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Mitogen-activated protein kinase (MAPK) pathways

transfer information from sensors to cellular responses

in all eukaryotes. A surprisingly large number of genes

encoding MAPK pathway components have been

uncovered by analysing model plant genomes, sug-

gesting that MAPK cascades are abundant players of

signal transduction. Recent investigations have con-

firmed major roles of defined MAPK pathways in

development, cell proliferation and hormone physi-

ology, as well as in biotic and abiotic stress signalling.

Latest insights and findings are discussed in the context

of novel MAPK pathways in plant stress signalling.

MAPK pathways – a common theme in eukaryotic signal

transduction

Humans, yeast and plants share w60% of their genes with
each other, including components of conserved protein
kinase signalling pathways. In all eukaryotes, mitogen-
activated protein kinase (MAPK) pathways serve as
highly conserved central regulators of growth, death,
differentiation, proliferation and stress responses.

A MAPK cascade minimally consists of a MAPKKK–
MAPKK–MAPK module that is linked in various ways to
upstream receptors and downstream targets. Receptor-
mediated activation of a MAPKKK can occur through
physical interaction and/or phosphorylation by either the
receptor itself, intermediate bridging factors or interlink-
ing MAPKKKKs. MAPKKKs are serine/threonine kinases
that activate MAPKKs through phosphorylation on two
serine/threonine residues in a conserved S/T–X3–5–S/T motif.
By contrast, MAPKKs are dual-specificity kinases that
phosphorylate MAPKs on threonine and tyrosine residues
in the T–X–Y motif. MAPKs are promiscuous serine/
threonine kinases that phosphorylate a variety of substrates
including transcription factors, protein kinases and cyto-
skeleton-associated proteins. The specificity of different
MAPKcascades functioningwithin the same cell isgenerated
through the presence of docking domains found in various
components of MAPK modules and scaffold proteins [1].
Components of plant MAPK cascades

On the basis of the fully sequenced Arabidopsis genome,
20 MAPKs, 10 MAPKKs and 60 MAPKKKs were
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identified and a unified nomenclature for Arabidopsis
MAPKs and MAPKKs was proposed [2]. By sequence
comparison and signature motif searches, putative ortho-
logues to most of the 20 MAPKs, 10 MAPKKs and 60
MAPKKKs can be identified in the available genomic or
EST sequences of Medicago, tobacco and rice. However, in
some cases, unequivocal definition of orthologues between
different species is not possible, making a unified nomen-
clature for all plant MAPKs, MAPKKs and MAPKKKs
impossible at present.

In all plant species, MAPKs carry either a TEY or TDY
phosphorylation motif at the active site. In contrast to
TEY MAPKs, all TDY MAPKs have long C-terminal
extensions. To date, functional data for a TDY MAPK is
only available for rice BWMK1 [3,4]. By contrast, the TEY
MAPKs have been studied in many plant species,
including Arabidopsis, Medicago, tobacco, tomato, parsley
as well as rice (Table 1).

Analysis of the putative MAPKKs reveals conservation
of the N-terminal MAPK-docking motif K/R-K/R-K/R-X1–6-
L-X-L/V/I, which, at least in Medicago SIMKK (stress-
induced MAPKK), is required but not sufficient for MAPK
activation [5]. Functional evidence for the role of MAPKKs
is available for Arabidopsis MKK1, MKK2, MKK4, MKK5
and MKK6, Medicago PRKK and SIMKK, tobacco MEK1
and MEK2, tomato MKK2 and MKK4, parsley MKK5 and
rice MEK1 (Table 1).

Although the family of MAPKKKs forms the largest and
most heterogeneous group of MAPK pathway components,
it has only been shown in a few cases that these kinases do
function as the activator of a MAPKK. Therefore, the
classification of the 60–80 Arabidopsis kinases as
MAPKKKs must be considered with caution. Nonetheless,
these kinases are all related to each other and can be divided
into two large subgroups: those of the MEKK-type, for which
proof of MAPKKK function has been provided in most cases,
and those of the Raf-like kinases, for which evidence that
they act as MAPKKKs is still lacking. The MEKK-like
kinases include Medicago OMTK1, Arabidopsis ANP1,
ANP2, ANP3, MEKK1 and YODA and tobacco NPK1
(Table 1). Data on the Raf-like protein kinases include
those for Arabidopsis CTR1 and EDR1 (Table 1).

