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Abstract—Detecting human activity independent of intensity is
essential in many applications, primarily in calculating metabolic
equivalent rates and extracting human context awareness. Many
classifiers that train on an activity at a subset of intensity levels
fail to recognize the same activity at other intensity levels. This
demonstrates weakness in the underlying classification method.
Training a classifier for an activity at every intensity level is also
not practical. In this paper, we tackle a novel intensity-independent
activity recognition problem where the class labels exhibit large
variability, the data are of high dimensionality, and clustering al-
gorithms are necessary. We propose a new robust stochastic ap-
proximation framework for enhanced classification of such data.
Experiments are reported using two clustering techniques, K-
Means and Gaussian Mixture Models. The stochastic approxima-
tion algorithm consistently outperforms other well-known classi-
fication schemes which validate the use of our proposed clustered
data representation. We verify the motivation of our framework
in two applications that benefit from intensity-independent activ-
ity recognition. The first application shows how our framework
can be used to enhance energy expenditure calculations. The sec-
ond application is a novel exergaming environment aimed at using
games to reward physical activity performed throughout the day,
to encourage a healthy lifestyle.

Index Terms—Classification, clustering, energy expenditure
(EE), exergaming, intensity-varying activity, mixture models,
stochastic approximation model.

I. INTRODUCTION AND RELATED WORKS

W EARABLE sensors, specifically inertial sensors, con-
tinue to be used in activity recognition systems and de-

vices [1]. For example, previous literature has shown the value of
using accelerometer-based activity monitors [2], [3]. These ac-
tivity monitors are used in combination with regression models
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Fig. 1. Features collected from a wearable accelerometer at varying intensity
levels can significantly overlap.

to enhance and automate the calculation of metabolic equivalent
of task (MET), which is then used to approximate the calories
burned [2]. The gaming industry continues to benefit from the
accuracy of activity recognition systems using wearable kine-
matic sensors by developing interactive games that make gam-
ing near-realistic [4], [5]. However, most research surrounding
activity recognition either trains and tests activity at a single
intensity level [6], or omits the intensity of the activity all to-
gether [7], [8]. Features collected on an activity categorized as
running or walking will not only vary from one subject to the
next, but will also vary with intensity. Yet when we physically
see someone running or walking at any intensity level we can
readily distinguish between the two, even though our eyes have
not seen running and walking at every possible intensity level.
The challenge remains to train a classifier on a subset of ac-
tivity intensity levels, and to test it on different intensity levels.
Only when a classifier performs well in classifying an activity at
new intensity levels can it be claimed to be a robust provider of
intensity-independent activity classification. We primarily focus
our efforts on distinguishing activities of walking and running
across multiple intensity levels.

Due to the large variance and overlap in the feature sets, it is
quite challenging for a classification algorithm trained on one
intensity level to distinguish walking and running at another in-
tensity level [9]. Due to large intersubject variability, the nature
of the data collected from an accelerometer at multiple intensi-
ties will be scattered with high variance, exhibiting overlapping
categories across intensity levels [10], [11]. Fig. 1 provides
an illustration of the large variance in the features collected
across subjects and intensity levels, where someone walking at
2 mph may present similar characteristics to someone walking at
4 mph.
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Class models are typically generated using raw sample points
within each class label (activity category), resulting in complex
and computationally inefficient systems. Some use clustering
to enhance the computational efficiency [12]. We attempt to
generate an activity model that uses clustering combined with
uncertainty within the clusters to learn a robust activity model
that can classify the same activity at a range of intensity lev-
els, resulting in a more efficient formulation. Our framework is
compared against other well-known classification schemes such
as SVM, kNN, and C4.5 Decision Trees (DTs).

A. EE Calculation

Typically, physiological variable such as METs are predicted
using values from a tri-axis accelerometer [13]. The relationship
between the accelerometer and MET is determined using multi-
ple regression techniques [14]. However, there are more than 30
such techniques that produce very different results [15], [16].
Also, differences in energy expenditure (EE) values from ac-
celerometer data result from inconsistencies in the calibration
process, which makes comparing results among studies diffi-
cult [17]. Our ability to detect an activity type independent of its
intensity empowers EE calculations to use separate regression
models for each activity type, resulting in an improvement in
EE calculations.

