
Cheddar Architecture Description Language

Christian Fotsing, Frank Singho�, Alain Plantec, Vincent Gaudel,
Stéphane Rubini, Shuai Li, Hai Nam Tran, Laurent Lemarchand

Lab-STICC/UMR CNRS 6285, University of Brest
20, av Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France

Email: {first−name.last−name}@univ-brest.fr

Pierre Dissaux, Jérôme Legrand
Ellidiss Technologies
24, quai de la douane
29200 Brest, France

Email: {first−name.last−name}@ellidiss.com

May 21, 2014

Abstract

The aim of this paper is to give a complete and �ne de�nition of the
Cheddar Architecture Design Language.

Cheddar is a free real time scheduling tool composed of a graphical
editor used to describe a real-time applications, a framework which in-
cludes most of classical real time scheduling/feasibility algorithms/tests.
It is designed for checking temporal constraints of real-time applications.

To perform this type of scheduling analysis with Cheddar, systems
to analyse can be described with AADL or with a dedicated ADL, the
Cheddar Architecture Design Language, called Cheddar ADL.

Cheddar ADL aims to write, analyse and validate real-time applica-
tions handled in the context of Cheddar.

Our objective in this report is to describe it formally, to also show how
it may be implemented and used.

Keywords: ADL; Cheddar; Real-Time Systems; Validation; Simulation;

1

Table of Contents

1 Introduction 7

2 Requirements 8

3 Cheddar ADL Concepts 8

4 Semantic of Components 9
4.1 Hardware Components . 9

4.1.1 Cache . 9
4.1.2 Core . 14
4.1.3 Processor . 17
4.1.4 Memory . 19
4.1.5 Network . 21

4.2 Software Components . 22
4.2.1 Address space . 23
4.2.2 Task . 25
4.2.3 Resource . 29
4.2.4 Bu�er . 33
4.2.5 Message . 40
4.2.6 Dependency . 42
4.2.7 Task group . 44

5 Notion of Deployments 47
5.1 Generic Deployments . 47
5.2 Static Deployments . 48
5.3 Dynamic Deployments . 49

6 Applications of Cheddar ADL 53

7 Related works 57

8 Conclusion 59

2

List of Figures

1 The DTD of entity Cache . 13
2 An Example of entity Cache . 14
3 The DTD of entity Core . 16
4 An example of Core description 16
5 The DTD of entity Processor 19
6 An example of Mono−core−processor description 20
7 An example of Multi−cores−processor description 20
8 The DTD of entity Network . 22
9 An example of Network description 22
10 The DTD of entity Address_Space 24
11 An Example of entity Address space described using Cheddar ADL 25
12 The DTD of entity Task . 30
13 An example of Task description in Cheddar ADL 31
14 The DTD of entity Resource . 34
15 An example of Resource description in Cheddar ADL 35
16 The DTD of entity Buffer . 38
17 An example of entity Buffer 39
18 The DTD of entity Message . 42
19 An example of entity Message 43
20 The DTD of entity Dependency 44
21 An example of Dependency . 45
22 An example of Task group (of type Transaction−Type) descrip-

tion in Cheddar ADL . 47
23 The DTD of entity Generic−Deployment 48
24 The DTD of entity Static−Deployment 49
25 An example of Static−Deployment 49
26 The DTD of entity Dynamic−Deployment 52
27 An example of Dynamic−deployment description in Cheddar ADL 53
28 How interoperability with other ADLs is ensured: the particular

case of AADL and Cheddar ADL 54
29 Example of an application speci�ed using Cheddar ADL 55
30 A Cheddar scheduling simulation of our example 57

3

List of Tables

4

Guidelines to read

(1) For each entity, we have several sub-paragraphs.

Standard attributes

We de�ne in this part the main properties of entity.

Legality rules

(L1) We de�ne here the constraints of entity.

Annexes

(A1) This part completes the standard attributes de�nitions. It allows to
de�ne precisely the attributes.

(A2) The annexes of an entity allow to de�ne the sub attributes of this entity.

Implementation

This corresponds to a table, which give the precise denomination of at-
tributes with their types.

Example

We present here an example of use of entity.

5

De�nitions

(1) We de�ne here a set of usual terms in this paper.

De�nition 1 Valid identi�er.
An identi�er is valid if it is composed only by the letters of the alphabet (upper-
case or lower-case), digits from 0 to 9 and characters ., :, /, \ and −.

6

1 Introduction

We consider real-time applications, dedicated to process control, which are
modelled by a set of tasks. They are characterized by the presence of temporal
constraints, induced by the dynamics of the controlled process. The tasks can
be periodic or not, have same �rst release time or not, may shared resources or
exchanges messages.

For study schedulability analysis, each task Ti is usually modelled by four
temporal parameters [10]: its �rst release time ri, its worst case execution time
(WCET) Ci, which is the highest computation time of the task, its relative
deadline Di, which is the maximum acceptable delay between the release and
the completion of any instance of the task, and its period Pi.

From this simpli�ed model of task, real-time scheduling theory provides two
ways to perform schedulability analysis: feasibility tests and scheduling simula-
tion on the hyperperiod 1.

We have a necessary condition for a system to be feasible [11]: if a system
of n tasks T1 . . .Tn is feasible, then its utilization factor, de�ned by

U =

n∑
i=1

Ci

Pi

is less than or equal to 1.
Our general aim is the validation, using simulation, of the real-time applica-

tions.
For that, we consider the Cheddar project. Cheddar [9] is a GPL open-source

schedulability tool composed of a graphical editor and a library of schedulability
analysis modules. The library of analysis modules implements various analysis
methods based on the real-time scheduling theory.

In order to perform schedulability analysis in Cheddar context, several ap-
proaches have been investigated [12]: The MARTE based approach [37] [13]
where a MARTE to Cheddar transformation have been proposed, and an ex-
perimentation on an industrial software radio system have been done; The Model
Driven Engineering (MDE) [54] based approach, combined to ADL have been
experimented by showing how scheduling analysis tools can be automatically
produced from an ADL with MDE [39] [40] [41]; An AADL based approach
[42] where the relevant hardware features are expressed in order to have better
scheduling analysis.

We focus on this paper to the ADLs approach, by presenting Cheddar ADL.
It will allow us to �nely specify and validate the real-time application, in the
Cheddar context [12]. Indeed, Cheddar ADL, especially dedicated to scheduling
analysis, provides tools to design and validate (by using Cheddar tool) real-time
applications.

The paper presents an Architecture Description Language (ADL) that has
been designed to model software architecture in the perspective of scheduling
analysis. This ADL illustrates how an ADL may provide to model a real-time
application on which designers expect to perform scheduling analysis.

The rest of the paper is organized as follows: we begin by enumerate the
requirements of Cheddar ADL (section 2), in order to lay the foundations of our
language, then, we describe the general concepts of the language (section 3).

1. The lcm periods

7

After-that, the sections 4 and 5 precise the semantic of the basic entities of
Cheddar ADL, and section 6 is dedicated to the way to apply it. Section 7 gives
the related works, by describing some ADLs using in real-time domains, and we
conclude in section 8, by giving some perspectives.

2 Requirements

In order to allow interoperability with other ADLs, we de�ne some require-
ments for Cheddar ADL:

� Applicable in several areas: It should be take various concepts like FPGA,
Multiprocessor architectures with caches/cores and shared memory, N-
level of hierarchical scheduling into account.

� Should be as close as possible with real-time scheduling and queueing
system theories: Classic models, synchronization/dependencies, scheduler
parameters.

� Must stay simple and easy/quick to use/understand.
� Maintain existing features: allow transformation to AADL/Marte/others
supported ADLs.

� Provide isolation : spatial and temporal. The aim is to enable indepen-
dently spatial analysis (take the behaviour of system into account, model
checking ...) and temporal analysis (compute the respond time, the schedu-
lability analysis ...).

� Both hardware/software modelling and software deployment: required for
real-time systems analysis, user/designer understanding.

The next section aims to present the general concepts of Cheddar ADL,
based on these requirements.

3 Cheddar ADL Concepts

Cheddar ADL de�nes basic entities which model usual concepts of the real-
time scheduling theory. We have two kinds of entities:

1. Components: There are the reusable units. A component has a type, an
unique name and attributes. It is a part of a system to analyse.

2. Bindings: the bindings de�ne relationships between components. They
Model a resource allocation between n providers and m consumers, where
n and m are integers.

These basic entities can be grouped into 3 types:

1. Hardware components: They model resources provided by the execution
environment. We have Processor , Cache , Core , Memory and Network
.

2. Software components: They model the design of the software. They are de-
ployed onto hardware components. In Cheddar, we have Task , Resource
, Buffer , Dependency and Message .

3. Bindings: Their role is to enforce either temporal or spatial isolation. They
allow to model the relationships between components.

In order to �nely describe the Cheddar ADL, we clarify in sections 4 and 5 the
semantic of basic entities.

8

4 Semantic of Components

We distinguish in Cheddar two types of components: hardware components
and software components.

4.1 Hardware Components

(1) We de�ne in this section the following hardware components: Cache ,
Core , Processor , Memory and Network .

(2) Cache which models a hardware cache unit.

(3) Core which models an entity providing a resource to sequentially run
�ow of controls.

(4) Processor which corresponds to the deployment unit for a software com-
ponent.

(5) Memory which models an entity providing a physical memory unit.

(6) Network which models any entity allowing tasks located in di�erent pro-
cessors to exchange messages.

4.1.1 Cache

The Cache is speci�ed by the following de�nitions [2] [3] [4] [5] [6] [14]:

(1) It is small high speed memory usually Static RAM (SRAM) that con-
tains the most recently accessed pieces of main memory.

(2) Cache memories are small, high-speed bu�er memories used in modern
computer systems to hold temporarily those portions of the contents of main
memory which are (believed to be) currently in use.

(3) In Cheddar ADL, the Cache is namedGeneric−Cache in the xml schema.

Standard attributes

Name : it is the unique name of the Cache.

Cache−Size: it is the size of the cache - the number of bytes that a cache
can contain.

Block−Size: it is an integer, which corresponds to the number of contiguous
bytes that are transferred from main memory on a cache miss 2.

2. When the cache does not contain the memory block requested, the transaction is said
to be a cache miss.

9

Associativity: it is an integer, which corresponds to the number of cache
locations where a particular memory block may reside.

Hit−Time: it corresponds to time to access to a memory block that is in
the cache.

Miss−Time: it corresponds to the time to access a memory block that is
not in the cache.

Replacement−Policy: it is a policy which decides which cache block should
be replaced when a new memory block needs to be stored in the cache.

Coherence−Protocol: it is a protocol which maintains the consistency be-
tween all the caches in a system of distributed shared memory.

Cache−Category: it speci�es a cache is instruction cache, data cache or a
combined one.

Write−Policy: it determines how the cache performs the write of the data
in the cache back to the main memory.

Legality rules

(L1) The cache name must not be empty.

(L2) The cache name must be valid identi�er.

(L3) Cache−size > 0.

(L4) Block−size > 0.

(L5) Cache−Size MOD Block−Size = 0.

(L6) Hit−Time > Miss−Time > 0.

(L7) The Coherence−Protocol of Instruction−Cache can only be Shared−Cache−Protocol
or Private−Cache−Protocol.

Annexes

(A1) The kinds of Associativity :

(A11) Fully−Associative−Cache: when a memory block can reside in
any locations in the cache (Associativity = Cache−Size/Block−Size).

(A12) Direct−Mapped−Cache: when a memory block can reside in ex-
actly one location in the cache (Associtivity = 1).

10

(A13) A way set associative cache: when a memory block can reside in
exactly A location in the cache (Associativity = A).

In this case, we have

Number−of−set−of−the−cache =
Number−of−block

A

.

(A2) The replacement policies :

(A21) Random: this policy randomly replace a selected block among all
blocks currently in cache.

(A22) Least−Recently−Used(LRU): it replaces the block in cache that
has not been used for the longest time.