Because of space limitations, only recent literature on
stress signalling MAPK pathways is discussed. Reviews
on the basic composition and function of MAPK pathways
in animals, yeast and plants are available [6–8].
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Table 1. A comprehensive list of references implicating MAPKs, MAPKKs or MAPKKKs in various biological processes

Group Biological function Refs

MAPKKK

AtMEKK1 A1 Cold, high salt, touch, bacterial elicitor signalling [10,11,47]

MsOMTK1 A1 Oxidative stress, cell death [12]

AtYODA A2 Extra-embryonic cell fate, stomata development [54,55]

NbMAPKKKa A2 HR, cell death, bacterial elicitor signalling [24]

LeMAPKKKa A2 HR, cell death, bacterial elicitor signalling [24,25]

AtANP1, AtANP2,

AtANP3

A3 Oxidative stress, cytokinesis, auxin signalling [56,57]

NtNPK1 A3 Heat, cold, hyperosmotic stress, cytokinesis, auxin signalling, pathogen

response, drought and freezing tolerance

[20,21,23,56,58,59]

AtCTR1 B3 Ethylene signalling [60,61]

AtEDR1 B3 Fungal pathogen response [32,33]

LeCTR1 B3 Ethylene signalling [62,63]

OsEDR1 B3 Defence, stress signalling and development [64]

MAPKK

AtMKK1 A1 Cold, drought, high salt, oxidative stress, wounding, bacterial elicitor

signalling

[11,49]

AtMKK2 A1 Cold, high-salt stress [11]

MsPRKK A1 Fungal elicitor signalling [9]

AtMKK6/AtANQ1 A2 Cytokinesis [20,65]

NtMEK1/NtNQK1 A2 Cytokinesis, cell death, bacterial elicitor signalling [19,20,24,66]

OsMEK1 A2 Cold stress [67]

ZmMEK1 A2 Root apex proliferation [68]

AtMKK4, AtMKK5 C1 Bacterial elicitor signalling, HR [10,40]

MsSIMKK C1 Heavy metal, hyperosmotic stress, fungal elicitor signalling, ethylene

signalling

[5,9,43,69]

NtMEK2 C1 HR, cell death, bacterial elicitor signalling, ethylene signalling, pollen

germination

[16,24,40,66,70,71]

LeMKK2 C1 Bacterial elicitor signalling [25]

PcMKK5 C1 Fungal and bacterial elicitor signalling [72]

LeMKK4 D1 Bacterial elicitor signalling [25]

MAPK

AtMPK3 A1 Osmotic, oxidative stress, bacterial elicitor signalling, ABA signalling [10,37,41,46,56,73]

MsSAMK A1 Heavy metal, cold, drought stress, touch, wounding, fungal elicitor signalling [43]

NtWIPK A1 Hypoosmotic stress, wounding, HR, cell death, fungal and bacterial elicitor

signalling, viral infection

[13,14,24,66]

NbWIPK A1 Fungal and bacterial elicitor signalling [74]

LeMPK3 A1 UV-B, fungal and bacterial elicitor signalling, mechanical stress, wounding [25,50,75]

PcMPK3 A1 Fungal and bacterial elicitor signalling [72,76]

OsMAPK5/OsMAPK2/

OsMSRMK2/OsMAP1/

OsBIMK1

A1 Heavy metal, heat, cold, drought, high salt, oxidative stress, UV-C, sucrose,

jasmonic acid, salicylic acid, ethylene, ABA, elicitor, pathogen resistance,

abiotic stress tolerance

[27,44,67,77–79]

