of hestandard inference services allow a fine-grained categoriz
erogeneous micro-devices, each conveying a small amount ¢ibn and ranking of matching resources w.r.t. a request, pro
information. viding both a distance metric and a logic-based explanation

Such a vision requires an increased flexibility and auton-of the outcomes. Mini-ME is suitable to a widespread class
omy of ubiquitous knowledge-based systems in informatiorof applications where a large number of low-complexity
encoding, management, dissemination and discovery. Useomponent resources can be aggregated to build composed
agents running on mobile personal devices should be able tervices with growing semantic complexity. This is fit for
discover dynamically the best available resources acegrdi the computational and power supply limitations of resource
to user’s profile and preferences, in order to support her cumproviders in ubiquitous contexts and to their short storage
rent tasks through unobtrusive and context-dependent sugwailability. An “agile” service discovery architecturable
gestions. Reasoning and query answering are particularlp select, assemble and orchest@tethe flymany elemen-
critical issues, stimulating the need for further spezadi  tary componentsis more manageable affielotive in ubiqui-
inference services in addition to classical ones $ilbsump-  tous applications.



2 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

Mini-ME uses the OWL API (Horridge & Bechhofer, resource in mobile systems.

2009) to parse and manipulate Knowledge Bases in all gq ¢\ sing on ubiquitous contexts, semantic-based resource
OWL 2% supported syntaxes. It exploits structural infer- sy ery was early investigated in (Avancha, Joshi, &ini
ence algonthms on unfolded and CNF (Conj_unctlve NormalZOOZ). There, the need for discovery mechanisms more pow-
Form) normalized concept expressions féifaéent COMPU- o1 than string-matching was clearly pointed out for the

tations also on resource—constraln_ed platforms. - Mini-MEgi ot time ~ The issue of approximate matches lacking exact
implements both standard reasoning tasks for Knowledgg,qoq \yq¢ discussed, but no formal frameworks were given.

Base (KB) management (subsumption, classification, satisy, (,on Hessling, Kleemann, & Sinner, 2004) semantic user
fiability) and non-standard inference services for sensanti rofiles were introduced to increase accuracy in matching

based resource discovery and ranking (abduction, Contrag’ervices in a mobile environment. If there was no intersec-
tion (Colucci et al., 2007), covering (Ragone et al.,

It is devel din J ndroid h ) 2007)) tion between user interests and servifkeis, authors con-
tis developed In Java, witiindroid as the main target cluded the user was not interested in the service; a com-

compgtiqg platiorm. Mini-ME supports tHeWLlink proto- plete and integrated solution for matching degree calcula-
col (Liebig, Luther, Noppens, & Wessel, 2011) for standardtion was not provided.Pocket KRHyper(Sinner & Klee-

application-reasoner interaction. Furthermore, reasan@ 1211 005) Was the first reasoning engine specifically de-
GUI (Graphical User Interface) plug-ins have been devel'signed for mobile devices. It supported tALCH TR+ DL
oped for theProtégé ontology editor (Gennari et al., 2003). and was built as a Java ME (Micro Edition) library. Pocket
Mini-ME has already been employed in prototypical testbed§ g1y ner was exploited in a DL-based matchmaking frame-
on mobile and embedded devices for ubiquitous and pervag, . hetween user profiles and descriptions of mobile re-
sive computing scenarios. _ _ sourcegservices (Kleemann & Sinner, 2005). However, fre-
The remainder of the paper is organized as follows. The,,en¢ «out of memory” errors strongly limited the size and
next sect_lon hlghllghts_re_levant related wo_rk. _A functibna complexity of manageable logic expressions. To overcome
and architectural description of the system is given, #8d o tormance constraints, tableaux optimizations to reduc
by two usage scenarios, respectively in ontology engineers, oy consumption were introduced in (Steller & Krish-

ing with Protégé and in mobile semantic augmented rea”tynaswamy, 2008) and implementedrirableay a modified
Experimental evaluation results are provided for both-stan, o cion of Java SEPellet reasoner (Sirin, Parsia, Cuenca

dard and non-standard inferences, in mobile as well as P&rau Kalyanpur, & Katz, 2007). Comparative performance
settings, before closing remarks. tests were executed on a PC, showing faster turnaround times
than both unmodified Pellet arRlacer(Haarslev & Miller,
Related work 2001) reasoner. Nevertheless, the Java SE technology is not
I;axpressly tailored to the current generation of handheld de

entailed implicit knowledge, painstaking optimization is Yi€S- In fact, other relevant inference engines cannobrun

needed to achieve acceptable performance for adequately gemmon mobile _platforms, since_ they rely on Jf?“’a class li-
pressive languages (Baader, Hollunder, Nebel, Profitich, Praries incompatible with most widespread mobile @3
Franconi, 1994: Horrocks & Patel-Schneider, 1999). Thig\ndroid). In (Yus et al.,, 2013) four Semantic Web reason-

is specifically true in case of logic-based matchmaking forS"S Were successfully ported to the Android platform (Relle
mobile computing, which is characterized by resource Iim-CB (Kazakov, 2009)Hermit (Shearer, Motik, & Horrocks,

itations dfecting not only processing, memory and storagezoos) andFact a Java port ofact++ (Tsarkov & Horrocks,

capabilities, but also energy consumption. Most mobile in-2006)), albeit with significant rewriting or restructuriegort
n some cases. Similarly, in (Kazakov & Klinov, 2013) the

ference engines currently provide only rule processing fot o )
entailments materialization in a KB (Koch, Meyer, Dignum, ELK reasoner was optimized and evaluated on Android.

