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Memory in motion: Movement dynamics reveal

memory strength
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Abstract Recognition memory is typically examined as a
discrete end-state, describable by static variables, such as
accuracy, response time, and confidence. In the present
study, we combined real-time mouse-tracking with subse-
quent, overt confidence estimates to examine the dynamic
nature of memory decisions. By examining participants’
streaming x-, y- mouse coordinates during recognition deci-
sions, we observed that movement trajectories revealed un-
derlying response confidence. More confident decisions
were associated with shorter decision times and more linear
response trajectories. Less confident decisions were made
slowly, with increased trajectory curvature. Statistical indi-
ces of curvature and decision times, including area-under-
the-curve and time to maximum deviation, suggested that
memory strength relates to response dynamics. Whether
participants were correct or incorrect, old responses showed
a stronger correspondence between mouse trajectories and
confidence, relative to new responses. We suggest that peo-
ple subjectively experience a correspondence between feel-
ings of memory and feelings of confidence; that subjective
experience reveals itself in real-time decision processes, as
suggested by sequential sampling models of recognition
decisions.
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In the study of recognition memory, a long-standing ques-
tion has concerned the relationship of memorial accuracy to
subjective feelings of confidence (e.g., Busey, Tunnicliff,
Loftus, & Loftus, 2000; Dobbins, Kroll, & Yiu, 1998) and
the associated concept of variations in memory strength
(Wixted & Mickes, 2010). Although accuracy—confidence
dissociations have been frequently observed, it is typically
the case that participants are faster, more accurate, and have
greater recollective detail when they express higher recog-
nition confidence (Mickes, Wixted, & Wais, 2007; Ratcliff
& Murdock, 1976). Such findings are consistent with both
continuous signal detection theories (Wixted, 2007) and
dual-process theories (Yonelinas, 2002). By ecither view,
when a person correctly recognizes studied items as old,
these memories range in relative strength, typically mea-
sured using metacognitive confidence estimates (e.g., 1
[very sure new] through 7 [very sure old]). The nature of
confidence, as a proxy either for memory strength or sepa-
rate processes, is central to theories of recognition memory
(Parks & Yonelinas, 2007).

Although very strong memories are difficult to estimate
using standard Likert scales (Mickes, Hwe, Wais, & Wixted,
2011), confidence ratings are almost exclusively used to
gauge memory strength. However, participants’ ultimate
decisions, confidence estimates, and response times (RTs)
may not reflect the same latent cognitive processes, as many
standard memory theories assume (Pleskac & Busemeyer,
2010). Therefore, some researchers have proposed that all
three components of recognition decisions may be described
by sequential sampling models (e.g., Ratcliff & Starns,
2009), which suggest that perceivers continuously sample
memorial strength from test items, comparing accumulated
strength with a decision criterion. Recent models explain the
relationship between decisions, confidence, and RTs by
incorporating a dynamic drift diffusion process, suggesting
that evidence for old/new responses accrues over time. The
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present study was an attempt to make that time course
observable, using dynamic mouse-tracking (Spivey,
Grosjean, & Knoblich, 2005) to complement standard accu-
racy and RT measures. As described below, mouse-tracking
provides rich, trial-level information during recognition (or
other) decisions. In the present study, we report that, when
people generated old recognition decisions, there was a
close correspondence between physical movements of the
computer mouse and subjective confidence. This pattern
emerged for both hits and false alarms but was weaker
(although still present) during new responses, either misses
or correct rejections (CRs). The results are consistent with
recent suggestions (e.g., Kello, Beltz, Holden, & Van Orden,
2007) that, when people engage in cognitive—behavioral
tasks, they self-organize to produce stable performance.
For example, Kloos and Van Orden (2010) described such
“soft assembly,” suggesting that “[task] constraints self-
organize as temporary dynamic structures that span the
mind-body divide” (p. 19). Related to the present research,
we suggest that, when people are given a “memory test,”
they become sensitive to indications of memory strength
(Cox & Dobbins, 2011), with greater appreciation for evi-
dence of familiarity, relative to evidence of novelty. Under
the hypothesis of soft assembly, when memory decisions
must be indicated by moving a computer mouse, such
movements will become tightly coupled to task-relevant
cognitive activity. In the present case, the relevant cognitive
activity is temporally accumulating evidence that a test item
is old.

