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The resistance of bacteria to protozoal 
predation 

Protozoa, of which there are thousands of species, are 
ubiquitous in diverse natural habitats such as fresh and 
salt water, moist soils and even dry sands. The role of free- 
living protozoa in terrestrial and aquatic environments as 
predators of bacteria is widely acknowledged. Predation 
by protozoa has a significant effect in controlling bacterial 
populations in soil, and the degradation of bacteria 
undoubtedly contributes to the maintenance of soil 
fertility (Foster & Dormaar, 1991 ; Weekers e t  al., 1993). 
Likewise, protozoa play an integral part in the cycling of 
nutrients in aquatic food chains (Porter, 1984; Wright & 
Coffin, 1984). 

However, it is clear from other studies concerning the 
interaction of bacteria and protozoa that not all bacteria 
are suitable food sources for amoebae (Singh, 1942,1946; 
Danso & Alexander, 1975; Weekers e t  al., 1993). Alex- 
ander (1 981) reported that some Gram-negative bacteria 
were able to survive grazing by protozoa, which could be 
due to the inability of the amoebae to take-up or to kill 
and digest internalized bacteria. Alternatively, bacteria 
may be able to resist engulfment by defence mechanisms 
such as toxins, toxic pigments or outer-membrane 
structures (Weekers etal., 1993). There has been a number 
of reports (Preer etal., 1974; Hall & Voelz, 1985; Fritsche 
e t  al., 1993) of bacteria surviving as endosymbionts of 
free-living protozoa, thus demonstrating adaptation to 
the intracellular environment. The discovery that Legion- 
ella pnetlmopbila infects and multiplies within some 
species of free-living amoebae (Rowbotham, 1980) has 
confirmed the ability of bacteria to exploit a normally 
hostile intracellular environment to ensure survival. 
Indeed, survival and intracellular growth of bacterial 
species in protozoa may well prime pathogenic bacteria 
for virulence. However, the potential role of protozoa as 
reservoirs for human pathogens does not appear to have 
received adequate attention. This article examines the 

importance of protozoa in the maintenance, survival and 
protection of pathogenic bacteria in natural and man- 
made ecosystems. 

Protozoa and interactions with bacterial 
pathogens 
Legionellaceae 

Although at least 34 Legionella species have been identified, 
Leg. pnetlmopbila is the primary cause of Legionnaires' 
disease, a serious form of atypical pneumonia. Leg. 
pnetlmopbila can infect and multiply within Hartmannella, 
Acantbamoeba and Naegleria species, which are ubiquitous 
in moist soil and aquatic environments (see Table 1). 
Legionellae can also survive and multiply within ciliated 
protozoa of the genus Tetrabymena, a freshwater bacterio- 
vore (Fields e t  al., 1984). Following phagocytosis by 
acanthamoebae, legionellae multiply within the cyto- 
plasm, evading the host lysosomal attack so that after 
36-48 h a single vesicle of motile legionellae fills most of 
the amoebal cell. The final effect of infection is iysis of the 
cell and liberation of many motile bacteria into the 
environment. Rowbotham (1 986) has studied electron 
micrographs of Leg. pnetlmopbila growing within 
Acantbamoeba poEypbaga in the later stages of infection. It 
has been estimated that an amoebal vesicle of 10 pm 
diameter, with 90% of the space occupied by bacteria 
measuring 0.32 x 0.60 pm, could contain approximately 
lo4 bacterial cells. Leg. pnetlmopbila is now known to infect 
five genera of amoebae (Fields, 1993), whereas other 
species of Legionella have a more specialized host range 
(Fields e t  al., 1990). 

Recently, a group of legionella-like amoebal pathogens 
(LLAPs) have been reported (Rowbotham, 1993), which 
are bacilli that infect and multiply in the cytoplasm of 
amoebae but so far have not been found to grow on 
laboratory media. LLAPs may be of considerable im- 
portance because they are capable of causing pneumonia 
and induce a serological response in infected patients 
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Table 1. Bacterial pathogens surviving within protozoa 

Bacterial species Protozoal host Outcome of protozoal Selected references 
uptake 

Legionella pneumopbila 

Legionella pneumopbila 
Legionella-like amoebal 

pathogens (LLADs) 
Listeria monocytogenes 

Vibrio cbolerae 

E dwa rdsiella ta rda 
Aeromonas salmonicida 

(Fish pathogens) 
Mycobacterium leprae 
Opportunist mycobacteria 

Pseudomonas, Alcaligenes 
and Bacillus species 

Coliform organisms 
(including Salmonella 
t_ypbimurium) 

