Signal Processing: Image Communication 27 (2012) 329-342

Contents lists available at SciVerse ScienceDirect =

COMMUNICATION

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image =3 b

Efficient HTTP-based streaming using Scalable Video Coding

Y. Sanchez **, T. Schierl ?, C. Hellge ?, T. Wiegand ?, D. HongP,
D. De Vleeschauwer ¢, W. Van Leekwijck ¢, Y. Le Louédec

2 Fraunhofer HHI, Germany

b N2N Soft, France

 Bell Labs, Alcatel-Lucent, Belgium
4 Orange-FT, France

ARTICLE INFO ABSTRACT

Available online 8 October 2011

HTTP-based video streaming has been gaining popularity within the recent years. There
Keywords: are multiple benefits of relying on HTTP/TCP connections, such as the usage of the
HTTP streaming widely deployed network caches to relieve video servers from sending the same content
Live to a high number of users and the avoidance of traversal issues with firewalls and NATSs
Scalable Video Coding typical for RTP/UDP-based solutions. Therefore, many service providers resort to adopt
Adaptation HTTP streaming as the basis for their services. In this paper, the benefits of using the
Caching Scalable Video Coding (SVC) for a HTTP streaming service are shown, and the SVC based
approach is compared to the AVC based approach. We show that network resources are
more efficiently used and how the benefits of the traditional techniques can even be
heightened by adopting the Scalable Video Coding (SVC) as the video codec for adaptive
low delay streaming over HTTP. For the latter small playout-buffers are considered
hence allowing low media access latency in the delivery chain and it is shown that

adaptation is more effectively performed with the SVC based approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In spite of the general tendency of using the UDP
protocol [1] for video and audio real-time delivery due to
its lower latency, HTTP streaming has raised the interest of
many researchers and service providers in the last years.
Relying on HTTP [2]/TCP [3] allows for reusing existing
network infrastructures such as the widely deployed net-
work caches, which reduce the amount of outbound traffic
that servers have to support and consequently prevent
scalability issues with respect to the system size. Although
it is technically not difficult to build a similar infrastructure
for RTP/UDP, it is much more costly to build it from scratch
than to reuse the HTTP infrastructure that already exists.
Furthermore, the use of HTTP/TCP resolves the common

* Corresponding author.
E-mail address: yago.sanchez@hhi.fraunhofer.de (Y. Sanchez).

0923-5965/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.image.2011.10.002

traversal issues with firewalls and NATs, which typically
arise when the data is transmitted over RTP [4]/UDP.
Moreover, implementation of HTTP streaming systems is
simple, where servers are typical web servers agnostic of the
actual data they provide and therefore do not need any
special functionality to deal with the media files.

Due to the mentioned benefits of HTTP streaming, there
has been a sharp increase in the interests of the market
into HTTP streaming. A clear evidence of it is the standar-
dization processes lead by different standardization organ-
izations on this field, such as in MPEG’s Dynamic Adaptive
Streaming over HTTP (DASH) [5], 3GPP Adaptive Streaming
over HTTP [6,7] and OpenIPTV Forum HTTP Streaming
specification [8]. There are also different proprietary solu-
tions such as the Adobe’s RTMP [9], IIS Smooth Streaming
[10] and Apple’s Live Streaming [11].

Streaming over HTTP can be simply realized by down-
loading a whole media file and starting the decoding and
presentation process after a certain safe part of the media

www.elsevier.com/locate/image
www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2011.10.002
mailto:yago.sanchez@hhi.fraunhofer.de
dx.doi.org/10.1016/j.image.2011.10.002

330 Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342

file has been downloaded. In this context “safe” means,
that even if during streaming, the available download rate
is temporarily lower than the actual required rate for the
media, the content can be played out without any inter-
ruptions. This assumes that from time to time also higher
download rates than the actual media rate are available.
This approach is also known as progressive download in
Video on Demand (VoD). An improvement to this
approach is not to download the whole media file at
once, but to download it in chunks related to certain time
intervals of the media content. This is sometimes also
called chunky or chunk-based streaming. Having access to
chunks of the actual media file allows for adaptive
streaming over HTTP. In adaptive HTTP streaming, the
receiver is responsible for initiating the media download
and performing adaptation, if required. Adaptation is
performed by requesting a different representation
(version of the media data at a given bitrate) among the
multiple available representations, each of which has a
different bitrate. That is, each chunk of the media corre-
sponding to a certain interval of the media playout time is
available at different encoding rates. The receiver selects
on the fly, which rate is the most appropriate at a certain
point of time, e.g., this rate matches the current network
path conditions or the capabilities of the receiver at best.
There are different ways of providing multiple represen-
tations of a media. One method may be to encode the
media data at multiple bitrates with a single layer codec
such as AVC [12] for video, which requires a representa-
tion to be a complete and independently encoded part of
the media. Another method may be encoding the media
with a scalable media coding method such as provided
by SVC [13] for video, which allows storing layers of the
video as different representations, i.e. the representations
are additive to each other. In any case, a description of
the characteristics of the media, such as bandwidth of a
representation or language of an audio file, has to be
provided to the client, so that the client is aware of all
representations at the server and can choose the one
which matches at best its capabilities and interests. Such
a selection is frequently performed and can be adapted
during streaming.

In previous works [14,15], we have already presented
benefits of using Scalable Video Coding (SVC) for HTTP
streaming. The benefits have been shown in terms of web
caching efficiency and saved uplink bandwidth at the
server in comparison to the use of H.264/AVC. In this
work, we summarize benefits related to web caching and
we show additional benefits, i.e. the faster response to
network throughput variations and the better match to
the available network resources in live services.