AtMPK6 A2 Cold, drought, high salt, osmotic, oxidative stress, touch, wounding, fungal

and bacterial elicitor signalling, pathogen resistance, ethylene signalling

[10,11,28,29,31,37,45,46,

56,69,70,80]

MsSIMK A2 Heavy metal, cold, drought, hyperosmotic stress, wounding, fungal elicitor

signalling, ethylene signalling, root hair tip growth

[5,9,43,69,81]

NtSIPK A2 Hyperosmotic and hypoosmotic stress, wounding, salicylic acid, HR, cell

death, fungal and bacterial elicitor signalling, viral infection, ethylene

signalling, pollen germination

[13,24,82]

NbSIPK A2 Fungal and bacterial elicitor signalling [74]

LeMPK1 A2 Elicitor signalling, UV-B [50]

LeMPK2 A2 Elicitor signalling, UV-B [25,50]

PcMPK6 A2 Heavy metal, oxidative stress, fungal and bacterial elicitor signalling [72,76]

AtMPK4 B1 Cold, drought, hyperosmotic stress, touch, wounding, pathogen resistance [11,28,30,45,83]

MsMMK2 B1 Heavy metal stress, fungal elicitor signalling [43]

MsMMK3 B2 Heavy metal, oxidative stress, fungal elicitor signalling, cytokinesis, ethylene

signalling, cell death

[12,43,69]

NtNTF6/NtNRK1 B2 Cytokinesis, HR, cell death, fungal and bacterial elicitor signalling [19,20,24,66]

OsMAPK4/OsMSRMK3 C2 Heavy metal, cold, drought, salt, oxidative stress, wounding, sugar

starvation, sucrose, jasmonic acid, salicylic acid, ethylene, ABA, chitosan

[84,85]

OsBWMK1 D1 Pathogen resistance, cell death, fungal elicitor signalling, oxidative stress,

salicylic acid, jasmonic acid

[3,4]

OsWJUMK1 D1 Heavy metal, cold, oxidative stress [84]
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Logistics of plant MAPK pathways

Previous yeast two-hybrid and transient expression
analyses of MAPK cascades in Arabidopsis, tobacco
and Medicago have suggested that MAPK pathway
www.sciencedirect.com
components can function in different combinations and
have distinct functions in different biological contexts.
Recent genetic analyses have largely proven this unfore-
seen complexity to be correct. Depending on the stimulus,
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a given plant MAPKK can interact and activate several
different MAPKs [9]. MAPKKKs can associate with
different MAPKKs and function in different pathways.
For example, Arabidopsis MEKK1 functions with MKK4
and MKK5 in pathogen defence [10], but can also activate
MKK2 during abiotic stress [11]. As recently shown for
Medicago OMTK1, some MAPKKKs also seem able to
serve as scaffold proteins, assembling specific MAPK
pathway components into particular modules [12].

MAPK pathways in plant pathogen response

Plants respond to pathogen attack by activating multi-
step defence responses, including rapid production of
reactive oxygen species (ROS), strengthening of cell walls,
induction of the hypersensitive response (HR) and the
localized cell death at the sites of infection. Plant defence
responses also include synthesis of pathogen-related
proteins and phytoalexins. During the past couple of
years, it has been firmly established that MAPKs play a
central role in pathogen defence in Arabidopsis, tobacco,
tomato, parsley and rice (Figure 1).

Tobacco MEK2–SIPK/WIPK pathway

Studies of the infection of tobacco leaves by TMV (tobacco
mosaic virus) revealed that both SIPK and WIPK are
activated in an N resistance gene-mediated fashion [13],
preceding the HR-like cell death. Because expression and
activation of WIPK was correlated with the onset of HR in
response to various elicitors and TMV infection, it was
assumed that WIPK might be a prime candidate for an HR
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inducer [14]. However, ectopic expression of SIPK was
sufficient to yield active MAPK and induce HR, whereas
ectopic WIPK expression yielded neither active kinase
nor HR [15]. Consistent with the finding that WIPK and
SIPK are substrates of MEK2, it was found that over-
expression of constitutively active MEK2 activates both
MAPKs followed by HR [16]. The importance of all three
kinases was recently shown by VIGS (virus-induced gene
silencing) of tobacco MEK2, SIPK or WIPK, resulting in
strong attenuation of N gene-mediated resistance against
TMV [17].

