
A mobile matchmaker for the Ubiquitous Semantic Web

Floriano Scioscia, Michele Ruta, Giuseppe Loseto, FilippoGramegna, Saverio Ieva,
Agnese Pinto, Eugenio Di Sciascio

Politecnico di Bari, via E. Orabona 4, I-70125 Bari, Italy
{floriano.scioscia, michele.ruta, giuseppe.loseto, filippo.gramegna, saverio.ieva,

agnese.pinto, eugenio.disciascio}@poliba.it

The Semantic Web and Internet of Things visions are converging toward the so-called Semantic
Web of Things (SWoT). It aims to enable smart semantic-enabled applications and services in
ubiquitous contexts. Due to architectural and performanceissues, it is currently impractical
to use existing Semantic Web reasoners. They are resource consuming and are basically opti-
mized for standard inference tasks on large ontologies. On the contrary, SWoT use cases gen-
erally require quick decision support through semantic matchmaking in resource-constrained
environments. This paper presents Mini-ME, a novel mobile inference engine designed from
the ground up for the SWoT. It supports Semantic Web technologies and implements both
standard (subsumption, satisfiability, classification) and non-standard (abduction, contraction,
covering) inference services for moderately expressive knowledge bases. In addition to an
architectural and functional description, usage scenarios are presented and an experimental
performance evaluation is provided both on a PC testbed (against other popular Semantic Web
reasoners) and on a smartphone.

Introduction

Semantic Web technologies have been acknowledged as
tools to promote interoperability and intelligent informa-
tion processing in ubiquitous computing. Scenarios include
supply chain management, u-commerce (Liu, 2013; Ruta,
Di Noia, Di Sciascio, Piscitelli, & Scioscia, 2007), peer-
to-peer resource discovery (Ruta, Di Sciascio, & Scioscia,
2011) and so on. The increasing computational resources
and communications effectiveness of mobile devices enable
ubiquitous processing and exchange of rich and structured
information for context-aware resource discovery and deci-
sion support. The Semantic Web and the Internet of Things
paradigms are converging more and more toward the so–
called Semantic Web of Things (SWoT) (Scioscia & Ruta,
2009; Pfisterer et al., 2011). It enables semantic-enhanced
pervasive computing by embedding intelligence into ordi-
nary objects and environments through a large number of het-
erogeneous micro-devices, each conveying a small amount of
information.

Such a vision requires an increased flexibility and auton-
omy of ubiquitous knowledge-based systems in information
encoding, management, dissemination and discovery. User
agents running on mobile personal devices should be able to
discover dynamically the best available resources according
to user’s profile and preferences, in order to support her cur-
rent tasks through unobtrusive and context-dependent sug-
gestions. Reasoning and query answering are particularly
critical issues, stimulating the need for further specialized
inference services in addition to classical ones likesubsump-

tion andsatisfiabilitycheck. Furthermore, mobile computing
platforms (e.g., smartphones, tablets) are still constrained by
hardware/software limitations with respect to typical setups
for Semantic Web reasoning engines. In fact, architectural
and performance issues affect the porting of current OWL-
based reasoners, designed for the Semantic Web, to mobile
devices (Yus, Bobed, Esteban, Bobillo, & Mena, 2013).

This paper presentsMini-ME (the Mini Matchmaking En-
gine)1, a compact matchmaker and reasoner for theALN
(Attributive Language with unqualified Number restrictions)
Description Logic (DL). It is aimed to semantic matchmak-
ing for resource/service discovery in mobile and ubiquitous
contexts, although it is also a general-purpose Semantic Web
inference engine. The reduced expressivity of the logical
language is compensated by an increased mobility level and
provided quality of the resource discovery. Optimized non-
standard inference services allow a fine-grained categoriza-
tion and ranking of matching resources w.r.t. a request, pro-
viding both a distance metric and a logic-based explanation
of the outcomes. Mini-ME is suitable to a widespread class
of applications where a large number of low-complexity
component resources can be aggregated to build composed
services with growing semantic complexity. This is fit for
the computational and power supply limitations of resource
providers in ubiquitous contexts and to their short storage
availability. An “agile” service discovery architecturesable
to select, assemble and orchestrateon the flymany elemen-
tary components is more manageable and effective in ubiqui-
tous applications.

2 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

Mini-ME uses the OWL API (Horridge & Bechhofer,
2009) to parse and manipulate Knowledge Bases in all
OWL 22 supported syntaxes. It exploits structural infer-
ence algorithms on unfolded and CNF (Conjunctive Normal
Form) normalized concept expressions for efficient compu-
tations also on resource-constrained platforms. Mini-ME
implements both standard reasoning tasks for Knowledge
Base (KB) management (subsumption, classification, satis-
fiability) and non-standard inference services for semantic-
based resource discovery and ranking (abduction, contrac-
tion (Colucci et al., 2007), covering (Ragone et al., 2007)).
It is developed in Java, withAndroid as the main target
computing platform. Mini-ME supports theOWLlinkproto-
col (Liebig, Luther, Noppens, & Wessel, 2011) for standard
application-reasoner interaction. Furthermore, reasoner and
GUI (Graphical User Interface) plug-ins have been devel-
oped for theProtégé3 ontology editor (Gennari et al., 2003).
Mini-ME has already been employed in prototypical testbeds
on mobile and embedded devices for ubiquitous and perva-
sive computing scenarios.

The remainder of the paper is organized as follows. The
next section highlights relevant related work. A functional
and architectural description of the system is given, followed
by two usage scenarios, respectively in ontology engineer-
ing with Protégé and in mobile semantic augmented reality.
Experimental evaluation results are provided for both stan-
dard and non-standard inferences, in mobile as well as PC
settings, before closing remarks.

Related work

When processing semantic-based information to infer
entailed implicit knowledge, painstaking optimization is
needed to achieve acceptable performance for adequately ex-
pressive languages (Baader, Hollunder, Nebel, Profitlich,&
Franconi, 1994; Horrocks & Patel-Schneider, 1999). This
is specifically true in case of logic-based matchmaking for
mobile computing, which is characterized by resource lim-
itations affecting not only processing, memory and storage
capabilities, but also energy consumption. Most mobile in-
ference engines currently provide only rule processing for
entailments materialization in a KB (Koch, Meyer, Dignum,
& Rahwan, 2006; Tai, Keeney, & O‘Sullivan, 2011; Kim,
Park, Hyun, & Lee, 2010; Motik, Horrocks, & Kim, 2012),
so resulting unsuitable to support applications requiringnon-
standard inference tasks and extensive reasoning over on-
tologies (Motik et al., 2012). More expressive languages
could be used by adapting tableaux algorithms –whose vari-
ants are implemented in reasoners running on PCs– to mo-
bile computing platforms, but an efficient implementation of
reasoning services is still an open problem. Several tech-
niques (Horrocks & Patel-Schneider, 1999) allow to increase
expressiveness or decrease running time at the expense of
main memory usage, which is precisely the most constrained

resource in mobile systems.

