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Abstract—Conventional three-dimensional (3D) Fourier syn-
thetic aperture radar (SAR) imaging requires a collection of
radar returns from multiple linear passes over a scene. Image
resolution is improved by increasing the extent of these passes in
azimuth and elevation. Hence, high resolution imagery requires
large data collection times and storage capacity. In this work
we investigate wide-angle 3D SAR image reconstruction for a
sparse nonlinear collection path. This collection modality requires
less data acquisition time and storage capacity than conventional
linear collection. Images are reconstructed from measured radar
returns using �1-penalized least-squares inversion. An example is
presented demonstrating that images with well-resolved features
can be formed using data collected along a sparse nonlinear path.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an all-weather, persistent,
and large standoff distance imaging technique. SAR images
are pixels or voxels representing the complex valued electro-
magnetic reflectivity of the scene. When scene size is small or
the standoff distance from the radar to scene center is large,
electromagnetic wavefront curvature is negligible. For a trans-
mitted FM chirp signal and negligible wavefront curvature, the
collected electromagnetic return can be interpreted as a portion
of a radial line from the radar to scene center in 3D k-space
(spatial frequency domain) of the image [1]; thus, the radar
flight path determines which portion of the scene’s k-space
is collected. In general, scene reflectivity, and hence k-space
data, is a function of signal polarization and the azimuth and
elevation angle that the radar illuminates the scene from.

Currently, 2D linear flight path SAR imaging is prevalent.
A linear flight path is approximately a straight line path with a
constant standoff distance from scene center; the aperture of k-
space data collected over a linear flight path is approximately
planar. 3D imaging is desirable for applications such as
automatic target recognition or topographic mapping. Using
conventional Fourier inversion imaging techniques, 3D SAR
images that are well-resolved in all dimensions require closely
spaced samples from many linear flight passes over a scene
[2]; large data storage and collection time is needed for this
type of imaging.

To decrease storage and time requirements, a subset of the
k-space data needed to form well-resolved images can be
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collected. Conventional Fourier inversion image formation can
be used on this subset of data, but the reconstructed image will
be smoothed and contain artifacts. Smoothing and artifacts can
be explained by the point spread function (PSF) of the image,
defined by the Fourier transform of the data subset indicator
function. The mainlobe of this PSF will typically be wider
and the sidelobes higher than for the PSF of an image formed
from the full set of k-space data (see e.g. [3]).

Many algorithms exist for reconstructing SAR images from
a sparse subset of k-space data without incurring the smooth-
ing and artifacts present in a standard Fourier image. Improve-
ment in imaging performance is typically gained by imposing
model or data collection assumptions. Interferometric synthetic
aperture radar (IFSAR) processing is one such sparse 3D
image reconstruction algorithm. This imaging method uses two
2D images formed from two linear flight paths closely spaced
in elevation angle with the same azimuth extent and assumes
scattering centers are well-resolved. The third, height dimen-
sion is calculated as the pairwise phase difference between
pixels in each image [1], [4]. Another algorithm, CLEAN,
can be used for 3D image reconstruction using sparse k-space
data collected from an arbitrary flight path. This is an iterative
greedy algorithm that assumes a point scattering center model
and adds point scatterers to the model at each iteration [3],
[5].

Typically, scenes are sparse, meaning that there are only a
small number of prominent scattering centers. Under scattering
center sparsity assumptions, convex optimization can be used
for SAR image reconstruction [6]. This method of image
reconstruction fits a point scatterer model to the measured k-
space data under an �l penalty. Sparse reconstruction has been
shown to produce well-resolved, 2D SAR image reconstruc-
tions using sparse sets of k-space data [6]–[8].

In this work, we investigate 3D wide-angle sparse image
reconstruction using k-space data collected from multiple
polarizations on a nonlinear flight path. A nonlinear path is
used to collect a diverse subset of k-space data from the set
of data used in conventional linear flight path imaging, and
sparse reconstruction is used to reconstruct an image consistent
with the collected k-space data. The objective of the imaging
algorithm is to produce accurate well-resolved 3D images
without incurring the time and storage costs required in con-
ventional linear path imaging. In Section II, we describe SAR



data collection and present a SAR scattering center model;
Section III discusses an algorithm for 3D wide-angle multiple
polarization image reconstruction for an arbitrary flight path.
Finally, in Section IV, we present a 3D image reconstruction
example using an Air Force Research Lab (AFRL) challenge
problem dataset. This dataset consists of k-space data from
three polarizations collected on a nonlinear continuous pseudo-
random path [9]. This example demonstrates that it is possible
to form accurate 3D SAR images with well-resolved features
from data collected along a nonlinear flight path.