The remainder of this paper is organized as follows. In
Section 2 a short overview of MPEG’s Dynamic Adaptive
Streaming over HTTP (DASH) standard is presented.
Section 3 explains the behavior of the receiver in DASH.
In Section 4 the Scalable Video Coding (SVC) is introduced
and its applicability to DASH is pointed out. Section 5
summarizes the benefits in terms of caching efficiency
for DASH-based Internet TV services using SVC. Section 6
describes an scheduling mechanism using SVC in terms of
rate adaptation for a general case. In Section 7, an analysis

of the issues specific to live streaming services is carried
out. Section 8 describes specific issues on adaptation in
a live streaming scenario and the benefits of using
SVC-based HTTP streaming compared to AVC-based HTTP
streaming are shown. In Section 9 the conclusions of this
work are summarized.

2. DASH

Dynamic Adaptive Streaming over HTTP (DASH) [5] is
an emerging MPEG-Standard, which defines a format for
multimedia delivery over HTTP. It basically consists of
two elements: the format of the media to be downloaded
and the description of the media to be downloaded—the
Media Presentation Description (MPD).

The media file as a whole is divided for delivery into
smaller parts, called segments, previously referred to as
chunks. The format of the file segments, which are the
resources assigned to an HTTP-URL for download (possibly
with an additional byte-range HTTP parameter [2]), are
defined as follows. In DASH [5] two container formats are
considered for data encapsulation: MPEG-2 Transport
Stream [16] and ISO base media File Format [17]. Further-
more, a guideline for extensibility is specified in order to
allow other formats to be used in combination with DASH.

For any format used with DASH, there are different
types of segments where the basic ones are the following
two (for more information about further segment types the
reader is referred to [5]): initialization segments and media
segments. The former are segments that contain all the ini-
tialization information necessary for accessing the media
data. Initialization segments contain Program Association
Tables (PAT), Program MAP Tables (PMT) and Conditional
Access Tables (CAT) for MPEG2-TS [16] or the File Type box
(‘ftyp’), and Movie Box (‘moov’) with a Movie Extension
Box (‘mvex’) indicating the presence of movie fragments
for ISO base media File Format (ISOMFF) [17]. For more
information about initialization information the reader is
referred to the DASH standard [5] and to MPEG2-TS [16]
and ISOMFF [17] standards. The media segments corre-
spond to the actual media data which may be contained in
MPEG-2 Transport Stream [16] or the ISOMFF [17]. The use
of these two container formats provides some additional
metadata describing the media, such as timing information
or position of access units (AU) within the segment. Media
segments may also be self-initializing, which means that
there is no separate initialization segment required and the
initializing information is contained within the media
segment prior to the media data.

The Media Presentation Description (MPD) is an XML
document that describes the media available at the server,
so that the client can make the selection of the media that
matches at best its requirements and equipment/network
capabilities. As shown in Fig. 1, the presentation time in
DASH is logically divided into smaller time intervals
called periods (one or more). Each period contains differ-
ent media components, such as audio or video at different
version, which are collected into representations. Each
representation is further structured as a sequence of one
or more segments. For more information about the organ-
ization of the MPD, the reader is referred to Ref. [5].

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 331

Media Presentation

[Period I Period I Period j [Period]
Initialization Media Media
segment segment segment

Fig. 1. Media presentation time organization.

DASH content

. DASH server
preparation

HTTP Cache

DASH client

Fig. 2. Example for DASH architecture.

Although segments are the smallest entity addressed
in the MPD smaller parts of the media presentation may
be defined, which are called sub-segments. Sub-segments
are a set of complete access units within a segment. In
DASH the segment index box (‘sidx’) defined in [21] is
used for signaling of subsegments, both for MPEG2-TS and
ISOMFF. In the ISOMFF case, further restrictions are
applied to sub-segments, i.e. a sub-segment consists of
one or more movie fragments [17] (as for Segments) with
their corresponding movie fragment boxes (‘moof’) and
related media data boxes (‘mdat’), being the smallest sub-
segment a single movie fragment. As mentioned, how to
access these sub-segments is not described in the MPD
but within the media container itself, where the segment
index box (‘sidx’) [21] is added. For more information
on the usage of ‘sidx’ and indexing information for sub-
segments with each media format, the user is referred to
Ref. [5]. In Ref. [21] the ‘ssix’ box is a further signaling
method, which may be used to access fractions of sub-
segments, for instance for trick modes, which characteristics
may be described in the MPD as subRepresentations.

Effective transport of SVC with DASH is achieved by
offering different layers of SVC in different representa-
tions. Since SVC layers share some dependencies, i.e.
enhancement layers depend on lower layers for decoding,
representations containing enhancement layers are called
dependent Representation [5]. The dependencies are indi-
cated in the MPD and presentation issues are solved at
encapsulation level. SVC content encapsulation in both
MPEG2-TS and ISOMFF are well defined. Further informa-
tion about SVC encapsulation for MPEG2-TS and ISOBMFF
can be found in Refs. [18-20].

In Fig. 2, a possible DASH architecture is shown. It
consists of a DASH content preparation component, which
is responsible for preparing the segments and MPD,
a DASH server, which is a normal web server where the
DASH segments are stored, and, where the client can
access for downloading them and possibly also the MPD,

possibly a HTTP cache, which is useful to relieve the load
on server when many clients try to access data, and the
DASH client, which fetches the segments and perform the
appropriate operations so that the content can be pre-
sented to the user.

HTTP caching allows reducing the scalability issues of
the service, since the outgoing traffic at the server is
decreased and therefore it is of great importance. As
shown in Refs. [14,15] and later summarized in Section
5, the effectiveness of the HTTP caches can be consider-
ably improved by considering SVC, reducing the amount
of data that has to be transmitted between server and
caches, which is tremendously beneficial for content
providers, since the same variety of video content can
be provided at a reduced cost compared to the usage of
single layer coded data, as e.g. AVC.

3. Receiver’s behavior

In this section, the behavior of a DASH receiver is
described. Note, however, that the DASH receiver is not
standarized in Ref. [5]. For this purpose the DASH client is
divided into two logical components as shown in Fig. 3:
DASH Access client and MPEG Media Engine [5].