Focusing on ubiquitous contexts, semantic-based resource
discovery was early investigated in (Avancha, Joshi, & Finin,
2002). There, the need for discovery mechanisms more pow-
erful than string-matching was clearly pointed out for the
first time. The issue of approximate matches lacking exact
ones was discussed, but no formal frameworks were given.
In (von Hessling, Kleemann, & Sinner, 2004) semantic user
profiles were introduced to increase accuracy in matching
services in a mobile environment. If there was no intersec-
tion between user interests and service offers, authors con-
cluded the user was not interested in the service; a com-
plete and integrated solution for matching degree calcula-
tion was not provided.Pocket KRHyper(Sinner & Klee-
mann, 2005) was the first reasoning engine specifically de-
signed for mobile devices. It supported theALCHIR+ DL
and was built as a Java ME (Micro Edition) library. Pocket
KRHyper was exploited in a DL-based matchmaking frame-
work between user profiles and descriptions of mobile re-
sources/services (Kleemann & Sinner, 2005). However, fre-
quent “out of memory” errors strongly limited the size and
complexity of manageable logic expressions. To overcome
performance constraints, tableaux optimizations to reduce
memory consumption were introduced in (Steller & Krish-
naswamy, 2008) and implemented inmTableau, a modified
version of Java SEPellet reasoner (Sirin, Parsia, Cuenca
Grau, Kalyanpur, & Katz, 2007). Comparative performance
tests were executed on a PC, showing faster turnaround times
than both unmodified Pellet andRacer(Haarslev & Müller,
2001) reasoner. Nevertheless, the Java SE technology is not
expressly tailored to the current generation of handheld de-
vices. In fact, other relevant inference engines cannot runon
common mobile platforms, since they rely on Java class li-
braries incompatible with most widespread mobile OS (e.g.,
Android). In (Yus et al., 2013) four Semantic Web reason-
ers were successfully ported to the Android platform (Pellet,
CB (Kazakov, 2009),Hermit (Shearer, Motik, & Horrocks,
2008) andJFact, a Java port ofFact++ (Tsarkov & Horrocks,
2006)), albeit with significant rewriting or restructuringeffort
in some cases. Similarly, in (Kazakov & Klinov, 2013) the
ELK reasoner was optimized and evaluated on Android.

Nevertheless, all ported systems were designed mainly
for batch jobs over large ontologies and/or expressive lan-
guages. This makes mobile device usage less suitable due to
computation and memory constraints. The non-standard ser-
vices of Mini-ME are more useful in ubiquitous scenarios,
where mobile agents must provide quick decision support
and/or on-the-fly organization in intrinsically unpredictable
environments like the ubiquitous ones. Moreover, it can
be observed that the above systems,like the matchmaking
framework proposed in (Kleemann & Sinner, 2005), only
support standard inference services such as satisfiabilityand
subsumption, which provide only binary “yes/no” answers.

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 3

Consequently, they can only distinguish amongfull (sub-
sume), potential (intersection-satisfiable) and partial (dis-
joint) match types, as defined in (Colucci et al., 2007) and (Li
& Horrocks, 2004) respectively.Analogously, in the HTTP-
based ubiquitous infrastructure by (Vazquez & López-de Ip-
iña, 2007), queries allow only exact matches with facts de-
rived from a support knowledge base.Non-standard infer-
ences like abduction and contraction are needed to support
approximate matches, semantic ranking and explanations of
outcomes (Colucci et al., 2007).

In latest years, the bad worst-case complexity of OWL
language stimulated a different approach to implement rea-
soning tools. It was based on simplifying both the underly-
ing logic languages and admitted KB axioms, so that struc-
tural algorithms could be adopted, while maintaining expres-
siveness enough for broad application areas. In (Baader,
Brandt, & Lutz, 2005), the basicEL DL was extended
to EL++, a language deemed suitable for various applica-
tions, characterized by very large ontologies with moder-
ate expressiveness. A structural classification algorithmwas
also devised, which allowed high-performanceEL++ ontol-
ogy classifiers such asCEL (Baader, Lutz, & Suntisrivara-
porn, 2006),Snorocket(Lawley & Bousquet, 2010) and ELK
(Kazakov, Krötzsch, & Simaňcík, 2014). OWL 2 profiles
definition complies with this perspective, focusing on lan-
guage subsets of practical interest for important application
areas rather than on fragments with significant theoretical
properties. In a parallel effort motivated by similar princi-
ples, in (Ruta, Di Noia, Di Sciascio, Piscitelli, & Scioscia,
2008) an early approach was proposed to adapt non-standard
logic-based inferences to pervasive computing contexts. By
limiting expressiveness to theAL language, acyclic, struc-
tural algorithms were adopted reducing standard (e.g., sub-
sumption) and non-standard (e.g., abduction and contraction)
inference tasks to set-based operations (Di Noia, Di Scias-
cio, & Donini, 2007). KB management and reasoning were
then executed through a data storage layer, based on a mo-
bile RDBMS (Relational DBMS). Such an approach was
further investigated in (Ruta, Scioscia, Di Noia, & Di Sci-
ascio, 2009) and (Ruta et al., 2011), by increasing the ex-
pressiveness toALN DL and allowing larger ontologies and
more complex descriptions, through the adoption of both mo-
bile OODBMS (Object-Oriented DBMS) and performance-
optimized data structures. Finally, in (Ruta, Scioscia, &
Di Sciascio, 2010) expressiveness was extended toALN(D)
DL with fuzzy operators. The above tools were designed to
run on Java ME devices and were adopted in several case
studies in ubiquitous computing, employing semantic match-
making over moderately expressive KBs. The reasoning en-
gine presented here recalls lessons learned in those previous
efforts, and aims to provide a standards-compliant implemen-
tation of most common inferences (both standard and non-
standard) for the most widespread mobile platform.In recent

years, several case studies and prototypes have been devel-
oped for different ubiquitous scenarios to prove the feasibil-
ity and benefits of non-standard inferences, including ubiq-
uitous commerce (Di Noia et al., 2008), ambient intelligence
and infomobility services (Ruta, Scioscia, Di Noia, & Di Sci-
ascio, 2010), home and building automation (Ruta, Scioscia,
Loseto, & Di Sciascio, 2014).

System outline

A description of the proposed matchmaker is provided
hereafter: a short recall on the supported logic language is
followed by an overview of the included inference services
and finally by architectural and implementation details.

Supported language

In DL-based reasoners, an ontologyT (a.k.a. Termino-
logical Box or TBox) is composed by a set of assertions in
the formA ⊑ D (inclusion) orA ≡ D (definition), whereA
andD are concept expressions. Particularly, asimple-TBox
is an acyclic TBox such that: (i)A is always an atomic con-
cept; (ii) if A appears in the left hand side (lhs) of a con-
cept definition assertion, then it cannot appear also in the
lhs of any concept inclusion assertion. Mini-ME supports
theALN (Attributive Language with unqualified Number
restrictions) DL, which has polynomial computational com-
plexity for standard and non-standard inferences in simple-
TBoxes, whose depth of concept taxonomy is bounded by
the logarithm of the number of axioms in it (see (Di Noia et
al., 2007) for further explanation). Actually, such DL frag-
ment has been selected because it grants good worst-case
complexity and memory efficiency of non-standard inference
algorithms for semantic matchmaking. Syntax and semantics
ofALN DL constructs are summarized in Table 1.

According to the W3C (World Wide Web Consortium)
Recommendation issued by the OWL Working Group for the
OWL 2 ontology language, an OWL 2 ontology is basically
an RDF (Resource Description Framework)4 graph referring
to the OWL 2 vocabulary5, serialized in RDF/XML syntax
or in one of the other optional syntaxes. As part of the ac-
tivity of the W3C, OWLlink (Liebig et al., 2011) has been
defined as a new interface to allow communication between
applications and OWL 2 reasoners. It is a functionalTell/Ask
(Levesque, 1984) interface exploiting HTTP as the underly-
ing transfer protocol. There is a close correspondence be-
tween OWL 2 and OWLlink syntax.