In many health-related fields, interest in EE has sparked the
need to analyze the intensity of human activity. Ainsworth et al.
attempted to compile a compendium using regression models to
map common physical activities to METs [18]. However, Kozey
et al. [14], showed that linear regression models are inappro-
priate for accurately predicting METs from accelerometer data.
Albinali et al. [6] argued that automatic detection of physical
activity type prior to using activity regressions enhances the
estimate of EE. Moreover, activity monitors that rely on such
equations have no physically interpretable meaning of the ac-
tivity being performed. In this paper, we focus on identifying a
model for a physical activity type that is independent of inten-
sity, which we believe will aid in understanding the underlying
physical meaning behind each activity type.

In other works, Vathsangam et al. [19] analyzed walking at
only two intensity levels, predicting EE from treadmill walking
using hip-worn inertial sensors; they applied regression tech-
niques such as least-squares regression, Bayesian linear regres-
sion, and Gaussian process regression, without classifying the
activities. Ravi et al. [7] and Kwapisz et al. [20] reached subject-
dependent classification accuracies above 90%; however, they
did not focus on distinguishing the intensity of the activity.
Tapia et al. [9] attempted to recognize physical activities and
their intensity levels using a C4.5 DT classifier, yet achieved
poor subject-independent accuracies of 58.2%, and also did not
train on a subset of activity intensity levels or test on another
intensity.

B. Exergaming

To encourage activity throughout the day, not only when play-
ing the video game, we developed a video gaming system that
maps specific activities performed throughout the day to the

avatar in a video game. To test this, we modified an existing
open-source role-playing game (RPG) video game named Free-
droidRPG, to receive input from a wearable accelerometer that is
embedded in a belt designed to be placed around the waist. The
game uses our classification framework to detect activity type
and time spent in each activity type to convert energy exerted in
the real world to the potential energy of the avatar of the game.
The goal of the video gaming system is to promote exercise
throughout the day, thus encouraging a more active lifestyle.
Our activity recognition framework will aid such video games
in classifying a given activity independent of its intensity level.

C. Methodology

Miller and Browning [21] have shown success using mix-
ture models and expectation maximization (EM)-based algo-
rithms for new class discovery with mixed labeled and unlabeled
datasets. Sun et al. [22] attempted to classify EEG signals us-
ing stochastic approximation to update parameters of Bayesian
classifiers on EEG signals. Compared to existing studies, this
study differs accordingly:

1) Intensity-independent classification: Our model-based ap-
proach attempts to represent activities holistically, and is
capable of inferring other intensity levels from a subset of
intensity levels.

2) Stochastic approximation framework: We utilize cluster-
ing algorithms and stochastic approximation to create a
model for each activity, and then use a stochastic approx-
imation nearest-neighbor heuristic for classification.

3) MET approximation: We use our stochastic approximation
framework to enhance the accuracy of detecting intensity-
varying activities, and apply a different regression model
based on each activity type.

4) Exergaming platform: We analyze our classification in real
life on a new gaming platform that converts energy exerted
in the real world to the potential energy of the avatar of a
video game.

This paper is organized as follows. In Section II, we briefly
review background on clustering algorithms and stochastic
approximation. Then, we describe our intensity-independent
activity recognition framework in Section III. We present our
experimental results and analysis in Section IV, and related
applications in EE and Exergaming in Section V. Finally, we
conclude and discuss future work in Section VI.

II. PRELIMINARY

A. Data Modeling and Representation via Clustering

Clustering has been widely used in pattern recognition ap-
plications [23] as a means of organizing data into groups or
clusters based on a similarity metric. It is mainly applied to
discover classes and structures of data in an unsupervised-based
learning fashion. It is also an efficient method for representing
data, allowing for fast retrieval, and dimensionality reduction.
In this paper, we use clustering algorithms as a means of effi-
cient data representation. In this section, we mainly cover two
types of clustering algorithms that are further examined in the
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remainder of this paper: K-Means exclusive clustering, and a
Gaussian mixture model (GMM)-based probabilistic clustering
algorithm.