The DASH client is responsible for two principle tasks.
It has to manage download of the media data available at
the server and present it to the users correctly. In order to
do so, it has to select the most appropriate media repre-
sentations among the ones described within the MPD,
download them and organize the received segments in such
a way that the data can correctly be rendered by the MPEG
Media Engine. The DASH Access client is responsible for
performing the adequate segment requests based on down-
load rate estimates of the current network, as well as user
equipment characteristics. Further, the access client is
responsible for passing the received data to the MPEG Media
Engine in the right order so that the media data can be
decoded correctly and presented.

In the block diagram depicted in Fig. 4, a possible struc-
ture of the DASH access client is shown, which consists of
six logical modules. The HTTP module is responsible for
issuing the HTTP GET requests in order to download data
based on the selections made by the scheduler/download-
ing controller. These selections are translated by the HTTP
module into the corresponding HTTP requests with the help
of the MPD parser and ‘sidx’/‘ssix’ parser. The MPD parser
parses the MPD extracting all the necessary information,
such as available media representations, the URLs at which
the representation can be accessed and the necessary
bitrate required for downloading them. The ‘sidx’/‘ssix’
parser is used to allow downloading smaller parts than a
segment, i.e. a sub-segment or a smaller part thereof,

__fMmegl . B
#) 3+ " |MPEG format media,_ Media |
Segmentls, L+ 5 | +*imein media output
] e 4 presentation
e ad
DASH MPEG Media
DASH client Access client Engine

Fig. 3. DASH client.

332 Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342

ﬂ—» MPD parser
HTTP HTTP Module
request

Indexed 'sidx’/’ssix’
Segment parser

Scheduler /
Downloading
controller

Media =(Buffer Re-multip_lexerlw
Segment h Re-organizer J

MPEG format media +
time in media o

presentation

Fig. 4. DASH Access Client block diagram.

performing HTTP partial GET commands, created by com-
bining a byte-range, which is extracted from the ‘sidx’ or
‘ssix’ boxes in the file format, and the original URL of a
segment of the corresponding representation appearing in
the MPD.

The scheduler and downloading controller is respon-
sible for estimating the available throughput for selecting
segments to be downloaded. This module may determine
such selections by measuring the time previous segments
required for download and by checking the available
playout time of media data stored in the buffer. The
scheduler may also decide how such segments are
requested, e.g., in a sequential manner within a single
TCP connection or in parallel over multiple concurrent
TCP connections, which may increase the download rates
for multimedia streaming [22,23]. The scheduler is also
responsible for deciding how to request the data over a
heterogeneous network, such as shown in Ref. [24], or for
performing prioritization in download of the media as
presented in Section 6 and in Ref. [25]. Note that the order
of the downloaded data depends on decisions taken by
the scheduler. Therefore, the received data may not be
downloaded in the right processing order. The re-multi-
plexer or re-organizer organizes data required for play-
back by the MPEG Media Engine, and provides the media
data in the correct processing order. In case of MPEG-2 TS,
this instance may re-multiplex audio and video data as
well as layers of SVC (downloaded in separate segments)
if necessary so that a legacy MPEG-2 TS decoder is able to
decode the data correctly. In case of ISO base file format,
sub-segments of dependent Representations are inter-
leaved with the sub-segments of its complementary Repre-
sentations so that it results in a conformant ISOBMFF. For a
more detail description of the interleaving process for
dependent Representation the reader is referred to Ref. [5].

The MPEG Media Engine for DASH (cf. Fig. 3) typically
needs some advanced capabilities in order to be able to
play back the content received chunk-wise.

The engine has to cope with possible gaps in the data,
i.e. segments missing, result of omissions of requests to
the missing data when problems are detected in the
network or overlapping of segments when switching from
one representation to another, i.e. when segments among
different representation do not belong to the same time
interval. Other advance capabilities may be playing back

different tracks in case of ISOBMFF depending on the
downloaded version, etc.

4. Scalable Video Coding

The scalable extension of H.264/AVC (SVC) [13]
provides features to allow for different representations
of the same video within the same bit stream by selecting
a valid sub-stream. SVC supports the concept of layers,
which correspond to different quality, spatial or tem-
poral representations. A SVC stream is composed of a
H.264/AVC-compatible base layer, which corresponds to
the lowest representation, and one or more enhancement
layers, which increase the SNR fidelity, spatial and/or
temporal quality of the representation when added to
the base layer. SVC allows for multiple Operation Points
(OP) within the same bit stream. An OP refers to a valid
sub-stream at a certain quality, spatial, and temporal level
and corresponding to a specific bit rate point.

In case of SNR scalability, one way for obtaining
different OPs is to encode multiple quality layers either
with Coarse-Grain Scalability (CGS) or Medium-Grain
Scalability (MGS) [13], and select each layer as one OP.
Each additionally integrated quality layer has a negative
influence on the coding efficiency of the SVC stream to
some extent. However, if addressed properly the overhead
can be kept below 10% as shown in Ref. [26]. A possibility
to achieve a low overhead would be to keep the number
of layers at a reduced value and create OPs by selecting
parts of the bitstream smaller than complete layers, i.e.
enhancement layers may be skipped only for some of the
frames. Such an approach may result in frames to be
decoded with a variable number of layers.

CGS and MGS differ basically in the fact that for CGS
the number of layers to be decoded is required to be
constant for all frames and reconstruction is done for the
highest layer only, while MGS allows for more flexibility
and always reconstructs up to the highest quality layer
received. Hence, for CGS, special care has to be taken
at the decoder if scalability is achieved by dropping
enhancements of some of the frames, so that error
concealment for CGS is integrated and always the highest
received quality is used for reconstruction, similar as
specified for MGS in Ref. [13].

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 333

GOP Border

"R R BN
Hiimil
i L

GOP Border GOP Bordcr

I
T3

im i

OP0O OP3

ﬁ ﬁ | =
™ :.