Inference services

When loading a KB, Mini-ME performs a preprocessing
in order to executeunfoldingandCNF normalization. Partic-
ularly, given a TBoxT and a conceptC, theunfolding pro-
cedure recursively expands references to axioms inT within
the concept expression itself. In this way,T is not needed

4 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

Table 1
Syntax and semantics ofALN constructs and simple-
TBoxes

Name Syntax Semantics
Top ⊤ ∆I

Bottom ⊥ ∅

Intersection C ⊓ D CI ∩ DI

Atomic negation ¬A ∆I\AI

Universal quantification ∀R.C {d1 | ∀d2 : (d1,d2) ∈ RI → d2 ∈ CI}
Number restriction ≥ nR {d1 | ♯{d2 | (d1,d2) ∈ RI} ≥ n}

≤ nR {d1 | ♯{d2 | (d1,d2) ∈ RI} ≤ n}
Inclusion A ⊑ D AI ⊆ DI

Equivalence A ≡ D AI = DI

any more when executing subsequent inferences.Normal-
ization transforms the unfolded concept expression in CNF
through a set of pre-defined substitutions (Ruta et al., 2011).
AnyALN concept expressionC can be reduced in CNF as:
C ≡ CCN ⊓ CLT ⊓ CGT ⊓ C∀, whereCCN is the conjunction
of (possibly negated) atomic concept names,CLT (respec-
tively CGT) is the conjunction of≤ (resp.≥) number restric-
tions (no more than one per role), andC∀ is the conjunction
of universal quantifiers (no more than one per role; fillers
are recursively in CNF). Normalization preserves semantic
equivalence w.r.t. models induced by the TBox; furthermore,
CNF is unique up to commutativity of conjunction operator
(Di Noia et al., 2007). The normal form of an unsatisfiable
concept is simply⊥.

Mini-ME was devised as a semantic matchmaker,i.e., a
tool to find the best resources for a given request, when
both resource and request descriptions are satisfiable concept
expressions w.r.t. a common ontology. Mini-ME exploits
structural algorithms for standard and non-standard inference
services on (unfolded and normalized) concept expressions.
Main peculiarity is a careful optimization of the implemen-
tation of both algorithms and data structures, which enable
efficient computations even on resource-constrained devices
such as mobile and embedded ones.

The following standard reasoning services are currently
supported:

• Concept Satisfiability (a.k.a. consistency). In a se-
mantic matchmaking framework, given a requestD and a
supplied resourceS as concept expressions w.r.t. a com-
mon TBoxT , satisfiability allows to determine whether there
is a partial (disjoint) match or not, by checking whether
T |= S ⊓ D ⊑ ⊥ holds or not. Due to CNF properties, satis-
fiability check is trivially performed during normalization.
• Subsumption check. Subsumption determines

whether the resource is a full (subsume) match for the re-
quest or not, by checking whetherT |= S ⊑ D holds or not.
The classic structural subsumption algorithm is exploited, re-
ducing the procedure to a set containment test (Baader, Cal-
vanese, Mc Guinness, Nardi, & Patel-Schneider, 2002).

Furthermore, three non-standard inference services were

also implemented, allowing to (i) provide explanation of out-
comes beyond the trivial “yes/no” answer of satisfiability and
subsumption tests, (ii) enable a logic-based relevance rank-
ing of a set of available resources w.r.t. a specific query (Ruta
et al., 2011) and aggregate resources in order to satisfy com-
plex requests:

• Concept Contraction (Colucci et al., 2007): given a
requestD and a supplied resourceS, if they are not compat-
ible with each other, Contraction determines which part of
D is conflicting withS. As shown in the flowchart in Fig-
ure 1, if one retracts conflicting requirements inD, G (for
Give up), a conceptK (for Keep) is obtained, representing a
contracted version of the original request, such thatK ⊓ S is
satisfiable w.r.t.T . The solutionG to Contraction represents
“why” D ⊓ S are not compatible.The algorithm in Figure 1
is recursive.
• Concept Abduction (Colucci et al., 2007): whenever

D andS are compatible, butS does not implyD, Abduc-
tion allows to determine what should be hypothesized inS
in order to completely satisfyD also enabling a logic-based
relevance ranking of a resource w.r.t. a given request (Ruta
et al., 2011). The solutionH (for Hypothesis) to Abduction
represents “why” the subsumption relationT |= S ⊑ D does
not hold.H can be interpreted aswhat is requested in D and
not specified in S. Also in this case, as shown in Figure 2,
the algorithm is recursive.
• Concept Covering: many ubiquitous scenarios require

that relatively large number of low-complexity resources are
aggregated in order to satisfy an articulated request. To this
aim, a further non-standard reasoning task based on the solu-
tion of Concept Covering Problem(CCoP, formally defined
in (Ragone et al., 2007)) has been defined. It allows to: (i)
cover (i.e., satisfy) features expressed in a request as much as
possible, through the conjunction of one or more instances of
a KB –seen as elementary building blocks– and (ii) provide
explanation of the uncovered part of the request itself. Given
a concept expressionD (request) and a set of instancesS =
{ S1, S2, ... ,Sn} (available resources), whereD andS1, S2,
... , Sn are satisfiable in the reference ontologyT , Concept
Coveringaims to find a pair〈Sc,H〉 whereSc includes con-
cepts inS coveringD w.r.t.T as much as possible andH is
the residual part ofD not covered by concepts inSc.

SinceS is an approximated match ofD, it would be useful
to evaluate how good the approximation is. Based on the
uniqueness of CNF, anorm for concept expressions can be
computed by “counting” the number of conjuncts in it (Ruta
et al., 2011). Hence, numericalpenalty functionscan be de-
fined based on the norm of expressionsG andHK , which al-
low to evaluate the goodness of match approximation as well
as to rank several resources w.r.t. a request.Algorithms in
Figure 1 and 2 compute and return associated penalty values.

In order to use Mini-ME in more general knowledge-
based applications, the following reasoning services overon-

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 5

�����

� ��

L,����T

����	

���	����

���
����

	
�� �������� ���
������������� ���������������T���
��

���
���� ������ �� ���
�

� �� ��
	
���� �� �� �
����

����� ����
����!� �� "����

������������������#�$

��

���

���

��

���
���� ������ %&'(����

�� ���
) &�
*
 ��
� ���
+ &�
�� ��
���
� %&', *��

���

��

�� �
 ���������� ����-�����-��ALN��(��,��T �

����� ��%&'�
�����-� %&'(���
�.��/�%&'
 �
������������������#��������

���
���� ������ �
0) &�� ���

� ��1) &��
* � ���
+ �
)
���

��

�����-� �
0�) &�� .��/��
0 + &��
���������
0) &��

������������������#
2�34

2

���
���� ������ �1) &� ���

� ���
+ �� * � ���
+ �
)
���

��

�����-� �1) &� .��/��1 + &�
����� �����
+ ��

������������������#
4�32

2

���
������������������ 	����$�

���
����������������� 	����5�

���

��

���6�� ���
�����������

���

Figure 1. Concept Contraction algorithm

tologies were also implemented:
- Ontology Coherence: it is a simplified check w.r.t. Satis-
fiability, because it does not process ABox individuals (the
difference is discussede.g., in (Moguillansky, Wassermann,
& Falappa, 2010)). Since CNF normalization allows to iden-
tify unsatisfiable concepts, it is sufficient to normalize every
concept during ontology parsing to locate unsatisfiabilities in
the ontology.
- Classification: ontology classification computes the over-
all concept taxonomy induced by the subsumption relation,
from ⊤ to ⊥ concept. In order to reduce the subsumption
tests, the following optimizations introduced in (Baader et
al., 1994) were implemented:enhanced traversal top search,
enhanced traversal bottom search, exploitation oftold sub-
sumers.