(A23) Least−Recently−Replaced(LRR): it replaces the block in cache
that has not been replaced for the longest time.

(A24) First−in, F irst−out(FiFo): it evicts the block that has been in
the cache the longest.

(A3) The types of coherence protocols.

(A31) Shared−Cache−Protocol: cache is shared between cores.

(A32) Private−Cache−Protocol: each core has its private cache.

(A33) Private−Invalid−Cache−Protocol: when a core writes into a mem-
ory block in the cache,all copies of this memory block in other cores' cache are
invalidated.

(A34) Private−MSI−Cache−Protocol: M,S,I stand for Modi�ed, Shared
and Invalid.

They are three possibles states that a block inside the cache can have. This
protocol is used in the 4D machine [7].

(A35) Private−MESI−Cache−Protocol: MESI stand for Modi�ed, Ex-
clusive, Shared and Invalid. This cache coherence protocol is derived from MSI
protocol. More information about the MESI protocol can be found in [8]

(A4) The Cache−Category:

(A41) Data−Cache: cache which is used in order to speed up data fetch
and store.

(A42) Instruction−Cache: cache which is used in order to speed up exe-
cutable instruction fetch. Instruction−Cache is in fact a cache where coherence
protocol is Private−Cache−Protocol or Shared−Cache−Protocol.

11

(A43) Data−Instruction−Cache: both data and instructions are stored
in cache.

(A5) Type of write policies.

(A51) Write−Back (called also Copy−Back, Write−Behind): the in-
formation is written only to the block in the Cache .

The modi�ed block is written in the memory only when the cache is replaced.

(A52) Write−Through: the information is written both in the block to
cache and the block in the main-memory.

(A521) Write−Through−With−Allocation: memory block at the
missed-write location is loaded to cache then followed by a write operation in
the Cache .

(A522) Write−Through−Without−Allocation: memory block at
the missed-write location is not loaded to the cache and written directly in the
higher level memory.

12

<!ELEMENT caches (gener ic_cache | data_cache |
in s t ruc t i on_cache | data_instruct ion_cache |
cache_system)+>

<!ELEMENT gener ic_cache (object_type | name |
cache_size | b lock_s ize | a s s o c i a t i v i t y |
replacement_pol icy | hit_time | miss_time |
miss_rate | coherence_protoco l |
cache_category)∗>

<!ATTLIST gener ic_cache id ID #REQUIRED>

<!ELEMENT data_cache (object_type | name | cache_size |
b lock_s ize | a s s o c i a t i v i t y | cache_replacement |
hit_time | miss_time | miss_rate |
coherence_protoco l | cache_category |
wr i t e_po l i cy)∗>

<!ATTLIST data_cache id ID #REQUIRED>

<!ELEMENT ins t ruc t i on_cache (object_type | name |
cache_size | b lock_s ize | a s s o c i a t i v i t y |
replacement_pol icy | hit_time | miss_time |
miss_rate | coherence_protoco l |
cache_category)∗>

<!ATTLIST ins t ruc t i on_cache id ID #REQUIRED>

<!ELEMENT data_instruct ion_cache (object_type | name |
cache_size | b lock_s ize | a s s o c i a t i v i t y |
replacement_pol icy | hit_time | miss_time |
miss_rate | coherence_protoco l |
cache_category | wr i t e_po l i cy)∗>

<!ATTLIST data_instruct ion_cache id ID #REQUIRED>

<!ELEMENT cache_system (object_type | name | caches)∗>
<!ATTLIST cache_system id ID #REQUIRED>

Figure 1 � The DTD of entity Cache

Implementation

The �gure 1 gives the DTD of entity Cache .

13

<inst ruc t i on_cache id=" 1" >
<object_type>CACHE_OBJECT_TYPE</object_type>
<name>Cache_01</name>
<cache_size >2048</cache_size>
<block_size >8</block_size>
<a s s o c i a t i v i t y >2</a s s o c i a t i v i t y >
<replacement_pol icy>LRU</replacement_pol icy>
<hit_time >1.00000</hit_time>
<miss_time >10.00000</miss_time>
<coherence_protocol>

PRIVATE_CACHE_PROTOCOL
</coherence_protocol>
<cache_category>

INSTRUCTION_CACHE_TYPE
</cache_category>

</instruct ion_cache>

Figure 2 � An Example of entity Cache

Example

The �gure 2 gives an example of entity Cache described using Cheddar ADL.
It describes an 2-ways set associative (Associativity = 2) instruction cache with
cache size 2048 bytes (2 KB) and block size 8 bytes. The replacement policy is
Least Recently Used.

4.1.2 Core

A Core is speci�ed by the following de�nitions [16]:

(1) It is a deployment unit for a software component.

(2) It is the unit that read and execute program instructions.

Standard attributes

Name : It is the unique name of Core .

Speed: It is a real, which gives the exchange rate of �ow.

L1−cache−system−name: It is a string, which corresponds to the primary
cache. It is faster, generally smaller, and located in core.

The L1−cachesystem is a list of 0 or several Caches .
Each Cache can be of 2 types:

� Unified : in this case, it corresponds to Data−Instruction−Cache.
� Separated : in this case, it corresponds to 1Data−Cache and 1 Instruction−Cache.

14

Scheduling: It de�nes all parameters of scheduling.
It is the type of Scheduling−Parameters (see Annexes for de�nitions of

Scheduling−Parameters).

Legality rules

(L1) The Core name must not be empty.

(L2) The Core name must be valid identi�er.

(L3) We must not have simultaneous (A−Scheduler = Pipeline−User−Defined−Protocol)
and (File−Name Empty).

(L4) We must not have simultaneous (File−Name 6= Empty) and (A−Scheduler 6=
Pipeline−User−Defined−Protocol) and (A−Scheduler 6= Automata−User−Defined−Protocol).

(L5) The Period must be greater than or equal to 0.

(L6) The Capacity must be greater than or equal to 0.

(L7) We must not have (Priority < Priority−Range′First) or (Priority <
Priority−Range′Last).

(L8) We must not have simultaneous (Quantum 6= 0) and (A−Scheduler 6=
Posix−1003−Highest−Priority−First−Protocol) and (A−Scheduler 6= Round−Robin−Protocol)
and (A−Scheduler 6= Hierarchical−Round−Robin−Protocol) and (A−Scheduler 6=
Hierarchical−Cyclic−Protocol).

(L9) The Quantum must be greater than or equal to 0.

(L10) The Speed must be greater than or equal to 0.

(L11) A−Scheduler must be di�erent of No−Scheduling−Protocol.

Annexes

(A1) See Annexes ofDynamic−Deployment for attributes of Scheduling−Parameters.

Implementation

The �gure 3 gives the DTD of entity Core .

Example

The �gure 4 gives an example of entity Core described using Cheddar ADL.
In this case, the scheduler POSIX−1003−HIGHEST−PRIORITY−FIRST−PROTOCOL

is �xed on the core named core1, and it is of Preemptive Type. The L1−cache−system−name
is not represented.

15

<!ELEMENT core_units (core_unit)+>
<!ELEMENT core_unit (object_type | name

| s chedu l ing | speed | l1_cache_system_name)∗>
<!ATTLIST core_unit id ID #REQUIRED>

Figure 3 � The DTD of entity Core

<core_unit id=" 67" >
<object_type>CORE_OBJECT_TYPE</object_type>
<name>core1</name>
<schedul ing>

<schedul ing_parameters>
<scheduler_type>

POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL
</scheduler_type>
<quantum>100</quantum>
<preemptive_type>PREEMPTIVE
</preemptive_type>
<capacity>101</capacity>
<period>102</period>
<priority>103</priority>
<start_time>0</start_time>

</schedul ing_parameters>
</schedul ing>
<speed >1.00000</speed>

</core_unit>

Figure 4 � An example of Core description

16

4.1.3 Processor

The entity Processor is speci�ed by the following de�nitions:

(1) It is a deployment unit for a software component.

(2) It is composed by a set of Cores and Caches .

(3) We distinguish in Cheddar two separate cases:Mono−Core−Processor
and Multi−Core−Processor.

Standard attributes

Name : It is the unique name of Processor.

Network: It is a string, which corresponds to the name of entity Network
connected to the Processor .

Processor−Type: It is an enumeration, which de�nes the type of considered
Processor .

Migration−Type: It is an enumeration, which de�nes the type of Tasks
migration between the Cores of the Processor .

In Cheddar, we assume that a Task may be migrated only between jobs.

Legality rules

(L1) The Processor name must not be empty.

(L2) The Processor name must be valid identi�er.

(L3) Cores should not be empty in the Multi−cores−processor case.

(L4) If the Processor type is Monocore−Type, it must exist at least one
Core .

(L5) If the Processor type is Multicore−Type, it must exist several Cores
.

Annexes

(A1) The types of Processors [30] [29] [32] [33] [31].

(A11) Monocore−Type: It is a Processor with only one Core .
In this case, the Processor only executes one instruction �ow, i.e. one Task ,
at a time.

The Multicore−Type references to a Processor with two or more processing
units, i.e. Core components.

17

(A12) Identical−Multicores−Type: In this case, all processors are iden-
tical.

That means processors have the same computing capability and run task at
the same rate.

(A13) Uniform−Multicores−Type: Each Processor P is characterized
by a single parameter speed (or computing capacity), named Speed(P), with the
interpretation that a job that executes on processor P for t time units completes
Speed(P)× t units of execution.

(A14) Unrelated−Multicores−Types: In this case, Processors di�er in
area, performance, power dissipated, speed, . . .

An execution rate is de�ned for every uplet (ri,j , i, j): the work i requires
ri,j units of time on the processor j.

(A2) The types of Migrations [24] [25] [26].

(A21) No−Migration−Type: When no migration is allowed between the
Cores of a Processor .

A Task that begins its execution on a Core cannot migrate and must always
run on this one.

(A22) Job−Level−Migration−Type: a Task can run its successive jobs
in di�erent Cores .

When a job is started in one Core , the task cannot migrate before the job
is completed, i.e. a job starting in a given Core must be completed on the same
Core .

Job-level parallelism is forbidden (i.e., a job may not execute concurrently
with itself on two or more di�erent Cores .

(A23) Time−Unit−Migration−Type: A Task can migrate at any time
on any Cores of the processor.

Job-level parallelism is also forbidden in this case.

(A3) Mono−Core−Processor is de�ned by the following parameter:

(A31) Core: It is the corresponding core to theMono−Core−Processor.
It is characterized by:

(A311) Scheduling: See the Core description.

(A312) Speed: See the Core description.

(A313) L1−Cache−System−Name: See the Core description.

(A4) Multi−Core−Processor is a single computing component with two
or more independent Cores , which are the units that read and execute program
instructions [15].

It allows to schedule tasks globally with a set of cores.

18

<!ELEMENT pro c e s s o r s (gene r i c_proce s so r
| mono_core_processor | multi_cores_processor)+>

<!ELEMENT gener i c_proce s so r (object_type
| name | network_name | processor_type |
migration_type)∗>

<!ATTLIST gener i c_proce s so r id ID #REQUIRED>
<!ELEMENT mono_core_processor (object_type

| name | network_name | processor_type |
migration_type | core)∗>

<!ATTLIST mono_core_processor id ID #REQUIRED>
<!ELEMENT multi_cores_processor (object_type

| name | network_name | processor_type |
migration_type
| cores | l2_cache_system_name)∗>

<!ATTLIST multi_cores_processor id ID #REQUIRED>

Figure 5 � The DTD of entity Processor

It is de�ned by the following parameters:

(A41) Cores: The list of Cores of the Processor.

(A42) L2−Cache−System−Name: It is a list of 0 or several Caches.
When it exists, it is Unified: it corresponds to Data−Instruction−Cache.
In this case, all corresponding L1−Cache−System are separated.

Implementation

The �gure 5 gives the DTD of entity Processor .

Example

The example of �gure 6 describes a Mono−core−processor, with one core
referenced by id 75.