Let us assume we have n sample points, denoted by xi ∈ Rm .
Each xi represents a vector of features extracted from a sample.
The K-Means clustering technique is one of the simplest and
most popular unsupervised learning algorithms [24], yet because
our training samples are labeled, we deploy K-Means to further
cluster each activity category Ai , providing a more efficient
representation of each activity category. K-Means attempts to
partition the sample points into k clusters C = C1 , C2 , . . . Ck ,
where k < n. With initial random placement of k centroids
< μ1 , μ2 , . . . , μk >, where μj ∈ Rm , and each point xi is as-
signed to the closest cluster Cj with centroid μj . k centroids
are iteratively recalculated and points reassigned such that the
within-cluster sum of squares is minimized

arg min
C

k∑

j=1

∑

xi ∈Cj

‖xi − μj‖2 . (1)

Training samples tend to be tightly clustered around the cen-
troids, which can then serve as a compact representation for
the training data. K-Means is simple to implement, but does
not necessarily find a global optimal solution based on the ob-
jective function. K-Means is also known to be sensitive to the
initial randomly selected cluster centers, and has problems when
clusters differ in size, density, and shape [25].

The GMM [26] is another widely used, model-based clus-
tering technique. GMMs optimize the fit between data and a
parametric distribution (like a Gaussian or Poisson distribution),
where the entire data are modeled by a mixture of such distribu-
tions. Each activity category Ai will be modeled using a mixture
of Gaussian distributions separately, with the parameters to be
learned: ωj is the prior probability of the jth distribution, mean
μj , and variance σ2

j . Each Gaussian distribution is represented
byN(μj , σ

2
j ), and the parameters for each distribution are col-

lectively represented by θ. For each activity category Ai , the
probability p(xi |θ) that a data point xi belongs to a category Ai

can be represented by a weighted sum of k component Gaussian
densities of activity Ai , given by the following equation:

p(xi |θ) =
k∑

j=1

ωjN(xi |μj , σ
2
j ). (2)

For each activity category Ai , there belongs a set of points
X = 〈x1 , x2 , . . . , xn 〉, drawn from an unknown distribution, we
estimate the parameters of the GMM model θ that fits the data.
The solution is to maximize the likelihood p(X|θ) of the data
with regards to the model parameters

arg max
θ

p(X|θ) = arg max
θ

Πn
i=1p(xi |θ). (3)

This expression is a nonlinear function of the parameters θ
and direct maximization is not possible. However, the maximum
likelihood parameter estimates can be calculated using a special
case of the EM algorithm [26], and is used in practice to find
the mixture of Gaussians that can model the data.

B. Stochastic Approximation

Stochastic approximation is a robust method used to solve
objective functions while taking into account uncertainty or
possible variation in the data [27]. It typically involves a non-
tractable convex optimization problem, where the objective or
its derivatives are difficult to evaluate.
\tight We consider a matrix A ∈ Rm×n with the basic objec-

tive ‖Ax − b‖,where b ∈ Rm is an unknown test sample, but
also wish to take into account uncertainty. In many cases, the
number of unknowns is larger than the feature space, n > m,
making it an underdetermined system. In our application, we
use clustering algorithms to ensure that n < m, resulting in
an overdetermined system. The mean of A is Ā, so it can be
described as

A = Ā + U (4)

where U is a random matrix with zero mean. U describes the
statistical variation of A and can be used to model uncertainty
or large variation in the data matrix A. A natural objective is to
minimize the expected value of Ax − b

min
x∈Rn

E‖Ax − b‖. (5)

This is a general form of the stochastic robust approximation
problem. Some variations of the statistical robust approximation
problem are tractable, for example the statistical robust least
squares problem, where we minimize the Euclidean norm of
Ax − b

min
x∈Rn

E‖Ax − b‖2
2 . (6)

This objective function has a closed-form solution that can
be expressed as follows:

E‖Ax − b‖2
2 = E(Ā − b + Ux)T (Āx − b + Ux)

= (Āx − b)T (Āx − b) + ExT UT Ux

= ‖Āx − b‖2
2 + xT Px (7)

where P = E(UT U). This is exactly the form of a regularized
least-squares problem [27]

min
x∈Rn

‖Āx − b‖2
2 + ‖PT x‖2

2 . (8)

And the solution is

x = (ĀT Ā + P−1ĀT b). (9)

III. OUR FRAMEWORK

In this section, we present our framework for intensity-
independent classification of activity. Fig. 2 illustrates our
framework comprising four important components: feature
extraction, clustering-based representation, stochastic activity
modeling (SAM), and stochastic approximation decision classi-
fication. The training phase begins by extracting features from
the accelerometer time series data, which is then fed into a
clustering-based algorithm. The data are then grouped by activ-
ity into clusters, and the clusters’ mean and variance are com-
bined to form a corresponding SAM. In the recognition phase,
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Fig. 2. Stochastic approximation framework comprises a training and a recognition stage. In the training stage, a high-dimensional set of features are extracted
from motion sensors, labeled, and presented to the stochastic approximation classifier which deploys clustering algorithms to generate Stochastic Activity Models.
In the recognition stage, features are extracted and compared against multiple SAMs in a stochastic approximation decision process to find the best label for the
data.