GOP Border GOP Bord(.r GOP Border

»® |
X‘.X

. =

|
| |
| |
- :
ITl | ITl
| | |
| | |
| | |
| | |
. Ll .

OP5

.le
W]

- >
time

A4
v

time time

Fig. 5. Example OPs creation based on sub-layers with three OPs.

IceDance

Videorate [kbps]

Operation Point (OP)

Fig. 6. Rate distribution of OPs.

In order to achieve multiple OPs we encode quality
layers with a reduced number layers and select a
sub-stream of the original data by additionally selecting
smaller parts of a layer, also known as temporal levels in
SVC [13]. This allows keeping the overall coding overhead
within a suitable range. Fig. 5 illustrates how different
OPs are obtained in this way. In the example, the SVC
stream is comprised of base layer (black parts of the
rectangle), and two quality enhancement layers (dark
grey and light grey parts of the rectangle) for the coded
pictures (rectangles in the figure). The different OPs are
obtained by dropping enhancement layer packets from
the highest temporal levels (indicated by Tx in the figure).
Fig. 6 shows the bit rates of 9 OPs for the ITU-T test
sequence “IceDance” at 720p HD resolution, 50 frames
per second and a GOP 8 coding structure. It can be seen
that dropping the “light grey” marked parts correspond-
ing to the second quality layer in temporal levels T2 and
T3 (cf. Fig. 5) reduces the video rate from 7 Mbps (cf. OPO)
to 5.3 Mbps (cf. OP3). Further, dropping the “light grey”
marked quality layer from all temporal levels but the
temporal level TO and removing the “dark grey” marked
first quality layer pictures from temporal levels T2 and T3
results in a video rate of 3.1 Mbps (cf. OP5). In general,
several OPs can be selected for bit rate optimization.

5. Caching efficiency

The use of HTTP caches within the delivery network is
very beneficial, since it allows for reducing the uplink
traffic at the servers. Frequently requested content, which
is expected to be requested in a near future, is stored in a
cache so that subsequent requests for the same content
are served by a cache entity instead of by the server.
Caching has been proved to be extremely beneficial in
VoD scenarios. One of the main complexities in optimiz-
ing the cache performance, especially for the VoD case,
where user requests are more unpredictable, is the
difficulty to predict future user requests so that the files
that maximize the amount of data served by the cache
entity are kept in the cache. However, for the live stream-
ing case, the request pattern is simpler: the data is only of
interest for a very short period of time and thereafter is
not expected to be useful anymore and therefore can be
removed from the caches. Thus, dealing with live content
is simple for the caches and surely also beneficial, where
the cache storage can be utilized for storing and forward-
ing content to multiple users, similar to an overlay multi-
cast system.

The efficiency of deployed HTTP caches can be mea-
sured by the cache-hit-ratio, which shows the proportion
of HTTP requests that can be served by the caching
entities. The cache-hit-ratio is directly related to the
reduction in outbound traffic at the origin server. It is
mainly influenced by the storage capacity of the caches,
the applied caching replacement algorithms, and the
number of different content requested by the users. With
DASH, the number of different content is significantly
increased due to the additional number of representations
(bitrate versions) required for each content to provide a
smooth bitrate adaptation. Encoding each representation
independently with single layer H.264/AVC drastically
reduces the caching-efficiency as shown in Refs. [14,15]
if compared to the case where only a single representation
is offered per content and all clients request the same
version for each content.

Previous works [14,15] have shown that the caching
efficiency can be improved just by using SVC as the video

334 Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342

codec for a VoD adaptive streaming service over HTTP,
while keeping the same cache replacement algorithm.
There are two reasons for this gain in caching efficiency:

e SVC removes redundancy between different media
representations of the same content by utilizing differ-
ent inter-layer prediction methods [13]. Therefore, with
SVC, the cumulative bitrate of the required media
representations is reduced and for the same storage
capacity a higher number of representations can be
cached than in the case where representation are
independently encoded with single layer H.264/AVC.

e With SVC, more clients request the same data (layers)
since, although requesting different representations
of a same video, the clients request a set of layers, with
some layers in common, e.g. the base layer. This is due
to the hierarchical coding dependency of the multi-
layered SVC. Thus, all requests for a single content
incorporate at least the base layer representation.
Consequently, the probability of a cache-hit for files
containing the lowest layers of SVC streams, which
most of the users are interested in, is increased.

The cache-hit-ratio is further influenced by the cache
replacement algorithm. Common caching algorithms used
in practical applications are Least Recently Used (LRU)
and Least frequently used (LFU) algorithm [27]. Numerous
caching algorithms exist, which aim to optimize the
caching performance based on a certain metric or criteria
[27]. One exemplary algorithm, designed for chunk-based
streaming, the Chunk-based Caching (CC) algorithm [28],
is compared in Ref. [15] to the LRU algorithm. CC shows to
improve the cache-hit-ratio compared to LRU in scenarios,
where media is delivered in chunks. Furthermore, by
combining CC with SVC gains in caching efficiency are
obtained. The results shown in the following correspond
to the LRU case, and show that just by using SVC the
caching performance in terms of cache-hit-ratio is notably
enhanced, while applying a simple cache replacement
algorithm.

Figs. 7-9 show the average cache-hit-ratio of a Video
on Demand (VoD) service using DASH based on SVC, in
the figures referred to as SVC-VoD, in comparison to
DASH based on the single layer codec H.264/AVC, in the

0.9
0.8 o= —

0.7 =
0.6
0.5

0.4 +— /
0.3 //
02 !