Notice the type of Processor (MONOCORE−TY PE) and the type of
Migration (NO−MIGRATION−TY PE).

The example of �gure 7 describes a Multi−cores−processor, with two cores
referenced by their id (67, 68).

It has two identical cores (that means that the cores have the same computing
capability and run Task at the same rate), and migrations between cores is of
the type time−unit−migration; that means that a job requires one time unit
for task migration between two cores.

4.1.4 Memory

A Memory is speci�ed by the following de�nitions [23]:

(1) It is a deployment unit for a software component.

19

<proce s so r s>
<mono_core_processor id=" 77" >
<object_type>PROCESSOR_OBJECT_TYPE</object_type>

<name>processor1 </name>
<network>a_network</network>
<processor_type>MONOCORE_TYPE
</processor_type>
<migration_type>NO_MIGRATION_TYPE
</migration_type>
<core r e f=" 75" />

</mono_core_processor>
</proce s so r s>

Figure 6 � An example of Mono−core−processor description

<proce s so r s>
<multi_cores_processor id=" 69">
<object_type>PROCESSOR_OBJECT_TYPE</object_type>

<name>processor1 </name>
<network>a_network</network>
<processor_type>IDENTICAL_MULTICORES_TYPE
</processor_type>
<migration_type>TIME_UNIT_MIGRATION_TYPE
</migration_type>
<cores>

<core_unit r e f=" 67"/>
<core_unit r e f=" 68"/>

</cores>
</multi_cores_processor>

</proce s so r s>

Figure 7 � An example of Multi−cores−processor description

20

(2) It is everything a process can address, code, data, stack, heap.

(3) In uniprocessor designs, the memory system was a rather simple compo-
nent, consisting of a few levels of cache to feed the single processor with data
and instructions.

(4) In multi-cores, the caches are just one part of the memory system, the
other components include the consistency model, cache coherence support, and
the intra-chip interconnect.

Standard attributes

Name : It is the unique name of Memory.

Legality rules

(L1) The Memory name must not be empty.

(L2) The Memory name must be valid identi�er.

Implementation

Example

4.1.5 Network

A Network is speci�ed by the following de�nitions:

(1) It is any communication link between any hardware components.

(2) It is used to simulate message scheduling.

Standard attributes

Name: It is the unique name of entity Network .

Network−type: It is the technique of taking into account the communication.

Legality rules

(L1) The network name must not be empty.

(L2) The network name must be valid identi�er.

(L3) The Network−type is mandatory.

Annexes

21

<!ELEMENT networks (network)+>
<!ELEMENT network (object_type | name

| network_type)∗>
<!ATTLIST network id ID #REQUIRED>

Figure 8 � The DTD of entity Network

<networks>
<network id="id_89">
<object_type>NETWORK_OBJECT_TYPE</object_type>
<name>a_network</name>
<network_type>BOUNDED_DELAY</network_type>

</network>
</networks>

Figure 9 � An example of Network description

(A1) The Network−type techniques [21] [34] [35] [22] is in fact the way to
characterize delay when we consider the network.

We distinguish:

(A11) Bounded−Delay: In this case, the delay is bounded.
It is an e�ective search prioritization strategy for concurrent programs that

handles both statically-known and dynamically-created tasks.
The sending of message is characterized by a bounded time.

(A12) Jitter−Delay: In this case, the delay is a function of jitter.
The sending of message is characterized by an bounded interval (max and

min).

(A13) Parametric−Delay: In this case, the delay is parametric.
The user may de�ne its own delay.

Implementation

The �gure 8 gives the DTD of entity Network .

Example

The �gure 9 gives an example of entity Network described using Cheddar
ADL.

The type of Network in this case is BOUNDED−DELAY .

4.2 Software Components

(1) We de�ne in this section the following software components: Address
space , Task, Resource, Bu�er, Message and Task group.

22

(2) Address space models a logical unit of memory.

(3) Task models a �ow of control.

(4) Resource models asynchronous communication between tasks of the
same address space.

(5) Buffer models queued data exchanges between tasks of the same ad-
dress space.

(6) Message models queued data exchanges between tasks located in di�er-
ent address spaces.

(7) Task group models a subset of tasks organized in transactions.

(8) Dependency which models relationships between tasks and other soft-
ware entities.

4.2.1 Address space

An Address space is speci�ed by the following de�nitions [27] [28]:

(1) It is the range of virtual addresses that the operating system assigns to
a user or separately running program.

(2) The range of addresses which a Processor or process can access, or at
which a device can be accessed.

(3) It refers to either physical address or virtual address.

(4) An Address space may be associated to an address protection mecha-
nism.

(5) An Address space de�nes a range of discrete addresses, each of which
may correspond to a network host, peripheral device, disk sector, a memory cell
or other logical or physical entity.

(6) It allows to model a logical unit of memory.

Standard attributes

Name : it is the unique name of the Address space .

Cpu−name: It is the name of Processor which contain Address space .

Text−Memory−Size: It is the size of text segment. A text segment contains
the executable image of the program.

It is used to perform a global memory analysis.

23

<!ELEMENT address_spaces (address_space)+>
<!ELEMENT address_space (object_type | name

| cpu_name | text_memory_size | stack_memory_size
| data_memory_size | heap_memory_size
| s chedu l ing)∗>

<!ATTLIST address_space id ID #REQUIRED>

Figure 10 � The DTD of entity Address_Space

Stack−Memory−Size: It is the size of stack segment. A stack segment con-
tains the function-call stack.

This segment is extended automatically as needed.

Data−Memory−Size: It is the size of data segment. A data segment con-
tains the heap of dynamically allocated data space.

Heap−Memory−Size: It is the size of logical memory reserved for the heap.

Scheduling: It de�nes all parameters of scheduling.
It is the type of Scheduling−Parameters (see Annexes for de�nitions of

Scheduling−Parameters).

Legality rules

(L1) The Address space name must not be empty.

(L2) The Address space name must be valid identi�er.

(L3) An Address space must be linked to a Processor .

(L4) The Text−Memory−Size must be greater than or equal to 0.

(L5) The Stack−Memory−Size must be greater than or equal to 0.

(L6) The Data−Memory−Size must be greater than or equal to 0.

(L7) The Heap−Memory−Size must be greater than or equal to 0.

Annexes

(A1) See Annexes ofDynamic−Deployment for attributes of Scheduling−Parameters.

Implementation

The �gure 10 gives the DTD of entity Address space .

Example

24

The �gure 11 gives an example of Address space .
This Address space , named addr1 is based on Processor processor1. The

others parameters are �xed on 0, and the scheduling parameters have a quantum
equal to 0, and is the type PREEMPTIV E.

<address_space id=" 18" >
<object_type>ADDRESS_SPACE_OBJECT_TYPE</object_type>
<name>addr1</name>
<cpu_name>processor1 </cpu_name>
<text_memory_size>0</text_memory_size>
<stack_memory_size>0</stack_memory_size>
<data_memory_size>0</data_memory_size>
<heap_memory_size>0</heap_memory_size>
<schedul ing><schedul ing_parameters>
<scheduler_type>NO_SCHEDULING_PROTOCOL</scheduler_type>
<quantum>0</quantum>
<preemptive_type>PREEMPTIVE</preemptive_type>
<capacity>0</capacity>
<period>0</period>
<priority>0</priority>
<start_time>0</start_time>
</schedul ing_parameters>

</schedul ing>
</address_space>

Figure 11 � An Example of entity Address space described using Cheddar ADL

4.2.2 Task

A task, named Generic−Task is speci�ed by the following de�nitions:

(1) Run any type of program (including any operating system function such
as a scheduler).

(2) Statically de�ned in an Address space .

Standard attributes

Name : It is the unique name of the Task.

Task−Type: It de�nes the type of the task.
Annexes (A1) give the di�erent types of task.

Cpu−Name: It is a string, which de�ned the Processor where is running
the Task .

25

Address−Space−Name: It is a string, which de�nes the name of the Address
space hosting the task.

Capacity: It is a natural, and it corresponds to the worst case execution time
of the task.

Deadline: The task must end its activation before its deadline. A deadline
is a relative information : to get the absolute date at which a task must end
an activation, you should add to the deadline the time when the task was awo-
ken/activated. The deadline must be equal to the period if you de�ne a Rate
Monotonic scheduler.

Start−Time: It is a natural, which de�nes the �rst release time of a Task .

Priority: It is a priority range.
It allows the scheduler to choose the Task to run.

Blocking−Time: It's the worst case shared resource waiting time of the task.
This duration could be set by the user or computed by Cheddar shared resources
accesses are described.

Policy: It de�nes the scheduling policy of a task. Policy can be SCHED−RR,
or SCHED−FIFO or SCHED−OTHERS and describes how the scheduler
chooses a task when several tasks have the same priority level.

Offsets: An o�set stores two information : an activation number and a
value. It allows to change the wake up time of a task on a given activation
number. For an activation number, the task wake up time will be delayed by
the amount of time given by the value �eld.

Text−Memory−Size: Size of the text segment of the task in order to per-
form memory requirement analysis.

Stack−Memory−Size: Size of the memory stack of the task in order to per-
form memory requirement analysis.

Parameters: A parameter is similar to the deadline, the period, to capacity
..., but used by user-de�ned schedulers.

A user can de�ne new task parameters. A user-de�ned task scheduled has a
value, a name and a type. The types currently available to de�ne user-de�ned
task parameters are : string, integer boolean and double.

Criticality: The �eld indicates how the task is critical. Currently used by
the MUF scheduler or any user-de�ned schedulers.

Context−Switch−Overhead: It is an integer.

Legality rules

26

(L1) The Task name must not be empty.

(L2) The Task name must be valid identi�er.

(L3) In the case of Parametric−Type, The Activation−Rule should be a
valid identi�er.

(L4) The Cpu−Name must not be empty.

(L5) The Address−Space−Name must not be empty.

(L6) In the case of Periodic−Type, the Period must be greater than 0.

(L7) In the case of Periodic−Type, the Jitter must be greater than or equal
to 0.

(L8) In the case of Aperiodic−Type, the Period shouldn't exist.

(L9) In the case of Sporadic−Type, the Period shouldn't exist.

(L10) In the case of Parametric−Type, the Activation−Rule must not be
empty.

(L11) In the case of Frame−Task−Type, the Period must be greater than
or equal to 0

(L12) The Capacity must be greater than 0.

(L13) The Context−Switch−Overhead must be greater than or equal to 0.

(L14) The Criticality must be greater than or equal to 0.

(L15) The Deadline must be greater than or equal to 0.

(L16) The Deadline must be less than the Jitter.

(L17) The Start−Time must be greater than or equal to 0.

(L18) The Blocking−Time must be greater than or equal to 0.

(L19) The Text−Memory−Size must be greater than or equal to 0.

(L20) The Stack−Memory−Size must be greater than or equal to 0.

(L21) The Priority must be between Priority−Range−First and Priority−Range−Last.

(L22) We can't have simultaneously Priority 6= 0 Policy = Sched−Others.

(L23) We can't have simultaneously Priority = 0 Policy 6= Sched−Others.

27

Annexes

(A1) The types of Generic−Task.

(A11) Periodic−Type: In this case, the Task is periodic, and we have
two more attributes in order to characterize the Task :

(A111) Period: It is the time between two task activations. The
period is a constant delay for a periodic task. It's an average delay for a poisson
process task. If you have selected a Processor that owns a Rate Monotonic or
a Deadline Monotonic scheduler, you have to give a period for each of its tasks.

(A112) Jitter: The Jitter of Task is an upper bound on the delay
that Task may su�er between the time it is supposed to be released and the
time that it is actually released.

The jitter is a maximum lateness on the task wake up time. This informa-
tion can be used to express task precedencies and to applied method such as
the Holistic task response time method.

(A12) Aperiodic−Type In this case, the Task is called aperiodic task.
An aperiodic task is only activated once.

(A13) Sporadic−Type: A sporadic task is a task which is activated many
times with a minimal delay between two successive activations.

If the Task type is user−defined, the task activation delay is de�ned by the
user.