Architecture

Mini-ME architecture is sketched as UML diagram in Fig-
ure 3. Components are outlined hereafter:
- Android Service: implements a service (i.e., a background
daemon) any Android application can invoke to use the en-
gine;
- OWL API (Horridge & Bechhofer, 2009): provides sup-

�����

L,����T

�����
	
��������

���	�
�� ������ �� �����

� � ��	� ���� ��
� ���� � ����� ���
	
�������	
��������

���

��

���	�
�� ������ ���������

� ��������
���

��

 �!��	
����!"����#$%&
'L��������T (

����� ������!
	
�������	
�������	
����!

���	�
�� ������ �) * ��� ����

� �)+ ���	� �
��	+ �	*
��� ����� ���) * ���

	
�������	
������
,�-.

,

/
�%/� �� 	
����"

���

� �)+ ���	� �
��� ����� ���) * ���

	
�������	
�������

��

��

���	�
�� ������ �	0 * ��� ����

� �0�+ ���	� �
��	* �	+
��� ����� ���0 * ���

	
�������	
������
.�-,

,

� �0�+ ���	� �
��� ����� ���0 * ���

	
�������	
�������

��

��

����� ������
	
�������	
��������

Figure 2. Concept Abduction algorithm

port for parsing and manipulating the OWL 2 language ex-
pressions;
- OWLlink API (Noppens, Luther, & Liebig, 2010): pro-
vides support for the core OWLlink (Liebig et al., 2011) pro-
tocol, thus allowing requests for standard inferences only;
- MicroReasoner: reasoner implementation, exposing fun-
damental KB operations (load, parse), as well as inference
tasks;
- KB Wrapper : implements KB management functions
(creation of internal data structures, normalization, unfold-
ing) and inference procedures on ontologies (classification
and coherence check);
- Data Structures: in-memory data structures for con-
cept manipulation and reasoning; at this level inference
procedures on concept expressions (concept satisfiability,
subsumption, abduction, contraction, covering) are imple-
mented.

Mini-ME was developed in Java using Android SDK
Tools6, Revision 12, corresponding to Android Platform ver-
sion 2.1 (API level 7), therefore it is compatible with all de-
vices running Android 2.1 or later. Mini-ME can be used:
(a) through theAndroid Serviceby Android applications; (b)

6 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

<<component>>

<<library>>

OWL API

<<component>>

MicroReasoner

<<component>>

KB Wrapper

<<component>>

<<service>>

Android_Service

<<component>>

Data Structures

<<component>>

<<library>>

OWLlink API

KB ManagementReasoning Tasks

<<use>>

<<use>>
<<use>>

<<use>>

Figure 3. UML component diagram

via OWLlink; (c) as a library by calling public methods of
theMicroReasonercomponent directly. In cases (b) and (c),
it runs unmodified on Java Standard Edition runtime envi-
ronment, version 6 or later. The system supports all OWL 2
syntaxes accepted by the OWL API parser.

Standard Java Collection Framework objects are used to
define the low-levelData Structurespackage (mentioned be-
fore), composed of the following classes:

• Item: it represents a named concept expression. When
parsing an ontology, theKB Wrappercomponent builds a
JavaHashMapobject containing all concepts in the TBox as
String-Itempairs. Each concept is unfolded, normalized and
stored in the HashMap with its name as key andIteminstance
as value.
• SemanticDescription: models a concept expression in

CNF as aggregation ofCCN,CGT,CLT ,C∀ components, each
one stored in a different JavaArrayList. Methods implement
inference services.
• Concept: superclass of all concept types. Sub-

classes areAtomicConcept, UniversalRestriction and
CardinalityRestriction , which is further extended by
GreatherThanRestriction andLessThanRestriction. The
equals method, inherited fromjava.lang.Object, has been
overridden in order to properly implement logic-based com-
parison.
• Abduction and Contraction: represent the result re-

turned by Concept Abduction and Concept Contraction, re-
spectively.Abductioncontains aSemanticDescriptionasHy-
pothesis, while Contractioncontains twoSemanticDescrip-
tions asGive UpandKeep. Furthermore, they both contain a
penalty score induced by the inference procedure.
• Composition: represents the result returned by the

Concept Covering service. It contains a vector ofItems as

covering set and a further one as the uncovered part of the
request.

Usage scenarios

Mini-ME can be used in both semantic and ubiquitous
semantic web scenarios. The tool assists users in knowl-
edge bases engineering, by providing consistency check and
classification tasks. Furthermore, it provides resource dis-
covery capabilities –through standard and non-standard in-
ference services– to build applications and services for e-
commerce, e-learning, knowledge management, healthcare
and life sciences, among other applications. The possibility
to run the proposed system on mobile and embedded devices
allows to leverage semantics also in ubiquitous and pervasive
contexts such as m-commerce, m-learning, ubiquitous health
monitoring and healthcare, home and building automation,
navigation and driving assistance systems, VANETs (Vehic-
ular Ad-hoc NETworks), WSSANs (Wireless Semantic Sen-
sor and Actor Networks), and many more. To focus just on
few clear examples,this section illustrates how Mini-ME can
be used for knowledge engineering with an ontology editor
and in a typical ubiquitous computing application, a mobile
augmented reality explorer to discover points of interest.

In the Semantic Web: Protégé plugins

Mini-ME has been integrated within the Protégé ontology
editor through the implementation of an OWL reasoner plu-
gin, in order to facilitate ontology engineering and allow to
design and prototype ubiquitous knowledge-based applica-
tions. Standard reasoning tasks are accessible through the
Protégé user interface in theReasoningmenu. The entry
point is theMinimeReasonerclass that extendsAbstract-
ProtegeOWLReasonerInfo, which manages the synchroniza-
tion between the KB and the reasoner in case of changes to
the currently loaded ontology. TheMinimeReasonerclass
also references the reasoner factory, responsible for the cre-
ation of theMicroReasonerMini-ME instance. Further-
more, the implemented OWLlink API (Noppens et al., 2010)
server adapter allows to test the Mini-ME reasoner as an
HTTP/XML OWLlink server, but only the core protocol is
supported,i.e., non-standard inference services are currently
unsupported via OWLlink. By means of the OWLlink Pro-
tégé plugin configuration panel the user can set up the URL
where the server is listening for incoming requests.

A further Protégé plugin has been developed to: (i) ex-
ploit non-standard inferences through a user-friendly GUI;
(ii) support users during the development of ontology for
pervasive and ubiquitous scenarios. The existingDL Query7

plugin was used as guideline. The proposed plugin is aTab
Widgetand it consists of the following components, high-
lighted in Figure 4: (A)OWLIndividualsListandOWLIndi-
vidualsTypestabs, showing all KB instances with related de-
scription; (B)OWLAssertedClassHierarchyandOWLClass-

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 7

Figure 4. Protégé plugin for non-standard inferences

Description tabs, containing the general taxonomy along
with the description of selected classes; (C) an input box
used to select the inference task, the requestR and –in case
of abduction and contraction– the resource annotationSfrom
theOWLIndividualsListthrough drag-and-drop. For Concept
Covering, a subset of KB individuals can be checked through
the Individuals Listpanel as composing resources. Finally,
the results area (D) shows the output of the chosen inference
service. In Figure 4 a CCoP is solved, component individuals
and the uncovered part of the request are shown.