2

N

cache-hit-ratio

04 —MR-VoD layer1 layer3
’ —SVC-VoD - - layer2 layer4
0 T T T ;
0 1000 2000 3000 4000

cache capacity (C) [media units]

Fig. 7. Cache performance for users with different equipment capabilities.

cache-hit-ratio

04 MR-VoD - —layer1 layer3 |
’ —SVC-VoD — -layer2 layerd
0 T T ; ;
0 1000 2000 3000 4000

cache capacity (C) [media units]

Fig. 8. Cache performance for a scenario with heavy cross traffic.

o
g
£
[}
K=
[3]
©
3]
o1 MR-VoD - =layer1 layer3
’ —SVC-VoD — —layer2 layer4
0 T T T 7
0 1000 2000 3000 4000

cache capacity (C) [media units]

Fig. 9. Cache performance for a scenario with light cross traffic.

figures referred to as MR-VoD (Multiple Representation-
VoD). In these figures, the average cache-hit-ratio over
different values of overall cache capacity is shown. The
cache capacity, i.e. storage size, is measured in media
units, which are equivalent to the size of a video clip of
90 min at 500 kbps (1 media unit=337.5 MB). The simu-
lations are based on real data statistics extracted from a
real VoD service. For further details on the simulation
assumptions the reader is referred to Refs. [14,15].

The results in Fig. 7 have been already presented in
Ref. [14]. In the conducted evaluation, four different types
of users have been considered. Each type of user has a
different display resolution and requests a different repre-
sentation. Furthermore, a uniform distribution of the
users is considered, which means that each user type is
responsible for 25% of the requests. In Fig. 7, it can be seen
that the average cache-hit-ratio for SVC-VoD is much
higher (about 20%) than for MR-VoD. Also, the average
cache-hit-ratio for each of the layers of SVC is higher than
the average cache-hit-ratio for MR-VoD, where the cache-
hit-ratio for the base layer (layer 1 in the figure) is higher
than the average cache-hit-ratio for each of the higher
layers (layer 2 to layer 4 in the figure) and up to 15%
higher than the cache-hit-ratio for the highest enhance-
ment layer (layer 4). This effect is due to the caching gain
over simul-storage of the MR-VoD data.

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 335

Figs. 8 and 9 show results for users with the same
equipment capabilities but with a varying throughput.
To keep the service presentation without interruption
users need to dynamically adapt their requests to repre-
sentations that match the available throughput. The
results presented in Fig. 8 correspond to a “heavy cross
traffic” in the access links, whereas the results in Fig. 9
correspond to a “light cross traffic” scenario. The impact
of the cross-traffic within the “heavy cross traffic sce-
nario” can be summarized as users requesting 25% of the
time each of the available representations, with a mean
stable time (i.e. time requesting a certain representation
without performing adaptation) of 40 min. In the case of
the “light cross traffic” scenario users request the two
lowest representations around 9% of the time, the second
highest representation around 19% of the time and above
62% of the time the highest representation. The mean
stable time for each representation is about 2 min for the
lowest two representations, 10 min for the second highest
representation and 40 min for the highest representation.
For more information about the cross traffic modeling,
the reader is referred to Ref. [15].

In Figs. 8 and 9 it can be shown that the results are
quite similar to the ones presented in Fig. 7, i.e. SVC-VoD
outperforms MR-VoD. Since for “heavy cross traffic” the
diversity in request is higher than in the “light cross
traffic” case the gain in terms of cache-hit-ratio is higher
for the former case. In the “light cross traffic” case, most
of the time users request the highest quality representa-
tion. Nonetheless, in both cases this gain is significant and
above 15%.

6. Rate adaptation

As shown in Section 5 and in Refs. [14,15], SVC leads to
great improvements of an HTTP streaming service in terms
of cache efficiency, which reduces the outbound traffic at
the server and the required throughput within the delivery
network. Thus, it allows service providers to reduce opera-
tional expenditures or improve the average service quality
at the same costs compared to single layer H.264/AVC.
However, in Refs. [14,15], the advantages for users was
not shown, e.g. an enhanced adaptability compared to
approaches based on single layer media codecs.

In Ref. [25], a scheduling mechanism called Priority-
based Media Delivery (PMD) is presented, which aims to
prioritize the most important data (e.g., lower layers in
SVC). Download for additional SVC layers is initiated only
if the more important layers meet specific buffering
constraints (minimum buffer fullness for a defined buffer
level). In Ref. [25], the benefits of the combination of
PMD and SVC are shown in a typical scenario, where users
have limited resources, e.g., buffering/storage capacity.
It is further shown that with the presented combination
it is possible to react faster to network variations than
with simple Multiple Representation Streaming (MR-
Streaming) with H.264/AVC, thereby improving the video
quality at periods with reduced available download rate.
MR-Streaming is a more general term than MR-VoD
(cf. Section 5), which does not only refer to VoD services,
but also Multiple-Representations Live Streaming

(MR-Live). In the following we will refer to MR-Streaming
for both MR-VoD and MR-Live. Analogously, SVC-PMD
comprises both SVC-VoD (cf. Section 5) and SVC-Live and
refers to the application of the PMD technique in combi-
nation with SVC.

The PMD technique can be implemented in the
Scheduler/Download controller module of the block dia-
gram in Section 3 (cf. Fig. 4). The flowchart diagram in
Fig. 10 describes the working principle of the PMD
algorithm, where i refers to current operation point of a
layered file and Buff[x] refers to the playout-buffer for a
certain operation point X in the client. The simple algo-
rithm always tries starting from the most important
operation point i=0 to fill up the priority buffers. Only
if all buffers are meeting the target fullness, the algorithm
fills up the operation point with the lowest fullness, i.e.
the data with the closest playout deadline is downloaded.