(A14) Poisson−Type. In this case, the task is called poisson task.
It is a subtype of Periodic task, with two more attributes.

(A141) Seed: If you de�ne a poisson process task or a user-de�ned
task, you can set here how random activation delay should be generated (in a
deterministic way or not). The Seed button proposes you a randomly generated
seed value but of course, you can give any seed value. This seed value is used
only if the Predictable button is pushed. If the Unpredictable button is pushed
instead, the seed is initialized at simulation time with gettimeofday.

(A142) Predictable: It is a boolean, which guides the seed value
(see the Seed de�nition).

(A15) Parametric−Type. In this case, the task is called parametric task,
and it is characterized by one more attribute.

(A151) Activation−Rule: The name of the rule which de�nes the
way the task should be activated. Only used with user-de�ned task.

(A16) Scheduling−Task−Type: It is one of the types of Task .

(A17) Frame−Task−Type. In this case, the task is called frame task,
and it is characterized by one more attribute.

28

(A171) Interarrival: It de�nes the duration between the release
of two tasks. It is speci�ed through the Period attribute.

(A2) The types of Policies [36].

(A21) Sched−Fifo: With this policy, ready processes in a given priority
level get the Processor according to their order in the FIFO queue.

The process at the head of the queue runs �rst and keeps the processor until
it executes some statement that blocks it, explicitly releases the processor, or
�nishes.

(A22) Sched−Rr: It can be seen as a Sched−Fifo policy but with a time
quantum and some extra rules on the queue management.

When the quantum is exhausted, the preempted thread is moved to the tail
of the queue.

(A23) Sched−Others: The behaviour of this policy is not de�ned in the
POSIX standard. It is implementation de�ned.

Sometimes, this policy provides a time sharing scheduler.
This policy is used by Linux for all processes with a priority level of 0. These

processes are put in a Sched−Others queue.
With Linux, the process in the Sched−Others queue that has waited longest

for the processor is dispatched �rst.

Implementation

The �gure 12 gives the DTD of entity Task .

Example

We give at �gure 13 an example of Task described in Cheddar ADL.
This task is periodic (task−type is PERIODIC−TY PE), and its period

(4) is speci�ed by attribute period. We can remark another informations, like
by example the task runs on processor1, and addr1 is Address−space dedicated
for its execution.

4.2.3 Resource

A Resource is speci�ed by the following de�nitions:

(1) It is any data structure, shared by tasks or not, synchronized or not.

(2) It is statically de�ned in an Address space .

(3) It may models asynchronous communication between tasks of the same
Address space .

Standards attributes

29

<!ELEMENT tasks (gener ic_task | periodic_task | aper iod ic_task
| poisson_task | sporadic_task | parametric_task
| schedul ing_task | frame_task)+>

<!ELEMENT gener ic_task (object_type | name | task_type
| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy
| o f f s e t s | text_memory_size | stack_memory_size
| parameters | c r i t i c a l i t y | context_switch_overhead)∗>

<!ATTLIST gener ic_task id ID #REQUIRED>
<!ELEMENT periodic_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period | j i t t e r)∗>

<!ATTLIST periodic_task id ID #REQUIRED>
<!ELEMENT aper iod ic_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead)∗>

<!ATTLIST aper iod ic_task id ID #REQUIRED>
<!ELEMENT poisson_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period
| j i t t e r | seed | p r ed i c t ab l e)∗>

<!ATTLIST poisson_task id ID #REQUIRED>
<!ELEMENT sporadic_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period | j i t t e r
| seed | p r ed i c t ab l e)∗>

<!ATTLIST sporadic_task id ID #REQUIRED>
<!ELEMENT parametric_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period | j i t t e r
| seed | p r ed i c t ab l e | a c t i va t i on_ru l e)∗>

<!ATTLIST parametric_task id ID #REQUIRED>
<!ELEMENT schedul ing_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period
| j i t t e r | seed | p r ed i c t ab l e)∗>

<!ATTLIST schedul ing_task id ID #REQUIRED>
<!ELEMENT frame_task (object_type | name | task_type

| cpu_name | address_space_name | capacity | deadline
| start_time | priority | blocking_time | policy | o f f s e t s
| text_memory_size | stack_memory_size | parameters
| c r i t i c a l i t y | context_switch_overhead | period
| j i t t e r | i n t e r a r r i v a l)∗>

<!ATTLIST frame_task id ID #REQUIRED>

Figure 12 � The DTD of entity Task

30

<periodic_task id=" 71">
<object_type>TASK_OBJECT_TYPE</object_type>
<name>T1</name>
<task_type>PERIODIC_TYPE</task_type>
<cpu_name>processor1 </cpu_name>
<address_space_name>addr1</address_space_name>
<capacity>2</capacity>
<deadline>4</deadline>
<start_time>0</start_time>
<priority>1</priority>
<blocking_time>10</blocking_time>
<policy>SCHED_FIFO</policy>
<text_memory_size>0</text_memory_size>
<stack_memory_size>0</stack_memory_size>
<c r i t i c a l i t y >0</ c r i t i c a l i t y >
<context_switch_overhead>0</context_switch_overhead>
<period>4</period>
<j i t ter>0</j i t ter>

</periodic_task>

Figure 13 � An example of Task description in Cheddar ADL

State: It is an initial value/state (similar to a semaphore initial value). Dur-
ing a scheduling simulation, at a given time, if a resource value is equal or less
than zero, the requesting tasks are blocked until the semaphore/shared resource
is released.

It is also an initial value equal to 1 allows you to design a shared resource
that is initially free and that can be used by only one task at a given time.

Size: It de�nes the size of the Resource .

Address: It is the located of Resource .

Protocol: It characterises how the Resource is locked and unlocked.
Currently, you can choose between [43] [44] PCP (for Priority Ceiling Pro-

tocol), PIP (for Priority Inheritance Protocol) or No protocol.
With PCP or PIP, accessing shared resources may change task priorities.

With No protocol, the tasks are inserted in a FIFO order in the semaphore
queue and no task priority will be changed at accessing the shared Resource .

Critical−Sections: It speci�es when each Task must lock or unlock re-
sources.

This attribute speci�es critical sections de�ned for each Task and Resource .

Cpu−Name: Each shared resource has to be hosted by a given Processor .

Address−Space−Name: Its corresponds to the name ofAddress space which

31

hosted the Resource .

Priority: Its the type of Priority−Range. It de�nes the priority of the
Resource .
This attribute is currently only used with the ICPP protocol.

Priority−Assignment: It is an enumerated type, and characterize the way
that Cheddar assigns priority to the Resource .

Legality rules

(L1) The resource name must not be empty.

(L2) The resource name must be a valid identi�er.

(L3) The Cpu−Name must not be empty.

(L4) The Address−Space−Name must not be empty.

(L5) The types of Protocol are speci�ed in Annexes.

(L6) The Size must be greater than or equal to 0.

(L7) The Address must be greater than or equal to 0.

Annexes

(A1) Each critical section is de�ned by :

(A11) Task−begin: The time at which the critical section is started. Task
is the Task name accessing the shared Resource .

(A12) task−end: The time at which the critical section is completed.
Task is the Task name accessing the shared Resource .

Each of this date are relative to the task capacity. Finally, several critical
sections can be de�ned for a given task on a given resource.

(A2) The types of Protocol [36].

(A21) No−Protocol: It is the case where any protocol is allocated to the
Resource .

(A22) Priority−Inheritance−Protocol: A Task which blocks a high pri-
ority task due to a critical section, sees its priority to be increased to the priority
level of the blocked task.

(A23) Priority−Ceiling−Protocol: Priority−Inheritance−Protocol can
not be used with more than one shared resource due to deadlock.

32

In this case, Priority−Ceiling−Protocol is used.

(A24) Immediate−Priority−Ceiling−Protocol: In this case:

(A241) Ceiling priority of a resource = maximum static priority
of the tasks which use it.

(A242) Dynamic task priority = maximum of its own static pri-
ority and the ceiling priorities of any resources it has locked.

(A3) The types of Priority−Assignment:

(A31) Automatic−Assignment: In this case, Cheddar assigns automat-
ically priority to the Resource . The attribute Priority is then ignored during
the simulation.

(A31) Manual−Assignment: This case corresponds to the manually af-
fectation of Priority to the Resource . The attribute Priority is then used
during the simulation.

Implementation

The �gure 14 gives the DTD of entity Resource .

Example

An example of resource described in Cheddar ADL is given in �gure 15.
Since protocol has value NO−PROTOCOL, that means that no priority is

attributed to task when it holds the resource R1. We can also remark that this
resource concerns processor1, and runs at addr1, and has two critical sections:
each task holds and releases the resource at time unit 1.

4.2.4 Bu�er

A Buffer is speci�ed by the following de�nitions:

(1) It is statically de�ned in an Address space .

(2) A Buffer has an unique name, size and is hosted by a Processor and
an Address space .

(3) It allows to model queued data exchanges between Tasks on the same
Address space .

Standard attributes

Name : It is the unique name of Buffer .

33

<!ELEMENT re s ou r c e s (gener i c_resource | np_resource |
p ip_resource |
pcp_resource | ipcp_resource | c r i t i c a l_ s e c t i o n)+>
<!ELEMENT gener i c_resource (object_type | name |
s t a t e | s i z e | address | p ro to co l |
c r i t i c a l_ s e c t i o n s | cpu_name | address_space_name)∗>
<!ATTLIST gener i c_resource id ID #REQUIRED>
<!ELEMENT np_resource (object_type | name | s t a t e |
priority | s i z e | address | p ro to co l | c r i t i c a l_ s e c t i o n s |
cpu_name | address_space_name)∗>
<!ATTLIST np_resource id ID #REQUIRED>
<!ELEMENT pip_resource (object_type | name | s t a t e |
priority | s i z e | address | p ro to co l | c r i t i c a l_ s e c t i o n s |
cpu_name | address_space_name)∗>
<!ATTLIST pip_resource id ID #REQUIRED>
<!ELEMENT pcp_resource (object_type | name | s t a t e |
priority | s i z e | address | p ro to co l | c r i t i c a l_ s e c t i o n s |
cpu_name | address_space_name | c e i l i n g_p r i o r i t y)∗>
<!ATTLIST pcp_resource id ID #REQUIRED>
<!ELEMENT ipcp_resource (object_type | name | s t a t e |
priority | s i z e | address | p ro to co l | c r i t i c a l_ s e c t i o n s |
cpu_name | address_space_name | c e i l i n g_p r i o r i t y)∗>
<!ATTLIST ipcp_resource id ID #REQUIRED>
<!ELEMENT c r i t i c a l_ s e c t i o n (task_begin | task_end)∗>

Figure 14 � The DTD of entity Resource

34

<np_resource id=" 44" >
<object_type>RESOURCE_OBJECT_TYPE</object_type>

<name>R1</name>
<state >1</state>
<s i z e >0</s i z e >
<address >0</address>
<protoco l>NO_PROTOCOL</protoco l>
<c r i t i c a l_ s e c t i o n s >

<task_name> T1 </task_name>
<c r i t i c a l_ s e c t i o n >

<task_begin>1</task_begin>
<task_end>1</task_end>

</c r i t i c a l_ s e c t i o n >
<task_name> T2 </task_name>
<c r i t i c a l_ s e c t i o n >

<task_begin>1</task_begin>
<task_end>1</task_end>

</c r i t i c a l_ s e c t i o n >
</c r i t i c a l_ s e c t i o n s >
<cpu_name>processor1 </cpu_name>
<address_space_name>addr1</address_space_name>

</np_resource>

Figure 15 � An example of Resource description in Cheddar ADL

35

Cpu−Name: It corresponds to the name of Processor hosted by the Buffer
.

Address−Space−Name: It corresponds to the name of Address space hosted
by the Buffer .

Queueing−System−Type: It de�nes the types of Queueing−System.
A Queueing−System model is assigned to each Buffer .
This queueing system model describes the way bu�er reads and writes op-

erations will be done at simulation time.
This information is also used to apply Buffer feasibility tests.