TABLE I
FEATURE TABLE

the sample test points are compared against each activity cat-
egory’s SAM in a stochastic decision-making component. We
describe the details of these components in this section.

A. Feature Extraction

There are several studies that analyze varying features that
are best utilized for human activity based on the accelerometer
data. Table I lists the main features that have been shown to be
useful in classifying activity [7], [28], [29]. Using the data from
each X,Y,Z acceleration axis generates a total of 45 features
per segment, where a segment is a 2-s fixed time subdivision of
the accelerometer data. Each segment results in a feature vector
that belongs to one of N categories: A1 , A2 , . . . , AN , where
each activity category represents a specific activity type.

B. Applying Clustering Algorithms

In order to solve the least squares problem defined in (8), we
need to obtain the matrix Āi ∈ Rm×k for each activity. We col-
lect all the samples from class Ai into k clusters C1 , C2 , . . . , Ck

using K-Means or the GMM clustering algorithm. We ensure
that the generated number of clusters k is less than the number

of features m in order to make sure we have an overdetermined
system. Each cluster Ci can be represented by Vi + Ui , where
Vi is the cluster center, and Ui is the random noise based on the
distribution of cluster Ci .

We tested both the K-Means and GMM clustering methods.
From each generated cluster, we extracted the mean and vari-
ance, and combined them for each activity category Ai to form
the Vi and Ui matrix, respectively.

C. SAM and Classification

Once the data are clustered, we then combine all the clusters
of each activity to form a SAM matrix Bi for each activity Ai .
Each category contains k clusters which are generated from ni

training samples, each having m features

Bl = [V1 , V2 , . . . ., Vi, . . . , Vk ] + [U1 , U2 , . . . , Ui, . . . , Uk ]

=

⎡

⎢⎢⎣

v11 · · · v1k

v21 · · · v2k
...

. . .
...

vm1 · · · vmk

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

u11 · · · u1k

u21 · · · u2k
...

. . .
...

um1 · · · umk

⎤

⎥⎥⎦ (10)

where vi,j represents the center of the ith feature of the jth
cluster, and ui,j represents the variance of the ith feature of the
jth cluster. Given a test segment b, we want to make a decision
as to which SAM Bl belongs. To do this, we solve the following
using (8)

min
i=1...N

E‖Blx − b‖2
2 . (11)
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Fig. 3. Image on the left is an illustration of the sensing platform. The image
to the right is that of a participant wearing the motion sensing node.

TABLE II
ACTIVITY TYPES

In other words, we iterate through each of the N SAMs and
determine to which activity category b belongs by choosing the
one with the minimum reconstruction error, a process similar
to searching for the nearest-neighbor SAM. We validate the
classification performance on the collected data in a lab setting.

IV. EXPERIMENTS AND EVALUATION

We performed three experiments to test the performance of
our activity recognition framework. The first experiment was de-
signed to collect data from a wearable accelerometer to create
a classifier for each activity type, where participants performed
a predefined set of activities in lab. The second and third exper-
iments were designed to validate the usefulness of our frame-
work in both enhancing caloric expenditure calculations and in
a video game setting; this will be further discussed in Section V.
During each experiment each participant wore a belt-like strap
around the waist prior to performing any activity. A Gulf Coast
Data Concepts X6-2 mini tri-axis accelerometer is embedded
inside the belt, positioned on the participants front left hip as
illustrated in Fig. 3. It is capable of measuring acceleration with
12-bit resolution, setting the detection range at +/− 2g. The ac-
celerometer was set to record readings at a frequency of 80 Hz.
Features in Table I were extracted from the accelerometer.