Defining the buffer levels which dominate the PMD
performance is subject to optimization of the specific
service requirements. E.g. in today’s VoD systems, higher
video playout robustness is preferred over a low startup
delay, i.e. VoD systems typically employ a playout-buffer to
be able to overcome jitter or connection problems during
streaming, while for live services low startup delays and
latency to the live signal are very important so typically
small playout-buffers are defined. Given defined levels for a
service the working principle is as follows. The playout-
buffer is built during the pre-buffering phase at least once at
the beginning of streaming. In this phase usually no data is
played back, although other approaches start playing back
immediately and build the playout-buffer while playing
back the media. Note that the smallest playout-buffer
corresponds to the segment length (or sub-segment length
cf. Section 2), since this amount of data is received as
response to an HTTP GET request. The pre-buffering phase
can be re-entered at any point of the streaming service if
temporarily the received data rate has been below the
consumed media rate (playout rate) and the desired play-
out-buffer fullness is not achieved. If the pre-buffering
phase is re-entered, users may request media of a lower
bitrate than the available network throughput to use the
additional throughput for downloading data to build up the
playout-buffer. The playout-buffer allows a stable service
and reduces the need for quality adaptation within a certain
timeframe determined by the playout-buffer length. How-
ever, a good system design requires a trade-off between
playout-buffer length and startup delay. Also the different
capabilities of target receivers, e.g. set-top boxes and mobile
devices, in terms of storage capacity must be taken into
account.

For MR-Streaming, there is no logical division of the
buffer into different buffer levels for each video rate.
Instead, adaptation is performed by requesting alterna-
tive encodings of the data at a different bitrate to reach
the requirements of the unique logical buffer. For this
purpose different values of filling level of the playout-
buffer are defined which are used as indicators for
performing adaptation. Such values, referred to as adap-
tation-thresholds, denote the filling level of the buffer at
which a lower rate is requested and re-buffering is
performed until the buffer has been refilled.

336 Y. Sanchez et al. / Signal Processing: Image

read_MPD()

no

missing_segmen
_available

Communication 27 (2012) 329-342

Start checking the first level

Vi

no

(i=6 V no
(=0)
Y
has_Buffli] as_Buffi]
target_fullness target_fullness

no

Find available segment for the less filled
buffer_level

Buff[j]_fullne

A

i=j, minj/0<

Buff[k]_fullness Vk#j

ss <

download_next
_segment [i] ()

Fig. 10. Flowchart for PMD.

7. Considerations on live streaming

As aforementioned, for live streaming the possible
values for target fullness for each level in the playout-
buffer are restricted by the acceptable latency compared
to the actual live signal, i.e. the values of required target
fullness for each level in the playout-buffer cannot be
higher than the acceptable latency. In fact, trying to reduce
the latency and the playout delay to the minimum would
lead to preventing from buffering multiple segments of
the downloaded content, and SVC-PMD would be applied
on a per segment basis, as well as MR-Streaming.

In a live scenario, the downloaded segments of the
media data need to be of a small duration to reduce the
capturing and transport delay and thereby the latency to
an acceptable level. Furthermore, the smaller the seg-
ments are the faster adaptation can be performed, which
is very important due to the reduced playout-buffer, i.e.
if adaptation is not performed in a fast enough manner
playout interruptions may occur. As a consequence, the
download rate of each of the video segments varies from
segment to segment due to the behavior of TCP [3]. We
consider TCP Reno [29,30], since it is the most popular
implementation today. The difference to other TCP imple-
mentations lies on the congestion avoidance phase. In the

congestion avoidance phase, typically one additional
packet is sent per round compared to the round before.
One “round” lasts a round trip time, which is the time
elapsing between sending a packet and the ACK for that
packet arriving. In other words, the congestion window,
which is the size of a logical window equal to the number
of packets sent in a burst (unACKed in the network), is
incremented by one if all the packets sent in the previous
burst (round) are acknowledged. If not all packets in the
previous round are acknowledged different actions may
be taken. For TCP Reno, if triple-duplicate ACKs (three
or more acknowledgements for the same packet are
received) the window size is halved and the congestion
avoidance phase is restarted. Triple-duplicates are
received if at least three packets are received after a
packet loss (all these received packets acknowledge the
last received packet before the lost packet). If on the other
hand, less than three duplicate ACKs are received a time-
out would occur and the TCP connection would start with
a slow start phase.

Due to the congestion control algorithm of TCP, the
download rate of the segments varies continuously and
cannot be considered to be the average transmission rate,
as possible for big data sizes, i.e. data much bigger than
the average transmitted data during rate adaptation

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 337

cycles (time between two window size reduction events)
of the TCP connection. In Fig. 11 the rate of a TCP session
is illustrated, as well as the effect of the small segment
sizes (compared to the adaptation cycles of TCP) on the
segment download rate. We neglected the fact that if the
window increases the queuing delay increases as well
as the round trip time. This would make the additive
increase observed in TCP slightly less than the linear
increase shown in the figure.

While being a necessary and beneficial issue for live
streaming, small video segments lead to a highly varying
segment download rate and therefore a varying segment
fetch time. This effect can be denoted as segment jitter.
Analogously to the packet jitter, this effect could be
countered by using a buffer and consequently delaying
the startup and staying further beyond the live signal.

In Fig. 12, the segment download rate is presented for
a segment size of 0.5, 1 and 5 s at a fixed video rate of
2 Mbps. The presented download rates have been directly
measured in the network simulator NS-2 [32], where a
packet loss of 1% is considered, which corresponds to a
theoretical TCP throughput of 2.8 Mbps [33].

In Fig. 12, it can be noticed that the smaller the segment
lengths are the larger the variability in the segment down-
load rate is, as presented for the constant 2 Mbps bitrate
video. Since fast adaptability is desired, we will focus on
segments of 0.5s in the following. Fig. 13 illustrates the
playout-buffer fullness distribution for different channel
conditions and different downloaded media rates.