II. SAR DATA COLLECTION AND MODEL

In the remainder of this document, it is assumed that
wavefront curvature is negligible and that the radar transmits
an FM chirp signal,

ej(ωct+αt2), (1)

where α is the chirp rate, and ωc is the center frequency of the
radar. The bandwidth of this signal, BW = 2ατc, is given by
the product of the chirp rate and the chirp duration τc. After
mixing the return signal with the transmitted signal, delayed
by the time to scene center, demodulating, and neglecting a
quadratic phase term, the final received signal is [1]

r(t) =
∫ Bz

−Bz

∫ By

−By

∫ Bx

−Bx

a(x, y, z, θaz, θel, f, pol) (2)

× e−jX(t)xdxdydz.

The coordinate x is defined as the radial line from the
radar to scene center, and y, and z are orthogonal to x
and each other. This coordinate system changes over the
radar’s flight path. The scene reflectivity function is given by
a(x, y, z, θaz, θel, f, pol). Angles θaz and θel are the azimuth
and elevation angles of the radar with respect to a fixed
ground plane coordinate system; f is the frequency of the
radar signal, and pol is the polarization of the radar signal.
Boundaries of the scene in each dimension are B(·). The
function X(t) is a linear function of time and is supported
on [2c (ωc − πBW ), 2

c (ωc + πBW )] rad/m, where c is the
speed of light in m/s, and BW is the chirp bandwidth in Hz.

Since e−jX(t)x is the Fourier kernel, (2) is the Fourier
transform of the scene reflectivity function projected onto the x
dimension. By the projection-slice theorem [1], it follows that
Fourier transform of the scene reflectivity function projection
onto the x dimension is equivalent to a line along the x-axis
in 3D k-space of the scene reflectivity function. The frequency
support of each line is that of X(t); so, each line has a
bandwidth of 4πBW

c rad/m centered at 2ωc

c rad/m. The flight
path defines which lines in k-space are collected, and hence
what subset of k-space is sampled.

We model a SAR scene as collection of polarization-
dependent anisotropic scattering centers. The scene reflectivity
function of this model is the image that we wish to recover and
is ideally represented as a summation of Ns complex weighted

impulses at the location of each point scattering center. In k-
space, the scattering center model is

F (X,Y,Z) =
Ns∑
k=1

ak(θaz, θel, f, pol)e−j(Xxk+Y yk+Zzk). (3)

Variables xk, yk, and zk are the (x, y, z) spatial coordinates
of scattering center k in units of meters, and X , Y , and Z
are the spatial frequency coordinates of 3D k-space in units
of rad/m . The complex amplitude of scattering center k, ak,
is a function of the radar azimuth angle, θaz, elevation angle,
θel, frequency, f , and polarization, pol.

III. IMAGE RECONSTRUCTION

In this section, we discuss an algorithm for wide-angle
multiple polarization 3D SAR image reconstruction from
noncoherent combinations of images formed using sparse
reconstruction on subsets of k-space data. This algorithm
assumes the scattering center model (3), that the complex
magnitude response of each scattering center is approximately
constant over narrow aspect angles and across the radar
frequency bandwidth, and that the image is sparse; there are
no requirements on the type of flight path or amount of
data collected, although these factors will affect reconstructed
image accuracy.