In the Ubiquitous Semantic Web: mobile augmented re-
ality explorer

Semantic-based technologies can support articulated and
meaningful descriptions of locations and Points of Interest
(POIs). The use of metadata (annotations) endowed with for-
mal machine-understandable meaning can enable advanced
location-based resource discovery through proper inferences.
The Mini-ME engine powers a novel discovery tool in Mo-
bile Augmented Reality (MAR) for Android (Ruta, Scios-
cia, De Filippis, et al., 2014). The overall architecture ofthe
proposed ubiquitous POI discovery framework is depicted in
Figure 5. It consists of the following components:
• The OpenStreetMap serverworking as cartography

provider. OSM map entities are semantically enriched in a
way that best fits location-based resource discovery.
• A general method and aneditor(Scioscia, Binetti, Ruta,

Ieva, & Di Sciascio, 2014) for annotating maps, so allow-
ing a collaborative crowd-sourced enrichment of basic Open-
StreetMap cartography. The standard OWL 2 languages
are exploited to create and share POI annotations, based on
ontologies providing the conceptual vocabulary to express
them.
• A MAR client providing the following features: (i) dis-

covery of most relevant POIs w.r.t. user’s semantically anno-
tated profile, via a logic-based matchmaking; (ii) visualiza-
tion of POI annotations and examination of discovery results,

through a fully visual user interface.

In order to allow users to store semantic annotations in a
POI description retaining backward compatibility, new tags
have been introduced complying with the basic key-value
pair stricture of OSM element tags:
<tag k="semantic:n:key" v="value" />

The semantic prefix is used to distinguish semantic anno-
tations from other tags. The indexn identifies different
annotations –possibly referring to different ontologies–
associated to the same map element. Key name suffix and
value format differ for each proposed tag type, as in what
follows:
<tag k="semantic:n:ontology" v="URI" /> denotes
the ontology the semantic node annotation refers to. The
tag value is the unique ontology URI (Uniform Resource
Identifier), which usually consists of a URL (Uniform
Resource Locator) which can be accessed to retrieve the
ontology.
<tag k="semantic:n:encoding" v="format" />

specifies the compression format used to encode the
semantic annotation. Compression techniques are needed in
order to cope with the well-known verbosity of XML-based
ontological languages such as RDF and OWL (Scioscia &
Ruta, 2009).
<tag k="semantic:n:counter" v="data" /> tags
contain the Base64 string representation of the compressed
semantic annotation. If its length is within 255 characters, a
single tag is used, else it is split in 255-character segments
and each one is stored in a tag. The counter suffix is assigned
as a segment index, starting from 1.

The client –illustrated in Figure 6a– was developed using
Android SDK Tools, Revision 23, corresponding to Android
Platform version 4.2.2 (API level 17). The system adopted a
modified version of the Android Augmented Reality frame-
work8. Given POI target coordinates (latitude, longitude and
altitude), it collects the azimuth and inclination angle be-
tween the device and the target from gyroscope and com-
pass, in order to calculate where the device is pointing and
its degree of tilt. Using this information, the system decides
if and where a POI marker should be displayed within the
viewfinder image on the screen.

In the proposed AR POI discovery framework, the user
profile plays the role of requestR. It consists of a concept
expression including personal information like interestsand
hobbies. The profile is either composed by browsing visually
the ontology modeling the reference domain (Scioscia et
al., 2014), or imported from other applications and services.
Available resources are the annotated OSM POIs in the
user’s area, referring to the same ontology as the user
profile. They are extracted from OSM server and cached
in the MAR client. Several resource domains (cultural
heritage, shopping, accommodation, etc.) can be explored
by simply selecting the proper reference ontology. Hence the

8 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

�

�����������	
�

���	
����
�����	��

���
��	������

�������
���

������������

������	
������

���������

��	�����

����
��

!�����

J����

��u��	�

�����������	�

�
�������

���	�
���
���

���$���
���	
����	�	��������

���	
���

�	�	��������

%��&�

���!���� �!��

����������'���

�������

Figure 5. Architecture of the MAR System

(a) User interface

(b) Abduction results (c) Contraction results
Figure 6. User interface of the semantic MAR explorer

proposed system works as a general-purpose location-based
service discovery facilitator. Exploiting the embedded
Mini-ME matchmaker, the mobile tool executes semantic
matchmaking between the user profile and the annotations
of POIs –enclosed into semantic-enhanced OSM map– in
her surroundings, in a reference range with respect to user’s
position. Figure 7 sketches the resource discovery process.

The semantic description concerning each POI is stored as
an attribute of its marker. A score is finally given to each
POI, expressing the result of the matchmaking between the
user profile and the POI itself. The overall resource score is
computed with the utility function:

f (R,POI) = 100[1− penalty(R,POI)
penalty(R,⊤) (1+ distance(User_GPS,POI_GPS)

max_distance)]

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 9

where penalty(R,POI) is the semantic distance between
profile R and POI; this value is normalized dividing by
penalty(R,⊤), which is the distance betweenR and the uni-
versal concept and depends only on assertions in the ontol-
ogy. Geographical distance (normalized by user-specified
maximum range) is combined as weighting factor. The pur-
poses of the utility function are to weight the result of seman-
tic matching according to distance and to convert the score
to a more user-friendly scale. Of course nearer resources are
preferred, but in case of a full matchpenalty(R,POI) = 0
hencef (R,POI) = 100 regardless of distance.
By touching a marker, the user can see its relevant features,
which are presented as icons around a wheel shape, in order
to provide a clear and concise description, as shown in the
central portion (A) of Figure 6b. The View result panel (B)
in Figure 6b lists all missing features w.r.t. user profile (C),
computed through Concept Abduction. In case of incompat-
ibility, the same left-hand menu shows Concept Contraction
outcome: properties the POI satisfies and incompatible el-
ements (Figure 6c-(D)). Overall, the user can quickly iden-
tify what POI resources are most relevant to her needs and
desires, by looking at the POI marker color, at the match-
making result shown in the score panel and -if interested-
by exploring POIs features. Simple operations on the de-
vice touchscreen allow effortless information acquisition and
management.

matchmaking

Request refinement

Compatibility?

User profile R, point of interest S

Concept Abduction
find what part H of R is

missing in S

Score computation

Concept Contraction:
find incompatible part G and

compatible part K of R

H

Result review

NO YES

G, K
R�K

Figure 7. POI matchmaking process in the MAR system

Performance evaluation

An experimental campaign was performed both on PC and
mobile devices, for standard and non-standard inference ser-
vices. Methods and results are outlined hereafter.Full results
about performance evaluation are reported on the Mini-ME
home page1.

Standard inference tests on PC

Mini-ME was compared on PC with FaCT++9, HermiT10

and Pellet11. All reasoners were used via the OWL API on
a PC testbed (Intel Core i7 CPU 860 at 2.80 GHz –4 cores/8
threads– with 8 GB DDR3-SDRAM (1333 MHz) memory, 1
TB SATA (7200 RPM) hard disk, 64-bit Microsoft Windows
7 Professional and 32-bit Java 7 SE Runtime Environment,
build 1.7.0_03-b05). The reference dataset was taken from
the 2012 OWL Reasoner Evaluation workshop12: it is com-
posed of 214 OWL ontologies with different size, expres-
siveness and syntax. For each reasoning task, two tests were
performed: (i) correctness of results and turnaround time;
(ii) memory usage peak. For turnaround time, each test was
repeated four times and the average of the last three runs was
taken. For memory tests, the final result was the average of
three runs.