The mouse-tracking paradigm

Investigations into the relationship between bodily
movements and cognitive processes have shown that
the speed and force of buttonpresses is related to suc-
cessful memory retrieval (Abrams & Balota, 1991) and
that arm movements during response execution progres-
sively index learning of paired associates (Dale, Roche,
Snyder, & McCall, 2008). Two prominent methods are
currently available to examine the continuous accumu-
lation of information in cognitive processes: eye-
tracking and mouse-tracking. Results from these techni-
ques have supported an emerging view that cognition
reflects the dynamic interplay of temporally continuous
variables, as opposed to discrete, stage-like processes
(Spivey & Dale, 2006). For example, Tanenhaus,
Spivey-Knowlton, Eberhard, and Sedivy (1995) devel-
oped an eye-tracking paradigm to observe real-time
phonetic competition in spoken word recognition.
When participants were shown two objects, eye
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movements to targets (e.g., candle) were faster when
the alternative object’s name did not overlap phonetical-
ly (e.g., pickle), relative to when it did (e.g., candy).
Such results (see also Allopenna, Magnuson, &
Tanenhaus, 1998) suggest that eye movements reveal
dynamic cognitive operations, such as lexical competi-
tions unfolding in real time.

Although eye-tracking has provided insight in many
domains of cognitive science, it does not clearly differ-
entiate discrete versus continuous processes: Because
eye movements are ballistic, analyses must average
across many trials in which the eyes were fixating
relatively few locations (Magnuson, 2005). Thus, eye
movements may reflect rapid transitioning of discrete
mental states. Mouse-tracking may better reveal the
continuous dynamics of cognition. Spivey et al. (2005)
had participants view images of cohort competitors or
noncompetitors (e.g., candle and jacket) and quickly
click the images corresponding to spoken words. By
recording the streaming x-, y- mouse coordinates as
participants responded, Spivey et al. observed dynamic
attraction from the competitor objects as target words
unfolded in time. Participants’ mouse trajectories
“curved” toward the phonological competitor during
cohort trials but followed a more linear path during
control trials.

Mouse-tracking has been broadly used in cognitive and
social science to examine decision processes. In a moral-
reasoning task, low-truth value statements (e.g., Murder is
sometimes justified) were associated with curved response
trajectories, relative to high-truth value statements (e.g.,
Should you brush your teeth everyday?; McKinstry, Dale,
& Spivey, 2008). In race and sex judgment tasks, research-
ers typically find that category representations are simulta-
neously active when judged stimuli are less clearly defined,
as when faces are racially ambiguous (Freeman & Ambady,
2009, 2011). Response trajectories track the time course of
decisions, revealing response competition during more chal-
lenging decisions.

In the present study, we examined covert memory
strength using mouse-tracking. Participants studied a series
of words and, in a later recognition test, they made old/new
decisions by clicking labeled boxes on the screen. During
these decisions, we tracked the streaming x-, y-coordinates
of their mouse movements (Spivey et al., 2005). After each
decision, participants gave verbal confidence estimates. The
questions of interest were (1) whether mouse trajectories
during recognition would predict subsequent confidence
estimates and (2) whether such a relationship would differ
as a function of new versus old decisions. According to
many theories (e.g., Wixted, 2007), the hypothetical target
distribution is wider than the lure distribution. This may
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reflect either a greater range of memory strength for old
items or enhanced attention to familiarity signals in a
recognition test. In either case, mouse trajectories may
reveal that recognition decisions are not symmetric but
that people selectively attend to evidence that items might
be old.

Method
Participants

Thirty-five right-handed Arizona State University students
participated for partial course credit. All participants had
normal or corrected-to-normal, vision and were native
English speakers. One participant was excluded for failing to
follow instructions, leaving 34 participants (20 men, 14 wom-
en; Mg = 19 years). Participants were tested individually in a
sound-attenuated booth.

Materials

Words (n = 128) with concreteness ratings ranging from 550
to 700 were selected from the MRC Psycholinguistic
Database (Coltheart, 1981). High- and low-frequency words
were intermixed, with a goal of eliciting diverse confidence
estimates (Glanzer, Adams, Iverson, & Kim, 1993). All
words were pseudorandomly assigned to two lists and were
used equally often as targets and foils. Stimuli were pre-
sented centrally on a 15-in. CRT screen (resolution, 1,024 x
768 pixels) in 28-point Courier font, with study procedures
managed by E-Prime software (Psychology Software Tools,
2006) and test procedures managed by MouseTracker
(Freeman & Ambady, 2010).