Acantbamoeba Multiplication, cell lysis 
Naegleria 
Tetraby mena Multiplication, cell lysis 
Acantbamoeba Multiplication, cell lysis 
Hartmannella 
Acantbamoeba Multiplication, cell lysis 
Tetrabymena Multiplication, cell lysis 
Acantbamoeba Multiplication 
Naegleria 
Tetraby mena Multiplication 

Acantbamoeba Survival 
A cantbamoeba Su r vi Val 

Hartmannella Survival 

Tetraby mena Survival 
A cantbamoeba 

Rowbotham (1980) 

Fields e t  al. (1984) 
Rowbotham (1 993) 

Ly & Muller (1990a) 
Ly & Muller (1990b) 
Thom e t  al. (1992) 

King & Shotts 
(1988) 

Jadin (1975) 
Krishna-Prasad & 

Tyndall etal. (1991) 
Gupta (1978) 

King e t  al. (1988) 

(Rowbotham, 1993). PCR studies of amplified DNA 
coding for the 16s rRNA of LLAP (type 3) have shown 
that this organism is a member of the genus Legionella (Fry 
etal., 1991). Based on rRNA analysis it has been suggested 
that LLAPs may be a new group of Legionella (Row- 
botham, 1993) and that they are closely related to 
Sarcobizlm &iczrm, an obligate intracellular parasite of soil 
amoebae, first described in Poland by Drozanski (1991). 

Although the interactions between legionellae and 
amoebae were observed in vitro with axenically grown 
amoebae (Rowbotham, 1980), it has been shown that 
amoebae isolated directly from river-water sediment 
contained Leg. pnezrmophila after they were washed and 
lysed (Harf e t  al., 1987). More recently, soil amoebae of 
the genus Vahlkampfia and Hartmannella were found to be 
infected by Leg. longbeachae (Steele, 1993). Dry potting soil 
compost containing such amoebae has been associated 
with a number of cases of pneumonia in Southern 
Australian states caused by Leg. longbeachae. It is now 
apparent that intra-protozoal growth of legionellae is a 
primary mechanism for the survival and multiplication of 
the bacterium in natural habitats (Wadowsky e t  al., 1988; 
Fields e t  al., 1989) and that Legionella are not simply and 
only free-living bacteria per se, but have a highly evolved 
host/parasite relationship, described as protozootic 
(Rowbotham, 1993), for their survival in natural eco- 
systems. 

Other bacterial species surviving in amoebae 

Legionella are not the only human pathogens capable of 
survival in protozoal hosts (see Table 1). Reports suggest 
that the fate of internalized bacteria falls into three main 

groups; those which multiply and cause lysis of amoebal 
cells such as Legionella and Listeria; those which multiply 
without causing cell lysis (Vibrio cholerae) ; and those 
which survive without multiplication (certain coliform 
organisms and mycobacteria). 

Listeria are a diverse group of environmental bacteria 
often considered to be soil micro-organisms (Seeliger, 
l988), but some species infect humans and other mammals 
and invade host cells, including macrophages. Ly 8c 
Muller (1 990a) reported that Listeria monogtogenes in- 
fection of Acanthamoeba castellaniicauses cell lysis and death. 
L. monoc_ytogenes can also grow in coculture with Tetra- 
kymena pyrifrmis and causes cell lysis after 8-15 d 
incubation (Ly & Muller, 1990b). Panikov e t  al. (1993) 
have confirmed that L. monogtogenes grows within T. 
pyrifrmis and calculated a generation time of 14.4 h, 
compared to a generation time of 7 h for legionellae. L. 
monogtogenes infects nutrient-depleted axenic cultures of 
A. pohphaga, resulting in a 1-2 log increase in numbers 
after 3 d incubation (J. Barker, unpublished data). The 
infection appears to induce formation of thin-walled 
precysts containing many motile listeria. 

Other environmental bacteria capable of growth in T. 
pyrifrmis include Edwardsiella tarda and Aeromonas salmon- 
icida, two common bacterial fish pathogens (King & 
Shotts, 1988). In addition, environmental species of 
opportunist mycobacteria (including Mycobacterizrm avitrm) 
survive within A. castellanii and when amoeba-cell div- 
ision occurs, ingested bacteria are passed to the progeny 
(Krishna-Prasad & Gupta, 1978). Jadin (1975) has found 
that Mycobacterizm leprae is capable of growth in 
Acanthamoeba ctllbertsoni and suggested that free-living 
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amoebae may be environmental vectors for mycobacteria 
including M. leprae (Jadin, 1987). 