A. Data Collection

We collected data from 12 subjects, ranging in age from
20 to 28 years. Each subject wore the accelerometer-embedded
strap around their front left hip and performed several exercises
on a Merit Fitness 715T Plus treadmill–walking and running at
three intensity levels each–and performed jumping jacks to the
side of the treadmill. Each activity was performed for 5 min, with
5 min of rest between each activity. During analysis of results
from generic classifiers, we found the majority of misclassifica-
tions occurred between the running and walking activity types.
For this reason, our intensity-independent model targets correct
classification of walking and running. Table II provides the la-
bels for each category, we selected typical walking and running
speeds where MET values have been estimated before in order

Fig. 4. Precision, recall, and F-measure across multiple classifiers applied to
walking and running at multiple intensity levels. The stochastic approximation
classifier with GMM clustering outperforms SVM, kNN, and C4.5 DT.

Fig. 5. Variance across classifiers during leave-one-out cross validation shows
that the stochastic approximation classifier is a robust classifier with low
variance.

to analyze the benefits of our classification scheme toward EE
calculations [14], [18].

B. Classification Performance and Evaluation

In order to discover the potential of our stochastic approxima-
tion framework, we compared our classifier against other well-
known classifiers. Each classifier was trained with 11 subjects
and tested on one, using six class labels (or activity categories),
performing leave-one-out cross validation by subject. We tested
each classifier after applying the data clustering algorithms.
Fig. 4 shows the results for each classifier. Using the SVM,
kNN, and C4.5 DT classification algorithms, we achieved F-
measures (the harmonic mean of precision and recall) of 81.5%,
82.4%, and 75.0%, respectively. Our stochastic approximation
framework with the GMM clustering algorithm yielded a 94.3%
precision, 90.8% recall, and a 92.5% F-measure. Based on these
results, we conclude that the stochastic approximation classifi-
cation framework is better able to handle the large variation
within each activity type.

We also evaluate the stability of our classification algorithm
by analyzing the variation during cross validation. Stability is
another important measure that describes how closely a classifier
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TABLE III
CONFUSION MATRIX FOR THE STOCHASTIC APPROXIMATION CLASSIFIER TRAINING ON SIX CATEGORIES

TABLE IV
CLASSIFICATION RESULTS FOR THE STOCHASTIC APPROXIMATION CLASSIFIER TRAINING ON A SUBSET OF CATEGORIES

evaluates results if given different data. Fig. 5 shows the classifi-
cation variation for each of the classifiers. We can conclude that
the stochastic approximation framework not only outperforms
other classifiers in precision, recall, and F-measure results, but
also produces stable results across multiple runs, resulting in
low variance when compared to other classifiers.

C. Stochastic Nature of Human Activity

When we separated each intensity level and activity type into
its own category, training the classifier on six categories, the data
exhibited less variation. The stochastic approximation classifier
was then trained on each intensity level separately, performing
well on the test data. In order to determine the performance of
the classifier in classifying the correct activity type, we must
look at the category precision and recall. Table III shows the
confusion matrix, where results show high average category
precision and recall. While the classifier performs sufficiently
well when trained on six categories, our primary goal has been
to demonstrate the classifiers generalizability when trained on
a subset of intensity levels. Table IV shows the results of 12
classifiers, the first nine classifiers trained on four activities and
tested on two, while Classifiers 10–12 trained on two activities
and tested on four. We show the average category F-measure,
which is the average F-measure across intensity levels (WalkA

column is an average of W1, W2, and W3, and the RunA column
is an average of R1, R2, and R3). Table IV also shows the F-
measure for the specific intensity-independent activity excluded
from the training set, e.g., the first row trained on W1, W2 and
R1, R2 and tested on W3 and R3, as shown in the WalkT and
RunT columns in Table IV.

It is interesting to note that of the first nine classifiers the one
that performs the best is the one that trains on the extremes of
each category, W1, W3 and R1, R3. This result is illustrated in
the fifth row of Table IV, where the stochastic approximation
classifier is capable of extrapolating information about W2 from
W1 and W3, and R2 from R1 and R3. Typically when a subject
runs at 2 mph, they are not really running at 2 mph, but fluctuate
between intensities slightly above and below 2 mph, and this
noise is represented in the SAM of each the activity type, since
it takes into account the variance in the clusters. The SAM
is capable of extrapolating information about adjacent intensity
levels from the variance in the data of each cluster. This supports
our claim that in order to train a classifier for a given physical
activity, we only need to train the stochastic approximation
classifier on a subset of intensity levels.