Classification.The input of theclassificationtask was the
whole ontology dataset. For each test, one of the following
possible outcomes was recorded:
• Correct, the computed taxonomy corresponds with the

reference classification (if it is available into the dataset) or
results of all the reasoners are the same. In this case the total
time taken to load and classify the ontology is also recorded;
• Parsing Error, the ontology cannot be parsed by the

OWL API due to syntax errors;
• Failure, the classification task fails because the ontol-

ogy contains unsupported logic language constructors;
• Out of Memory, the reasoner generates an exception due

to memory constraints;
• Timeout, the task did not complete within the timeout

threshold (set to 60 minutes).
Mini-ME correctly classified 83 of 214 ontologies; 71
were discarded due to parsing errors, 58 presented unsup-
ported language constructors, the timeout was reached in
2 cases. Pellet classified correctly 130 ontologies, HermiT
128, FaCT++ 122. The lower “score” of Mini-ME is due to
the presence of General Concept Inclusions, cyclic TBoxes
or unsupported logic constructors. Parsing errors occurred
in the OWL API library and were therefore common to all
reasoners.

Performance was measured only for the 73 ontologies cor-
rectly classified by all reasoners, dividing them in five cate-
gories, based on the number of concepts:
• Extra Small (XS): fewer than 10 concepts; 13 ontolo-

gies were in this group;
• Small (S): between 10 and 100 concepts; 9 ontologies;
• Medium (M): between 100 and 1000 concepts; 25 on-

tologies;
• Large (L): between 1000 and 10000 concepts; 22 on-

tologies;
• Extra Large (XL): more than 10000 concepts; 4 ontolo-

gies.
Figure 8 compares the classification times of each reference

10 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME Pellet HermiT FaCT++

Figure 8. Classification test on PC

1

10

100

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME Pellet HermiT FaCT++

Figure 9. Class Satisfiability on PC

reasoner w.r.t. the ontology categories. Pellet, HermiT and
FaCT++ exhibited a similar trend, with the first two faster
than the other engines for large ontologies. Mini-ME is very
competitive for small-medium ontologies (up to about 1200
classes) but less for large ones. This can be considered as an
effect of the Mini-ME design, which is optimized to manage
elementary TBoxes.

For class satisfiability, the dataset consists of 107 ontolo-
gies but only the 69 ontologies that Mini-ME correctly clas-
sified in the previous test were considered;for each of them,
one or more classes were checked, as specified in the dataset.
As reported in Figure 9, performances are basically similar,
with times differing only for few microseconds and no rea-
soner consistently faster or slower. Moreover, the chart sug-
gests no correlation between the time and the ontology size,
whereas it is in direct ratio to the complexity of the class de-
scription and to its depth in the taxonomy (data not shown).

Figure 10 shows results forontology satisfiability. For
this task, all reasoners presented performance similar to the
ones reported in Figure 8 for classification. In fact ontol-
ogy satisfiability test implies loading, classifying and check-
ing consistency of all concepts in the ontology with the first
two steps requiring the larger part of the time. Outcomes
of all reasoners are the same, except for ontologies with
IDs 199, 200, 202, 203. In contrast to Pellet, HermiT and
FaCT++, Mini-ME checks ontology coherence regardless of
the ABox. The above ontologies include an unsatisfiable
class (GO_0075043) with no instances, therefore the ontol-
ogy is reported as incoherent by Mini-ME but as satisfiable
by the other reasoners.

Finally, Figure 11 reports onmemory usagepeak dur-
ing classification, which was verified as the most memory-

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME Pellet HermiT FaCT++

Figure 10. Ontology Satisfiability on PC

1

10

100

1000

XS S M L XL
U

se
d

 M
e

m
o

ry
 P

e
a

k
 (

M
B

)
Ontology Size

Mini-ME Pellet HermiT FaCT++

Figure 11. Memory usage test on PC

intensive task. For small-medium ontologies, used memory
is roughly similar for all reasoners. Mini-ME provides good
results, with slightly lower memory usage than Pellet and
HermiT and on par with FaCT++. Also for large ontologies
Mini-ME results are comparable with the other reasoners, but
in this case FaCT++ has the best performance.

Standard inference tests on mobile

Using as reference the same ontology dataset,results ob-
tained on an Android smartphone (Samsung Galaxy Nexus
GT-I9250 with dual-core ARM Cortex A9 CPU at 1,2 GHz,
1 GB RAM, 16 GB storage memory, and Android version
4.2.2) were compared to the above outcomes for PC tests.

Results computed by Mini-ME on the Android smart-
phone were in all cases the same as on the PC. On the mo-
bile device 75 ontologies out of 214 were correctly classified,
55 were discarded due to parsing errors, 56 had unsupported
language constructors, 26 generated out-of-memory excep-
tions; (these included ontologies correctly classified on PC
or not classified due to parsing errors or unsupported con-
structors)and 2 reached the timeout. Figure 12a shows a
comparison between the classification turnaround times on
PC and on mobile.Data refer to the 73 ontologies correctly
classified by Mini-ME on both platforms.

Times are roughly an order of magnitude higher on the
Android device. Absolute values for small-medium ontolo-
gies are under 1 second, so they can be deemed as accept-
able in ubiquitous contexts. Furthermore, it can be noticed
that the turnaround time increases linearly w.r.t. number of
classes both on PC and on smartphone, thus confirming that
Mini-ME has predictable behavior regardless of the reference
platform. Similar considerations apply to class and ontology
satisfiability tests: the turnaround time comparisons are re-

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 11

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME PC Mini-ME Mobile

(a) Classification

1.E+00

1.E+01

1.E+02

1.E+03

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME PC Mini-ME Mobile

(b) Class Satisfiability

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

XS S M L XL

T
im

e
 (

µ
s)

Ontology Size

Mini-ME PC Mini-ME Mobile

(c) Ontology Satisfiability

0

10

20

30

40

50

60

70

XS S M L XL

U
se

d
 M

e
m

o
ry

 P
e

a
k

 (
M

B
)

Ontology Size

Mini-ME PC Mini-ME Mobile

(d) Memory Usage

Figure 12. Memory usage test on Mobile

ported in Figure 12b and Figure 12c, respectively.
Moreover, memory allocation peak during the classifica-

tion task are reported Figure 12d.Data were obtained ex-
ploiting theAndroid logging system, which provides a mech-
anism for collecting and viewing system debug output, in-
cluding heap memory data and garbage collector calls.For
small-medium ontologies, the required memory was roughly
fixed. Instead, for large ontologies the used memory in-
creased according to the total number of classes. More-
over, in every test memory usage on Android was signifi-
cantly lower than on PC. This is due to the harder mem-
ory constraints on smartphones, imposing to have as much
free memory as possible at any time. Consequently, An-
droid Dalvik virtual machine performs more frequent and
aggressive garbage collection w.r.t. Java SE virtual machine.
This reduces memory usage, but on the other hand can be
responsible for a significant portion of the PC-smartphone
turnaround time gap that was found.

Finally, a comparison was carried out using the five on-
tologies tested in (Yus et al., 2013). Mini-ME did not clas-
sify WineandPizzaontologies correctly because of unsup-
ported language constructors,DBpediaproduced a runtime
error due to the presence of General Concept Inclusions,
whereasGOandNCI gave an out-of-memory exception even
using theandroid:largeHeap="true" attribute in the appli-
cation manifest (other reasoners produced the same error as
described in the referenced paper).