Buffer−Size: Size of the Buffer .

Roles: It is the type of Buffer−Roles−Table.
The Buffer−roles−table is a list of buffer−role.

Legality rules

(L1) The Buffer name must not be empty.

(L2) The Buffer name must be a valid identi�er.

(L3) The Cpu−Name must not be empty.

(L4) The Address−Space−Name must not be empty.

(L5) The Size must be greater than 0.

(L6) Two types of Tasks can access to a Buffer : producers and consumers.

(L7) We suppose that a producer/consumer writes/reads a �xed size of in-
formation in the Buffer .

(L8) For each producer or consumer, the size of the information produced
or consumed has to be de�ned.

(L9) The time of the read/write operation is also given : this time is relative
to the task capacity (e.g. if task Ti consumes a message at time 2, it means that
the message will be removed from the Buffer when Ti runs the 2nd unit of
time of its capacity).

Annexes

(A1) The types of Queueing−System [46].

(A11) Qs−Pp1: compliant with P/P/1 queueing model [45]. There are
several producers but only one consumer Task . Producers and the consumers
are independent periodic tasks. Producers and the consumer are not blocked

36

when they access the Buffer .

(A12) Qs−Mm1 : compliant with the classical M/M/1 queueing system
model. There are several producers but only one consumer task. Producers are
released according to a Markovian law. The consumer is released on data arrival
and its service time is exponential (markovian law too).

(A13) Qs−Md1 : compliant with the classical M/D/1 queueing system
model. There are several producers but only one consumer Task . Producers
are released according to a Markovian law. The consumer is released on data
arrival and its service time is deterministic.

(A14) Qs−Mp1 : compliant with the classical M/P/1 queueing system
model.

(A15) Qs−Mg1 : compliant with the classical M/G/1 queueing system
model.

(A16) Qs−Mms : compliant with the classical M/M/S queueing system
model.

(A17) Qs−Mds : compliant with the classical M/D/S queueing system
model.

(A18) Qs−Mps : compliant with the classical M/P/S queueing system
model.

(A19) Qs−Mgs : compliant with the classical M/G/S queueing system
model.

(A110) Qs−Mm1n : compliant with the classical M/M/1/N queueing
system model.

(A111) Qs−Md1n : compliant with the classical M/D/1/N queueing sys-
tem model.

(A112) Qs−Mp1n : compliant with the classical M/P/1/N queueing sys-
tem model.

(A113) Qs−Mg1n : compliant with the classical M/G/1/N queueing sys-
tem model.

(A114) Qs−Mmsn : compliant with the classical M/M/S/N queueing
system model.

(A115) Qs−Mdsn : compliant with the classical M/D/S/N queueing sys-
tem model.

(A116) Qs−Mpsn : compliant with the classical M/P/S/N queueing sys-
tem model.

37

<!ELEMENT bu f f e r s (bu f f e r | bu f f e r_ro l e)+>
<!ELEMENT bu f f e r (object_type | name | cpu_name

| address_space_name | queueing_system_type | s i z e
| r o l e s)∗>

<!ATTLIST bu f f e r id ID #REQUIRED>
<!ELEMENT bu f f e r_ro l e (the_role | s i z e | time | t imeout)∗>
<!ATTLIST address_space id ID #REQUIRED>

Figure 16 � The DTD of entity Buffer

(A117) Qs−Mgsn : compliant with the classical M/G/S/N queueing sys-
tem model.

(A2) TheBuffer−Roles−Table is a list ofBuffer−Role. EachBuffer−Role
is characterized by:

(A21) The−Role which is the type of Buffer−Role−Type.
It describes the behaviour of Task on the Buffer .

(A211) No−Role: When any role is de�ned.

(A212) Queuing−Producer: name of the producer Task .

(A213) Queuing−Consumer: name of the consumer Task .

(A214) Sampling−Writer: name of the producer Task .

(A215) Sampling−Reader: name of the consumer Task .

(A22) Size : size of the data reads/writes to/from the Buffer .

(A23) Time : time at which the data must be read or write on the Buffer
. This time is relative to the Task capacity

(A24) Timeout : specify the maximum blocking time allowed when a
read/write is proceeded on a Buffer .

Implementation

The �gure 16 gives the DTD of entity Buffer .

Example

The �gure 17 gives an example of entity Buffer , described using Cheddar
ADL.

The considered Buffer , named B1 is hosted by the Processor processor1
and Address space addr1.

38

<bu f f e r s >
<bu f f e r id=" 37" >
<object_type>BUFFER_OBJECT_TYPE</object_type>
<name>B1</name>
<cpu_name>processor1 </cpu_name>
<address_space_name>addr1</address_space_name>
<queueing_system_type>QS_MM1</queueing_system_type>
<s i z e >1</s i z e >
<ro l e s >
<task_name> T1 </task_name>
<buf f e r_ro l e>
<the_role>QUEUING_PRODUCER</the_role>
<s i z e >1</s i z e >
<time>1</time>
<timeout>1</timeout>

</buf f e r_ro l e>
<task_name> T2 </task_name>
<buf f e r_ro l e>
<the_role>QUEUING_CONSUMER</the_role>
<s i z e >2</s i z e >
<time>2</time>
<timeout>2</timeout>

</buf f e r_ro l e>
</ro l e s >

</bu f f e r>
</bu f f e r s >

Figure 17 � An example of entity Buffer

39

4.2.5 Message

A Message is speci�ed by the following de�nitions:

(1) It allows to model data exchanges between Tasks located in di�erent
Processor .

(2) A Message can be sent by one or several sending Task and can be re-
ceived by one or several receiving Tasks .

(3) Messages can be queued on the receiver side before they are read by
sending Task .

Standard attributes

Name: It is the unique name of the Message .

Message−Type: It speci�es the type of Message .

Parameters: It is the type of User−Defined−Parameters−Table, which is
the list of Parameter.

Deadline: It is deadline of the Message . This corresponds to the last time
that the Message should be received or sent.

Jitter: The jitter of the Message .

Size: It is the size of the payload of the Message .

Response−Time : Amount of time a message takes to reach the receiver
after it has been sent by the sender.

It also corresponds to the end to end time between the emission and recep-
tion of the Message .

Communication−Time: It is the duration of the Message in the Buffer .

Legality rules

(L1) The Message name must not be empty.

(L2) The Message name must be a valid identi�er.

(L3) The Size must be greater than 0.

(L4) The Deadline must be less than or equal to Jitter.

(L5) Message is sent when the sender is running its last time unit of its
capacity.

40

(L6) A Message is received at the execution of the at completion time of a
sender Task .

(L7) A Message cannot be received before the speci�ed number of units of
time speci�ed by the attribute response−time after the message sending time.

(L8) A Message is received when (L7) holds and when a receiver task is
running its �rst unit of time of its Capacity.

Annexes

(A1) The types of Message .

(A11) Periodic−Type: A periodic message is automatically sent at each
Period.

(A12) Aperiodic−Type: In this case, the message is sent according to
aperiodic time.

(A13) Generic−Type: It is the case when we have no information about
the sending time of Message .

(A2) Each Parameter is characterized by:

(A21) Discriminant. It is the type of Parameter−Type.

(A211) Boolean−Parameter: When the parameter is boolean.

(A212) Integer−Parameter: When the parameter is integer.

(A213) Double−Parameter: When the parameter is double.

(A214) String−Parameter: When the parameter is string.

(A22) Union, which is the type of Parameter−Union.

(A221) Boolean−Parameter: When the parameter is boolean.

(A222) Integer−Parameter: When the parameter is integer.

(A223) Double−Parameter: When the parameter is double.

(A224) String−Parameter: When the parameter is string.

(A23) Name: The name of the parameter.

Implementation

The �gure 18 gives the DTD of entity Message.

41

<!ELEMENT messages (generic_message |
per iodic_message | aper iodic_message)+>

<!ELEMENT generic_message (object_type | name |
message_type | parameters | deadline | s i z e |
response_time | communication_time)∗>

<!ATTLIST generic_message id ID #REQUIRED>
<!ELEMENT periodic_message (object_type | name |

message_type | parameters | deadline | s i z e |
response_time | communication_time | period | j i t t e r)∗>

<!ATTLIST periodic_message id ID #REQUIRED>
<!ELEMENT aperiodic_message (object_type | name |

message_type | parameters | deadline | s i z e |
response_time | communication_time)∗>

<!ATTLIST aper iodic_message id ID #REQUIRED>

Figure 18 � The DTD of entity Message

Example

The �gure 19 gives an example of entity Message , described using Cheddar
ADL.

The example describes a periodic message, named M1, with deadline, size,
response−time, period and jitter equal to 1.

4.2.6 Dependency

A Dependency is speci�ed by the following de�nitions:

(1) It allows to model an interaction between two software entities which has
an impact upon the scheduling of the system.

(2) Software entities handled in a Dependency component can either be
Tasks , and or Resources and or Buffers .

Standard attributes

Name: It is the unique name of entity Network .

Type−of−dependency : It speci�es the kind of dependency component mod-
els.

Union: It corresponds to the description of union in C language. In this
case, it allows to describe the di�erent dependency types.

Legality rules

42

<messages>
<periodic_message id=" 58" >
<object_type>MESSAGE_OBJECT_TYPE</object_type>
<name>M1</name>
<message_type>PERIODIC_TYPE</message_type>
<deadline>1</deadline>
<s i z e >1</s i z e >
<response_time>1</response_time>
<communication_time>1</communication_time>
<period>1</period>
<j i t ter>1</j i t ter>
</periodic_message>

</messages>

Figure 19 � An example of entity Message

(L1) The dependency name must not be empty.

(L2) The dependency name must be valid identi�er.

Annexes

(A1) The types of Dependency :

(A11) Precedence−Dependency : When the dependency models a de-
pendency between two Task components.

(A12) Queuing−Buffer−Dependency : When the dependency models a
dependency between Task and Buffer components.

(A13) Communication−Dependency : When the dependency models a
dependency between Task and Message components.

(A2) The types of Union :

(A21) Precedence−Dependency : It is the type of Precedence−Dependency−Type.

(A22) Queuing−Buffer−Dependency: It is the type of
Queuing−Buffer−Dependency−Type.

(A23) Communication−Dependency: It is the type of
Communication−Dependency−Type.

(A24) Time−Triggered−Communication−Dependency: It is the type
of
Time−Triggered−Communication−Dependency−Type.

43

<!ELEMENT dependenc ies (dependency)+>
<!ELEMENT dependency (type_of_dependency |

precedence_sink | precedence_source |
buffer_dependent_task | bu f f e r_o r i en t a t i on |
buffer_dependency_object |
communication_dependent_task |
communicat ion_orientat ion |
communication_dependency_object |
time_triggered_communication_sink |
time_triggered_communication_source |
t iming_property |
resource_dependency_resource |
resource_dependency_task |
black_board_dependent_task |
black_board_orientat ion |
black_board_dependency_object)∗>

Figure 20 � The DTD of entity Dependency

(A25) Resource−Dependency: It is the type of
Resource−Dependency−Type.

(A26) Black−Board−Buffer−Dependency: It is the type of
Black−Board−Buffer−Dependency−Type.

Implementation

The �gure 20 gives the DTD of entity Dependency .

Example

The �gure 21 gives some examples of Dependency .
We illustrate an example of QUEUING−BUFFER−DEPENDENCY ,

RESOURCE−DEPENDENCY , COMMUNICATION−DEPENDENCY
and PRECEDENCE−DEPENDENCY

4.2.7 Task group

A Task group is speci�ed by the following de�nitions:

(1) A Task group is a sub-set of Tasks .

(2) A Generic−Task−Group has an unique name.

(3) A Generic−Task−Group may constrain (the attributes of) its Tasks .

(4) The manner a Generic−Task−Group constrains its Tasks depends on
the type of the Task group .