Procedure

Participants first completed 64 study trials. Each trial began
with a 1,500-ms central fixation cross, followed by a 2,000-ms
display of a randomly selected word. Participants were asked to
memorize each word, in preparation for an upcoming memory
test. Study trials were followed by a 2-min break, during which
participants solved anagrams. Following the break, the re-
searcher launched MouseTracker and gave test instructions.
Test trials (n = 128, half old) began when participants clicked
a “start” button at the bottom-center of the screen, which
triggered the appearance of a centrally presented test word.
Participants judged words old or new by clicking the
corresponding options in the upper left and right corners of
the screen (response mapping was counterbalanced across par-
ticipants). During memory decisions, the x-, y-coordinates of

the mouse pointer were sampled at 70 Hz. To ensure that
response trajectories revealed online decision making, partic-
ipants were encouraged to begin their movements early and
were warned after slow trials. If a response was not made within
3,000 ms, or if initial movements began more than 400 ms after
stimulus onset, that trial was discarded from analysis.'

Following each recognition decision, participants verbally
estimated their confidence along a scale ranging from 1 (not at
all confident) to 7 (very confident). The researcher recorded
the estimate during a 1,000-ms intertrial interval.

Results

For all analyses, alpha was set to .05, and multiple comparisons
were subject to Bonferroni corrections. All mouse-tracking
data conversions were conducted via automated procedures
in the MouseTracker software. Prior to analysis, overt confi-
dence estimates were grouped into three categories: low (esti-
mates of 1-4), medium (estimates of 5-6), and high (estimates
of 7). The lower categories included wider ranges of estimates
to provide balanced values and avoid missing data.”

Recognition accuracy and RT

Standard signal detection indices were computed for each
participant, including 4’ and ¢ (a bias measure centered at zero;
higher values represent more conservative biases). Hit and CR
rates were analyzed as a function of confidence (low, medium,
high) in a three-level within-subjects ANOVA. As is shown in
the upper panel of Fig. 1, hits increased linearly with confi-
dence, F(2,31)=38.7, p <.01, 77; =.71. In pairwise compar-
isons, all differences were reliable [low—medium, medium—
high, low-high, all #5(32) > 4.3, ps < .001]. RTs followed a
complementary pattern; increases in confidence were associat-
ed with decreases in RT, F(5, 24) =22.3, p < .01, m,= .65. In

pairwise comparisons, all differences were again reliable [low—
medium, medium-high, low-high, all #5(32) > 4.4, p < .001].

! As was noted by Freeman and Ambady (2010), it is necessary to have
participants begin moving the mouse quickly, to ensure that decision
processes are still occurring while mouse movements are being
recorded. Across all participants, fewer than 3 % of trials were
excluded.

2 As was noted by Mickes et al. (2011), participants are typically
biased toward higher-confidence judgments. In the present case, sev-
eral participants never gave estimates of 1, which would have excluded
too much data. We selected confidence intervals that evenly divided the
ratings into three categories. To ensure that the uneven binning proce-
dure did not unduly affect the results, all comparisons involving
confidence were tested using both ANOVAs, which assume linearity
across the bins, and simple pairwise comparisons, which did not
assume linearity.
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As is shown in the bottom panel of Fig. 1, correct
rejections were equivalent across levels of confidence, F
(2,31)=0.89, p = .41, and all pairwise comparisons were null
(p > .48). Although accuracy did not increase with confidence,
CRs were issued faster when participants were more confident,
F(2,31)=30.9,p<.001, 7712, =.51. In pairwise comparisons, all
differences were reliable (low—medium, medium-high, low—
high, all ps <.001)

Mouse-tracking

Using MouseTracker, we rescaled response trajectories into
a standard coordinate space and normalized them into 101
time-steps; this allows all responses to be compared, regard-
less of absolute RTs. To examine the association of confi-
dence and response dynamics, trials were again categorized
by confidence, and mouse trajectories were examined by
area-under-the-curve (AUC). AUC represents the area be-
tween the observed and ideal (i.e., linear) trajectories and is
used to measure the dynamic attraction to response
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competitors (for details and validation, see Freeman &
Ambady, 2010, p. 230).

Considering first old responses, the main portion of Fig. 2
shows average mouse trajectories corresponding to hits, with
separate functions for low-, medium-, and high-confidence
responses. As is shown, curvature increased with decreases
in confidence. The smaller, inset panel shows the trajectories
for false alarms, which followed the same overall pattern.
However, because few participants contributed false alarms
to all three confidence bins, only the hits were statistically
analyzed. For the hits, high-confidence responses were associ-
ated with more linear trajectories, relative to medium- and low-
confidence decisions. AUC values were first compared across
confidence categories in a three-level within-subjects ANOVA,
with Greenhouse—Geisser corrected degrees of freedom. The
main effect of confidence was reliable, F(1.5, 46.6) = 8.6,
p = .002, nf, = .22, supporting the subjective impression of
the trajectory plot. In pairwise comparisons, curvature differed
between high- and medium-confidence hits, #32) > 2.7,
p < .05, and also differed between high- and low-confidence
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hits, #26) > 2.9, p <.02. The difference between medium- and
low-confidence hits was marginal, #(27) > 1.9, p < .009.