Dual function of the tobacco NPK1–MEK1–NTF6

pathway in pathogen defence and cytokinesis

There appears to be at least one more tobacco MAPK
pathway involved in pathogen defence. VIGS of MEK1 and
its potential substrate MAPKNTF6attenuatedN-mediated
resistance of tobacco to TMV [18]; silencing of the poten-
tial downstream target WRKY and MYB transcription
factors equally compromised N-mediated resistance.
MEK1 and NTF6 also play an important role in
cytokinesis, a specific function in the cell division cycle
[19]. Overexpression of kinase-deficient mutant MEK1
resulted in multinucleate cells with incomplete cross walls
[20]. A similar phenotype is obtained by overexpressing
the kinase-deficient MAPKKK NPK1 [21], which is the
upstream activator of MEK1 [20]. Overall, the present
model envisions that the NPK1–MEK1–NTF6 module is a
positive regulator of cytokinesis that is regulated by
complex formation with the two kinesins NACK1 and
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NACK2 at the equatorial plane of the phragmoplast
during late mitosis (reviewed in Ref. [22]). Although it
seems strange that different MAPKKKs might couple
MEK1 to pathogen and cell cycle stimuli, there is con-
vincing evidence that NPK1 is involved in both processes.
NPK1-silenced plants interfere with the functioning of
several resistance genes [23]. How the same MAPK path-
way can perform two different cellular functions is unclear
and requires further investigations.

An even more complicated picture arises when con-
sidering recent studies on the interaction of Pseudomonas
syringae pv. tomato in N. benthamiana and tomato. In
these pathosystems, the bacterial avirulence gene product
AvrPto is recognized by Pto. A novel N. benthamiana
MAPKKK, MAPKKKa, was identified as an upstream
activator of MEK2 and SIPK [24]. However, combining
MEK1 with NTF6 or MEK2 with WIPK can also mediate
Pto-induced cell death in N. benthamiana. The tomato
studies confirmed the major findings in tobacco, showing
that the orthologues of tobacco SIPK and WIPK, tomato
MPK2 and MPK3, are activated in the AvrPto-Pto system
[25]. As expected, the tomato orthologue of tobacco
MEK2 was shown to function as an activator of MPK2
and MPK3. However, tomato MKK4, a member of the
D group MAPKKs, for which no function is yet known in
any other species, also induced cell death and, like the
tomato orthologue of the N. benthamiana MAPKKKa, can
activate MPK2 and MPK3. These studies not only indicate
that multiple MAPK modules are involved in mediating
AvrPto-Pto signalling but also that different combinations
of the same MAPK components can serve different
functions in different contexts.

Rice TEY and TDY MAPKs are involved in pathogen

signalling

An increasing number of MAPK pathway components
have been identified in Oryza sativa (reviewed in
Ref. [26]). These MAPKs are either of the TEY type, belong-
ing to the A and C groups, or of the D group, containing the
TDY MAPKs. For most of the rice MAPKs, only expression
data are available, indicating that almost all the genes
respond to developmental and hormonal cues and/or
various stresses. A more thorough functional investi-
gation of rice MAPK5 (also called MSRMK2, MAPK2,
MAP1 or BIMK1), the putative orthologue of Arabidopsis
MPK3, revealed kinase activation by several biotic and
abiotic stresses as well as by abscisic acid [27]. RNAi (RNA
interference) of MAPK5 resulted in constitutive PR gene
expression and enhanced resistance to fungal (Magna-
porthe grisea) and bacterial (Burkholderia glumae)
infection. It is interesting that the same RNAi lines were
compromised in tolerance to drought, salt and cold stress
and that overexpression of MAPK5 resulted in opposite
phenotypes, as seen in the suppression lines.