& Rahwan, 2006; Tai, Keeney, & O'Sullivan, 2011; Kim, Nevertheless, all ported systems were designed mainly
Park, Hyun, & Lee, 2010; Motik, Horrocks, & Kim, 2012), for batch jobs over large ontologies dadexpressive lan-

so resulting unsuitable to support applications requinog-  guages. This makes mobile device usage less suitable due to
standard inference tasks and extensive reasoning over onemputation and memory constraints. The non-standard ser-
tologies (Motik et al., 2012). More expressive languagesvices of Mini-ME are more useful in ubiquitous scenarios,
could be used by adapting tableaux algorithms —whose variwhere mobile agents must provide quick decision support
ants are implemented in reasoners running on PCs— to m@ndor on-the-fly organization in intrinsically unpredictable
bile computing platforms, but arffecient implementation of environments like the ubiquitous ones. Moreover, it can
reasoning services is still an open problem. Several techbe observed that the above systeflile the matchmaking
nigques (Horrocks & Patel-Schneider, 1999) allow to inceeas framework proposed in (Kleemann & Sinner, 2006hly
expressiveness or decrease running time at the expense safpport standard inference services such as satisfiadildy
main memory usage, which is precisely the most constrainedubsumption, which provide only binary “yes” answers.

When processing semantic-based information to infe
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Consequently, they can only distinguish amdnl (sub-  years, several case studies and prototypes have been devel-
sume, potential (intersection-satisfiab)eand partial (dis-  oped for diferent ubiquitous scenarios to prove the feasibil-
joint) match types, as defined in (Colucci et al., 2007) and (Liity and benefits of non-standard inferences, including ubiq

& Horrocks, 2004) respectivelAnalogously, in the HTTP-  uitous commerce (Di Noia et al., 2008), ambient intelligeenc
based ubiquitous infrastructure by (Vazquez & Lépez-de Ip-and infomobility services (Ruta, Scioscia, Di Noia, & Di Sci

ifia, 2007), queries allow only exact matches with facts deascio, 2010), home and building automation (Ruta, Scipscia
rived from a support knowledge basélon-standard infer- Loseto, & Di Sciascio, 2014).

ences like abduction and contraction are needed to support

approximate matches, semantic ranking and explanations of System outline

lucci I, 2007).
outcomes (Colucci etal., 2007) A description of the proposed matchmaker is provided

In latest years, the bad worst-case complexity of OwLhereafter: a short recall on the supported logic language is
|anguage stimulated aftirent approach to imp|ement rea- followed by an overview of the included inference services
Soning tools. It was based on S|mp||fy|ng both the under|y_and flna”y by architectural and implementation details.
ing logic languages and admitted KB axioms, so that struc-
tural algorithms could be adopted, while maintaining ezpre Supported language

siveness enough for broad application areas. In (Baader, In DL-based reasoners, an ontology(a.k.a. Termino-

BrandE,Jr & Lutz, 2005), the basi@L DL was .extended_ logical Box or TBox) is composed by a set of assertions in
to £L7, a language deemed suitable for various applicasq torma £ D (inclusion) orA = D (definition), whereA

tions, charqcterized by very large on_tplogies With_mOder'andD are concept expressions. Particularlgimple-TBox
ate expressiveness. A structur_al classification z)irl+gormm; is an acyclic TBox such that: (i is always an atomic con-
also devised, which allowed high-performa@£™ ontol- cept; (i) if A appears in the left hand side (lhs) of a con-
ogy classifiers such aSEL (Baader, Lutz, & Suntisrivara- cept definition assertion, then it cannot appear also in the
porn, 2006)Snorocke{Lawley & Bousquet, 2010) and ELK ¢ ¢ any concept inclusion assertion. Mini-ME supports

(K"".Z‘f’"_‘ov' Krbtz_sch, & Si”_“'mk’ 2014.)' OWL 2 profiles the ALN (Attributive Language with unqualified Number
definition complies W'th th|_s perspectl\_/e, focusing on Ian'restrictions) DL, which has polynomial computational com-
guage subsets of practical interest for important appdioat lexity for standard and non-standard inferences in simple
areas rather than on fragments with significant theoretic Boxes, whose depth of concept taxonomy is bounded by
prope.rties. Ina pargllel@rt moti\{ated_ by sir_nilar pf‘”C‘? the Ioga:rithm of the number of axioms in it (see (Di Noia et
ples, in (Ruta, Di Noia, Di Sciascio, Piscitelli, & Scioscia al,, 2007) for further explanation). Actually, such DL frag
20(.)8) an ear_ly approach was prop05ed to ad_apt non-standar%m has been selected because it grants good worst-case
logic-based inferences to pervasive computing contexys. E"complexity and memoryf&ciency of non-standard inference

I|m|t||ngf expLesswenessdto thﬂ;f Iﬁngpage, a%ychc, Strtl)"c' algorithms for semantic matchmaking. Syntax and semantics
tural algorithms were adopted reducing standaxd,(sub- of ALN DL constructs are summarized in Table 1.

sumption) and non-standarml ¢, abduction and contraction) According to the W3C (World Wide Web Consortium)

inference tasks to set-based operations (Di Noia, Di SCiaSRecommendation issued by the OWL Working Group for the

T e s oo Socr Qw2 ontology language, an OWL 2 anoloy i basicaly
. . ’ n RDF (Resource Description Framewdraph referrin
bile RDBMS (Relational DBMS). Such an approach was ( P 6ap g

. : : A S . . to the OWL 2 vocabulary serialized in RDPXML syntax
further investigated in (Ruta, Scioscia, Di Noia, & Di Sci- iy P y