A. Sparse �1-norm reconstruction

Scattering center locations are unknown; a set of N loca-
tions are chosen as candidate scattering center locations,

C = {(xk, yk, zk)}N
k=1. (4)

Define an M × N measurement matrix by

A =
[
e−j(Xmxk+Ymyk+Zmzk)

]
,

where m indexes M measured k-space frequencies down rows,
and k indexes the N coordinates in C across columns. Under
the assumption that scattering center amplitude is constant over
narrow aspect angle extent and throughout the radar band-
width, the measured data from the scattering center model,
(3), can be written in matrix form as

y = Ax + n, (5)

where x is the N -dimensional vectorized image that we wish
to reconstruct; it has complex amplitude value ak in row k if a
scattering center is located at (xk, yk, zk) and zero otherwise;
the image vector x maps to the 3D image, I(xk, yk, zk), by
the relation I(xk, yk, zk) = x(i) if and only if column i
of A is from coordinate (xk, yk, zk). The vector n is an M
dimensional i.i.d. circular complex Gaussian noise vector with
zero mean and variance σ2

n, and y is an M -dimensional vector
of noisy k-space measurements.

The number of scattering centers is assumed to be sparse
with respect to the number of image voxels in x. A recon-
structed image, x̂, is the solution to the sparse optimization
problem [6], [7]

x̂ = argmin
x

‖y − Ax‖2
2 + λ‖x‖1, (6)



referred to as basis pursuit denoising (BPDN) in some liter-
ature [10], [11]. The p-norm is denoted as ‖ · ‖p, and λ is a
sparsity penalty parameter. Define uniform partitions on the x,
y, and z spatial axes with partition spacings of Δx,Δy, and
Δz, respectively. Let the set of candidate coordinates C in (4)
consist of all permutations of (x, y, z) coordinates from the
partitioned axes; then, the set C defines a uniform 3D grid on
the scene. If, in addition, the k-space samples are on a uniform
3D frequency grid, the operation Ax can be implemented using
the computationally efficient 3D Fast Fourier Transform (FFT)
operation. Defining the set C is an algorithmic choice, and
can be chosen as a uniform 3D grid. However, k-space data
is offset from the origin, and samples do not lie on a 3D
uniform grid. To use the 3D FFT, this data must be shifted
to the origin of k-space and interpolated to a uniform grid, as
discussed next.

B. K-space Processing

Collected k-space data is contained in a bounding box
with bandwidths of (XBW, YBW, ZBW) in the X , Y , and Z
dimensions. Define the center coordinate of the bounding
box as (Xc, Yc, Zc). Shifting the center of the bounding
box to the origin centers k-space data at the origin. The
Fourier Transform of the original data is equal to the Fourier
transform of the shifted data multiplied by the phase ramp
ej(Xcx+Ycy+Zcz); so, the Fourier transform can be applied to
the k-space data as if it were centered at the origin, if the
transform is multiplied by the appropriate phase ramp.

There are many algorithms for data interpolation. Two
methods of k-space data interpolation to a uniform 3D grid
are explored here and applied to the example in Section IV.
The first method is a simple nearest-neighbor (NN) method.
In this method, the k-space bounding box is divided into a
uniform grid. For each grid point, if there is k-space data
within a box centered about the grid point with edges of length
ΔX ,ΔY , and ΔZ, the grid point is set to the value of the data
point nearest in Euclidean distance to the grid point; otherwise,
the grid point is set to zero. The second method uses kernel
smoothing [12]. As in NN interpolation, if there are no k-space
data points within a box centered at a grid point with edges
of length ΔX ,ΔY , and ΔZ, then the grid point is set to zero;
otherwise, a kernel weighting function is used to interpolate
the grid point with local data.

C. Noncoherent Image Combination

Scattering centers in model (3) are anisotropic and polariza-
tion dependent; so, their complex amplitude changes over wide
azimuth and elevation angles and for different polarizations.
The scattering center model, (5), used in image reconstruction
assumes that data is collected over narrow aspect angles so
that the complex amplitude is approximately constant. Since
the k-space data may extend over wide angles, we divide the
complete dataset into narrow angle subsets and reconstruct an
image using each subset. A common size bounding box is
used for all subsets. The common size ensures that voxels in
each reconstructed image will be at the same locations.

