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a b s t r a c t

Cell-generated traction forces induce integrin activation, leading to focal adhesion growth and cell
spreading. It remains unknown, however, whether integrin activation feeds back to impact the gen-
eration of cytoskeletal tension. Here, we used elastomeric micropost arrays to measure cellular trac-
tion forces in wildtype and integrin-null cells. We report that activation of b1 but not b3 integrin, by
either increasing density of immobilized fibronectin or treating with manganese, elicited fibroblast
spreading and cytoskeletal tension. Furthermore, this force generation required Rho kinase and
myosin activity. These findings suggest that integrin activation and cell traction forces comprise a
bi-directional signaling unit of cell adhesion.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The binding of integrins to extracellular matrix (ECM) initiates
cell adhesion, which can be described as a series of processes
including cell spreading against the underlying matrix, assembly
of focal adhesions (FAs), and generation of actomyosin-mediated
cytoskeletal tension against these adhesions [1]. Each of these pro-
cesses appears to be linked through several pathways. For exam-
ple, the degree of cell spreading against a micropatterned
substrate regulates RhoA activity and cytoskeletal tension [2,3],
and this cytoskeletal tension is important for adhesion assembly
[4,5]. Conversely, it has been shown that the clustering of integrins
required for adhesion assembly is critical to support cell spreading
and tension generation [6,7]. Because cell spreading, adhesion
assembly, and cytoskeletal tension each have been shown to regu-
late many cellular functions including proliferation, differentiation,
and migration, understanding how these processes are regulated is
an important question.

Integrin receptors undergo conformational activation from a
low affinity to high affinity state [8,9], and these changes in inte-
grin activity may contribute to the regulation of cell spreading
and FA assembly. Indeed, direct activation of integrins via manga-
nese (Mn2+) [10] or conformation-modulating antibodies [11] ap-
pears to enhance cell spreading and adhesion assembly [12,13].
Although numerous studies have linked integrin activation to FA
growth and superior cell adhesion and spreading on ECM, it is un-
clear whether integrin activation can also directly regulate cyto-
skeletal tension generation.

In this study, we found that b1 integrin activation via increased
fibronectin (FN) density or Mn2+ leads to enhanced generation of
cellular traction forces. We measured these forces by culturing
cells on FN-functionalized arrays of uniformly spaced elastomeric
microposts, a system we developed previously to enable studies
of traction force dynamics [5,14]. Our data indicate that the activa-
tion state of integrins is intimately connected to basic adherent cell
behaviors like contractility, which has implications for improving
our understanding of the regulation of cell shape, mechanics, and
function.
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2. Materials and methods

2.1. Cell culture

Wildtype and b3 integrin-null MEFs were provided by Dr. Rich-
ard Assoian (University of Pennsylvania) and Dr. Richard Hynes
(MIT), respectively. b1 Integrin-null MEFs were maintained as pre-
viously described [15]. All cells were cultured in 10% FBS/DMEM
(Atlanta Biologicals).

2.2. Reagents and antibodies

Reagents were obtained as follows: fibronectin (BD); vitro-
nectin (Sigma); lysophosphatidic acid (Avanti Polar Lipids);
Y27632 (Tocris Bioscience); blebbistatin (Calbiochem); FN block-
ing antibody 16G3 (20 lg/ml; gift of Dr. Martin Schwartz,
University of Virginia); b1 integrin blocking antibody BMC5 and
rat control IgG (10 lg/ml; Chemicon); anti-b1 integrin (BD);
anti-GAPDH (Ambion); anti-active-b1 integrin (clone 9EG7, BD);
anti-vinculin (hVin1, Sigma–Aldrich); adenoviral sh-a5 integrin
and scrambled sequence (gift of Dr. Rebecca Wells, University
of Pennsylvania).

2.3. Cell attachment assay

Plates were coated overnight at 4 �C with FN in triplicate (BD
Biosciences) and blocked with 50 lg/ml BSA/PBS. Cells were
seeded, gently rinsed after 1 h with warm PBS, and quantified
using CyQuant (Invitrogen Molecular Probes).

