
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/264579469

Recurrent	Least	Squares	Support	Vector
Machines

Article		in		IEEE	Transactions	on	Circuits	and	Systems	I	Fundamental	Theory	and	Applications	·	July	2000

DOI:	10.1109/81.855471

CITATIONS

240

READS

100

2	authors:

Johan	A.K.	Suykens

www.esat.kuleuven.be/stadius

631	PUBLICATIONS			16,522	CITATIONS			

SEE	PROFILE

Joos	Vandewalle

University	of	Leuven

653	PUBLICATIONS			20,527	CITATIONS			

SEE	PROFILE

Available	from:	Johan	A.K.	Suykens

Retrieved	on:	09	May	2016

https://www.researchgate.net/publication/264579469_Recurrent_Least_Squares_Support_Vector_Machines?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/264579469_Recurrent_Least_Squares_Support_Vector_Machines?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Johan_Suykens?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Johan_Suykens?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Johan_Suykens?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Joos_Vandewalle?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Joos_Vandewalle?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Leuven?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Joos_Vandewalle?enrichId=rgreq-d66ae1bf-abb9-45c7-a034-733ab7e15f4a&enrichSource=Y292ZXJQYWdlOzI2NDU3OTQ2OTtBUzoxMDE2OTEyNzc5NzE0NThAMTQwMTI1NjQ5ODQxNA%3D%3D&el=1_x_7


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 1109

Fig. 6. Two-parameter diagram.

That is, the system has two symmetric periodic attractors, one of which
is shown in Fig. 2(c).

In this lemma, we can see an essential function of the ICC that
makes stable dynamics by averaging two expanding maps with
opposite slopes(d=d�x)f(�x; 1) > 1, (d=d�x)f(�x;�1) < �1, and
1=2j(d=d�x)f(�x; 1) + (d=d�x)f(�x;�1)j < 1 for xa < j�xj < xb.
Then Lemma 1 and Lemma 2 guarantee the coexisting phenomenon
of chaos synchronization, a periodic attractor, and their symmetric
ones. The parameters’ conditions (8), (10) are satisfied in the shaded
region in Fig. 6.

III. CONCLUSION

Using the ICC, we have considered a simple coupling system of two
nonautonomous chaotic circuits. The ICC changes the two chaotic at-
tractors into a coexisting state of chaos synchronization, a periodic at-
tractor and their symmetric ones. The coexisting phenomenon is guar-
anteed theoretically and is demonstrated in the laboratory. Now we
are extending the ICC system to a coupled system of a large number
of chaotic circuits and are analyzing their various synchronous phe-
nomena. It may be developed into a novel artificial neural network.
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Recurrent Least Squares Support Vector Machines

J. A. K. Suykens and J. Vandewalle

Abstract—The method of support vector machines (SVM’s) has been de-
veloped for solving classification and static function approximation prob-
lems. In this paper we introduce SVM’s within the context of recurrent
neural networks. Instead of Vapnik’s epsilon insensitive loss function, we
consider a least squares version related to a cost function with equality con-
straints for a recurrent network. Essential features of SVM’s remain, such
as Mercer’s condition and the fact that the output weights are a Lagrange
multiplier weighted sum of the data points. The solution to recurrent least
squares (LS-SVM’s) is characterized by a set of nonlinear equations. Due
to its high computational complexity, we focus on a limited case of assigning
the squared error an infinitely large penalty factor with early stopping as a
form of regularization. The effectiveness of the approach is demonstrated
on trajectory learning of the double scroll attractor in Chua’s circuit.

Index Terms—Double scroll, radial basis functions, recurrent neural net-
works, support vector machines.

I. INTRODUCTION

Recently, support vector machines (SVM’s) have been introduced as
a new method for solving classification and function estimation prob-
lems with many successful applications [24]–[27]. SVM’s are based on
the structural risk minimization principle. The quality and complexity
of the SVM solution does not depend directly on the dimensionality
of the input space. The derivation of SVM’s is based on constructing
an optimal separating hyperplane after nonlinearly mapping the input
space into a higher dimensional space. The explicit construction of this
mapping is avoided by the application of Mercer’s condition. Kernels
that satisfy this condition and can be employed for SVM’s are polyno-
mials, splines, radial basis functions, and multilayer perceptrons with
one hidden layer. For classification problems the parameters which are
related to these kernel functions are chosen so as to minimize an upper
bound on the Vapnik–Chervonenkis (VC) dimension of the SVM. The
training of SVM’s with Vapnik’s epsilon insensitive loss function is
done by quadratic programming. The number of hidden units in the
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SVM is determined by the number of support vector data, which cor-
responds to the number of nonzero coefficients in the solution vector
to the QP problem. A least squares version of SVM’s for function es-
timation and classification has been investigated in [14] and [23]. The
training is done then by solving a set of linear equations. On the other
hand, sparseness is lost in the least squares version.