Different scattering centers will appear in images formed
from different k-space subsets and polarization data since
scattering centers may only persist over limited aspect angles,
and only have non-negligible response at certain polarizations.
We combine all images into one wide-angle, multiple po-
larization image containing information about all scattering
scattering centers. In [13], [14], SAR azimuth subset images
are combined noncoherently using a GLRT approach. We
apply a similar image formation method, incorporating all
subset images from all polarizations. The final noncoherent
image is defined as

I(xk, yk, zk) = max
θazc ,θelc ,pol

|I(xk, yk, zk; θazc
θelc , pol)| . (7)

Coordinates xk, yk, and zk are locations of reconstructed
image voxels, and I(xk, yk, zk; θazc

, θelc , pol) denotes a subset
image formed using data centered at azimuth and elevation
angles θazc , θelc and from polarization pol. We note that the
final image is a real-valued image of voxel magnitude. Image
reconstruction steps are summarized in Algorithm 1.

Algorithm 1 Image Reconstruction
1) For each polarization, partition k-space data into subsets

over a narrow range of azimuth and elevation angles.
2) Define a common bounding box large enough to cover

each individual subset of data. One possibility is to
define bounding boxes for each data subset and take the
maximum box width in each dimension to be the com-
mon bounding box width in each respective dimension.

3) Shift each subset of data to the origin of k-space
and interpolate the data to a uniform grid within the
bounding box.

4) Reconstruct images from each shifted and interpolated
subset of k-space data by solving the sparse optimization
problem (6).

5) Form one noncoherent image by combining all subset
images using (7).

The preceding image reconstruction discussion assumed
negligible wavefront curvature. It may be possible to mod-
ify the image reconstruction algorithm for non-negligible
wavefront curvature by using a measurement matrix A that
incorporates wavefront curvature. However, it may not be
possible to represent this measurement matrix implicitly as a
computationally efficient operation such as the 3D FFT used
here.

IV. IMAGE RECONSTRUCTION EXAMPLE

Reconstructed 3D images using Algorithm 1 and k-space
data from an AFRL challenge problem dataset [15] are pre-
sented in this section. Data is generated by the Visual-D
electromagnetic scattering simulator for a radar with center
frequency fc = 10 GHz and bandwidth BW = 6 GHz
and consists of k-space samples collected along a continuous
pseudo-random “squiggle” path from a construction back-
hoe scene. Three polarizations are included in the dataset,



vertical-vertical, horizontal-horizontal, and cross-polarization.
The trace in Figure 1 shows the squiggle path as a parametric
plot of azimuth and elevation angle, defined with respect to a
fixed ground plane coordinate system, and Figure 2 displays
k-space data that can be collected by the radar, which is
contained between the inner and outer domes. The squiggle
path is superimposed on the outer dome. The set of k-space
data collected along the squiggle path is very sparse with
respect to the full data dome.
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Fig. 1. Squiggle path as a function of azimuth and elevation angle in degrees.

Fig. 2. Data dome of all k-space data that can be collected by a radar shown
in units of rad/m. Support of the k-space data is contained between the inner
and outer dome. An outline on the outer dome shows the location of “squiggle
path” k-space data, which extends from the outline radially to the inner dome.

For all polarizations, the azimuth and elevation range
of the squiggle path are approximately [66◦, 114.1◦], and
[18◦, 42.1◦], respectively. Squiggle path k-space data is par-
titioned into overlapping subsets with azimuth angle extent of
10◦ and full elevation extent at 5◦ azimuth increments; so, sub-
set k consists of squiggle path data from all elevation angles
in the azimuth range [66◦ +(k− 1)5◦, 66◦ +(k− 1)5◦ +10◦)
for k = 1, . . . , 9. Figure 3 shows the magnitude of k-space
data from the k-space subset in azimuth range of [66◦, 76◦).

Each subset of data is contained in a bounding box
with bandwidths in each dimension of (XBW, YBW, ZBW) =

Fig. 3. Magnitude of k-space data subset from azimuth range [66◦, 76◦).
Lighter colors and smaller points are used for smaller magnitude samples;
darker colors and larger points are used for larger magnitude samples. Axes
units are in rad/m.