Further evidence of the role of amoebae in the main- 
tenance of pathogens in the environment has been 
reported by Thom e t  al. (1 992), who found that I/. cholerae 
multiplied after ingestion by Naegleria and Acantbamoeba 
species. I.,'. cbolerae also survived within cysts of Naegleria 
and was recovered from the excysting amoeba. Free- 
living amoebae may help to maintain I/. cholerae in natural 
waters in parts of the world where there is no evident 
association with cases of clinical cholera (Colwell e t  al., 
1977; Bashford e t  al., 1979), thus acting as reservoirs for 
possible cholera infections. 

Protozoa : their role in the protection of 
envi ronmenta I bacteria 

Bacteria internalized by protozoa may be given unique 
protection when the protozoa form cysts. Under adverse 
conditions, Rowbotham (1 986) observed that Acan- 
tbamoeba containing legionellae encyst, leading to the 
formation of a precyst or a mature thick-walled cyst which 
traps motile or non-motile legionellae. Legionella species 
have been detected in sewage works and concentrations 
were not appreciably reduced by either primary or 
secondary treatment processes (Palmer e t  al., 1993). This 
finding could be related to the protection provided by 
protozoa which are ubiquitous inhabitants of sewage- 
treatment plants. The resistance of amoebal cysts to 
extremes of temperature (Chang, 1978; Biddick e t  al., 
1984) and to the effects of biocides (De Jonckheere & Van 
de Voorde, 1976) may contribute to the difficulties in 
eradicating legionellae from contaminated water systems 
using conventional disinfectant procedures. A.  pohpbaga 
cysts infected with Leg. pnetrmophila protected the bac- 
terium from the action of chlorine (Kilvington & Price, 
1990) and isothiazolone biocides (Kilvington, 1990) ; 
bacteria were recovered from excysting amoebae. Not 
only does the amoebal cyst offer a mechanism for bacteria 
to evade hostile environmental conditions, but it also 
provides a means by which the bacteria can spread and 
colonize new habitats by it being blown through the air 
(Kingston & Warhurst, 1969). 

Coliform bacteria internalized by protozoa in natural 
ecosystems may give protection against external ant- 
agonists (King e t  al., 1988). Salmonella t_yphimuritlm and 
Shigella sonnei survived ingestion by laboratory strains of 
A. castellanii and T. pyriformis and were shielded from the 
activity of free chlorine. Bacteria were cultured from 
chlorine-treated protozoans well after the time required 
for 99 O/O inactivation of extracellular cells. Thus, organ- 
isms trapped within amoebae could be responsible for the 
persistence of coliform bacteria in chlorine-treated water 
supplies (Goshko e t  al., 1983; Hudson e t  al., 1983). The 
role of free-living amoebae in harbouring environmental 
bacteria has been confirmed by the presence of hetero- 
trophs, including Psetrdomonas and Alcaligenes species, 
isolated from Hartmannella trophozoites and cysts, found 
in well-water samples (Tyndall e t  al., 1991). 

The control and eradication of L. monoytogenes in food 
production is a continuing problem, as Listeria are often 
isolated from moist surfaces in food-processing plants 
(Frank e t  al., 1990; Nelson, 1990). The isolation of these 
organisms highlights problems in cleaning and disin- 
fection, but a contributory factor to the survival of the 
organism's in such environments is likely to be through 
association with adherent biofilms (Ren & Frank, 1993). 
Although it is widely acknowledged that biofilm bacteria 
are generally more resistant to treatment with biocides 
(Costerton e t  al., 1987; Gilbert e t  al., 1990), Listeriae 
ingested or encysted by amoebae would have an increased 
chance of surviving disinfection procedures. Yet the 
possible role of free-living amoebae in promoting the 
survival of Listeria in the environment has not been 
explored. 

Recently eye-wash stations in hospitals were found to 
contain Leg. pnetrmopbila, Psetrdomonas species and Acan- 
thamoeba (Paszko-Kolva e t  al., 1991). The presence of the 
Acanthamoeba probably had a significant role in allowing 
the bacterial species to survive, as amoebal lysis resulting 
from infection with legionellae would release nutrients, 
encouraging the growth of other bacteria. 