Non-standard inference tests

Performance evaluation was carried out for non-standard
inferences using the same PC testbed and Android smart-
phone adopted for the previous tests. In this case the goal
was to compare the performance trends on the two different

0 5 10 15 20 25 30

Average Memory Peak (MB)

Mini-ME Mobile Mini-ME PC

Figure 14. Memory usage for non-standard inferences

platforms, regardless of the specific PC or smartphone con-
figuration.The test performed both unfolding and normaliza-
tion over a 557 kB knowledge base with 100 request/resource
pairs –randomly generated starting from the ontology defined
in (Ruta et al., 2011), with average size of 4.2 kB– and finally
executed abduction and contraction between each pair. Every
task was repeated four times and the average turnaround time
of the last three runs was taken. Figure 13 reports on time
results (in microseconds) in case of PC and mobile testbed,
respectively.

For each request/resource the system checks for compati-
bility; in case, abduction is performed, otherwise contraction
is run, followed by abduction with the compatible part of the
request. Notice that the computational time basically varies
depending on the complexity of the semantic descriptions.
Results for mobile tests have been referred to the ones for PC
in order to highlight non-standard inferences exhibit similar
trends. Processing times are reported in a logarithmic scale:
in spite of the performance gap between fixed and handheld
architectures, reasoning tasks maintain an acceptable compu-
tational load also on mobile platforms. Times were roughly
an order of magnitude higher on the Android device. This is
due not only to the limited computational capabilities of mo-
bile devices, but also –as said above– to the more frequent
garbage collection by the Android Dalvik virtual machine.
On both platforms, all request/resource pairs show slightly
variable memory peak values due to the similar structure of
their semantic descriptions. For this reason Figure 14 reports
only the average memory usage. Non-standard inferences on
mobile require on average about 11.32 MB of memory with
a standard deviation of 27 KB whereas on PC the average is
about 23.88 MB with a standard deviation of 4 KB.

Conclusion

The paper presented a prototypical reasoner devised for
ubiquitous computing. It supports Semantic Web technolo-
gies through the OWL API and implements both standard
and non-standard reasoning tasks. Developed in Java, it tar-
gets the Android platform but also runs on Java SE and on
embedded devices like Raspberry Pi. Experiments were per-
formed both on PCs and smartphones and evidenced: (i) cor-
rectness of implementation, (ii) competitiveness with state-
of-the-art reasoners in standard inferences, (iii) acceptable

12 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

1

10

100

1000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

T
im

e
 (

µ
s)

Request / Resource pairs

Concept Abduction PC Concept Contraction PC Concept Abduction Mobile Concept Contraction Mobile

Figure 13. Non-standard inference tests

performance on target mobile devices. Besides further per-
formance optimization leveragingpeculiarities of Android
Dalvik (for Android versions up to 4.4) and ART (for ver-
sions 5.0 and above) runtimes, future work includes: sup-
port for ABox management; the extension of OWLlink in-
terface to non-standard inference services; implementation
of further reasoning tasks; the support for more expressive
languages,e.g., with EL++extension of abduction and con-
traction algorithms.

The prototypical version of the software has been fruit-
fully used and tested in automotive scenarios and ambient
intelligence ones. Some applications can be examined at
http://sisinflab.poliba.it/swottools/. Therefore a widespread
exploitation of it is foreseen in a project found under the
Apulia Region Cluster research program in the healthcare
field. Also a couple of Italian big companies have shown
their interest for the early version of the engine for an ex-
tensive application of it in their products or services. At the
moment we plan to release the reasoner under the Creative
Commons license, but this choice will depend on its final
usage.

Acknowledgement

The work was supported by Italian PON projects
Puglia@Service and Puglia Digitale 2.0 and by E.T.C.P.
Greece-Italy ARGES (pAssengeRs and loGistics informa-
tion Exchange System) project.

References

Avancha, S., Joshi, A., & Finin, T. (2002, June). Enhanced Service
Discovery in Bluetooth.IEEE Computer, 35(6), 96–99.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL enve-
lope. InInternational joint conference on artificial intelligence
(Vol. 19, p. 364).

Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., & Patel-
Schneider, P. (2002).The Description Logic Handbook. Cam-
bridge University Press.

Baader, F., Hollunder, B., Nebel, B., Profitlich, H., & Franconi, E.
(1994). An empirical analysis of optimization techniques for ter-

minological representation systems.Applied Intelligence, 4(2),
109–132.

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006). CEL – a
polynomial-time reasoner for life science ontologies.Automated
Reasoning, 287–291.

Colucci, S., Di Noia, T., Pinto, A., Ragone, A., Ruta, M., & Tinelli,
E. (2007). A Non-Monotonic Approach to Semantic Match-
making and Request Refinement in E-Marketplaces.Int. Jour.
of Electronic Commerce, 12(2), 127–154.

Di Noia, T., Di Sciascio, E., & Donini, F. (2007). Semantic match-
making as non-monotonic reasoning: A description logic ap-
proach.Jour. of Artificial Intelligence Research (JAIR), 29, 269–
307.

Di Noia, T., Di Sciascio, E., Donini, F. M., Ruta, M., Scioscia, F., &
Tinelli, E. (2008). Semantic-based bluetooth-rfid interaction for
advanced resource discovery in pervasive contexts.Int. Jour. on
Semantic Web and Information Systems (IJSWIS), 4(1), 50–74.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E.,
Crubézy, M., Eriksson, H., . . . Tu, S. W. (2003). The evolution
of Protégé: an environment for knowledge-based systems de-
velopment. International Journal of Human-computer studies,
58(1), 89–123.

Haarslev, V., & Müller, R. (2001). Racer system description. Auto-
mated Reasoning, 701–705.

Horridge, M., & Bechhofer, S. (2009). The OWL API: a Java API
for working with OWL 2 ontologies.Proc. of OWL Experiences
and Directions, 2009.

Horrocks, I., & Patel-Schneider, P. (1999). Optimizing description
logic subsumption.Jour. of Logic and Computation, 9(3), 267–
293.

Kazakov, Y. (2009). Consequence-driven reasoning for HornSHIQ
ontologies. InIjcai (Vol. 9, pp. 2040–2045).

Kazakov, Y., & Klinov, P. (2013). Experimenting with ELK Rea-
soner on Android. InProc. of 2nd international workshop on owl
reasoner evaluation (oreâ̆AŹ13), ulm (germany)(pp. 68–74).

Kazakov, Y., Krötzsch, M., & Simaňcík, F. (2014). The Incredible
ELK. Journal of Automated Reasoning, 53(1), 1–61.

Kim, T., Park, I., Hyun, S., & Lee, D. (2010). MiRE4OWL: Mobile
Rule Engine for OWL. InComputer software and applications
conf. workshops (compsacw), 2010 ieee 34th annual(pp. 317–
322).

Kleemann, T., & Sinner, A. (2005). User Profiles and Matchmak-
ing on Mobile Phones. In O. Bartenstein (Ed.),Proc. of 16th int.

A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB 13

conf. on applications of declarative programming and knowl-
edge management inap2005, fukuoka.

Koch, F., Meyer, J.-J. C., Dignum, F., & Rahwan, I. (2006). Pro-
gramming deliberative agents for mobile services: the 3APL-M
platform. InProgramming multi-agent systems(pp. 222–235).
Springer.