(142.80, 314.2, 285.6) rad/m. At these bandwidths, spatial
samples are critically sampled with sample spacings of
(Δx,Δy,Δz) = (0.044, 0.02, 0.022) meters in each respec-
tive dimension. Both the image reconstruction and k-space in-
terpolation are performed on uniformly spaced 182×250×252
grids. With this size grid, the spatial extent of the reconstructed
images is [−4, 3.97] × [−2.5, 2.48] × [−2.77, 2.75] meters in
the x, y, and z dimensions respectively.

The squiggle path dataset is noiseless. Before interpolation,
we corrupt all subsets of k-space data with i.i.d. circular com-
plex Gaussian noise with zero mean and variance, σ2

n = 0.9.
Real and imaginary parts of the k-space data have a mean
of approximately zero and variance, σ2

s , of approximately 9.
Noise variance is chosen so that the signal to noise ratio (SNR)
is 10 dB, where SNR in decibels is defined as 10 log( σ2

s

σ2
n
). Each

subset of k-space data is interpolated using NN interpolation.
Images formed using both Epanechnikov and Gaussian kernel
interpolated data appeared nearly identical to images formed
using NN interpolation at the cost of a large increase in
computation time.

Images are reconstructed from each subset of noisy data and
all polarizations by solving the sparse optimization problem
(6), producing 27 reconstructed subset images. We use a
modified version of the monotonic iterative algorithm code
from [7] to solve the optimization problem. The modified
version operates directly on k-space data and does not require
the formation or convolution with a PSF, reducing computation
time and memory requirements. All images are reconstructed
using a sparsity parameter λ = 10. Selection of λ is an
ongoing area of research [16], [17]. Here, λ was chosen
empirically through visual inspection of images. The final
image is formed noncoherently by combining all subset images
according to (7).

All simulations were performed in MATLAB on a system
with an Intel 3 GHz Dual Core Xeon processor and 4 GB
of memory. The most computationally intensive steps of
image reconstruction are interpolation and sparse optimization.
Nearest-neighbor interpolation took less than 25 seconds to run
on each data subsets, and sparse optimization took between



17 and 26 minutes to run on each subset. Although not
investigated here, it may be possible to alter stopping criterion
tolerances in the monotonic iterative algorithm to lower run
times without adversely affecting reconstructed images.

Figure 4 shows a side view of the benchmark 3D re-
constructed backhoe image supplied with the squiggle path
dataset. The image was formed using k-space data collected
at every 1

14

◦
in azimuth and elevation angle along an azimuth

range of [65.5◦, 114.5◦] and elevation range of [17.5◦, 42.5◦].
Squiggle path k-space data is contained within this benchmark
dataset and is very sparse with respect to it; the squiggle path
data set consists of approximately 1.29% of the benchmark
data samples.

(a)

(b)

Fig. 4. Benchmark reconstructed backhoe image using k-space data collected
at every 1

14

◦
in azimuth and elevation angle along an azimuth range of

[65.5◦, 114.5◦] and elevation range of [17.5◦, 42.5◦]. Subfigure (a) displays
the reconstructed image superimposed on the backhoe facet model, and (b)
shows the reconstructed image without the facet model.

A reconstructed squiggle path image viewed from the side
and top is shown in Figure 6. The image is formed using
Algorithm 1 and conventional 3D FFT image reconstruction,
instead of sparse reconstruction in step 4) of the reconstruction
algorithm. The top 25 dB magnitude voxels are displayed in
the image. Structure of the backhoe is highly smoothed and
distorted, and backhoe features, such as the front scoop are
not well localized. If a larger range of voxels is displayed,
it becomes difficult to visually localize any backhoe features.
Poor image quality could be predicted from the PSF of the
squiggle path, shown in Figure 5, which is not well localized
and exhibits spreading in each dimension.