As well as providing physical protection from adverse 
conditions, growth in amoebae may alter the physiology 
of bacteria. Leg. pnetrmophila cells grown within Acan- 
thamoeba and then freed from the amoebal host were 
significantly resistant to treatment with biocides com- 
pared to bacteria grown in vitro (Barker e t  al., 1992). For 
example, only a 10-fold kill was achieved with an 
isothiazolone derivative against intra-amoebal-grown 
legionellae, whereas a 1000-fold kill was observed for cells 
grown in vitro. Intra-amoeba1 growth may also affect 
bacterial survival after the death of the host. Leg. 
pnetrmophila has been recovered after growth in A. 
pohpbaga and storage at 4 "C for 6 months with only small 
reductions in the viable count (J. Barker, unpublished 
data). These results are compatible with the finding that 
the physiology of legionellae has altered as a result of their 
growth within the amoebae and produced a radically 
altered phenotype (Barker e t  al., 1993). 

Bacterial survival within host protozoa 

Although some bacterial species survive ingestion by 
protozoa, under certain environmental conditions the 
same organisms are eradicated. At low temperatures 
acanthamoebae may phagocytose and digest Leg. pnetrmo- 
phila as food (Anand e t  al., 1983), or evict the phagosomes 
containing legionellae as faecal vesicles (T. Rowbotham, 
personal communication). Alternatively, at higher tem- 
peratures after infection with the same strain of Legionella, 
the amoebae can be heavily parasitized so that after 24 h 
they become packed with motile legionellae. Growth 
temperature may be an important factor in determining 
the virulence of Leg. pnetrmophila. Mauchline e t  al. (1 993) 
have shown that in continuous culture, under defined 
conditions, Leg. pnetlmophila maintains its virulence in 
animal pathogenicity tests. When the growth temperature 
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was decreased from 37 "C to 24 OC, virulence was 
attenuated because none of the animals died. 

As with other micro-organisms the virulence of Legionella 
species is almost certainly governed by the products of 
many genes (Miller e t  al., 1989). The molecules of potential 
importance to the intracellular survival of Leg. pnetlmopkila 
have been extensively reviewed (Dowling e t  al., 1992; 
Horwitz, 1993; Hacker e t  al., 1993). However, the uptake 
of bacteria by protozoal hosts is an important stage in the 
infective process. Previous studies (King e t  al., 1991) have 
indicated that Leg. pnetlmophila infects Hartmannella vermi- 
formis by a microfilament-independent mechanism (it is 
not inhibited by cytochalasin D). Conversely, an inhibitor 
of adsorptive pinocytosis (methylamine) blocked infec- 
tion of H. vermzjormis, which suggests that receptor- 
mediated endocytosis is necessary for infection of the 
amoebae. Further work by Fields etal. (1993) has indicated 
that entry, not attachment, of virulent Leg. pnetlmophila is 
the limiting step in infection of axenically grown H. 
zvrmiformis. Hodinka & Wyrick (1 986) have described 
receptor-mediated endocytosis as a means of avoiding 
phagosome/lysosome fusion for chlamydiae in mouse 
fibroblast (L-929) cells. This method of uptake is sus- 
pected to direct the organism into vesicles that do not fuse 
with the lysosome. 

Ultrastructural examination of infected Hartmannella has 
revealed that, immediately after ingestion, single Leg. 
pnemzophila cells are found in endosomes. It has been 
suggested by Fields (1993) that in H. vermifrmis, the 
endosome containing the legionellae fuses with the 
endoplasmic reticulum of the host cell and that this 
becomes the site for bacterial multiplication. An exam- 
ination of the uptake of the intracellular parasite Brucella 
by Vero-cells has revealed that it multiplies within the 
endoplasmic reticulum and so avoids attack by lysozyme 
enzymes (Detilleux e t  al., 1990). 

Protozoa, biof ilms and bacterial evolution 

The importance of biofilms in the maintenance and 
survival of micro-organisms in the general environment is 
widely acknowledged (Costerton e t  al., 1987 ; Characklis 
& Marshall, 1990). Biofilms not only serve to allow for 
the growth of micro-organisms in water systems but also 
protect from antimicrobial substances (Keevil e t  al., 1990 ; 
Brown & Gilbert, 1993). Biofilms are a major source of 
Legionella species in both man-made (Rowbotham, 1993) 
and natural aquatic systems (Marrao e t  al., 1993). The 
concentration of bacteria within the biofilms provides 
excellent opportunities for attack by predators, such as 
protozoa, and parasites, such as bacteriophages and 
Bdellovibrio species (Characklis e t  al., 1990). The biofilm/ 
water interface also attracts ciliates, flagellates and 
amoebae, which graze the surface, seeking food. Although 
Legionella is an effective parasite of certain species of 
protozoa, it in turn is susceptible to predation by 
Bdellovibrio (Tomov e t  al., 1982; Richardson, 1990), a 
bacterium associated with the biofilm environment (Starr 
& Seidler, 1971). Perhaps it should be no surprise that 
environmental bacteria such as Legionella, Listeria and 