Lawley, M., & Bousquet, C. (2010). Fast classification in Protégé:
Snorocket as an OWL 2 EL reasoner. InProc. of the 6th aus-
tralasian ontology workshop. conferences in research and prac-
tice in information technology(Vol. 122, pp. 45–49).

Levesque, H. (1984). Foundations of a Functional Approach to
Knowledge Representation.Artificial Intelligence, 23(2), 155–
212.

Li, L., & Horrocks, I. (2004). A software framework for matchmak-
ing based on semantic web technology.International Journal of
Electronic Commerce, 8(4), 39–60.

Liebig, T., Luther, M., Noppens, O., & Wessel, M. (2011).
OWLlink. Semantic Web, 2(1), 23–32.

Liu, Q. (2013). U–commerce research: a literature review and
classification.International Journal of Ad Hoc and Ubiquitous
Computing, 12(3), 177–187.

Moguillansky, M., Wassermann, R., & Falappa, M. (2010). An ar-
gumentation machinery to reason over inconsistent ontologies.
Advances in Artificial Intelligence–IBERAMIA 2010, 100–109.

Motik, B., Horrocks, I., & Kim, S. M. (2012). Delta-reasoner: a
semantic web reasoner for an intelligent mobile platform. In
Proc. of the 21st international conference companion on world
wide web(pp. 63–72).

Noppens, O., Luther, M., & Liebig, T. (2010). The OWLlink API:
Teaching OWL Components a Common Protocol. InOwled
(Vol. 614).

Pfisterer, D., Romer, K., Bimschas, D., Hasemann, H., Hauswirth,
M., Karnstedt, M., . . . Truong, C. (2011). SPITFIRE: toward
a Semantic Web of things.Communications Magazine, IEEE,
49(11), 40–48.

Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F. M., Colucci,
S., & Colasuonno, F. (2007). Fully automated web services
discovery and composition through concept covering and con-
cept abduction.International Journal of Web Services Research
(JWSR), 4(3), 85–112.

Ruta, M., Di Noia, T., Di Sciascio, E., Piscitelli, G., & Scioscia, F.
(2007). RFID meets Bluetooth in a semantic based u-commerce
environment. InProc. of the 9th international conference on
electronic commerce(pp. 107–116).

Ruta, M., Di Noia, T., Di Sciascio, E., Piscitelli, G., & Scioscia, F.
(2008). A semantic-based mobile registry for dynamic RFID-
based logistics support. InIcec ’08: Proc. of the 10th int. conf.
on electronic commerce(pp. 1–9). New York, USA: ACM. doi:
http://doi.acm.org/10.1145/1409540.1409576

Ruta, M., Di Sciascio, E., & Scioscia, F. (2011). Concept abduc-
tion and contraction in semantic-based P2P environments.Web
Intelligence and Agent Systems, 9(3), 179–207.

Ruta, M., Scioscia, F., De Filippis, D., Ieva, S., Binetti, M., & Di
Sciascio, E. (2014, jul). A semantic-enhanced augmented reality
tool for OpenStreetMap POI discovery. In17th meeting of the
euro working group on transportation (ewgt 2014).(to appear)

Ruta, M., Scioscia, F., Di Noia, T., & Di Sciascio, E. (2009).
Reasoning in Pervasive Environments: an Implementation

of Concept Abduction with Mobile OODBMS. In2009
IEEE/WIC/ACM Int. Conf. on Web Intelligence(pp. 145–148).
IEEE.

Ruta, M., Scioscia, F., Di Noia, T., & Di Sciascio, E. (2010, may).
A hybrid ZigBee/Bluetooth approach to mobile semantic grids.
Computer Systems Science and Engineering, 25(3), 235–249.

Ruta, M., Scioscia, F., & Di Sciascio, E. (2010). Mobile Semantic-
based Matchmaking: a fuzzy DL approach.The Semantic Web:
Research and Applications, 16–30.

Ruta, M., Scioscia, F., Loseto, G., & Di Sciascio, E. (2014, feb).
Semantic-based resource discovery and orchestration in Home
and Building Automation: a multi-agent approach.IEEE Trans-
actions on Industrial Informatics, 10(1), 730–741.

Scioscia, F., Binetti, M., Ruta, M., Ieva, S., & Di Sciascio,E. (2014,
feb). A Framework and a Tool for Semantic Annotation of POIs
in OpenStreetMap. In16th meeting of the euro working group on
transportation (ewgt 2013)(Vol. 111, pp. 1092–1101). Elsevier.

Scioscia, F., & Ruta, M. (2009). Building a Semantic Web of
Things: issues and perspectives in information compression. In
Semantic web information management (swim’09). in proc. of
the 3rd ieee int. conf. on semantic computing (icsc 2009)(pp.
589–594). IEEE Computer Society.

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A highly-
efficient OWL reasoner. InProc. of the 5th Int. Workshop on
OWL: Experiences and Directions (OWLED 2008)(pp. 26–27).

Sinner, A., & Kleemann, T. (2005, July). KRHyper - In Your
Pocket. InProc. of 20th int. conf. on automated deduction (cade-
20) (p. 452-457). Tallinn, Estonia.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y.
(2007). Pellet: A practical OWL-DL reasoner.Web Semantics:
science, services and agents on the World Wide Web, 5(2), 51–
53.

Steller, L., & Krishnaswamy, S. (2008). Pervasive Service Dis-
covery: mTableaux Mobile Reasoning. InInt. conf. on semantic
systems (i-semantics). graz, austria.

Tai, W., Keeney, J., & O‘Sullivan, D. (2011). COROR: a compos-
able rule-entailment owl reasoner for resource-constrained de-
vices. Rule-Based Reasoning, Programming, and Applications,
212–226.

Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic
reasoner: System description.Automated Reasoning, 292–297.

Vazquez, J. I., & López-de Ipiña, D. (2007). mRDP: An HTTP-
based lightweight semantic discovery protocol.Computer Net-
works, 51(16), 4529–4542.

von Hessling, A., Kleemann, T., & Sinner, A. (2004, September).
Semantic User Profiles and their Applications in a Mobile En-
vironment. InWorkshop on artificial intelligence in mobile sys-
tems (aims ’04).

Yus, R., Bobed, C., Esteban, G., Bobillo, F., & Mena, E. (2013).
Android goes semantic: DL reasoners on smartphones. InProc.
of 2nd international workshop on OWL reasoner evaluation (ore
13) (pp. 46–52).

Footnotes

1http://sisinflab.poliba.it/swottools/minime
2OWL 2 Web Ontology Language, W3C Recommendation 11

December 2012, http://www.w3.org/TR/owl-overview/

14 A MOBILE MATCHMAKER FOR THE UBIQUITOUS SEMANTIC WEB

3http://protege.stanford.edu/
4RDF 1.1 Concepts and Abstract Syntax, W3C Recommenda-

tion 25 February 2014, http://www.w3.org/TR/rdf11-concepts/
5OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax (Second Edition), W3C Recommendation
11 December 2012)

6http://developer.android.com/sdk/tools-notes.html
7http://protegewiki.stanford.edu/wiki /DL_Query

8https://code.google.com/p/android-augment-reality-
framework/

9Version 1.6.3 with OWL API 3.4,
http://owl.man.ac.uk/factplusplus/

10Version 1.3.8, http://hermit-reasoner.com/
11Version 2.3.1, http://clarkparsia.com/pellet/
12http://www.cs.ox.ac.uk/isg/conferences/ORE2012/materials.html