To date, no functional data are available for the large
group of TDY MAP kinases in dicots. Of the two TDY rice
MAPKs, the rice blast and wounding-induced BWMK1
gene [4] has already been subjected to detailed functional
analysis. Overexpression of BWMK1 in tobacco resulted in
constitutive PR gene expression and enhanced resistance
to fungal (Phythophthora parasitica) and bacterial
www.sciencedirect.com
(Pseudomonas syringae) infection [3]. In a yeast two-
hybrid screen with BWMK1, the EREBP1 transcription
factor was isolated. Phosphorylation of EREBP1 by
BWMK1 enhanced the ability of the transcription factor
to bind to GCC box elements of PR gene promoters;
coexpression of BWMK1 and EREBP1 in protoplasts
enhanced transcription of a GCC box-driven reporter
gene. These studies indicate that pathogen defence is not
only mediated by several TEY-type MAPKs, but also by at
least one member of the distantly related group of TDY
MAPKs.

Flagellin signalling by the Arabidopsis FLS2–MEKK1–

MKK4/MKK5–MPK3/MPK6–WRKY22/WRKY20 pathway

In Arabidopsis, MPK3, MPK4 and MPK6 are all activated
by bacterial and fungal PAMPs (pathogen-associated
molecular patterns) [28,29]. Arabidopsis mpk4 mutants
show a dwarf phenotype, exhibit increased resistance to
virulent pathogens, have elevated salicylic acid levels,
show systemic acquired resistance, and constitutive expres-
sion of pathogenesis-related genes [30]. Given that no induc-
tion of the jasmonic acid-response genesPDF1.2andTHI2.1
is observed after treatment with methyl jasmonate, MPK4
appears to be required for jasmonic acid-mediated gene
expression. By contrast, MPK6-silenced Arabidopsis plants
have no obvious morphological phenotype but are compro-
mised in resistance to avirulent Peronospora parasitica
strains and avirulent and virulent Pseudomonas syringae
strains [31]. With the notableexception ofvegetative storage
protein 1 (VSP1), most PR genes in MPK6-silenced plants
are no different to wild-type plants.

Combining transient expression analyses with bio-
chemical and genetic approaches has revealed that the
MEKK1–MKK4/MKK5–MPK3/MPK6 module acts down-
stream of the flagellin receptor FLS2 and upstream of the
WRKY22 and WRKY29 genes [10]. Transient overexpres-
sion of the MEKK1 kinase domain, constitutively active
MKK4 and MKK5 or WRKY29 rendered leaves resistant
to infection by bacterial and fungal pathogens.

EDR1 (enhanced disease resistance 1) encodes a Raf-like
MAPKKK that functions in pathogen resistance. edr1
mutant plants confer resistance to the fungus Erysiphe
cichoracearum, causing powdery mildew disease [32].
Although defence genes are not expressed in edr1 mutant
plants, they are induced more rapidly upon pathogen
infection. Overexpression of wild-type EDR1 was not
feasible but kinase-deficient EDR1 overexpression
enhanced resistance to powdery mildew [33]. These data
indicate that EDR1 is a negative regulator of defence, but
whether EDR1 is a MAPKKK or functions in the context of
a MAPK pathway is unclear.

Are MAPKs the missing link between reactive oxygen

species and pathogen signalling?

MAPKs are also involved in mediating oxidative stresses
(Figure 2). In tobacco, SIPK and WIPK become activated
by various ROS [34,35] and overexpression or suppression
of SIPK rendered plants hypersensitive to ozone treat-
ment [36]. Ozone treatment of Arabidopsis activates
MPK3 and MPK6 [37], the orthologues of tobacco
SIPK and WIPK, respectively. Although ozone-induced
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activation of MPK3 and MPK6 was independent of
ethylene, it was dependent on salicylic acid and resulted
in nuclear translocation of the MAPKs.