In this paper we introduce a recurrent neural network version of least
squares SVM’s (LS-SVM’s). We investigate a class of nonlinear output
error models for the autonomous case. In time-series prediction appli-
cations the difference between feedforward and recurrent is crucial, es-
pecially concerning chaotic systems [9], [20], [29]. Often the model is
trained as a feedforward network (one step ahead predictor). On the
other hand in order to make a further continuation of the given time
series, the identified feedforward model has to be iterated, i.e., it has
to be used as a recurrent network for prediction. Due to the sensitivity
of chaotic systems for small perturbations, replacing the feedforward
model by its recurrent version (replacing the true signal values by the
estimated ones as input of the network) may result into large devia-
tions. In this paper we consider the problem of trajectory learning of
the double scroll attractor [4], [5], [10] by recurrent neural networks
which are parametrized by SVM’s. In [21] a simple recurrent neural
state space model has been trained for the double scroll. It has been
observed that by using classical dynamic backpropagation [11], [12]
this is a difficult task [21].

For the recurrent LS-SVM’s essential features of SVM’s, such as
Mercer’s condition and the fact that the output weights are a Lagrange
multiplier weighted sum of the data points, are still applicable. The
solution to recurrent LS-SVM’s is characterized by a set of nonlinear
equations. Because of the considered least squares norm there seems to
be some similarity at first sight with Widrow’s adaline [9], [29]. How-
ever, recurrent LS-SVM’s and Widrow’s adaline are fundamentally dif-
ferent, e.g., due to the recurrent versus feedforward architecture, re-
spectively, with corresponding implications for the training procedure.

The training problem for recurrent LS-SVM’s is formulated as
a nonconvex constrained nonlinear optimization problem in the
error variables and the Lagrange multipliers. The computational
cost of the training process is relatively expensive. Due to this high
computational complexity, we focus on a limited case of assigning
the squared error an infinitely large penalty factor with early stopping
as a form of regularization. A sequential quadratic programming [7]
training process is behaving well for this problem. For the example of
trajectory learning of the double scroll attractor, recurrent LS-SVM’s
with a radial basis function (RBF) kernel yield a good generalization
performance. Due to the study of the limited case, early stopping has
to be applied which is equivalent to a form of regularization [1], [16].
The overfitting phenomenon can be detected on the training data itself
by taking the first given data points in time as the initial state for the
recurrent LS-SVM, while in the case of standard feedforward models,
early stopping is usually based upon a test data set. Finally, part of the
SVM theory that is related to upper bounds on the generalization error
is not applicable because the input vectors to the recurrent architecture
are not independent of each other.

This paper is organized as follows. In Section II we review work on
classical SVM’s and LS-SVM’s. In Section III, recurrent LS-SVM’s
are introduced. In Section IV, recurrent LS-SVM’s with an RBF kernel
are applied to trajectory learning of the double scroll attractor.

II. SUPPORTVECTORMACHINES AND FUNCTION ESTIMATION

Here we review basic ideas of the support vector method of static
function estimation and LS-SVM’s. For detailed information about
SVM’s we refer to [3], [6], [15], [17]–[19], and [24]–[27].

Let us consider first the regression in the set of linear functions

F(X ) =WTX + B (1)

given training datafXi;YigMi=1 where M denotes the number of
training data,Xi 2 m are the input data,Yi 2 are the output data,
andW 2 m; B 2 . Originally, in the support vector method one
aims at minimizing the empirical risk

Remp(W;B) =
1

M

M

i=1

jYi �W
TXi � Bj� (2)

subject to elements of a structureSn, defined by the inequality
WTW � cn. The loss function employs Vapnik’s�-insensitive model

jYi �F(Xi)j� =
0; if jYi �F(Xi)j � �

jYi � F(Xi)j � �; otherwise.
(3)

The function estimation problem is formulated then as

min
W;B;� ;�

J�(W; �
�
; �) =

1

2
WTW + 


M

i=1

�
�

i +

M

i=1

�i

(4)

subject to the constraints

Yi �W
TXi � B � �+ ��i ; i = 1; . . . ;M

�Yi +WTXi + B � �+ �i; i = 1; . . . ;M

��i � 0; i = 1; . . . ;M

�i � 0; i = 1; . . . ;M

where�i; ��i are slack variables and
 is a positive real constant. The
solution is given by

W =

M

i=1

(��i � �i)Xi (5)

where��i ; �i are obtained by solving a quadratic program and are the
Lagrange multipliers related to the first and second set of constraints.
The data points corresponding to nonzero values for(��i � �i) in (5)
are called support vectors. Typically, many of these values are equal to
zero. Another loss function which has been investigated is

J�;p(W; �
�
; �) =

1

2
WTW + 


M

i=1

(��i )
p +

M

i=1

(�i)
p (6)

wherep = 1 corresponds to (4).
The work in this paper is related to a least squares version of SVM’s.