44

<dependencies>
<dependency>
<type_of_dependency>QUEUING_BUFFER_DEPENDENCY
</type_of_dependency>
<buffer_dependent_task r e f=" 42" />
<buf f e r_or i en ta t i on>FROM_TASK_TO_OBJECT
</bu f f e r_or i en ta t i on>
<buffer_dependency_object r e f=" 46" />

</dependency>

<dependency>
<type_of_dependency>RESOURCE_DEPENDENCY
</type_of_dependency>
<resource_dependency_resource r e f=" 44" />
<resource_dependency_task r e f=" 42" />

</dependency>

<dependency>
<type_of_dependency>COMMUNICATION_DEPENDENCY
</type_of_dependency>
<communication_dependent_task r e f=" 43" />
<communication_orientation>FROM_TASK_TO_OBJECT
</communication_orientation>
<communication_dependency_object r e f=" 45" />

</dependency>

<dependency>
<type_of_dependency>PRECEDENCE_DEPENDENCY
</type_of_dependency>
<precedence_sink r e f=" 42" />
<precedence_source r e f=" 43" />

</dependency>

</dependencies>

Figure 21 � An example of Dependency

45

Standard attributes

Task−List: The set of tasks part of the Task group . A list is used because
some Task groups may constrain its Tasks to be in a certain order.

Task−Group−Type: Type of Task group .
Currently there exists two types of Task group . Annexes (A1) give the dif-

ferent types of a Task group .

The other attributes of a Task group are the same as those for a Task. This
way a Task group may constrain any attribute of its Tasks .

Legality rules

(L1) The Task group name must not be empty.

(L2) The Task group name must be valid identi�er.

(L3) When Task−Group−Type isMultiframe−Type, the Task−Typemust
not be di�erent of Frame−Task−Type.

(L4) When Task−Group−Type is Transaction−Type, the Task−Type must
not be di�erent of Periodic−Type.

(L5) When Task−Group−Type, of a Task group , is Transaction−Type,
the period attribute of its tasks must be equal to the period attribute of the
Generic−Task−Group

Annexes

(A1) The types of Generic−Task−Group.

(A11) Transaction−Type: AGeneric−Task−Group of Transaction−Type
is a transaction [47].

A transaction is group of tasks related by precedence dependency.
A transaction is released by a periodic event. A particular instance of a

transaction is called a job. A job of a task in a transaction is released after the
event that releases the job of the transaction.

If a job of a transaction is released at t0, then a job of a Task is released at
earliest after t0 +O with O being the o�set of the Task .

(A12)Multiframe−Type: AGeneric−Task−Group ofMultiframe−Type
is a Multiframe task [50] or a General Multiframe task [49], i.e. group of tasks of
FrameTaskT ype. Tasks of FrameTaskT ype represent the instances of the Mul-
tiframe/GeneramMultiframe task (Generic−Task−Group ofMultiframe−Type)
and the tasks are ordered. Releases of two tasks of FrameTaskT ype are sepa-
rated at least by the Interarrival attribute of the tasks.

Implementation

46

<transact ion_task_group id=" 13">
<object_type>TASK_GROUP_OBJECT_TYPE</object_type>
<name>TDMA_Frame</name>
<task_l i s t >

<periodic_task r e f=" 14"/>
<periodic_task r e f=" 15"/>
<periodic_task r e f=" 16"/>

</ta sk_l i s t >
<task_group_type>TRANSACTION_TYPE</task_group_type>
<period>0</period>

</transaction_task_group>

Figure 22 � An example of Task group (of type Transaction−Type) description
in Cheddar ADL

Example

We give at �gure 22 an example of Task group described in Cheddar ADL.
The considered example is a Transaction, composed by three periodic tasks.
Note that other parameters are not described here in order to simplify the

example.

5 Notion of Deployments

A Deployment models a relationship between two sets of entities : consumer
entities and resource entities.

It is speci�ed by the following de�nitions.

(1) It may be static or dynamic.

(2) We distinguishGeneric−Deployments, which is composed by Static−Deployments
and Dynamic−Deployments.

5.1 Generic Deployments

(1) A Generic−Deployment characterizes the deployment notion.

(2) A Generic−Deployment is a relationship between two set of entities :
consumer entities and resource entities.

Standard attributes

Name: The unique name of Deployment.

Consumer−Entities: The set of entities requesting access to the resource.

47

<!ELEMENT deployments (generic_deployment |
static_deployment | dynamic_deployment)+>
<!ELEMENT generic_deployment (object_type |
name | consumer_entities | resource_entities)∗>
<!ATTLIST generic_deployment id ID #REQUIRED>

Figure 23 � The DTD of entity Generic−Deployment

Resource−Entities: The set of resources that are made available for resource
consumers.

Legality rules

(L1) The Generic−Deployment name must not be empty.

(L2) The Generic−Deployment name must be a valid identi�er.

Annexes

Implementation

The �gure 23 gives the DTD of entity Generic−Deployment.

Example

5.2 Static Deployments

(1) A Static Deployment contains a table which de�nes how the resources
are statically allocated by the resource consumers.

(2) It can model a task o�-line scheduling for example or a partition o�-line
scheduling of an ARINC 653 architecture.

Standard attributes

Allocation−description: It de�nes how the resources are statically allocated
by the resource consumers.

This table may be a o�-line scheduling of Task or a set of addresses stati-
cally de�ned for each software component inside an Address space .

Legality rules

(L1) The Static−Deployment name must not be empty.

(L2) The Static−Deployment name must be a valid identi�er.

48

<!ELEMENT static_deployment (object_type | name |
consumer_entities | resource_entities |
a l l o c a t i o n_de s c r i p t i o n)∗>
<!ATTLIST static_deployment id ID #REQUIRED>

Figure 24 � The DTD of entity Static−Deployment

<deployments>
<static_deployment id=" 66" >
<object_type>DEPLOYMENT_TYPE</object_type>
<name>static_example</name>
<consumer_entities><multi_cores_processor r e f=" 61" />
</consumer_entities>

<resource_entities><periodic_task r e f=" 63" />
<periodic_task r e f=" 64" />
<periodic_task r e f=" 65" />
</resource_entities>

<allocation>schedul ing_sequence . xml</allocation>
</static_deployment>

</deployments>

Figure 25 � An example of Static−Deployment

Annexes

Implementation

The �gure 24 gives the DTD of entity Static−Deployment.

Example

An example of Static−Deployment described in Cheddar ADL is given in
�gure 25.

In this example, the consumer−entities, a ulti−cores−processor needs a
periodic−task to work. An o�-line scheduling is given in �le scheduling−sequence.xml.

5.3 Dynamic Deployments

(1) A Dynamic−Deployment contains an algorithm.

(2) The algorithm de�nes how the resources are dynamically allocated by
the resource consumers.

49

(3) It allows to de�ne a dynamic resource allocation between the two sets of
components.

(4) It may be an on-line scheduling algorithm for Task component or a mal-
loc algorithm for a set of software components inside an Address space .

Standard attributes

Allocation−parameters: It is the type of Scheduling−Parameters.
It speci�es how the resources are shared between consumers.
Allocation_parameters store parameters of an algorithm, which de�nes how

the resources are scheduling among the resource consumers.

Legality rules

(L1) The Dynamic−Deployment name must not be empty.

(L2) The Dynamic−Deployment name must be a valid identi�er.

Annexes

(A1) The Scheduling−Parameters attributes.

A scheduler is responsible for selecting the running task for each unit of time
from among the set of ready tasks. There are various ways to make this choice.

We distinguish:

(A11) Scheduler−type: Which de�nes the type of scheduler, and may be
[17] [18] [19], [20]:

(A111) Compiled−User−Defined−Protocol: ...

(A112) Automata−User−Defined−Protocol: ...

(A113) Pipeline−User−Defined−Protocol: ...

(A114) User−Defined−Protocol: ...

(A115) Earliest−Deadline−First−Protocol: Tasks can be peri-
odic or not and are scheduled according to their Deadline.

(A116) Least−Laxity−First−Protocol: Tasks can be periodic or
not and are scheduled according to their laxity.

(A117) Rate−Monotonic−Protocol: He attributes the higher pri-
ority to the task which has the smallest period.

50

(A118)Deadline−Monotonic−Protocol: At every scheduling point,
the task having the shortest deadline is taken up for scheduling.

Tasks have to be periodic and are scheduled according to their deadline. You
have to be aware that the value of the priority �eld of the tasks is ignored here.

(A119) Round−Robin−Protocol: ...

(A1110) Time−Sharing−Based−On−Wait−Time−Protocol: ...

(A1111) Posix−1003−Highest−Priority−First−Protocol: ...

(A1112) D−Over−Protocol: ...

(A1113)Maximum−Urgency−First−Based−On−Laxity−Protocol:
...

(A1114)Maximum−Urgency−First−Based−On−Deadline−Protocol:
...

(A1115) Time−Sharing−Based−On−Cpu−Usage−Protocol: ...

(A1116) No−Scheduling−Protocol: ...

(A1117) Hierarchical−Cyclic−Protocol: ...

(A1118) Hierarchical−Round−Robin−Protocol: ...

(A1119) Hierarchical−Fixed−Priority−Protocol: ...

(A1120) Hierarchical−Polling−Aperiodic−Server−Protocol: ...

(A1121)Hierarchical−Priority−Exchange−Aperiodic−Server−Protocol:...

(A1122)Hierarchical−Sporadic−Aperiodic−Server−Protocol: ...

(A1123)Hierarchical−Deferrable−Aperiodic−Server−Protocol:
...

(A1124) Proportionate−Fair−PF−Protocol: ...

(A1125) Proportionate−Fair−PD−Protocol: ...

(A1126) Proportionate−Fair−PD2−Protocol: ...

(A12) Quantum: It is the quantum value associated with the Scheduler.
It is a natural, which de�nes the smallest unit of execution time of a task.
A time quantum is a maximum duration that a process can run on the

Processor before being pre-empted by another process of the same queue.
This information is useful if a scheduler has to manage several tasks with

the same dynamic or static priority : in this case, the simulator has to choose

51

<!ELEMENT dynamic_deployment (object_type | name |
consumer_entities | resource_entities |
a l l ocat ion_parameter s)∗>
<!ATTLIST dynamic_deployment id ID #REQUIRED>

Figure 26 � The DTD of entity Dynamic−Deployment

how to share the processor between these tasks. The quantum is a bound on
the delay a task can hold the processor (if the quantum is equal to zero, there
is no bound on the processor holding time).

(A13) Preemptive−type: It characterizes the scheduler type. We have
two types:

(A131) Preemptive: When the running task is interrupted for
some time and resumed later when the priority task has �nished its execution.

(A132) Not−preemptive: In this case, a running task is executed
till completion. It cannot be interrupted.

(A14) Automaton−name: ...

(A15) Capacity: It is the worst case execution time of a Task.

(A16) Period: It is duration between two periodic release times.

In this case, a task starts a job at each release time.

(A17) Priority: It is a priority range. It is an integer, which allows the
scheduler to choose the task to run.

(A18) User−Defined−Scheduler−Source: ...

(A19) User−Defined−Scheduler−Source−File−Name: the �le name of
a �le which contains the source code of a User−Defined−Scheduler.

(A110) Start−Time: It is the �rst release time of a Task.

Implementation

The �gure 26 gives the DTD of entity Dynamic−Deployment.

Example

An example of Dynamic−deployment is given at �gure 27.
This dynamic deployment specify the way that three periodic tasks, referred

by ref 71, 72 and 73 request a multi−cores−processors, refered by ref 69.