Of the first nine classifiers, the classifier with the worst per-
formance was the one trained on W1, W2 and R1, R3, as shown
in row 2 of Table IV. This is due to the fact that there is much
overlap between W3 and R2, since they represent walking and
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TABLE V
COMPARING K-MEANS AND GMM WITH THE STOCHASTIC

APPROXIMATION CLASSIFIER

running at 5 mph, respectively. Testing on the run category R2
yields a slightly higher F-measure, 80.5% compared to 79.4%
for W3. This shows the classifier is able to perform a little better
on R2 given it was trained on R1 and R3; however, the higher
intensity activity, W3, is more challenging to classify given the
training of lesser intensity activities W1 and W2.

Table IV also shows that of the last three classifiers that train
on two categories, the best classifier is Classifier 12, which trains
on W2 and R2 and tests on the remaining activities. This further
supports the classifiers ability to extrapolate information about
adjacent intensity levels from the variance of a single activity;
however, it still does not outperform Classifier 5, which provides
larger variation in the training set.

We wanted to investigate the choice of clustering algorithm on
the performance of our stochastic approximation framework. We
compared the outcomes of two clustering techniques, K-Means
and GMM. It is interesting to note that in our application using
GMM outperforms K-Means on average. This happens because
K-Means essentially represents each category by a cluster of
centroids, while GMM represents each category by a cluster of
distributions, each with a mean, variance, and probability. As a
result, GMMs can better represent the model when the data are
sparse with high variability. Table V shows GMM outperforming
K-Means in average precision, recall, and F-measure.

V. APPLICATIONS

In this section, we attempt to define two potential applications
that benefit from detecting activity independent of intensity.
Each application was verified with an experimental setup. The
first application shows how using our classification framework
results can result in enhanced accuracy in calculating EE. The
second application tests the generalizability of our classification
framework in an exergaming environment.

A. Calculating EE

Activity monitoring systems need to be able to improve their
accuracy when calculating EE, as this accuracy is critical to
the ability to determine relationships between EE and related
variables [30]. Crouter et al. [31] showed improvement in EE
estimates by using two regressions one for sedentary activities
and another for nonsedentary activities. Albinali et al. [6] found
it useful to perform separate regressions on each specific activity.
We reaffirm Albinali’s claim, and show that detecting the activity
type first, and then using a separate regression model yields more
accurate EE calculations.

1) Experimental Setup: In this experiment, we repeated the
first experiment with 15 new participants performing the ac-
tivities using a metabolic cart that estimates oxygen uptake, as
illustrated in Fig. 6; however, due to the challenges of moving

Fig. 6. Subject performing trials with a metabolic cart and accelerometer
attached to a belt on the hip. The photo to the left shows the subject sitting
wearing the face mask connected to the metabolic cart, with his nose clipped
shut to ensure breathing occurs only through the mouth to enable the measuring
of oxygen uptake. The photo to the right shows the user performing activity on
the treadmill.

while using the metabolic cart, we decreased the duration of the
activities performed and the rest between each activity to 3 min.
Fifteen participants were selected, six females and nine males
between the ages of 23 and 30. The metabolic cart estimates
oxygen uptake, defined by VO2( ml

min ), which is then used to
calculate MET levels accordingly

MET =
VO2

3.5 ∗ m
(12)

where m is the mass of the participant in kilograms. METs
are then used to approximate the calories burned and can be
calculated by

Calories =
MET ∗ 3.5 ∗ m ∗ t

200
(13)

where t is the time in minutes.
We separated the participants walking and running ac-

celerometer data and MET values obtained from the metabolic
cart. We then performed regressions on each activity type
independently.

2) Results: We found that separating the data according to
activity type greatly enhances the accuracy of the EE estimate.
Fig. 7 shows the actual MET values obtained from the metabolic
cart, and attempts to calculate the MET using two methods. It
compares the estimates of EE using a single regression model
trained without separation on all the activity types (labeled “All
Regression” in Fig. 7), and using the separation method to ap-
ply a different regression model for each activity type (labeled
“Separate Regression” in Fig. 7). In the “Separate Regression”
method, the stochastic approximation classifier was used to de-
tect the activity type and then apply the corresponding activity
specific regression model.