The foregoing analysis suggested that curvature of the
mouse trajectories was related to underlying confidence.
One concern, however, is that creating artificial confidence
bins (low, medium, high) may have unduly imposed such
structure on the data. To ensure that the apparent relation-
ship was not an artifact of the binning procedure, we con-
ducted a second set of analyses. For each participant, we
calculated the correlation (Pearson’s ) between AUC and
expressed confidence, across trials. For trials producing hits,
the correlation was negative (i.e., higher confidence was
associated with lower curvature) and reliably differed from
zero, r =—202, SE = .04, #33) =—5.38, p <.001. Therefore,
the relationship suggested by Fig. 2 still held, even when
separate functions were not derived for different confidence
bins.

It is also hypothetically possible that the results reflect an
artifact of the averaging process. Specifically, a concern
with mouse-tracking is that, in a subset of trials, the partic-
ipant may make discrete movements in one direction and
then reverse course toward the eventual choice. Given a
handful of such trials, the average trajectories may have a
misleading curvilinear form. To address this, we computed
the bimodality coefficient, b, from the distribution of z-
normalized AUC values provided by MouseTracker. If b
exceeds .555, the distribution is bimodal; otherwise, it is
unimodal (see Freeman & Ambady, 2010, p. 231). In our
case, b was less than .0001, allowing us to confidently reject
the bimodality hypothesis.® This is important for data vali-
dation, and it helps clarify the likely direction of effect
between mouse trajectories and confidence. That is, instead
of implicit confidence affecting curvature, people might be
aware of their own mouse trajectories, then heuristically
infer confidence levels after the fact. Although such an
interpretation cannot be ruled out in the present study, it
seems likely that people would mainly be aware of large
variations in mouse trajectories, such as direction reversals,
rather than the rather subtle differences we observed.

Considering next new responses, the main portion of Fig. 3
shows average mouse trajectories corresponding to CRs, with
separate functions for low-, medium-, and high-confidence
responses. As is shown, there was little systematic relationship
of curvature and confidence. The smaller, inset panel shows the
trajectories for misses, which showed the same pattern. Again,
because few participants contributed misses in all three confi-
dence bins, only the CRs were statistically analyzed. For the

3 The time necessary to reach the maximum deviation (MD) from a
linear path was also examined. During old test trials, MD time was
reliably influenced by confidence, F(2, 29) = 16.07, p < .01, 7]]27 =.53;
as confidence increased, MD decreased. This pattern was also evident
in new test trials, F(2, 29) = 13.64, p < .01, 17[27 =.49.

CRs, although the relationship was relatively weak, there was a
reliable main effect of confidence, F(1.8, 55.4)=5.67, p=.009,
n!z, =.15. Despite this main effect, none of the pairwise compar-

isons were reliable (all s < 1.6, ps > .11). As with the hits, we
next conducted a correlation analysis on the CRs, without
separating trials into confidence bins. The correlation was again
negative and reliably differed from zero, r = —.127, SE = .03, ¢
(33) =—4.39, p <.001.

Although we observed a relationship between trajectory
curvature and confidence for both hits and CRs, the associ-
ation appeared more robust for o/d trials. To assess this, we
first conducted a 2 x 3 ANOVA with factors of response
type and confidence level. The key interaction was margin-
al, F(2.7, 109.8) = 3.03, p = .06, 775 = .07, suggesting a
stronger relationship in the hit trials. To test this more
directly, the correlation coefficients derived for hit and CR
trials were Fisher-transformed and compared, showing a
reliable difference, #33) = 2.18, p < .05. Taken together,
the results suggest that confidence was related to response
trajectories across trials, with a slightly stronger relationship
for recognition hits.