Although ROS can be formed as metabolic by-products
under various abiotic stress conditions, plant cells can also
form ROS upon pathogen attack [38]. ROS-induced
activation of MAPKs has been taken as evidence that
ROS act upstream of MAPKs. However, an investigation
of Phythophthora infestans infection of N. benthamiana
showed that the MEK2 pathway might be part of an
amplification cascade upstream of rboh (respiratory burst
oxidase orthologue) genes, which are necessary for pro-
ducing ROS in response to fungal infection [39]. In agree-
ment with these studies, expression of constitutively
active Arabidopsis MKK4 or MKK5, encoding the ortho-
logues of tobacco MEK2, results in generation of hydrogen
peroxide and cell death [40].

OXI1 protein kinase is an upstream mediator of
ROS- and pathogen-induced activation of the Arabidopsis
MPK3/MPK6 pathway [41]. oxi1-null mutants are com-
promised in ROS- and elicitor-induced MPK3/MPK6
activation and are hypersensitive to infection by virulent,
but not avirulent strains, of the fungal pathogen
Peronospora parasitica. Whether OXI1 is part of an
amplification loop similar to that of tobacco MEK2 still
needs to be tested, but it might be an interesting model to
explain the genetic and biochemical data.
MAPKs in heavy metal signalling

ROS production and signalling is closely related to the
topic of the response of plants to heavy metals (Figure 2).
Although some of the heavy metals are required for
metabolism, growth and development of plants, they are
highly toxic in higher concentrations and can result in
severe cellular damage. The toxicity of heavy metals is
?

? ?

?

Stress

MAPKKK

MAPKK

MAPK

Cold or
salt

MEKK1

MKK2

MPK4

Drought or
wounding

H2O2
MMS or
UV-C

ANP1 O

MKK1

MPK3 MPK6

Arabidopsis

Figure 2. Model describing the role of Arabidopsis, Medicago and tomato MAPK pathw

arrows indicate hypothetical pathways; question marks indicate unknown cascade com

www.sciencedirect.com
thought to result from the blocking of functional groups or
the displacement of essential metal ions in biomolecules or
by the autoxidation of redox-active heavy metals and the
subsequent Fenton reaction producing ROS (reviewed in
Ref. [42]). Recently, it was shown that heavy metals can
activate MAPKs in higher plants [43,44]. Exposure of
Medicago seedlings to excess copper or cadmium ions
resulted in a complex activation pattern of four distinct
MAPKs: SIMK, MMK2, MMK3 and SAMK (stress-
activated MAPK) [43]. In protoplasts, the Medicago
MAPKK SIMKK only conveyed activation of SIMK and
SAMK, but not of MMK2 and MMK3. Moreover, SIMKK
only mediated activation by copper but not by cadmium
ions. These data show that distinct MAPK pathways are
involved in signalling activated by different heavy metals.
Salt, cold, drought and wounding are mediated by

overlapping sets of MAPKs

MAPKs are known to be activated by osmotic stresses in
Medicago and tobacco (reviewed in Ref. [7]). Most progress
on linking MAPKs to abiotic stress signalling has come
from analysing Arabidopsis: MPK4 and MPK6 are
activated by cold, salt, drought, wounding and touch
[45]. MPK3 can also be activated by osmotic stress [46].
MEKK1 is transcriptionally induced by salt stress,
drought, cold and wounding [47], but also mediates
flagellin signalling through activation of MKK4 and
MKK5 [10]. Functional and interaction analysis in yeast
suggested that MEKK1 functions upstream of MKK1,
MKK2 and MPK4 [48], and a role for the MAPK module
consisting of MEKK1–MKK2–MPK4/MPK6 has now been
confirmed in cold and salt stress (Figure 2). After
identifying MKK2 in a yeast-based screen for activators
of MPK4 and MPK6, it was found that MKK2 can become
activated by cold and salt stress in transient protoplast
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assays [11]. mkk2-null mutant plants show no phenotype
under ambient conditions but are hypersensitive to cold
and salt stress. By contrast, MKK2 overexpressor plants
are more tolerant to cold and salt stress and show changes
in the gene expression of 152 genes. In transient proto-
plast assays, MEKK1 can activate MPK4 and MPK6 in an
MKK2-dependent manner. MKK1 might also be involved
in abiotic stress signalling because MKK1 becomes
activated by wounding, cold, drought and salt stress and
can phosphorylate MPK4 [11,49].