2.4. Substrate preparation

Micropost array detectors (mPADs) were fabricated using
PDMS-based replica-molding as previously described [5,16].
Microcontact printing FN on these or flat substrates, with either
continuous or 625 lm2 islands, was performed as described
previously [17]. FN concentrations of 0.0625 or 4.0 lg/ml FN in
50 lg/ml BSA are designated as low or high FN density,
respectively.

2.5. Western blotting

Cells were lysed in Laemmli sample buffer (Bio-Rad), separated
via SDS–PAGE, transferred to PVDF, immunoblotted, and detected
using SuperSignal West Dura detection kit (Thermo Scientific).

2.6. Immunofluorescence, cell imaging, and quantitative analysis of
focal adhesions and strain energies

For immunofluorescence, cells were fixed with 3.7% paraformal-
dehyde (Electron Microscopy Sciences), permeabilized with 0.1%
Triton X-100, and labeled using primary and then secondary anti-
bodies. Quantitative analyses of adhesions and cell area were per-
formed using a custom-developed MATLAB program [18]. For
mPAD experiments, cells were labeled with CellTracker Green
CMFDA (Invitrogen Molecular Probes). Quantitative analyses of cell
area and total cell strain energies on mPADs were performed as
previously described [5].

2.7. Knockdown of a5 integrin

MEFs were infected with adenovirus encoding either shRNA di-
rected against a5 integrin or a scrambled sequence [19] at a MOI of
50. Cells were trypsinized at 48 h post-infection and seeded on
mPAD substrates.
2.8. Statistical analysis

For each box-and-whisker plot, 15 or more cells per condition
were imaged and analyzed across 3 or more experiments. Statisti-
cal comparisons between experimental conditions used either
Mann–Whitney-U tests or Wilcoxon signed-rank tests, as indicated
in individual figure legends. For all tests, statistical significance
was assigned at P-value 60.05 (ns: non-significant, ⁄P 6 0.05,
⁄⁄P 6 0.01, ⁄⁄⁄P 6 0.001).

3. Results

3.1. Integrin activation enhances cell spreading and traction force

We first confirmed that increasing the density of immobilized
FN and exposure to Mn2+ enhanced integrin activation [20,21] in
our system. Wildtype mouse embryonic fibroblasts (wtMEFs) were
plated on substrates coated with a range of FN densities, cultured
in the presence or absence of 1 mM Mn2+ for 1 h, and then immu-
nostained for activated b1 integrin. In the absence of Mn2+, cells
cultured on low FN density exhibited small peripheral b1 inte-
grin-positive adhesions (Fig. 1A). In contrast, Mn2+ treatment of
cells on low FN resulted in increases in spread cell area and the
number and size of b1 integrin-positive adhesions (Fig. 1A and B).
On high FN densities, cells displayed greater cell spreading and
adhesion number and size relative to untreated cells on low FN,
and Mn2+ treatment did not promote additional spreading
(Fig. 1A and B). As a functional measure of integrin-mediated adhe-
sion, we show that cell attachment was improved by increasing FN
density and/or Mn2+ treatment (Fig. 1C). Together, these data con-
firm that shifting the equilibrium towards ECM-engaged integrin,
by either increasing FN density or conformational activation of
integrin by Mn2+, promotes cell attachment, spreading, and adhe-
sion assembly.

We next examined whether integrin activation impacts cyto-
skeletal tension, by using elastomeric micropost array detector
substrates (mPADs) to measure cell traction forces [5]. wtMEFs at-
tached to and spread on the posts (Fig. 1D – top left panel). Cell
spreading correlated with FN density on mPADs similarly to flat
substrates, and the deficiency in spreading on low FN was rescued
by the addition of Mn2+ (Fig. 1D – top right panel and E). Impor-
tantly, we observed that Mn2+-induced integrin activation trig-
gered enhanced cell traction forces on low FN, and increasing FN
density also increased traction force generation (Fig. 1D – bottom
panels and F). Moreover, this enhanced traction force production
was blocked by the addition of a FN blocking antibody, 16G3
(Fig. 1G), demonstrating that Mn2+-triggered forces require the for-
mation of new integrin–FN bonds. These data show that increasing
the amount of ECM-engaged integrin leads to a net increase in
traction forces.

3.2. b1KO MEFs have defects in Mn2+-induced spreading and traction
force generation.