. . . or in one of the other optional syntaxes. As part of the ac-
ascio, 2009) and (Ruta et al., 2011), by increasing the exg i of the W3C, OWLIink (Liebig et al., 2011) has been
pressiveness t@ LN DL and allowing larger ontologies and

. . defined as a new interface to allow communication between
more complex descriptions, through the adoption of both mo

. . ) applications and OWL 2 reasoners. It is a functiofedyAsk
b"e. O.ODBMS (Object—Orlente_d DBMS) and perfqrmqnce- (Levesque, 1984) interface exploiting HTTP as the underly-
optimized data structures. Finally, in (Ruta, Scioscia, &

e~ . ing transfer protocol. There is a close correspondence be-
Di Sciascio, 2010) expressiveness was extende@fav (D) twgeen OWL FZJ and OWLIink syntax P

DL with fuzzy operators. The above tools were designed to

run on ._Java.MI.E devices an_d were adqpted in se\_/eral CaSfiference services

studies in ubiquitous computing, employing semantic match

making over moderately expressive KBs. The reasoning en- When loading a KB, Mini-ME performs a preprocessing
gine presented here recalls lessons learned in those psevioin order to executanfoldingandCNF normalization Partic-
efforts, and aims to provide a standards-compliantimplemenudlarly, given a TBox7~ and a concep€, theunfolding pro-
tation of most common inferences (both standard and norcedure recursively expands references to axioris within
standard) for the most widespread mobile platfolmrecent  the concept expression itself. In this w&y,is not needed
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Table 1 . . also implemented, allowing to (i) provide explanation of-ou
Syntax and semantics QLN constructs and simple- comes beyond the trivial “y@so” answer of satisfiability and
TBoxes subsumption tests, (ii) enable a logic-based relevande ran
e St [ ing of a set of available resources w.r.t. a specific querygRu
Top = ~7 et al., 2011) and aggregate resources in order to satisfy com
Bottom 1 0 plex requests:
Intersection CnD c’'nD? . . .
Atomic negation “A A\AT e Concept Contraction (Colucci et al., 2007): given a
Universal quantification| VRC | {di|Yd; : (ch,dp) € R = dy e C7) requesD and a supplied resour&; if they are not compat-
Number restriction >nR {dy | #{dz | (d1,dp) € RY} > n} f ; i i i
=R @A (@ ) s R = |b|<_a with gac;h other, Contraction Qetermmes wh|c.h pr_;lrt of
Inclusion ACD AT cD7 D is conflicting withS. As shown in the flowchart in Fig-
Equivalence A=D A" =D’ ure 1,if one retracts conflicting requirements iy, G (for

Give up, a concepK (for Keep is obtained, representing a
contracted version of the original request, such KatS is

gn;:. motre wr;en ext(;cutm? Isdubdsequent t'”fere”mm?‘" CNFsatisfiabIe W.r.t7". The solutionG to Contraction represents
'zation transtorms the unfolded concept expression in “why” D 'S are not compatibleThe algorithm in Figure 1
through a set of pre-defined substitutions (Ruta et al., )2011iS recursive

Any ALN concept expressiod can be reducedin CNF as: " 000t Abduction (Colucci et al., 2007): whenever

C = Con N Cir M Cer M Cy, WhereCey is the conjunction 55 gre compatible, bu§ does not implyD, Abduc-

O.f (pOSS'bIY negated.) ato.mlc concept namegy (respe.c- tion allows to determine what should be hypothesize& in
t!vely Cer) is the conjunction ok (resp.;) number_ reStT'C' in order to completely satisfip also enabling a logic-based
ions (no more than one per role), afidis the conjunction relevance ranking of a resource w.r.t. a given request (Ruta

of universal quantifiers (no more than one per role; f|IIerset al., 2011). The solutiohi (for Hypothesisto Abduction

are recursively in CNF). Normalization preserves Semami(fepresents “why” the subsumption relation= S C D does
equivalence w.r.t. models induced by the TBox; furtherrnorenOt hold.H can be interpreted aghat is requestea in D and

CDNFN'S. unltqule ;gé‘; co1r_r;]mutat|V|t)|/ fOf con{cunctmn otpeicratt:)cl)rnot specified in S Also in this case, as shown in Figure 2,
(Di Noia et al., ). The normal form of an unsatisfia €he algorithm is recursive.

conceptis simply.. e Concept Covering many ubiquitous scenarios require
Mini-ME was devised as a semantic matchmaker, a  that relatively large number of low-complexity resources a
tool to find the best resources for a given request, whemggregated in order to satisfy an articulated request. i%o th
both resource and request descriptions are satisfiablepbnc ajm, a further non-standard reasoning task based on the solu
expressions w.r.t. a common ontology. Mini-ME exploits tion of Concept Covering ProblefCCoP, formally defined
structural algorithms for standard and non-standardémfez  jn (Ragone et al., 2007)) has been defined. It allows to: (i)
services on (unfolded and normalized) concept expressiongover {.e., satisfy) features expressed in a request as much as
Main peculiarity is a careful optimization of the implemen- possible, through the conjunction of one or more instantes o
tation of both algorithms and data structures, which enabl% KB —seen as e|ementary bu||d|ng blocks— and (||) provide
efficient computations even on resource-constrained devicescplanation of the uncovered part of the request itselfe@iv

such as mobile and embedded ones. a concept expressidd (request) and a set of instanc®s
The following standard reasoning services are currentlf S1, Sy, ... , Sp} (available resources), whei@ andS;, S,
supported: ... , Sp are satisfiable in the reference ontology Concept