Discussion

The present results suggest that subjective memory strength
accrues in real time and is observable in behavioral response
dynamics.* Participants in this study made old/new deci-
sions while their mouse coordinates were tracked, followed
by confidence estimates along a 1-7 scale. By examining
response trajectories and subsequent confidence, we ob-
served a reliable correspondence of apparent memory
strength and movement dynamics, primarily in trials that
participants (correctly or incorrectly) judged as old.
Although confidence estimates were issued after recognition
decisions were complete, there was a clear relationship:
Stronger memories yielded fast, linear movements, while
weaker memories yielded slower, curvilinear movements.
We suggest that such continuous, dynamic information may
offer researchers new insight, complementing the standard
accuracy and RT measures in recognition memory. In the
present case, metacognitive confidence predicted both hit
rates and RTs, as has been frequently reported (e.g.,
Johnson, 1939). By virtue of mouse-tracking, we also

4 Rather than variations in memory strength, an alternative interpreta-
tion is that response criteria varied across trials (Benjamin, Diaz, &
Wee, 2009). Although this is plausible, whether the findings reflect
variations in memory strength or criteria, the deeper interpretation is
similar, since the hypothetical “distance” from the memory signal to
the criterion is revealed by curvature of the mouse dynamics.
Notably, Dale et al. (2008) observed increased linearity as paired-
associate learning became stronger, in a task that required no old/
new decisions.
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observed that less confident old decisions were character-
ized by slow-resolving competition between the o/d and new
response options, giving greater insight into the processes
leading to eventual decisions and RTs.

Our results are (at least metaphorically) compatible with
sequential sampling models, which propose that recognition
decisions are based on the accumulated strength of stimulus
information. For example, Pleskac and Busemeyer (2010)
recently developed a two-stage dynamic signal detection
theory (2DSD), which combines signal detection theory
(Green & Swets, 1966) with random-walk/diffusion theory
(see Ratcliff & Starns, 2009; Vickers, 1979). During the first
stage of processing, information (strength) is sequentially
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make a choice when enough evidence has accumulated that
the trajectory “drifts” toward one of the alternatives and a
criterion is crossed. Critically, however, perceivers do not
stop collecting evidence once the random walk process has
surpassed an old or mew criterion; cognitive states do not
discretely transition to a second stage. Instead, evidence
continues to accrue, and an eventual confidence estimate is
based on the total strength of accumulated information. The
present results accord nicely with the theoretical premises of
such diffusion models, since they suggest continuous,
strength-driven evidence evaluation. Participants (literally)
moved toward recognition decisions faster and more directly
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when they had higher confidence, in a manner that resem-
bles information accumulation in the 2DSD theory. Of
course, it will take considerable theoretical development to
establish a valid “linking hypothesis” (Allopenna et al.,
1998) between mouse trajectories and theoretical constructs
such as diffusion processes.

Beyond offering a potential connection to dynamic recogni-
tion theories, the mouse-tracking results also revealed an asym-
metry: When people believed items were old (either correctly
or incorrectly), there was a tight correspondence between con-
fidence and mouse-trajectory curvature. When people believed
items were new, this relationship was observed, but weaker.
This pattern supports several interpretations. First, it is often
theorized that recognition memory reflects unequal-variance
signal detection (Wixted, 2007). In theory, when a person
studies a list of words, each one receives some increment in
memory strength, giving rise (during test) to a distribution of
targets with greater average “strength” than a corresponding
lure distribution. If every word received an equivalent boost
from study, we would expect these distributions to have rough-
ly equal variance. But, under the more likely assumption that
study items vary in their “memory boosts,” we expect the target
distribution to have greater variance than the lure distribution, a
prediction that has been frequently supported by ROC analyses
(e.g., Mickes et al., 2007). With respect to the present study, we
may hypothesize that mouse trajectories correspond to sampled
memory strength: Greater variation arises in dynamic decision
movements because greater variation exists in implicit strength.

Second, the results may reflect occasional recollection. In
high-threshold models, recognition decisions may reflect gra-
dations of familiarity or qualitatively separate episodes of rec-
ollection. We may hypothesize that more linear mouse
trajectories reflected moments of recollection and that more
curved trials reflected gradations of familiarity, a concrete hy-
pothesis for future research. Third, the results may reflect
participants’ orientation toward the recognition task. Cox and
Dobbins (2011) suggested that, when people are given a “mem-
ory test,” they may place a premium on feelings of memory,
with less focus on feelings of novelty. They reported that
memory decisions were distributed nearly identically, even in
tests without lures or without targets. When asked to evaluate
whether items feel familiar, people may dynamically assemble
a correspondence between feelings of memory and, in this case,
the movements used to indicate those feelings. This ability to
self-organize cognition and action (Kloos & Van Orden, 2010)
forms the underlying logic of the mouse-tracking paradigm
(Magnuson, 2005). In the present case, an implicit orientation
toward “memory signals” may support a tight correspondence
between latent memory strength and observable action.
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