Vibrio species have evolved so that they are capable of 
surviving and multiplying within biofilm predators such 
as amoebae, as it offers protection in adverse conditions. 
Indeed it has been suggested (King e t  al., 1988) that 
resistance to digestion by predatory protozoa was an 
evolutionary prerequisite of bacterial pathogenicity and a 
survival mechanism for bacteria in aquatic environments. 
In support of this hypothesis, Cianciotto & Fields (1 992) 
have reported that the Leg. pnetlmophila mip gene potenti- 
ates intracellular infection of protozoa and human macro- 
phages. The mip gene (Cianciotto e t  al., 1989), which is 
responsible for the production of a 24 kDa surface 
protein, appears to be required for optimal intracellular 
infection and may be involved in resistance to intracellular 
killing. Thus the ability of Leg. pnetlmophila to parasitize 
macrophages and hence to cause human disease may be a 
consequence of its adaptation to intracellular growth 
within protozoa. Mip analogues have been found in other 
intracellular parasites, including Coxiella, Chlamydia and 
Neisseria (Bangsborg e t  al., 1991; Dumais-Pope e t  al., 
1993). It would be tempting to speculate that Mip-related 
proteins are critical for the virulence of intracellular 
pathogens. However, virulence of intracellular parasites is 
almost certainly multifactorial and not dependent on the 
expression of individual phenotypic traits (Horwitz, 
1993). The bacterial pathogens capable of survival and/or 
multiplication in protozoa include Listeria, Legionella, 
Mjcobacteritlm and Vibrio. With the exception of I/. 
cholerae their pathogenesis in the human host involves 
intracellular invasion and replication in phagocytic cells. 
However, it has been noted that in a study of the 
phylogenic relationship between Chlamydia, an obligate 
intracellular parasite, and other bacteria, that ribosomal 
RNA from Chlamydia hybridized preferentially with DNA 
from V. cholerae (Palme & Falkow, 1986). 

Concluding remarks 

Although the evolutionary role of protozoa in the 
development of bacterial pathogenesis is debatable, there 
is no doubt of the importance of bacteria/protozoa 
interactions in terms of human disease. They allow 
survival, replication and distribution of some species of 
pathogenic bacteria in the natural environment. The 
intracellular niche affords protection against adverse 
environmental conditions and treatment with biocides, 
such as chlorine. It has been suggested that amoebae may 
act as vectors for the direct transmission of Leg. pnetlmo- 
phila to the human host, through inhalation of amoeba1 
vesicles containing bacilli (Rowbotham, 1992 ; O'Brien & 
Bhopal, 1993). 

Intra-amoeba1 growth of bacteria may induce phenotypes 
that are considerably different from in-vitro-grown strains 
in terms of physiological status, survival and infectivity. 
The cell morphology and protein, lipopolysaccharide and 
fatty acid content of Leg. pnetlmophila after growth within 
A. pobphaga, was found to differ considerably from cells 
grown in vitro (Barker e t  al., 1993). Bacteria grown on 
Legionella agar after cocultivation with acanthamoebae 
reverted to the morphological phenotype associated with 
in vitro conditions (typically nonmotile and filamentous), 
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whereas, intra-protozoal growth induced legionellae that 
are morphologically similar to those observed within 
macrophages, i.e. small and highly motile (King e t  a/., 
1991). The changes in the molecular composition of intra- 
amoebal-grown bacteria could be important to infection 
processes in the human host because it is well established 
that surface molecules play a vital role in bacterial survival 
and virulence (Brown & Williams, 1985). Indeed, it is 
tempting to speculate that protozoa could be used as 
alternatives to macrophages and other animal cell-lines 
for studying the virulence characteristics of obligate 
intracellular parasites such as Chlamydia, Coxiella or even 
M. leprae. 

Amoebae are an integral part of natural and man-made 
water systems and they will not be easily controlled or 
eradicated. Their role in the maintenance of human disease 
such as legionellosis has only recently been acknowledged 
and their role in the survival and distribution of other 
pathogenic bacteria has received scant attention. Yet these 
host/parasite interactions may be of considerable im- 
portance to the maintenance of infectious agents in the 
environment. Furthermore, intra-protozoal growth of 
bacteria may well optimize their potential for virulence : 
inside the protozoal ‘Horse’ they may be adapting to the 
human ‘ Troy ’. 

We would like to thank D r  T. Rowbotham for helpful 
discussions on this topic. 
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