Our first observation from Fig. 7 is that the regression equa-
tions when developed using all activity types, under the “All
Regression” method, consistently underestimated the EE of ac-
tivities in the walking category, while subsequently overestimat-
ing activities of running. This could be due to the position of the
accelerometer on the hip, where it does not effectively capture
the movement in the lower part of the body as well as the upper.
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Fig. 7. Actual MET values compared against two regression methods for one subject performing predefined activities. Each sample represents 15 s of activity,
which was the output of the MET value from the metabolic cart. Prior to performing each activity, the subject would rest for 5 min until reaching their resting
metabolic rate of approximately 1 MET. It can be seen from the “Separate Regression” curve that using an activity-dependent regression yields closer results to
the actual MET value when compared to the “All Regression” method.

TABLE VI
COMPARISON OF DIFFERENT METHODS IN ESTIMATING EE ACROSS

ALL 15 SUBJECTS

As a result similar features extracted from the accelerometer
on the hip from both walking and running activity types yield
different MET values, and for this reason, a single regression
model is unable to truly capture accurate MET values of both
activity types.

Table VI shows that when we generate a separate regression
model for each activity type independent of its intensity, we are
able to achieve more accurate calculations of EE. Fig. 7 illus-
trates the accuracy of the “Separate Regression” method for a
single subject. This bolsters the findings of Albinali et al. [6],
however, we also observe that using a separate regression model
for each activity type irrespective of their intensity levels also
yields positive results. We expand on Crouter’s approach to us-
ing a separate regression model for sedentary and nonsedentary
activities, by showing that among nonsedentary activities, sep-
arate regression models should be used for different activity
types, and only a single model needs to be used for an activ-
ity type with varying intensity levels. Abinali et al. [6] did not
test similar activities across multiple intensity levels. Table VI
compares the mean errors (averaged over all activities) of using
different methods in estimating EE. Detecting the activity type
and then applying the corresponding regression model outper-
forms using a single regression model, resulting in a mean error

rate of 1.38%, compared to 11.74% using a single regression
model for all activities.

B. Exergaming Platform

Our gaming platform consists of two main components: an
accelerometer-embedded belt and an RPG video game called
FreedroidRPG [32]. The video game was used as an incentive
for the participant to perform physical activity throughout the
day. FreedroidRPG tells a story of conflict between robots and
their human masters. Tux is the avatar that is out to save the
world from the evil robots. The best classifier resulting from
the first experiment, which was capable of performing well
on subject- and intensity-independent activity, was embedded
into FreedroidRPG. The classifier is capable of detecting the
correct activity type and duration performed by the participant
after processing data from a wearable accelerometer. As a re-
sult, when Tux was low on energy, the participant would wear
an accelerometer-embedded belt and perform a set of defined
activities throughout the day including running, walking, and
jumping-jacks. Fig. 8 shows Tux dying and the player perform-
ing activity in order to reenergize him.

The video game classifies each activity type and duration
into the following categories: running, walking, and jumping-
jacks. Running is mapped to avatar physique, where strength-
ening physique increases avatar health/lifetime. When enemy
bots strike Tux, it decreases his health/lifetime. Walking is
mapped to character dexterity, which affects the avatars success
hit rate when attacking an enemy, and his success in defending
himself from enemy bots. Jumping jacks are mapped to char-
acter strength, where increases in strength result in stronger
blows to the enemy bots. The goal of this video game is to
encourage physical activity, since the only way to increase
avatar physique, dexterity, and strength is by walking, running,
and performing jumping jacks throughout the day. Table VII
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Fig. 8. FreedroidRPG exergaming version being played by a participant. When
the avatar, Tux, has poor physique it effects his energy, and so the participant
must pause the game, perform activity while wearing the accelerometer, and
then reconnect the accelerometer with the game in order to reenergize Tux.

TABLE VII
MAPPING ACTIVITY TYPE TO AVATAR ATTRIBUTE

describes the mapping of each activity to the points in the avatar
of the video game.

1) Experimental Setup: This setup involved testing the sys-
tem on the 15 participants in the second experiment. The goal
of this experiment was to see the performance of the classifiers
on running and walking at varying speeds in an uncontrolled
fashion, as well as analyze the potential for such a game to
succeed. We trained each participant for 1 h on the video game
without the exergaming component. Once the player was com-
fortable with the rules, we activated the exergaming version of
the game. The exergaming version provided rules for mapping
physical activity performed while wearing the accelerometer to
Tux’s in-game attributes. This forced participants to perform the
physical activity using the accelerometer in order to replenish
Tux’s energy. The video game would use the embedded classifier
to detect the activity type and map treadmill walking, treadmill
running, and jumping jacks to Tux’s specific qualities. In this
experiment, we did not instruct the participant at which intensity
level to walk and run, and we left them to freely decide on the
necessary activity to perform to continue playing the game. We
did, however, use a stopwatch to manually record the amount
of time they performed each activity type, and compared it with
the results from the classifier embedded in the video game. We
tested the outcomes of several classifiers including: SVM, kNN,
C4.5 DTs, and the Stochastic Classifier.