MAPKs are downstream of the wounding, UV-B and

brassinosteroid receptor

Tomato MPK1, MPK2 and MPK3 are orthologues of
Arabidopsis MPK3 and MPK6; they are activated by
wounding, systemin, various elicitors and UV-B [50]. The
wounding signalling peptide systemin binds SR160, a
leucine-rich repeat membrane-spanning protein kinase
that is identical to the brassinosteroid receptor BRI1 [51].
SR160 also affects UV-B signalling, suggesting that
systemin, brassinosteroid and UV-B might be sensed by
the same receptor [52]. Whether MAPKs are downstream
components of all three signalling pathways is currently
unclear, as is the question of how a cell can differentiate
between systemin, brassinosteroids and UV-B.

Dual specificity phosphatase MKP1 targets MPK6 and is

a negative regulator of genotoxic stress

Isolation of an Arabidopsis mutant with increased
sensitivity to the chemical mutagen methyl methane-
sulfonate and UV-C resulted in the identification of the
MKP1 gene, encoding a dual-specific phosphatase that
affects genotoxic stress [53]. Surprisingly, although mkp1
mutants showed hypersensitivity to genotoxic stress they
were more resistant to salt stress. Subsequent analysis
revealed that MKP1 preferentially interacts with MPK6
and to a lesser extent with MPK3 and MPK4 [53].
Although these results suggest that MKP1 controls the
genotoxic and salt stress-inducible MPK6 pathway, it is
not clear whether MPK6 is of central importance for the
adaptation of Arabidopsis to these stresses and if MPK6 is
the only target of the MKP1 phosphatase.

Conclusions

The first complete MAPK modules have been identified for
signalling biotic and abiotic stresses as well as for
cytokinesis. These studies provided compelling evidence
for the functioning of a partially overlapping set of MAPKs
in different pathways, indicating that knowledge on the
presence or absence of other signalling components will be
indispensable. Therefore, a future important task will be
to monitor the expression of all available MAPK com-
ponents in a developmental-, tissue- and signal-dependent
context. However, the same modules can serve different
functions in different cellular contexts, as shown for the
dual function of NPK1–MEK2–NTF6 in pathogen defence
and cytokinesis pathways. Integration of diverse signal
transduction pathways has become a prominent feature
that equally holds true for MAPK cascades, as seen
with the systemin, UV-B and brassinosteroid pathways
potentially targeting the same MAPKs in tomato.
www.sciencedirect.com
Investigations of signal transduction have uncovered
unexpected levels of cross talk between signalling cas-
cades. It comes as no surprise that MAPK pathways are
found centre stage, affecting diverse physiological pro-
cesses. This suggests that MAPK cascades are tightly
interlinked with other signalling pathways. The different
phenotypic effects caused by overexpression of NPK1
might be explained by cross talk to various cellular path-
ways. Whereas some NPK1 overexpressor plants showed
an embryo lethal phenotype related to auxin signalling,
others were tolerant to various abiotic stresses. The
opposite phenotypes of mutants in the dual specificity
phosphatase MKP1 on chemical mutagens and salt stress
could be taken as another example for cross talk of a
MAPK with other pathways.

The advent of VIGS in tobacco and tomato and the
availability of insertion mutants for almost any gene in
Arabidopsis have made it feasible to undertake high-
throughput analysis of signalling pathways by genetic
means. However, depending on the genetic background,
any genetic analysis might result in cellular reprogram-
ming and subsequent misleading interpretations. There-
fore, unbiased approaches analysing the global set of
cellular pathways will be necessary to improve our
understanding of the underlying molecular signalling
events. Full genome transcript profiling has become a
standard analysis for investigating organisms and
mutants at a global scale. Novel methods for performing
large-scale proteome profiling, including the various types
of post-translational modifications, should be of tremen-
dous value for complementing our understanding of the
structure and functioning of signalling pathways in a
cellular context.
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