52

<deployments>
<dynamic_deployment id=" 74">
<object_type>DEPLOYMENT_TYPE</object_type>
<name>dynamic_example</name>

<consumer_entities>
<periodic_task r e f=" 71"/>
<periodic_task r e f=" 72"/>
<periodic_task r e f=" 73"/>

</consumer_entities>

<resource_entities>
<multi_cores_processor r e f=" 69"/>

</resource_entities>

<allocation>
<schedul ing_parameters>
<scheduler_type>RATE_MONOTONIC_PROTOCOL
</scheduler_type>
<quantum>0</quantum>
<preemptive_type>PREEMPTIVE
</preemptive_type>
<capacity>0</capacity>
<period>0</period>
<priority>0</priority>
<start_time>0</start_time>
</schedul ing_parameters>

</allocation>
</dynamic_deployment>

Figure 27 � An example of Dynamic−deployment description in Cheddar ADL

The allocation strategy is RATE−MONOTONIC, with another charac-
teristics like Preemptive−type which is PREEMPTIV E, capacity and period.

6 Applications of Cheddar ADL

In this section, we show how Cheddar ADL is used for scheduling analysis
in the Cheddar context.

We implement Cheddar ADL through a XML format. XML tags represent
the di�erent types of components and attributes. Each real-time application
architecture is speci�ed by a XML �le, which must be conform to the DTD
(Document Type De�nition) of Cheddar ADL. Cheddar tools check this XML
�le format, verify speci�c consistency rules, and then append an instance of the
matching component into the internal system representation.

53

Figure 28 � How interoperability with other ADLs is ensured: the particular
case of AADL and Cheddar ADL

Notice that the Cheddar ADL �le does not indicate what is the type of the
scheduling analysis to apply. Users choose the method through a graphical inter-
face, or by calling dedicated programs from the Cheddar toolbox. A tool is also
provided to guide users towards the feasibility tests that are usable according
to the architecture of their system [41].

Like announced in our requirements, Cheddar ADL should be a gateway
with another tool in order to perform schedulability analysis.

The �gure 28 shows how, in general case, an analysis tool with it speci�c
language is used to check an another model.

Using an ADL editor or not, the user produces its own model, which is trans-
formed by an ADL Model Translator, in order to generate the speci�c model,
compatible with your analysis tool.

Especially in our case, we show how Cheddar is integrated into an iteration
of the development process of a real-time system using AADL inspector, an
AADL model editor 3:

� The designer models a system using AADL inspector.
� The system is then transformed toward the Cheddar ADL used by the
analysis tool.
This transformation extracts information relevant to the schedulability
analysis only.
The example of �gure 29 is a result of transformation.
It is composed of a set periodic tasks, with start−time equal to 0.
The tasks run on a multi-cores processors, with two identical cores, with
the scheduler posix−1003−highest−priority−first−protocol.
One address space, linked to the processor, allows to model logical memory.
Finally, a static deployment is used to give the relationships between
the multi-cores processors and tasks. It is the o�-line scheduling, and
scheduling−sequence.xml gives the time moments when each task is pre-
empted.

� The analysis tool performs the schedulability analysis and provides an

3. AADL inspector is a product of Ellidiss Technologies http://www.ellidiss.com

54

<cheddar>
. . .
<core_unit id=" 59" >

<name>core1</name>
<scheduler_type>
POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL
</scheduler_type>
<preemptive_type> PREEMPTIVE </preemptive_type>

</core_unit>
. . .
<multi_cores_processor id=" 61" >
<name>processor1 </name>
<processor_type> IDENTICAL_MULTICORES_TYPE
</processor_type>
<migration_type> TIME_UNIT_MIGRATION_TYPE
</migration_type>
<cores>
<core_unit} r e f=" 59" />
<core_unit} r e f=" 60" />

</cores>
</multi_cores_processor>
. . .
<periodic_task id=" 63" >
<name>T1</name>
<cpu_name>processor1 </cpu_name>
<capacity>2</capacity>
<deadline>4</deadline>
<start_time>0</start_time>
<policy>SCHED_FIFO</policy>
<period>4</period>
<j i t ter>0</j i t ter>

</periodic_task>
. . .
<static_deployment id=" 66" >
<name>static_example</name>
<consumer_entities>
<multi_cores_processor r e f=" 61" />

</consumer_entities>
<resource_entities>
<periodic_task r e f=" 63" />
<periodic_task r e f=" 64" />
<periodic_task r e f=" 65" />

</resource_entities>
<allocation> schedul ing_sequence . xml
</allocation>

</static_deployment>
. . .

</cheddar

Figure 29 � Example of an application speci�ed using Cheddar ADL

55

analysis report.
We give at �gure 30 a Cheddar scheduling simulation of our example, on
the hyper-period.

56

Figure 30 � A Cheddar scheduling simulation of our example

Let us remark that in this case, our application is not feasible.

7 Related works

The Dedal [1] context is the development of software based components. The
life cycle of the software is composed of three steps: speci�cation, deployment
and exploitation, which are closely linked in term of maintenance.

Dedal is an ADL which aim to de�ne independently speci�cation, con�gu-
ration and assembly of an architecture, in order to coordinate the evolution of
di�erent levels of an abstraction. Usually, only two of the three levels are taken
into account in the de�nition of ADLs.

Three dimensions so de�ne the language:
� The abstract speci�cation of an architecture: it is the description of all
roles played by components that participate in the realization of the ar-
chitecture. At this level, the authors focus on the de�nition of roles of
components, connections between component interfaces and behaviour of
the architecture.

� The concrete con�guration of an architecture: this is to de�ne the classes
of components and connectors used to implement the architecture.

� The assembly of an architecture: this step describes all instances, com-
ponents and connectors that make up the architecture. Here, the authors
assign values or constraints to the components.

In the Cheddar context, our objective is the proposition of an architecture
description language for real-time applications, in order to perform scheduling
analysis.

Although it is not the same context, the description of Cheddar ADL is
based on the same logic: software component for abstract speci�cation, hard-
ware component for concrete speci�cation and binding for assembly.

The Architecture Analysis & Design Language (AADL) is a SAE standard
(AS-5506), �rst published in 2004 [48]. AADL targets the design, analysis and

57

integration of distributed real-time systems. An AADL model describes a sys-
tem as a hierarchy of components with their interfaces and their connections.
It allows the modelling of the software components and their interactions, and
also of the execution platform. Component categories are process, data, thread,
subprogram for the software modelling, and processor, memory, bus and device
for the entities of the execution platform. The deployment of a software appli-
cation onto an execution platform is speci�ed through binding properties. The
execution of a software task may be assigned to one or a set of components of
the execution platform. The AADL standard includes a large set of properties
to precisely model system characteristics. Moreover, new ones may be appended
to extend the description with regard to the expected system analysis.

The AADL language is not especially dedicated to analysis of real-time sys-
tems. It takes into account more components, and the concepts is not very
adapted for a classical designer of real-time systems. This is actually a language
too heavy, too wide and not especially dedicated to the schedulability analysis
of real-time systems. Moreover, it is not very adapted for a regular user of real-
time systems. By example, device is an inappropriate term for a classic user of
real-time systems, whose objective is the schedulability analysis.

Modelling and Analysis of Real-Time Embedded systems (MARTE) is a
standard UML pro�le promoted by the Object Management Group [51] [?] [53].
The pro�le adds capabilities to UML for Model-Driven Development [54] of real-
time systems. MARTE thus provides support to specify and to design such a
system but also to annotate the model for di�erent kinds of analysis. MARTE
was designed to cover a large area of real-time systems, including avionic, auto-
motive or software radio systems. For example, the pro�le was designed so that
all AADL concepts can be modelled in MARTE ([51], Annex A, section 2.3).
The pro�le was also designed to support tools dedicated to real-time system
(e.g. modeller, code generator, functional analyser, simulator). Several real-time
analysing tools have been developed using MARTE, such as: [55], which pre-
sented the MARTE model elements associated with the time model package of
MARTE, and illustrated their use on an automotive case study. For that, they
extracted the physical timing information and used it to perform a schedulability
analysis.

The real-time pro�le of MARTE is dedicated to model and analyse real-time
systems, by cons, MARTE's approach is not to create new analysis methods, but
to support existing ones, as opposed to Cheddar ADL which o�ers possibilities
to take into account new analytical techniques.

In the context of automotive application, [56] investigate schedulability of
real-time systems at earliest design phases. Their approach is based on the
combination of two modelling languages for system design: EAST-ADL2, which
addresses modelling and analysis needs of automotive electronic systems and
the integration of an open source toolset for scheduling analysis, MAST [57]
[58]. On one hand, EAST-ADL2 is an architecture description language de�ned
as a domain speci�c language for the development of automotive electronic sys-
tems. On the other hand, MARTE is known for its rich expressive power for the
modelling of system real-time properties and constraints. Their methodology
has the objective of completing EAST-ADL models with MARTE entities to
enable scheduling analysis at the design level. MAST is used to perform schedu-

58

lability analysis. Other works based on EAST-ADLs have been done: It is the
case of [59], which combines TADL2, Timing Augmented Description Language
v.2, EAST-ADL and UPPAAL [60] to perform scheduling analysis of real-time
systems.

We can note that, like AADL, EAST-ADL is not initially designed to per-
form schedulability analysis, and the diversity of languages that are associated
do not facilitates neither automatic code generation, nor reactivity about the
integration of new components.

To easily cover new real-time scheduling models and techniques, [61] propose
an ADL: MoSaRT. This approach may be used to extract the scheduling infor-
mation from di�erent design methodologies and ADL used for system design
such as UML-MARTE or AADL. The extracted information is then modeled
with MoSaRT. Thus, it �lls the gap between the conception abstraction level
and the analysis abstraction level by capturing information relevant for analysis.

Yet, this language is not dedicated to analysis itself, but to model trans-
formation between ADLs with di�erent purposes. Cheddar ADL is, on its side,
built from the analysis methods it supports.

8 Conclusion

This paper presented Cheddar ADL, an Architecture Design Language for
the scheduling of real-time systems.

The particularity of this ADL, as compared to other ADLs, is that it allows to
capture all required aspects for the schedulability analysis of real-time systems.

After the presentation of the requirements of this ADL, we classi�ed the
elements into two categories: software part, which contain Address space , Task
, Buffer , Resource , Message and Dependency , and hardware part, which
contain Core , Cache , Processor and Network .

Another category, deployment, is in fact a combination of these two cate-
gories.

We then presented in detail each of theses elements, by giving for each, the
de�nitions, the standard attributes, the legality rules, an implementation and
an example.

Subsequently, we have shown how the language is used as an entry point to
the Cheddar tool, a real-time scheduling simulator.

In order to extend the usability of the language, we have also been interested
in interoperability with other tools for analysing real-time systems that are more
and more numerous.

For that, we proposed an approach which allow to use our Cheddar tool, in
order to perform schedulability analysis of real-time systems described in other
languages. This approach consists in fact in transforming the entry ADL, into
Cheddar ADL.

The language is meant to evolve. Therefore, our future works will concern
the extension, in order to consider new hardware (e.g. heterogeneous multipro-
cessors), that can provide schedulability results closest to reality; and then, new
feasibilities tests.

We also plan to focus on evaluation of our language, by comparing with other
ADLs. The paper of [62] will be the starting point. Indeed, [62] compare di�er-

59

ent ADLs under certain aspects: syntax; visualization, which concerns graphical
representation; variability and extensibility, the capability to model new pat-
terns. The paper of [63] provides also a good basis for this study, because it
provides a framework which is used to classify and compare several existing
ADLs.

References

[1] Z. H. Yulin and C. Urtado and S. Vauttier. Dedal: Un ADL à trois dimen-
sions pour gérer l'évolution des architectures à base de composants. 4eme
Conférence francophone sur les architectures logicielles, Pau, France. CAL
2010.

[2] A. J. Smith. Cache Memories. Computing Surveys, Vol. 14, No. 3, September
1982. ACM Press.

[3] Sebek, Filip. "The state of the art in cache memories and real-time systems."
(2001).

[4] Mellor-Crummey, John, David Whalley, and Ken Kennedy. "Improving
memory hierarchy performance for irregular applications using data and
computation reorderings." International Journal of Parallel Programming
29.3 (2001): 217-247.

[5] Zahran, Mohamed. "Cache replacement policy revisited." Proceedings of the
6th Workshop on Duplicating, Deconstructing, and Debunking. 2007.