When Tux would lose strength, physique or dexterity the par-
ticipant would: pause the video game, perform physical activity
while wearing the accelerometer, then select a transmit button
to transmit the accelerometer data to the game. The video game
would process the accelerometer data and apply a chosen clas-
sifier to detect the activity type and duration performed by the
participant. Each subject played the video game for at-least 1 h,

TABLE VIII
COMPARING CLASSIFIERS ON DATA IN THE FREEDROIDRPG EXERGAME

Fig. 9. Exergaming survey.

collecting a total of 51.4 min of walking, 40.3 min of running,
and 15.6 min of jumping jack data for all subjects. Jumping jacks
are less challenging to distinguish in accelerometer data, and as
a result we focus our analysis of the classification results on
walking and running. Each participant answered a six-question
survey at the end of the experiment.

2) RPG Video Game Classification Performance and Eval-
uation: We then chose the optimal classifier identified by the
stochastic approximation classifier in Table IV and used it in
the video game to classify walking and running accurately. The
classifier was tested on activities with intensity levels defined
by the participant. Table VIII shows the Category F-measure
of the data collected from the video game setting, showing
the stochastic approximation framework’s ability to outperform
other well-known classification methods.

3) Human–Computer Interface: In order to evaluate the po-
tential of such an exergame, a user experience survey is essential
to see the feasibility of such an application. Several works focus
on the appropriate methods in evaluating a user’s experience
in a gaming environment [33], [34]; however, we focus on the
following three: encouragement of physical activity [35], [36],
comparison to other games and general enjoyment [34], [37],
and realism of exergames [37]. The survey questions are illus-
trated in Fig. 9.
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It is very important that participants enjoy a video game,
otherwise it will not succeed commercially. The responses from
the survey given to each participant show that the majority of
the participants enjoyed the FreedroidRPG exergame version
even more than the normal game. On average, they rated a 4.2
out of 5 for the overall enjoyment of the regular FreedroidRPG
game, compared to an average 4.6 for the exergame version of
FreedroidRPG. The goal of most exergames is to use the gaming
platform as an incentive for physical activity, and it is shown
from the responses to Q.5 that the majority rated a 5 out of 5
in level of fatigue, with an average 4.8. It is also critical when
designing a video game to ensure that the participants feel that
it is accurate and reliable, for this we asked them to rate their
perceived accuracy of the system in detecting their activity and
mapping it to the correct attribute in the avatar, and the majority
felt the system accurately mapped their activities to attributes
of the avatar in the game, with an average rating of 4.6 out
of 5.

VI. CONCLUSION

Tri-axis accelerometers are increasingly prevalent in wear-
able sensors to derive behavioral patterns and context from
human motion. Subject-independent activity classification us-
ing such accelerometers is critical in developing systems that
are robust and scalable, and perform well in a the real world
setting. However, for activities with varying intensity lev-
els, one needs to also analyze the ability of a system to
detect activity independent of intensity. We show promise
in our stochastic approximation framework in its ability to
extrapolate unknown intensity levels from a few known
intensity levels. Our framework is capable of outperforming
other well-known algorithms, and also performs better using a
GMM-clustering algorithm as opposed to a K-Means clustering
algorithm. We verify the motivation of our framework by show-
ing its ability to be used to enhance EE calculations by detecting
the activity type independent of its intensity, and using a sep-
arate regression model for each intensity varying activity. We
also demonstrate the potential of our framework when used in
an exergaming environment. Our system will be useful in many
healthcare applications including calculating EE and providing
context awareness.

In the future, we can attempt to test our system on other
intensity varying activities, such as bicycling, as well as per-
form testing on more subjects. We would also like to test our
classifier with other clustering algorithms: HMM and Fuzzy C-
means along with hierarchical clustering. We also hope to test
our framework on individuals running and walking at a greater
range of intensity levels. We would like to test classification
frameworks that can accurately detect cheating in exergames to
prevent participants from gaming the system.
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