e Concept Satisfiability (a.k.a. consistency). In a se- Coveringaims to find a paikS,, H) whereS, includes con-
mantic matchmaking framework, given a requBsand a  CePts |r_15 coveringD w.r.t. 7 as much as possible amtis
supplied resourcé as concept expressions w.r.t. a com-the residual part ob not covered by concepts B.
mon TBox7, satisfiability allows to determine whether there SinceS is an approximated match @&f, it would be useful
is a partial (disjoint) match or not, by checking whetherto evaluate how good the approximation is. Based on the
7 E S D C L holds or not. Due to CNF properties, satis- uniqgueness of CNF, aorm for concept expressions can be
fiability check is trivially performed during normalizatio computed by “counting” the number of conjuncts in it (Ruta

e Subsumption check Subsumption determines et al., 2011). Hence, numerigagnalty functiongan be de-
whether the resource is a full (subsume) match for the refined based on the norm of expressi@andH, which al-
quest or not, by checking wheth@&r= S C D holds or not.  low to evaluate the goodness of match approximation as well
The classic structural subsumption algorithm is explgited  as to rank several resources w.r.t. a requédgorithms in
ducing the procedure to a set containment test (Baader, Carigure 1 and 2 compute and return associated penalty values.
vanese, Mc Guinness, Nardi, & Patel-Schneider, 2002). In order to use Mini-ME in more general knowledge-

Furthermore, three non-standard inference services wettgased applications, the following reasoning services omer
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(<G>, penalty):=(< 1, T >,0)
H=T
penalty:= 0
for each concept 4 in

(<GK>,penalty):= (< L, T>,1) |7

(<GK>, penalty):= (<D,T>, [norm(C, 7)) |—

G=GNCN
remove CN from K
penalty:= penalty + 1

(<G.K>, penalty ):= contract(ALN, £, £, T )
G=GNYRG'

replace VR £in K with VR K"
penalty:= penalty + penalty’

TG (>=x R € Kor3 (>=y R)in 3}
andIVRFES

H=HnN(=xR)
penalty:= penalty + %

replace (= x R) with (2 y R)
G=Gn(=xR)
penalty:= penalty + %

H=HN(=x R)
penalty:= penalty + 1

H=HnN(<xR)
S(o-yRIESandyox G= G (<= yR) penalty:= penalty + 22

penalty:= penalty + %

for each concept (< x R in K
. yos | repiace(sxm) )wnh (¥R

no T
[
N

I return (<G>, penalty) ]

H=HN (<X R)
penalty:= penalty + 1

End I return <A, penalty> I

Figure 1L Concept Contraction algorithm
Figure 2 Concept Abduction algorithm

tologies were also implemented:

- Ontology Coherence it is a simplified check w.r.t. Satis-  hort for parsing and manipulating the OWL 2 language ex-
fiability, because it does not process ABox individuals (thepressions;

difference is discussezlg, in (Moguillansky, Wassermann, _ owLlink API (Noppens, Luther, & Liebig, 2010): pro-
& Falappa, 2010)). Since CNF normalization allows to iden-y;iges support for the core OWLIink (Liebig et al., 2011) pro-
tify unsatisfiable concepts, it is Sicient to normalize every ¢, thus allowing requests for standard inferences;only
concept during ontology parsing to locate unsatisfiabdith  _ \jicroReasoner. reasoner implementation, exposing fun-

the ontology. o damental KB operations (load, parse), as well as inference
- Classification ontology classification computes the over- (55ks:

all concept taxonomy induced by the subsumption relation. kg wrapper: implements KB management functions
from T to L concept. In order to reduce the subsumptioncreation of internal data structures, normalization olo

tests, the following optimizations introduced in (Baader € jng) and inference procedures on ontologies (classifioatio
al., 1994) were implemente@nhanced traversal top search  anq coherence check);

enhanced traversal bottom seayaxploitation oftold sub- . pata Structures in-memory data structures for con-

sumers cept manipulation and reasoning; at this level inference
procedures on concept expressions (concept satisfiability

Architecture subsumption, abduction, contraction, covering) are imple
mented.

Mini-ME architecture is sketched as UML diagram in Fig-
ure 3. Components are outlined hereafter: Mini-ME was developed in Java using Android SDK
- Android Service: implements a service.¢., a background Tool$®, Revision 12, corresponding to Android Platform ver-
daemon) any Android application can invoke to use the ension 2.1 (API level 7), therefore it is compatible with all-de
gine; vices running Android 2.1 or later. Mini-ME can be used:
- OWL API (Horridge & Bechhofer, 2009): provides sup- (a) through théAndroid Servicdoy Android applications; (b)



A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

<<component>> H] <<component>> 3] covering set and a further one as the uncovered part of the
<<library>> <<service>> request.
OWLlIink API Android_Service
Usage scenarios
@) Mini-ME can be used in both semantic and ubiquitous
Reasoning Tasks KB Management semantic web scenarios. The tool assists users in knowl-
<<component>> 3] edge bases engineering, by providing consistency check and
MicroReasoner classification tasks. Furthermore, it provides resourse di
! ! covery capabilities —through standard and non-standard in
| <<use>> ) Ssuse>> ference services— to build applications and services for e-
Y 2 commerce, e-learning, knowledge management, healthcare
<<component>> El <<component>> El