Fig. 13 shows the playout-buffer fullness over different
values of downloaded media rate for two different scenar-
ios with different throughput. The plot on the right corre-
sponds to an average available TCP throughput slightly
higher than 2.2 Mbps (i.e. packet dropping rate of 1.2%) and
the plot on the left corresponds to an average available TCP
throughput of around 4.2 Mbps (i.e. a packet dropping rate
of 0.4%). The different colors in the figure correspond to the
percentages of the time for which the playout-buffer has
less data stored than the value marked in the Y-axis of
the figure. It can be seen that for media rates closer to the
average available throughput the variation of playout-
buffer fullness is bigger and the buffer-level is with a high
probability at a low value. Note that the variation is related
to the download rate not being constant and different to
the downloaded media rate and does not directly depend
on the maximal buffered media data (10 s in Fig. 13). For
different values of latency, being increased or decreased,

Segment_length

Rate]

the presented values should be therefore shifted up or
down, respectively.

Since the buffered amount of data is relatively small,
rate estimation cannot be performed based on long
measured statistics. Smarter estimation and scheduling
is needed so that fast reactivity can be achieved and long
periods to detect channel state changes can be avoided,
which is crucial for preventing playout interruptions,
while at the same time avoiding unnecessary switching.
This fact in combination with the presented buffer per-
formance leads to the following conclusion:

Media rates close to the average available throughput
make it more difficult to detect variations in the available
throughput, since variation in the fullness of the buffer
due to varying segment download rate and due to a
higher cross traffic in the network are difficult to differ-
entiate. Therefore, if a media rate close to the available
throughput is chosen, MR-Streaming is expected not to be
able to detect throughput variations fast enough resulting
in a high playout interruption frequency.

8. Adaptation vs. live latency

Adaptation in live streaming scenarios is a more
complicated issue than in VoD scenarios. Due to the lack
of an extensive playout-buffer, decisions have to be made
in a much faster way than in VoD services. In the follow-
ing we will differentiate two scenarios: the first one
where a reasonable playout delay is tolerated and the

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003 ?\
0.0002

0.0001

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Segment download rate [kbps]

— Seg-length=0.5
- Seg-length=1

Seg-length=5

pdf

Fig. 12. Segment download rate for 0.5, 1 and 5 s segments at 2 Mbps
video rate.

— Instantaneous rate

— Segment download
rate

\

Fig. 11. Effect of the size of the segment on the segment download rate.

338 Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342

10.00 =

9.00 [i -
8.00 I I

7.00 .
6.00
5.00
4.00
3.00
2.00
1.00

0.00

Playout-buffer fullness [sec]
I
Playout-buffer fullness [sec]

1000 1400 1800 2200 2600 3000 3400 3800
Downloaded Media rate [Kbps]

10.00 —
000 H H g i i = n
8.00 <100%
7.00 I <95%
6.00 m <90%
5.00 <75%
4.00

W <25%

3.00
200 m<10%
1.00 m<5%
0.00

500 700 900 1100 1300 1500 1700 1900
Downloaded Media rate [Kbps]

Fig. 13. Playout-buffer fullness distribution for different downloaded media rates for a packet dropping of 1.2% (right) and 0.4% (left) and a latency of 10 s

to the live signal.

T 205
)
=
= 2
©
©
£ 1.95
= = MRS-80%
Z 19
2 u MRS-60%
©
k- 1.85 # MRS-20%
5
SVC-PMD
g 18
5’ 1.75

2 5 8 10 20

Pre-buffer in seconds

Fig. 14. Avg. download rates for MR-Streaming and SVC-PMD over
different playout-buffer values.

media is played behind the live content and a second
scenario with very stringent delay where the playout
delay is minimized to the maximum possible, i.e. no
segments are stored in the playout-buffer.

8.1. Live streaming with an acceptable latency of some
seconds

In Fig. 14 we compare the MR-Streaming with the
SVC-Streaming approach for different latency values for
playout (2, 5, 8, 10 and 20). MRS-X% represents the
MR-Streaming technique with an adaptation-threshold
equal to X% of the playout-buffer size, which means that
when the buffer-level is lower than X% of the playout
latency adaptation to a lower quality is performed. For
the theoretical results presented in Fig. 11, a two state
Markov chain has been simulated. The two states denote
the average available throughput of a user of either
2.2 Mbps or 1.1 Mbps and consequently a user downloads
a 1 Mbps or a 2 Mbps video. An ideal exploitation of the
network transmission rate is assumed, not taking into
account TCP overhead and efficiency. The simulation step
is equal to 1 ms and the mean time in the 1.1 Mbps state
and 2.2 Mbps state are 5 and 50 s, respectively.

The results in Fig. 14. show that using SVC-PMD in
average a higher video rate can be downloaded, espe-
cially for low values of playout-buffer, since adaptation
to higher qualities can also be performed for already

buffered data, i.e. enhancing base layer data. For
MR-Streaming it is assumed that the pre-buffered data
is played out and no adaptation to higher bitrates is
possible for already buffered data. Furthermore, it can
be seen that for lower values of adaptation-threshold for
MR-Streaming, the difference to SVC-PMD in terms of
downloaded video rate is reduced. But in case of more
drastic throughput variations in presence of a low amount
of pre-buffered data, such as possible in mobile environ-
ments, the playout-buffer would have less data for
MR-Streaming with a low adaptation-threshold and the
risk of running out of data would be higher.

Note that for both, SVC-PMD and MR-Streaming, the
same video rate distributions are considered in the pre-
sented experiment: 1 Mbps and 2 Mbps. In this discus-
sion, we are not focusing on the average video quality (e.g.
in terms of PSNR), where the SVC video at 2 Mbps would
have a slightly lower quality than the AVC video at
2 Mbps, due to the 10% overhead of SVC. However, the
focus of this discussion lies on the ability to download
the highest video quality with a higher probability when
using SVC-PMD than when using the MR-Streaming
approach, where users switch to the lowest quality more
frequently and during longer periods of time.