Figure 7 shows a side and top view of a reconstructed squig-

Fig. 5. Magnitude of PSF from the squiggle path over azimuth range
[66◦, 76◦). Light colors and small points are used for small magnitude voxels;
darker colors and large points are used for large magnitude voxels. Axis units
are in meters.

gle path image using Algorithm 1; the top 30 dB magnitude
voxels are displayed. Features in the reconstructed image are
well-resolved. For example, the hood, roof, and front and back
scoops are clearly visible, in the correct location, and are not
smoothed along many voxels. The side panels of the driver
cab are not visible, and the arm on the back scoop is not as
prominent as in the benchmark in Figure 4, but most backhoe
features in the benchmark backhoe image are also visible in
the squiggle path reconstruction. There are some artifacts in
the image that do not lie close to the backhoe, namely below
the front and back scoop; however, most voxels correspond to
features on the backhoe. From the top view of the backhoe,
the group of voxels at the top left also appear to be present
in the benchmark image as viewed from an angle not shown
here; these voxels are probably a result of multibounce off
of the back scoop and are not artifacts specific to squiggle
path reconstruction. It should be noted that since a smaller
range of voxels are plotted in the conventional reconstruction,
voxels appear on features, such as on the roof and wheels,
in the sparse reconstructed image that do not appear in the
conventional reconstruction.

The reconstruction in Figure 7 is displayed as raw recon-
structed image voxels, with one point representing a voxel.
If the final image is for human interpretation, post-processing
can be applied to the reconstructed backhoe image to improve
visualization. Figure 8 shows a side and top view of the same
reconstructed backhoe image as in Figure 7, but with addi-
tional visualization post-processing. The reconstructed image
from step 5) of Algorithm 1 is smoothed using a Gaussian
kernel with diagonal covariance and standard deviation of 2
voxels in each dimension; smoothed image voxel magnitude
contours are displayed. Figure 8 displays 200 contour levels
equally spaced between the minimum and maximum voxel
values. Color darkens and transparency becomes more opaque
as contour level increases. When using this method of visual-
ization, local pixel groups appear as surfaces on the backhoe.



(a) (b)

(c) (d)

Fig. 6. Reconstructed backhoe from standard Fourier image reconstruction on each subset images for an SNR of 10 dB. Lighter colors and smaller points
are used for smaller magnitude voxels; darker colors and larger points are used for larger magnitude voxels. Subfigure (a) and (b) show a side view of the
reconstructed image with and without the backhoe facet model superimposed, respectively; subfigures (c) and (d) show top views of the reconstructed image
with and without the backhoe facet model superimposed, respectively. The top 25 dB magnitude image voxels are displayed.

(a) (b)

(c) (d)

Fig. 7. Reconstructed backhoe image using Algorithm 1 for an SNR of 10 dB. Lighter colors and smaller points are used for smaller magnitude voxels;
darker colors and larger points are used for larger magnitude voxels. Subfigure (a) and (b) show a side view of the reconstructed image with and without the
backhoe facet model superimposed, respectively; subfigures (c) and (d) show top views of the reconstructed image with and without the backhoe facet model
superimposed, respectively. The top 30 dB magnitude image voxels are displayed.



(a) (b)

Fig. 8. Post-processed reconstructed backhoe image using Algorithm 1 for an SNR of 10 dB. The image is represented as contours of smoothed voxel
magnitudes. Color darkens and transparency becomes more opaque as contour level increases. Subfigure (a) shows a side view of the reconstructed image,
and subfigure (b) shows a top view of the reconstructed image. The top 30 dB of magnitude contours are displayed.

V. CONCLUSION

In this paper, we presented a sparse imaging algorithm for
reconstructing 3D SAR images from k-space data collected
on an arbitrary flight path. The algorithm assumes that the
number of scattering centers in a scene is sparse compared
to the number of voxels in the reconstructed images and
that scattering center response is approximately constant over
narrow aspect angles. Images formed from subsets of k-
space data at different polarizations and aspect angles are
reconstructed and noncoherently combined to capture the
response of non-persistent scattering and polarization-specific
scattering in one image. An image reconstruction example
using k-space data from a sparse continuous pseudorandom
“squiggle” path was presented. This example demonstrated
how standard Fourier imaging fails to produce accurate well
resolved 3D images using a sparse collection of k-space data;
it also demonstrated how sparse reconstruction can produce
accurate, mostly artifact-free, well-resolved 3D SAR images
from sparse, nonlinear flight paths.
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[17] Ö. Batu and M. Çetin, “Hyper-parameter selection in non-quadratic
regularization-based radar image formation,” in Algorithms for Synthetic
Aperture Radar Imagery XV. Orlando, FL.: SPIE Defense and Security
Symposium, March 17–20 2008.