and life sciences, among other applications. The podsibili
to run the proposed system on mobile and embedded devices
allows to leverage semantics also in ubiquitous and pergasi
contexts such as m-commerce, m-learning, ubiquitousthealt
monitoring and healthcare, home and building automation,
navigation and driving assistance systems, VANETs (Vehic-
ular Ad-hoc NETworks), WSSANSs (Wireless Semantic Sen-
sor and Actor Networks), and many more. To focus just on
few clear exampleshis section illustrates how Mini-ME can
via OWLIink; (c) as a library by calling public methods of be used for knowledge engineering with an ontology editor
the MicroReasonecomponent directly. In cases (b) and (c), and in a typical ubiquitous computing application, a mobile
it runs unmodified on Java Standard Edition runtime envi-augmented reality explorer to discover points of interest.
ronment, version 6 or later. The system supports all OWL 2

syntaxes accepted by the OWL API parser. In the Semantic Web: Protégé plugins

Standard Java Collection Framework objects are used t0 pini-ME has been integrated within the Protégé ontology
define the low-leveData Structureppackage (mentioned be- egitor through the implementation of an OWL reasoner plu-
fore), composed of the following classes: gin, in order to facilitate ontology engineering and allaw t

e Item: it represents a named concept expression. Whedesign and prototype ubiquitous knowledge-based applica-
parsing an ontology, th&B Wrappercomponent builds a tions. Standard reasoning tasks are accessible through the
JavaHashMapobject containing all concepts in the TBox as Protégé user interface in tHReasoningnenu. The entry
StringItempairs. Each concept is unfolded, normalized andpoint is the MinimeReasoneclass that extendébstract-
stored in the HashMap with its name as key #pthinstance  ProtegeOWLReasonerInfahich manages the synchroniza-
as value. tion between the KB and the reasoner in case of changes to

e SemanticDescription models a concept expression in the currently loaded ontology. THdinimeReasoneclass
CNF as aggregation @cn, Cot, CL1, Cy cOmponents, each also references the reasoner factory, responsible forrtie c
one stored in a dierent JavairrayList Methods implement ation of the MicroReasonerMini-ME instance. Further-
inference services. more, the implemented OWLIlink APl (Noppens et al., 2010)

e Concept superclass of all concept types. Sub-server adapter allows to test the Mini-ME reasoner as an
classes areAtomicConcept, UniversalRestriction and  HTTP/XML OWLIink server, but only the core protocol is
CardinalityRestriction, which is further extended by supportedi.e. non-standard inference services are currently
GreatherThanRestriction andLessThanRestriction The  unsupported via OWLIlink. By means of the OWLIink Pro-
equals method, inherited fronjava.lang.Objecthas been tégé plugin configuration panel the user can set up the URL
overridden in order to properly implement logic-based com-where the server is listening for incoming requests.
parison. A further Protégé plugin has been developed to: (i) ex-

e Abduction and Contraction: represent the result re- ploit non-standard inferences through a user-friendly GUI
turned by Concept Abduction and Concept Contraction, refii) support users during the development of ontology for
spectively.Abductioncontains éSemanticDescriptioasHy-  pervasive and ubiquitous scenarios. The exisbhgQuery
pothesis while Contractioncontains twoSemanticDescrip-  plugin was used as guideline. The proposed pluginiala
tions asGive UpandKeep Furthermore, they both contain a Widgetand it consists of the following components, high-
penalty score induced by the inference procedure. lighted in Figure 4: (A)OWLIndividualsListand OWLIndi-

e Composition: represents the result returned by thevidualsTypesabs, showing all KB instances with related de-
Concept Covering service. It contains a vectoltefns as  scription; (B) OWLAssertedClassHierarcland OWLClass-

<<library>>
OWL API <---
<<uyse>>

KB Wrapper

<<use>>

<<component>> H]|
Data Structures

Figure 3 UML component diagram
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through a fully visual user interface.

| In order to allow users to store semantic annotations in a
(c] POI description retaining backward compatibility, newsag
have been introduced complying with the basic key-value
pair stricture of OSM element tags:

<tag k="semantic:n:key" v="value" />

The semantic prefix is used to distinguish semantic anno-
Al " ) tations from other tags. The index identifies diferent
annotations —possibly referring to fidirent ontologies—

N associated to the same map element. Key narffixsaand
value format difer for each proposed tag type, as in what
[e]. [o] follows:

<tag k="semantic:n:ontology" v="URI" /> denotes
the ontology the semantic node annotation refers to. The
tag value is the unique ontology URI (Uniform Resource
Identifier), which usually consists of a URL (Uniform

Description tabs, containing the general taxonomy alongResource Locator) which can be accessed to retrieve the
with the description of selected classes; (C) an input boxntology.

used to select the inference task, the reqRemtd —in case <tag k="semantic:n:encoding" v="format" />

of abduction and contraction—the resource annot&foom specifies the compression format used to encode the
theOWLIndividualsListhrough drag-and-drop. For Concept semantic annotation. Compression techniques are needed in
Covering, a subset of KB individuals can be checked througlyrder to cope with the well-known verbosity of XML-based

the Individuals Listpanel as composing resources. Finally, ontological languages such as RDF and OWL (Scioscia &
the results area (D) shows the output of the chosen inferen@uta, 2009).

service. In Figure 4 a CCoP is solved, componentindividualstag k="semantic:n:counter" v="data" /> tags

and the uncovered part of the request are shown. contain the Base64 string representation of the compressed
semantic annotation. If its length is within 255 charactars

In the Ubiquitous Semantic Web: mobile augmented re-  single tag is used, else it is split in 255-character segsnent

ality explorer and each one is stored in a tag. The countébsis assigned

Semantic-based technologies can support articulated arg & segmentindex, starting from 1.