Although Mn2+ activates integrins indiscriminately, we hypoth-
esized that specific integrin subtypes might be important for medi-
ating the changes in cell spreading and traction force generation in
our system. Therefore, we tested the responses of MEFs carrying a
deletion of the b1 gene. As originally reported [15], expression of b1

integrin is undetectable in these cells, as illustrated here by the ab-
sence of reactivity in a anti-b1 Western blot (Fig. 2A). b1KOs
showed reduced attachment to FN (Fig. 2B), relative to the robust
attachment curves seen for wtMEFs (Fig. 1C). To assess whether
b1KO cells could respond to Mn2+, we assayed whether Mn2+ could
induce cell spreading and FA assembly on low FN. While b1KOs
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failed to spread in the presence of Mn2+ (Fig. 2C–E), enhanced FA
growth was still observed (Fig. 2D).
We then investigated the effect of b1 knockout on Mn2+-induced
cytoskeletal tension. Although b1KO cells exhibited strong basal
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contractility compared to wildtype MEFs, the b1KOs failed to
mount increased traction forces in response to either increased
FN density or Mn2+ treatment (Fig. 2E and F). In fact, Mn2+ treat-
ment resulted in a statistically significant decrease in traction
forces on low FN (Fig. 2F).

Loss of b1 integrin disrupts numerous integrin heterodimers,
including the principal fibronectin receptor a5b1 integrin. To test
whether a5b1 integrin was specifically required for Mn2+-induced
cytoskeletal tension, we treated wtMEFs with a function-blocking
a5b1 integrin antibody, BMC5. Inhibition of a5b1 integrin trended to-
ward decreased cell spreading on low FN mPADs and did not prevent
the spreading response to Mn2+ treatment (Fig. 2G).In spite of the
trend toward decreased spreading, basal contractility showed an
unexpected increase in response to BMC5 (Fig. 2H), whereas MEFs
treated with an isotype-matched control IgG showed similar base-
line contractility to untreated cells (Fig. 2H vs. 1F). Nonetheless,
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upon treatment with Mn2+, BMC5-treated cells showed a statisti-
cally significant decrease in strain energy that paralleled the re-
sponse observed in b1KO cells (Fig. 2H vs. F). Moreover, we
observed a similar loss of strain energy in response to Mn2+ treat-
ment when a5 integrin was depleted by RNA interference (Supp.
Fig. 1A and B). Taken together, these data suggest that the increased
cell traction force upon stimulation of integrin activation requires b1

integrin and is likely mediated by a5b1.

3.3. b1 Integrin-dependent tractions require spread cell shape, ROCK,
and myosin activity

To better understand the requirement for b1 integrin in generat-
ing traction forces, we investigated whether these forces were
mediated by non-muscle myosin II activity and whether b1KOs
were competent to respond to other contractility agonists. We
tested the role of myosin activity in Mn2+-induced traction by pre-
treating wtMEFs with Y27632 and blebbistatin, pharmacological
inhibitors of Rho kinase (ROCK) and myosin, respectively. Both
blebbistatin (Fig. 3A) and Y27632 (Fig. 3B) prevented Mn2+-in-
duced traction forces. Prior work from our group demonstrated
that cellular contractility can also be blocked by culturing cells
on small micropatterned FN islands [5]. Here we observed that
micropatterned islands (625 lm2) of high FN prevented cells from
mounting traction forces in response to Mn2+ stimulation (Fig. 3C),
consistent with a role for actomyosin contractile machinery in
mediating Mn2+-dependent traction forces.

Restricting cell spreading by micropatterning results in a gener-
alized defect in coupling extracellular stimuli with traction force
production, a relationship we have reported in multiple systems
[5,16]. We therefore tested whether the defect in traction force
production in b1KOs could be attributed to a generalized defect
in organizing or activating actomyosin contractility or was specific
to Mn2+. Treatment of cells with lysophosphatidic acid (LPA), a
strong agonist for Rho-mediated myosin activation, triggered a
sustained increase in traction force in both wtMEFs and b1KOs
within 1 min (Fig. 3D and E), indicating that the coupling between
soluble agonists and contractility remains intact in the b1KOs.