This version has been investigated in [14] for function estimation and in
[23] for classification problems. For function estimation it corresponds
to the following form of ridge regression

min
W;B;�

JLS(W;B; �) =
1

2
WTW + 


1

2

M

i=1

�
2
i (7)

subject to the equality constraints

Yi =WTXi + B + �i; i = 1; . . . ;M:

One defines the Lagrangian

LLS(W;B; �;�) = JLS(W;B; �)

�

M

i=1

�i WTXi + B + �i � Yi (8)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 1111

where�i are Lagrange multipliers (which can be either positive or neg-
ative due to the equality constraints as follows from the Kuhn–Tucker
conditions [7]). The conditions for optimality

@LLS
@W

= 0!W =

M

i=1

�iXi

@LLS
@B

= 0!

M

i=1

�i = 0

@LLS
@�i

= 0! �i = 
�i; i = 1; . . . ;M

@LLS
@�i

= 0!WTXi + B + �i � Yi = 0; i = 1; . . . ;M

(9)

can be written immediately as the solution to the following set of linear
equations:

I 0 0 �X

0 0 0 �~1T

0 0 
I �I

X T ~1 I 0

W

B

�

�

=

0

0

0

Y

(10)

whereX = [X1 . . .XM ]; Y = [Y1; . . . ;YM ]; ~1 = [1; . . . ; 1]; � =
[�1; . . . ; �M ]; � = [�1; . . . ;�M ]. The solution is finally given by

0 ~1T

~1 X TX + 
�1I

B

�
=

0

Y
(11)

with W =
i
�iXi; �i = �i=
. The support values�i are propor-

tional now to the errors at the data points (9).
So far we explained the linear case. SVM’s with polynomials,

splines, radial basis function networks, or multilayer perceptrons
as kernels are obtained after mapping the input data into a higher
dimensional space by'(Xi), where'(�) : m ! n . The number
nh does not have to be specified because of the application of Mercer’s
condition, which means that

K(Xi;Xj) = '(Xi)
T'(Xj) (12)

can be imposed for these kernels. For LS-SVM’s the nonlinear function
can then be represented as

Yi =

M

j=1

�jK(Xj ;Xi) + B (13)

where the parameters�j ;B follow from (11) after replacingX T
i Xj by

K(Xi;Xj). For RBF kernels one has

K(Xi;Xj) = exp ��kXi �Xjk
2
2 (14)

where� is a positive real constant. The number of hidden units in
the LS-SVM is equal to the number of data points, while in standard
SVM’s this is equal to the number of support vectors. In other words,
sparseness is lost in the LS-SVM case.

III. RECURRENTLEAST SQUARESSVM’S

Given a deterministic nonlinear dynamical system with inputuk 2
and outputyk 2 , we consider nonlinear models of the form

ŷk = f(ŷk�1; ŷk�2; . . . ; ŷk�p; uk�1; uk�2; . . . ; uk�p) (15)

where ŷk denotes the estimated output andf is a smooth nonlinear
mapping. Depending on the field, such models are called recurrent

input/output models [9], [20], [29], nonlinear output error (NOE)
models [16], or parallel models [11]. These are opposed to

ŷk = f(yk�1; yk�2; . . . ; yk�p; uk�1; uk�2; . . . ; uk�p) (16)

which are called feedforward models, NARX models or series-parallel
models. Models of this form can be trained by means of the standard
SVM methods discussed in Section II. The parametrization off by
SVM’s is static because there is no recursion in the variableŷk.

Without loss of generality concerning the methods, we will further
discuss the autonomous case of the recurrent model (15)

ŷk = f(ŷk�1; ŷk�2; . . . ; ŷk�p): (17)

We take the following parametrization:

ŷk = wT'

ŷk�1
ŷk�2

...
ŷk�p

+ b: (18)

We express this model in terms of the given data and the error variables:

yk � ek = wT'(xk�1 j k�p � �k�1 j k�p) + b (19)

where ek = yk � ŷk; xk�1 j k�p = [yk�1; yk�2; . . . ; yk�p];
�k�1 j k�p = [ek�1; ek�2; . . . ; ek�p] by definition. The nonlinear
mapping'(�) : p ! n will be related to Mercer’s condition.
The output weight vector and bias term are denoted byw 2 n and
b 2 . Recurrent neural networks (15) and (18) are classically trained
by dynamic backpropagation or backpropagation through time [11],
[12], [28]. The goal of this Section is to develop an SVM approach for
the recurrent model.