meaningful descriptions of locations and Points of Interes 1he client —illustrated in Figure 6a— was developed using
(POIs). The use of metadata (annotations) endowed with forAndroid SDK Tools, Revision 23, corresponding to Android
mal machine-understandable meaning can enable advancBtform version 4.2.2 (APl level 17). The system adopted a
location-based resource discovery through proper interen modified version of the Android Augmented Reality frame-
The Mini-ME engine powers a novel discovery tool in Mo- work®. Given POl target coordinates (latitude, longitude and
bile Augmented Reality (MAR) for Android (Ruta, Scios- altitude), it collects the azimuth and inclination angle be
cia, De Filippis, et al., 2014). The overall architecturated ~ tween the device and the target from gyroscope and com-
proposed ubiquitous POI discovery framework is depicted irPass. in order to calculate where the device is pointing and
Figure 5. It consists of the following components: its degree of tilt. Using this information, the system desid

e The OpenStreetMap serveworking as cartography if_ and_ where a POl marker should be displayed within the
provider. OSM map entities are semantically enriched in &/iewfinder image on the screen.
way that best fits location-based resource discovery. In the proposed AR POI discovery framework, the user

e Ageneral method and aditor (Scioscia, Binetti, Ruta, profile plays the role of requef It consists of a concept
leva, & Di Sciascio, 2014) for annotating maps, so allow-expression including personal information like interestsl
ing a collaborative crowd-sourced enrichment of basic ©penhobbies. The profile is either composed by browsing visually
StreetMap cartography. The standard OWL 2 languagethe ontology modeling the reference domain (Scioscia et
are exploited to create and share POI annotations, based ah, 2014), or imported from other applications and semice
ontologies providing the conceptual vocabulary to expresgwvailable resources are the annotated OSM POls in the
them. user's area, referring to the same ontology as the user

¢ A MAR client providing the following features: (i) dis- profile. They are extracted from OSM server and cached
covery of most relevant POIs w.r.t. user’s semanticallysann in the MAR client. Several resource domains (cultural
tated profile, via a logic-based matchmaking; (ii) visualiz heritage, shopping, accommodation, etc.) can be explored
tion of POl annotations and examination of discovery ressult by simply selecting the proper reference ontology. Henee th

Figure 4. Protégé plugin for non-standard inferences
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proposed system works as a general-purpose location-basé&€tie semantic description concerning each POI is stored as
service discovery facilitator.  Exploiting the embeddedan attribute of its marker. A score is finally given to each
Mini-ME matchmaker, the mobile tool executes semanticPOI, expressing the result of the matchmaking between the
matchmaking between the user profile and the annotationsser profile and the POI itself. The overall resource score is
of POIs —enclosed into semantic-enhanced OSM map- icomputed with the utility function:

her surroundings, in a reference range with respect tosiser’

position. Figure 7 sketches the resource discovery process. f(R, POI) = 100[1— BealRPOY (1 , distancélser GPSPOI_GPS) y)

penaltfR T) max_distance
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Standard inference tests on PC
where penaltyR, POI) is the semantic distance between
profile R and POI; this value is normalized dividing by
penaltfR, T), which is the distance betweé&hand the uni-
versal concept and depends only on assertions in the ont
ogy. Geographical distance (normalized by user-specifie

maximum range) is combined as weighting factor. The pur \ ) . .
7 Professional and 32-bit Java 7 SE Runtime Environment,

oses of the utility function are to weight the result of seama
b y g Quild 1.7.0_03-b05). The reference dataset was taken from

tic matching according to distance and to convert the scor 2012 OWL R Evaluati Kkt |
to a more user-friendly scale. Of course nearer resourees the easoner Evaluation worksiopt is com-

preferred, but in case of a full matgrenaltyR, POI) = 0 posed of 214 OWL ontologies with fiierent size, expres-
hencef (R POI) = 100 regardless of distance siveness and syntax. For each reasoning task, two tests were

By touching a marker, the user can see its relevant feature ‘erformed: (i) correctness of results and turnaround time;

which are presented as icons around a wheel shape, in ord ) memory usage peak. For turnaround time, each test was
to provide a clear and concise description, as shown in thEepeated four times and the average of the last three runs was

central portion (A) of Figure 6b. The View result panel (B) taken. For memory tests, the final result was the average of
in Figure 6b lists all missing features w.r.t. user profilg,(C three runs. . o

computed through Concept Abduction. In case of incompat- Classification. The input of theclassificatiortask was the.
ibility, the same left-hand menu shows Concept Contractioft0l€ ontology dataset. For each test, one of the following
outcome: properties the POI satisfies and incompatible eP0SSIPIe outcomes was recorded: _
ements (Figure 6¢-(D)). Overall, the user can quickly iden- ® Correct the computed taxonomy corresponds with the

tify what POI resources are most relevant to her needs antgference classification (if it is available into the datpse
desires, by looking at the POI marker color, at the match_results of all the reasoners are the same. In this case tie tot

making result shown in the score panel and -if interestedime taken to load and classify the ontology is also recorded
by exploring POIs features. Simple operations on the de- ® Parsing Error, the ontology cannot be parsed by the

vice touchscreen allowfrtless information acquisition and OWL API due to syntax errors; _
management. e Failure, the classification task fails because the ontol-

ogy contains unsupported logic language constructors;
e Out of Memorythe reasoner generates an exception due
I User profile R, point of interest S| ) to memory ConStramtS;
matchmaking e Timeout the task did not complete within the timeout
o threshold (set to 60 minutes).
Compatibility? .. g .
Mini-ME correctly classified 83 of 214 ontologies; 71
Concept Contraction: Concept Abduction
find incompatible part G ai find what part Hof R i

i were discarded due to parsing errors, 58 presented unsup-

. ported language constructors, the timeout was reached in

compatible part K of R missing in S i 2 cases. Pellet classified correctly 130 ontologies, HermiT

r 1 128, FaCT+ 122. The lower “score” of Mini-ME is due to
' the presence of General Concept Inclusions, cyclic TBoxes
! i or unsupported logic constructors. Parsing errors ocdurre
| Scorecomputation _ | . in the OWL API library and were therefore common to all
Requestrefinement  ————— b | """""" reasoners.