3.4. b3 Integrin is dispensable for Mn2+-induced traction forces

Our results suggest that, in the absence of b1 integrin, activation
of integrins induces FA assembly, but fails to induce cell spreading
or traction forces on low FN. Because fibroblasts also use b3 inte-
grin to bind FN, we next evaluated whether b3 integrin activation
could contribute to either enhanced cell spreading or traction
forces following Mn2+ treatment. To do so, we first plated wtMEFs
on vitronectin, a preferential ligand for b3 integrin [22]. Upon treat-
ment with Mn2+, wtMEFs on vitronectin increased spread cell area
(Fig. 4A) but generated no additional net traction force (Fig. 4B).

These data suggest that b3 integrin engagement with ECM li-
gand is not sufficient to mediate Mn2+-induced traction forces
but could support cell spreading. To test the role of b3 integrin in
the response to Mn2+ more directly, we examined the effect of
Mn2+ on b3-null MEFs (b3KOs) [23]. Similar to wtMEFs, b3KOs trea-
ted with Mn2+ demonstrated an increase in spread cell area and FA
growth and number (Fig. 4C and D). Likewise, the b3KOs increased
cell traction forces after Mn2+ treatment (Fig. 4E). Thus, b3 integrin
activation can promote cell spreading; however, it is dispensable
for Mn2+-induced traction force generation.

4. Discussion

Cellular traction forces play an integral role in cell adhesion to
matrices. These forces regulate FA assembly, presumably by acting
directly on integrins to activate them through ‘‘inside-out’’ signal-
ing [4,5]. Additionally, myosin-mediated contractility regulates
adhesion through recruitment of signaling proteins to FAs
[24,25]. Signaling downstream from these FA proteins impacts pro-
liferation [26], differentiation [27], migration [28,29], and other
higher-level cellular functions. Here, we show ‘‘outside-in’’ signals
that promote integrin activation (increased FN density, Mn2+) also
trigger traction force generation. This finding clarifies how the cell
might sense matrix density through ECM-modulated integrin affin-
ity that directly adjusts cytoskeletal tension to befit the
microenvironment.

Integrin activation could modulate cell traction forces through
several possible mechanisms. Here, we reveal that traction forces
induced by integrin activation require Rho kinase and myosin
activity, suggesting that Rho GTPases could be involved. Alterna-
tively, integrin adhesion complexes can nucleate actin polymeriza-
tion via Arp2/3 in a manner dependent on the density of ligated
integrins [30,31] and independently of Rho GTPases [32]. Actin
polymerization creates protrusive force [33] that can drive cell
motility [34] and may contribute to the integrin-mediated forces
reported in this work.

Different integrin subtypes often have overlapping functions,
with some instances where distinct integrins produce unique ef-
fects on cells. For example, both a5b1 and aVb3 integrins bind FN,
but drive divergent migratory behavior; a5b1–FN adhesion pro-
motes thin cell protrusions and random cell migration whereas
aVb3–FN adhesion supports persistent migration with broad lamel-
lipodia [35]. In fact, it has been proposed that these effects are
mediated through a change in the balance of Rho/Rac signaling
[35]. Here we show that in normal cells, Mn2+ stimulates cell trac-
tion forces in a b1 integrin-dependent manner, whereas in cells
deficient in a5 or b1, Mn2+ stimulation leads to a decrease in trac-
tion forces. While the mechanism of decreased traction forces in
a5 or b1 deficient cells is as yet unknown, it is interesting to spec-
ulate that avb3-specific signaling, such as to Rac1 GTPase, may play
a role.

Our finding that activation of b1 integrin contributes to en-
hanced traction forces is consistent with previous studies in
which force production on fibronectin substrates is disrupted
by a5b1 blocking antibody in fibroblasts [36] or myocytes [37].
It is interesting that the same b1 integrin subtype that induces
intracellular forces also undergoes conformational activation in
response to extracellular forces and uniquely displays catch-
bond and adhesion strength-reinforcing behavior upon force
transmission [38–41]. In view of these previous studies, our re-
sults suggest that feedback between force sensing and traction
force generation may be a necessary component to the cell
mechanotransduction system. Further studies on the regulation
of basic cell functions by integrins will help shed light on how
cells manage complex behavior in response to mechanical and
adhesivecues.
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