[6] Jaleel, Aamer, et al. "High performance cache replacement using re-reference
interval prediction (RRIP)." ACM SIGARCH Computer Architecture News.
Vol. 38. No. 3. ACM, 2010.

[7] F. Baslett, T. Jermoluk, and D. Solomon, �The 4D-MP Graphics Superwork-
stataion: Computing+Graphics= 40MIPS+40MFLOPS and 100,000 Lighted
Polygons per Second,� Proc. 33rd IEEE Computer Society Int'l Conference
� COMPCON`88, pp 468-471, February 1988.

[8] Papamarcos, Mark S., and Janak H. Patel. "A low-overhead coherence so-
lution for multiprocessors with private cache memories." ACM SIGARCH
Computer Architecture News. Vol. 12. No. 3. ACM, 1984.

[9] F. Singho� and J. Legrand and L. Nana and L. Marcé. Cheddar: a �exible
Real-Time Scheduling Framework. ACM SIGAda Ada Letters. ACM Press,
New York, USA. 24 (4). pp 1�8. Dec 2004.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM. 20 (1). pp 46�61. Jan
1973.

[11] G. C. Buttazo. Hard real-time computing systems: predictable scheduling
algorithms and applications. Kluwer academics. 1997.

[12] F. Singho�, A. Plantec, S. Rubini, V. Gaudel, S. Li, C. Fotsing, P. Dissaux,
J. Legrand, L. Lemarchand. How architecture description languages help (or
not) schedulability analysis : the example of Cheddar. Preprint submitted
to Science of Computer Programming. SCP13. 2013.

[13] S. Li and F. Singho� and S. Rubini and M. Bourdellès. Applicability of
real-time schedulability analysis on a software radio protocol. Proceedings

60

of the 2012 ACM conference on High integrity language technology. New
York, USA, pp. 81�94. December 2012.

[14] C. Srilatha and C. V. Guru Rao and G. Prabhu. E�ective Cache Con�gu-
ration for High Performance Embedded Systems. American Journal of Com-
puter Architecture, 1(1). pp. 1�5. DOI: 10.5923/j.ajca.20120101.01. 2012.

[15] http://searchdatacenter.techtarget.com/de�nition/multi-core-processor.

[16] R. Kumar and D. Tullsen and N. Jouppi. Core Architecture Optimization
for Heterogeneous Chip Multiprocessors. PACT'06. September 16, 20. Seat-
tle, Washington, USA. ACM 1-59593-264-X/06/0009. 2006.

[17] R. Mall. Real-Time Systems: Theory and Practice. Pearson Education In-
dia. September 14, 2006. ISBN-10: 8131700690.

[18] F. Singho�. Real time scheduling theory and its use with Ada. ACM
SIGAda'07 tutorial, Washington DC, USA.

[19] G. Buttazzo. Rate monotonic vs. EDF: Judgment day. In Proc. 3rd ACM
International Conference on Embedded Software, Philadephia, USA , Octo-
ber 2003.

[20] J. Zalewski. What Every Engineer Needs To Know About Rate-Monotonic:
A Tutorial. Real-Time Magazine. 1995. Edited by Zalewski, IEEE Computer
Society Press. Vol 1.

[21] C.Chou and I. Cidon and I. S. Gopal and S. Zaks. Synchronizing Asyn-
chronous Bounded Delay Networks. IEEE TRANSACTIONS ON COMMU-
NICATIONS, VOL.38, NO. 2, FEBRUARY 1990.

[22] M. Emmi and S. Qadeer and Z. rakamarié. Delay-Bounded Scheduling.
PoPL'11, January 26�28, 2011, Austin, Texas, USA. ACM 978-1-4503-0490-
0/11/01.

[23] G. Blake and R. G. Dreslinski and T. Mudge. A Survey of Multicore Proces-
sors (A review of their common attributes). IEEE SIGNAL PROCESSING
MAGAZINE. 1053-5888/09/26.002009.IEEE. November 2009.

[24] M. Katre and H. Ramaprasad and A. Sarkar and F. Mueller. Policies for
Migration of Real-Time Tasks in Embedded Multi-Core Systems. RTSS09,
WIP. 2009.

[25] N. W. Fisher. The Multiprocessor Real-Time Scheduling of General Task
Systems. Phd Thesis. University of North Carolina, USA. 2007.

[26] A. Sarkar and F. Mueller and H. Ramaprasad. Predictable Task Migration
for Locked Caches in Multi-Core Systems. LCTES11. Chicago, Illinois, USA.
2011.

[27] http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.
ibm.zos.zconcepts/zconcepts−82.htm.

[28] http://menehune.opt.wfu.edu/Kokua/More−SGI/007-2478-
008/sgi−html/ch01.html.

[29] N. Maculan and S.C.S. Porto and C.C. Ribeiro and C.C. De. Souza. A new
formulation for scheduling unrelated processor under precedence constraints.
RAIRO Rech. Oper. Vol. 33. Nunmber 1. pp. 87-92. 1999.

[30] E. L. Lawler and J. Labetoulle. On Pre-emptive Scheduling of Unrelated
Parallel Processors by Linear Programming. Journal of the Association for
Computing Machinery. pp 612�61. Vol 25. No 4. October 1978.

61

[31] K. Jansen and C. Robenet. Scheduling jobs on identical and uniform proces-
sors revisited. In Proceeding WAOA'11. Proceedings of the 9th international
conference on Approximation and Online Algorithms. Pages 109-122. 2012.

[32] S. Baruah and J. Goossens. The Static-priority Scheduling of Periodic Task
Systems upon Identical Multiprocessor Platforms. Fifteenth IASTED Inter-
national Conference on Parallel and Distributed Computing and Systems.
Pages 427�432. Marina del Rey CA, November. Acta Press. ISBN 0-88986-
392-X.

[33] A. Hyari. A Comparative Study on Heterogeneous and Homogeneous Mul-
tiprocessors. University of Jordan. 2009.

[34] Q. Li, D. L. Mills, �Investigating the Scaling Behavior, Crossover and Anti-
persistence of Internet Packet Delay Dynamics,� Proceedings of IEEE Glob-
alcom, Vol. 3, pp. 1843-1852, Rio de Janeiro, Brazil, 1999.

[35] E.J. Daniel and C.M. White and K.A. Teague. An inter-arrival delay jitter
model using multi-structure network delay characteristics for packet net-
works. Sch. of Electr. Comput. Eng., Oklahoma State Univ., Stillwater, OK,
USA. pp 1738 - 1742. Vol.2. 2003.

[36] John W. McCormick and Frank Singho� and Jérôme Hugues. Building Par-
allel, Embedded, and Real-Time Applications with Ada. Cambridge Univer-
sity Press. ISBN-13: 978-0521197168. 2011.

[37] E. Maes and N. Vienne. MARTE to Cheddar Transformation Using ATL.
Technical report. THALES Research and Technologies. 2007.

[38] C. D. Schmidt. Model-Driven Engineering. IEEE Computer. 39. 2. February
2006.

[39] A. Plantec and V. Ribaud. PLATYPUS: A STEP-based Integration Frame-
work. 14th Interdisciplinary Information Management Talks (IDIMT-2006).
pp 261-274. September 2006.

[40] F. Singho� and A. Plantec. Towards user-level extensibility of an Ada li-
brary: an experiment with cheddar. Proceedings of the 12th international
conference on Reliable software technologies. Ada-Europe'07. isbn 978-3-
540-73229-7. pp 180-191. 2007.

[41] V. Gaudel and F. Singho� and A. Plantec and S. Rubini, P. Dissaux and
J. Legrand. An Ada design pattern recognition tool for AADL performance
analysis. Ada Letters.

[42] S. Rubini, F. Singho� and J. Hugues. Modeling and Veri�cation of Memory
Architectures with AADL and REAL. Sixth IEEE International Workshop
on UML and AADL. In the proceedings of the 16th IEEE International
Conference on Engineering of Complex Computer Systems. Las Vegas, USA.
pp 338�343. isbn 978-0-7695-4381-9. April 2011.

[43] M.I. Chen and K.J. Lin. Dynamic Priority Ceilings: A Concurrency Control
Protocol for Real-Time Systems. Journal of Real-Time Systems. 2. pp 325
� 346. 1990.

[44] L. Sha and R. Rajkumar and J.P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE transactions on comput-
ers. 39 (9). pp 1175 � 1185. 1990.

62

[45] J. Legrand, F. Singho�, L. Nana and L. Marcé. Performance Analysis of
Bu�ers Shared by Independent Periodic Tasks. LISYC Technical report num-
ber legrand-02-2004. January 2004.

[46] L. Kleinrock. Queueing Systems: Theory. Wiley. 1. 1976.

[47] J. C. Palencia and M. G. Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. The 20th IEEE Real-
Time Systems Symposium. pp 328 - 339. 1999.

[48] P. Feiler and B. Lewis and S. Vestal. The SAE AADL standard: A basis for
model-based architecture-driven embedded systems engineering. Workshop
on Model-Driven Embedded Systems. May 2003.

[49] S.K. Baruah. Feasibility analysis of recurring branching tasks. In proceed-
ings of the 10th Euromicro Workshop on Real-Time Systems. pp 138�145.
Jun 98.

[50] A. K. Mok and D. Chen. A Multiframe Model for Real-Time Tasks. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING. 23 (10). pp 635 �
645. October 1997.

[51] MARTE Speci�cation. http://www.omg.org/spec/MARTE. Object Man-
agement Group. 2005.

[52] UML Speci�cation. http://www.omg.org/spec/UML. Object Management
Group. 2011.

[53] OMG Website. http://www.omg.org. Object Management Group. 2013.

[54] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer. 39 (2).
February 2006.

[55] M. Peraldi-Frati and Y. Sorel. From hight level modelling of time in
MARTE to real-time scheduling analysis. MODELS 2008.

[56] Anssi, Saoussen and Gérard, Sébastien and Albinet, Arnaud and Terrier,
François. Requirements and Solutions for Timing Analysis of Automotive
Systems. System Analysis and Modeling: About Models. Lecture Notes in
Computer Science. Kraemer, Frank and Herrmann, Peter. Springer Berlin /
Heidelberg. 6598. pp 209-220. 2011.

[57] Harbour, Michael Gonzalez and Garcia, Javier Gutierrez and Palencia, J.C.
and Drake Moyano, J.M. MAST: Modeling and analysis suite for real-time
applications. isbn = 0-7695-1221-6. Proceedings of the 13th Euromicro Con-
ference on Real-Time Systems. IEEE Comput. Soc. pp 125�134. 2001.

[58] J. M. Drake and M. G. Harbour and J. J. Gutiérrez and P. L. Martinez and
J. L. Medina and J. C. Palencia. Modeling and Analysis Suite for Real-Time
Applications (MAST 1.4.0): Description of the MAST Model. Universidad
de Cantabria, SPAIN. 2011.

[59] A. Goknil and J. Suryadevara and M. Peraldi-Frati and F. Mallet. Analysis
Support for TADL2 Timing Constraints on EAST-ADLModels. ECSA 2013.
pp 89�105. 2013.

[60] G. Behrmann and R. David and K. G. Larsen. 3185. Lecture Notes in
Computer Science. A tutorial on UPPALL. International School on Formal
Methods for the Design of Computer, Communication and Software Systems.
SFM-RT 2004. pp 200�237. 2004. Springer Verlag. Updated November 28,
2006.

63

[61] Y. Ouhammou and E. Grolleau and M. Richard and P. Richard. Towards
a Simple Meta-model for Complex Real-Time and Embedded Systems. The
First International Conference, MEDI 2011. pp 226-236. Obidos, Portugal.
2011.

[62] A. W. Kamal and P. Avgeriou. An Evaluation of ADLs on Modeling Pat-
terns for Software Architecture. RISE07. 2007.

[63] N. Medvidovic and R. N. Taylor. A classi�cation and comparison framework
for software architecture description languages. Software Engineering, IEEE
Transactions. 26 (1). pp 70�93. January 2000.

64