' Resulreve Performance was measured only for the 73 ontologies cor-
Figure 7. POl matchmaking process in the MAR system  rectly classified by all reasoners, dividing them in five eate
gories, based on the number of concepts:

e Extra Small (XS): fewer than 10 concepts; 13 ontolo-
gies were in this group;

e Small (S): between 10 and 100 concepts; 9 ontologies;

e Medium (M): between 100 and 1000 concepts; 25 on-
tologies;

An experimental campaign was performed bothon PC and e Large (L): between 1000 and 10000 concepts; 22 on-
mobile devices, for standard and non-standard inferenee setologies;
vices. Methods and results are outlined hereafel.results e Extra Large (XL): more than 10000 concepts; 4 ontolo-
about performance evaluation are reported on the Mini-MHEies.
home page Figure 8 compares the classification times of each reference

Mini-ME was compared on PC with FaGF°, HermiT'®
and Pellet'. All reasoners were used via the OWL API on
offl_PC testbed (Intel Core i7 CPU 860 at 2.80 GHz —4 ¢8res
{preads—with 8 GB DDR3-SDRAM (1333 MHz) memory, 1
TB SATA (7200 RPM) hard disk, 64-bit Microsoft Windows

Performance evaluation
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Figure 11 Memory usage test on PC
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Figure 9. Class Satisfiability on PC

intensive task. For small-medium ontologies, used memory

reasoner w.r.t. the ontology categories. Pellet, Hermid an o o )
FaCT++ exhibited a similar trend, with the first two faster 'S 'oughly similar for all reasoners. Mini-ME provides good
than the other engines for large ontologies. Mini-ME is very'€Sults, with slightly lower memory usage than Pellet and
competitive for small-medium ontologies (up to about 1200H(_er_m|T and on par with FaGii+. A_Iso for large ontologies
classes) but less for large ones. This can be considered as ¥ I-ME results are comparable with the other reasoners, bu
effect of the Mini-ME design, which is optimized to manage " this case FaC¥+ has the best performance.

elementary TBoxes.

For class satisfiabilitythe dataset consists of 107 ontolo-
gies but only the 69 ontologies that Mini-ME correctly clas- Using as reference the same ontology datasslts ob-
sified in the previous test were considert,each of them, - ained on an Android smartphone (Samsung Galaxy Nexus
one or more classes were checked, as specified in the datasgtr. 9250 with dual-core ARM Cortex A9 CPU at 1,2 GHz,
As reported in Figure 9, performances are basically similar; g rRam, 16 GB storage memory, and Android version

with times difering only for few microseconds and no rea- 4 5 2) were compared to the above outcomes for PC tests.
soner consistently faster or slower. Moreover, the chait su  ragyits computed by Mini-ME on the Android smart-

gests no correlation between the time and the ontology Siz%hone were in all cases the same as on the PC. On the mo-
whereas itis in direct ratio to the complexity of the class de e geyice 75 ontologies out of 214 were correctly classifie
scription and to its depth in the taxonomy (data not shown)gs \yere discarded due to parsing errors, 56 had unsupported
language constructors, 26 generated out-of-memory excep-
Figure 10 shows results famntology satisfiability For  tions; (these included ontologies correctly classified on PC
this task, all reasoners presented performance simildreto t or not classified due to parsing errors or unsupported con-
ones reported in Figure 8 for classification. In fact ontol-structors)and 2 reached the timeout. Figure 12a shows a
ogy satisfiability test implies loading, classifying anceck-  comparison between the classification turnaround times on
ing consistency of all concepts in the ontology with the firstpC and on mobileData refer to the 73 ontologies correctly
two steps requiring the larger part of the time. Outcomeglassified by Mini-ME on both platforms.
of all reasoners are the same, except for ontologies with Times are roughly an order of magnitude higher on the
IDs 199, 200, 202, 203. In contrast to Pellet, HermiT andandroid device. Absolute values for small-medium ontolo-
FaCT++, Mini-ME checks OntOlOgy coherence regardless Ofgies are under 1 second, so they can be deemed as accept_
the ABox. The above ontologies include an unsatisfiablegple in ubiquitous contexts. Furthermore, it can be noticed
class G0_0075043) with no instances, therefore the ontol- that the turnaround time increases linearly w.r.t. numier o
ogy is reported as incoherent by Mini-ME but as satisfiablec|asses both on PC and on smartphone, thus confirming that
by the other reasoners. Mini-ME has predictable behavior regardless of the refeeen
Finally, Figure 11 reports omemory usag@eak dur-  platform. Similar considerations apply to class and orgglo
ing classification, which was verified as the most memorysatisfiability tests: the turnaround time comparisons are r

Standard inference tests on mobile
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0 platforms, regardless of the specific PC or smartphone con-

» figuration.The test performed both unfolding and normaliza-

] tion over a 557 kB knowledge base with 100 regfresburce

® pairs —randomly generated starting from the ontology ddfine
in (Ruta etal., 2011), with average size of 4.2 kB— and finally
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1.E+06
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ontelosySie. Ontology Size executed abduction and contraction between each pairyEver
(c) Ontology Satisfiability (d) Memory Usage task was repeated four times and the average turnaround time
Figure 12 Memory usage test on Mobile of the last three runs was taken. Figure 13 reports on time

results (in microseconds) in case of PC and mobile testbed,
respectively.