We formulate the training of the network (19) as

min
w;b;e

J (w; b; e) =
1

2
wTw + 


1

2

N+p

k=p+1

e2k (20)

subject to the equality constraints

yk � ek = wT'(xk�1 j k�p � �k�1 j k�p) + b;

k = p+ 1; . . . ; N + p: (21)

We define the Lagrangian

L(w; b; e;�)

= J (w; b; e) +

N+p

k=p+1

�k�p

� yk � ek � wT '(xk�1 j k�p � �k�1 j k�p)� b : (22)

The conditions for optimality are given by (23) at the bottom of the
next page. By replacingw into the last two conditions and applying
Mercer’s condition by lettingXi in (1) correspond tozk�1 j k�p =
xk�1 j k�p � �k�1 j k�p

K(zk�1 j k�p; zl�1 j l�p) = '(zk�1 j k�p)
T'(zl�1 j l�p) (24)

one obtains the following conditions for optimality in (25) at the bottom
of the next page. Hence, (23) which is of the formF1(w; b; e; �) = 0
has been represented asF2(b; e; �) = 0 in (25) by elimination ofw.
This is similar to the elimination ofw in (11) for the static SVM case
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wherew itself is never explicitly calculated. Furthermore, the Mercer
condition (24) is implicitly defining the nonlinear mapping'(�).

Finding a solution to (25) is computationally very expensive. There-
fore, we further consider the case
 !1 which corresponds to

min
�;e;b

1

2

N+p

k=p+1

e2k (26)

subject to (27) at the bottom of the page. At this point it is important to
note that the vectorsz depend on the error variablese. Hence, the cost
function is subject to a set of nonlinear constraints ine. Hence, although
(26) and (27) might seem similar to Widrow’s adaline at first sight,
due to the least squares norm, the recurrent LS-SVM is fundamentally
different.

The resulting recurrent simulation model is given by

ŷk =

N+p

l=p+1

�l�pK zl�1 j l�p;

ŷk�1
ŷk�2

...
ŷk�p

+ b (28)

with given initial conditionŷi = yi for i = 1; 2; . . . ; p. For RBF
kernels one employs

K(zk�1 j k�p; zl�1 j l�p) = exp �� kzk�1 j k�p � zl�1 j l�pk
2

2

(29)

where� is a positive real constant.

No centers have to be determined in SVM models, in contrast with
most of the classical RBF approaches [2], [13], [15]. For the recurrent
SVM case the parameter estimation problem becomes nonconvex. The
constrained nonlinear optimization problem (26), (27) can be solved,
e.g,. by sequential quadratic programming (SQP) [7]. For large data
sets special methods for large scale nonlinear optimization have to be
applied. Because the results are based on the limit case
 ! 1 and,
hence, partially neglecting the regularization term(1=2)wTw in (26)
(the form of the solution is still derived by taking into account a regu-
larization term based upon (20)) there is a danger for overfitting. There-
fore, instead of minimizing the cost function to its local minimum one
has to apply early stopping, which is equivalent to a form of regular-
ization [1], [3], [16]. In standard SVM theory, which is applicable to
feedforward models, the parameter� in (29) could be determined by
minimizing upper bounds on the generalization error. However, this
theory does not apply to the recurrent SVM case because the input ar-
gumentsz ofK(�; �) are not independent of each other. Hence,� should
be either chosen as part of the unknown parameter vector for the opti-
mization (26), (27) or ad hoc.