ported in Figure 12b and Figure 12c, respectively. _ _For_ each reque,$€s_our_ce the system check_s for compati-
Moreover, memory allocation peak during the classifica-ility; in case, abduction is performed, otherwise corticac
tion task are reported Figure 12@ata were obtained ex- 1S fun, followgd by abduction with t_he compatlble_part of the
ploiting theAndroid logging systenwhich provides a mech- request. Notice that the computatlonal time pasmallyes_an
anism for collecting and viewing system debug output, in-deépending on the complexity of the semantic descriptions.
cluding heap memory data and garbage collector c&s. _Results for rr_10b|_le tests have been_referred to the ones fqr PC
small-medium ontologies, the required memory was roughlyn order to highlight non-standard inferences exhibit &mi
fixed. Instead, for large ontologies the used memory inirénds. Processing times are reported in a logarithmiescal
creased according to the total number of classes. MoreD SPite of the performance gap between fixed and handheld
over, in every test memory usage on Android was signifi-2rchitectures, reasoning tasks maintain an acceptablpuizom
cantly lower than on PC. This is due to the harder memiational load also on mobile platforms. Times were roughly
ory constraints on smartphones, imposing to have as muci order of magnitude higher on the Android device. This is
free memory as possible at any time. Consequently, And_ue notpnly to the limited computatlonal capabilities of-mo
droid Dalvik virtual machine performs more frequent and Pile devices, but also —as said above— to the more frequent
aggressive garbage collection w.r.t. Java SE virtual nmechi 9arbage collection by the Android Dalvik virtual machine.
This reduces memory usage, but on the other hand can K5&n both platforms, all requesgsource pairs show slightly
responsible for a significant portion of the PC-smartphon&/ariable memory peak values due to the similar structure of
turnaround time gap that was found. their semantic descriptions. For this reason Flgu_re l4rtepo
Finally, a comparison was carried out using the five on-Only the average memory usage. Non-standard inferences on
tologies tested in (Yus et al., 2013). Mini-ME did not clas- mobile require on average about 11.32 MB of memory with
sify Wineand Pizzaontologies correctly because of unsup- & Standard deviation of 27 KB whereas on PC the average is
ported language constructo®Bpediaproduced a runtime about23.88 MB with a standard deviation of 4 KB.
error due to the presence of General Concept Inclusions,
whereassO andNClI gave an out-of-memory exception even Conclusion
using theandroid:largeHeag-"true" attribute in the appli-
cation manifest (other reasoners produced the same error as
described in the referenced paper).

The paper presented a prototypical reasoner devised for
iquitous computing. It supports Semantic Web technolo-
gies through the OWL API and implements both standard
and non-standard reasoning tasks. Developed in Java; it tar
gets the Android platform but also runs on Java SE and on
Performance evaluation was carried out for non-standardmbedded devices like Raspberry Pi. Experiments were per-
inferences using the same PC testbed and Android smartermed both on PCs and smartphones and evidenced: (i) cor-
phone adopted for the previous tests. In this case the goatctness of implementation, (i) competitiveness withesta
was to compare the performance trends on the t#lerdint  of-the-art reasoners in standard inferences, (iii) aat#pt

Non-standard inference tests
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Figure 13 Non-standard inference tests

performance on target mobile devices. Besides further per- minological representation system&pplied Intelligence4(2),

formance optimization leveragingeculiarities of Android 109-132.
Dalvik (for Android versions up to 4.4) and ART (for ver- Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006). CEL - a
sions 5.0 and above) runtimefsiture work includes: sup- polynomial-time reasoner for life science ontologi@stomated

port for ABox management; the extension of OWLIink in-  Reasoning287-291. _

terface to non-standard inference services; implementati Colucci. S., DiNoia, T., Pinto, A., Ragone, A., Ruta, M., &éili,

of further reasoning tasks; the support for more expressive E{aéﬁgo;z{ | Qeﬁzgéﬁﬂﬁl?fggﬁeﬁfﬂoécmha?k ;’SE;‘;‘CJZ'UTC“'
\ o . ; ! ) . Jour.

anguagese g, with . *extension of abducton and con- G ST SRS SIS il

. . .. DiNoia, T., Di Sciascio, E., & Donini, F. (2007). Semantic ticta
The prototypical version of the software has been fruit- 1, oing as non-monotonic reasoning: A description logic ap-
fully used and tested in automotive scenarios and ambient proach.Jour. of Artificial Intelligence Research (JAIRD, 269—
intelligence ones. Some applications can be examined at 307,
httpy//sisinflab.poliba.fswottoolg. Therefore a widespread DiNoia, T., Di Sciascio, E., Donini, F. M., Ruta, M., ScioacF., &
exploitation of it is foreseen in a project found under the Tinelli, E. (2008). Semantic-based bluetooth-rfid int¢icacfor
Apulia Region Cluster research program in the healthcare advanced resource discovery in pervasive contémtsJour. on
field. Also a couple of Italian big companies have shown Semantic Web and Information Systems (IJSY¥(3), 50-74.
their interest for the early version of the engine for an ex-Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E.,
tensive application of it in their products or services. Wé t Crubézy, M., Eriksson, H., ... Tu, S. W. (2003). The evolntio
moment we plan to release the reasoner under the Creative ©f Protége: an environment for knowledge-based systems de-

Commons license, but this choice will depend on its final velopment. International Journal of Human-computer studies
usage ' 58(1), 89-123.

Haarslev, V., & Muller, R. (2001). Racer system descriptidoto-
mated Reasoning01-705.
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