IV. EXAMPLE: DOUBLE SCROLL TRAJECTORYLEARNING

In this example we consider Chua’s circuit [4], [5], [10]

_x = � [y � h(x)]

_y = x� y + z

_z = ��y

(30)

@L

@w
= w �

N+p

k=p+1

�k�p'(xk�1 j k�p � �k�1 j k�p) = 0

@L

@b
=

N+p

k=p+1

�k�p = 0

@L

@ek
= 
ek � �k�p �

p

i=1

�k�p+i

@

@ek�i

[wT'(xk�1 j k�p � �k�1 j k�p)] = 0; k = p+ 1; . . . ; N

@L

@�k�p

= yk � ek � wT'(xk�1 j k�p � �k�1 j k�p)� b = 0; k = p+ 1; . . . ; N + p:

(23)

N+p

k=p+1

�k�p = 0


ek � �k�p �

p

i=1

�k�p+i

@

@ek�i

N+p

l=p+1

�l�pK(zk�1 j k�p; zl�1 j l�p) = 0; k = p+ 1; . . . ; N

yk � ek �

N+p

l=p+1

�l�pK(zk�1 j k�p; zl�1 j l�p)� b = 0; k = p+ 1; . . . ; N + p:

(25)

yk � ek =

N+p

l=p+1

�l�pK(zl�1 j l�p; zk�1 j k�p) + b; k = p+ 1; . . . ; N + p

N+p

k=p+1

�k�p = 0:

(27)
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Fig. 1. Trajectory learning of the double scroll (full line) by an LS-SVM with an RBF kernel. The simulation result after training (dashed line) onN = 300 data
points is shown with as initial condition data pointsk = 1 to 12. For the model structurep = 12 and� = 1 is taken. Early stopping is done in order to avoid
overfitting.

with piecewise linear characteristic

h(x) = m1x+
1

2
(m0 �m1)(jx + 1j � jx � 1j): (31)

A double scroll attractor is generated by taking� = 9; � = 14:286;
m0 = �1=7; m1 = 2=7. A trajectory has been generated for ini-
tial condition [0:1; 0;�0:1] by using a Runge–Kutta integration rule
(ode23 in Matlab).

In Fig. 1 the firstN = 300 data points were used for trajectory
learning of the double scroll by a recurrent SVM with an RBF kernel.
For the model structurep = 12 has been taken and� = 1 for the
RBF kernel. In order to solve the constrained nonlinear optimization
problem (26), (27), SQP has been applied (constr <AU: COMPLETE
WORD? >in Matlab with a specification of the number of equality con-
straints). The model (28) has been simulated in C by using Matlab’s
cmex facility. In all simulations, for the initial unknown parameter
vector�k; ek have been chosen randomly according to a Gaussian dis-
tribution with zero mean and standard deviation 0.1 andb = 0. Al-
though no further optimization of the model structure has been done,
it has been observed that small values ofp (that are chosen in accor-
dance with Takens’ embedding theorem) are slowing down the training
process. The value of� in (29) has to be chosen relative to the scaling
of the data set. In Fig. 1 the simulation result after training is shown
in dashed line based on (28), (29) with as initial condition data points
k = 1 to 12. Early stopping has been decided based upon the given
training data (not on an additional test set, as is usual for feedforward
models) by evaluating the cost function in (26) for the simulation ob-
tained from (28) withp = 12 andN = 300 for the given initial state.
Early stopping was applied at the moment when this performance index
degraded, which occurred after about 400 iteration steps of SQP for this

Fig. 2. Overfitting of the data obtained by taking the result of Fig. 1 as initial
parameter vector for a further optimization to the local minimum.

example. The resulting recurrent SVM is generalizing to a double scroll
attractor, also for small perturbations on the initial state. Fig. 2 shows
a further optimization to the local minimum with the result of Fig. 1 as
an initial parameter vector, which leads to overfitting. The overfitting
phenomenon can be detected on the training data itself as illustrated
on Fig. 2. Finally, note that for the recurrent SVM’s it is important to
simulate the form (28) because when solving the constrained nonlinear
optimization problem (26), (27) the constraints will usually not hold
exactly, but with a certain tolerance. For chaotic systems such small
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perturbation could cause significant differences between the solution
vector to (26), (27) and the recurrent simulation model (28).

V. CONCLUSION

In this paper we introduced recurrent LS-SVM’s, in addition to ex-
isting SVM solutions for classification and static nonlinear function es-
timation problems. Some essential features of SVM’s such as Mercer’s
condition and the fact that the output weights are a Lagrange multiplier
weighted sum of the data points, are still applicable. For computational
reasons we focused on the limit case of assigning the squared error
an infinitely large penalty factor. The training has been formulated as
a nonconvex constrained nonlinear optimization problem in the error
variables and the Lagrange multipliers. Training recurrent neural net-
works by dynamic backpropagation to follow trajectories of chaotic
systems is well known to be a difficult problem. By trajectory learning
of a double scroll we illustrated that recurrent LS-SVM’s can gener-
alize well, even on relatively small given training data sets. For large
data sets, efficient methods for large scale constrained nonlinear op-
timization have to be used. The work of recurrent SVM’s opens new
perspectives with respect to time-series prediction and nonlinear mod-
eling in general.
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