8.2. Live streaming with no delay (minimal playout buffer
of a segment)

If focusing on the drastic low-delay case where the
playout-buffer is limited to a single segment of 0.5 s the
adaptation becomes even more complicated. This is a
rather extreme use case but may be necessary in some
cases such as sport events, which are watched by large
groups of the population and some clients do it via typical
broadcast channels. The users may perceive some events
after becoming aware of them through other means, e.g.
the exclamation of spectators in the vicinity after a soccer
goal if the live latency is not kept low. Another possible
scenario is interactive services where the spectators may
have the possibility to call in real-time to the delivered
show. In such scenarios low system latency is highly
desirable. As aforementioned the segment download rate
varies highly from one segment to another. The perceived
segment download rate distributions of a link for three

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 339

0.00045
0.0004
0.00035
0.0003

".g_ 0.00025
0.0002
0.00015
0.0001
0.00005

NiZa

—— Throughput=2 Mbps
= Throughput=4Mbps
Throughput=6Mbps

0 5000 10000

15000 20000

Segment download rate [kbps]

Fig. 15. Segment download rate distribution for different throughput values for 0.5 s segments at 2 Mbps video rate.

Table 1
Selected rates for the representations.

2 Mbps (p=2%)

4 Mbps (p=0.5%) 6 Mbps (p=0.22%)

MR-Streaming (Kbps) 860
SVC-PMD lowest OP (Kbps) 860
Additionally requested SVC enhancement layer (Kbps) 200
Avg. Rate for SVC-PMD (Kbps) 1056

1300 1800
1300 1800
366 400

1658 2192

different values of available throughput (2 Mbps, 4 Mbps
and 6 Mbps) are exemplarily depicted in Fig. 15 for a
segment length of 0.5 s. In order to obtain these through-
put values a packet loss in the network of p=2%, p=0.5%
and p=0.22% have been simulated, respectively.

For instance, if we focus on the results for an average
throughput of 2 Mbps, segments suffer in about 25% of
time a download rate lower than 2 Mbps, resulting in the
video being stopped with a high frequency, which is
unacceptable for a service.

A possible way to tackle the problem of the high
throughput variations for small segment sizes would be
to be more conservative in terms of requested download
rate, i.e. to download a representation of the video at a
significantly lower rate than available throughput on
average in order to prevent video playout disruptions.
Here conservative means selecting the video bit rate
smaller than the averaged measured throughput, e.g.,
equal to the 1% percentile of the segment download rate
seen up to the moment. As presented in the following in
Table 1, the selected representations for such a percentile
for the considered links with an average available
throughput of around 2 Mbps, 4 Mbps and 6 Mbps are
860 Kbps, 1300 Kbps and 1800 Kbps, respectively, which is
in line with the results presented in Ref. [31]. A possibility
for downloading a representation at a higher bitrate would
be to use SVC and download the layers of each segment
sequentially and omit request to higher layers when a
reduction in the throughput has been detected. HTTP
pipelining [34] is combined with this technique to avoid
idle states in the TCP connection and use the available
throughput effectively. Thus, the aforementioned playout

disruptions suffered with AVC, if not a low enough media
rate is downloaded, would transform to quality adaptation
events using SVC. Therefore, using SVC allows the user for
downloading at higher average video rate, at the cost of
suffering adaptation sporadically, which can be assumed
to be far less annoying than video disruptions and thus
may increase the quality of experience of the users. The
rates selected for MR-Streaming and for the lowest OP of
SVC-PMD for each of the available mentioned throughput
values (packet loss p=2%, 0.5% and 0.22%), correspond to
the rate values that have a lower probability than 0.1%
for a segment to be downloaded after its playout time, i.e.
a playout interruption event occurs. These values are
selected, since they are quite low and are thought not to
be disturbing for the viewer of a video service. For
SVC-PMD an additional enhancement layer is allowed to
be requested when enough throughput is available. The
downloadable rates of the enhancement layer, which will
be requested by the SVC client in addition to the already
downloaded media (lowest OP in the table) are 200, 366
and 400 Kbps These selected additional enhancement
layer rates correspond to the rates the SVC clients are able
to request more than 98% of the time. The ability of
additionally requesting enhancement layers as shown in
Table 1 increases the average downloaded rate and does
not imply clients switching often. Note that higher rates
could be selected at the cost of suffering quality adapta-
tion more frequently.

As shown in Fig. 15, the segment download rate
distributions for different values of average link through-
put overlap for some values. Therefore, detecting the
state of the link (packet loss or average throughput) and

340 Y. Sanchez et al. / Signal Processing: Image

estimating future performance is a really difficult task,
since segment download rate patterns measured over
short periods of time can correspond to different link
states and segment download rates observed in the near
future can be very different depending on the real link
state, which makes estimation and prediction for select-
ing the most appropriate representation a difficult task.
That means that unless the receivers request a continu-
ously varying video rate that is significantly lower than
the last measured segment download rate, the clients
may first notice a throughput variation, when it is already
too late, i.e. a wrong bitrate is requested and a playout
interruption occurs. Since the monitored segment down-
load rate has a high variation as shown in Fig. 15, select-
ing the media download rate continuously varying
depending on the last measured segment download rate
would lead to a continuous adaptation, which may be
annoying to some extent. Therefore, such an approach is
not considered as a possible solution.

In Fig. 16 we show the available representations as
well as the possibilities for requesting segments, compar-
ing the sequential request of the layers for SVC-PMD and
MR-Streaming. As seen in the figure, for SVC-PMD there is
an additional time to decide whether to download higher
layers or not during download of the lower layers, while
for MR-Streaming the rate selection can be only done at
one step. In order to compare the MR-Streaming and the
SVC-PMD approach the probability of receiving one
segment too late is calculated in the following. For this
purpose we consider the scenario shown in Fig. 17,

Communication 27 (2012) 329-342

corresponding to a simplified 3-state channel model
described by a Markov model.

As mentioned before, as a consequence of overlapping
of the segment download rate distributions and the high
variability of the download segment rate, due to which
long measure times are required to detect variations in
the available throughput, it can be assumed that a client
would first notice a variation in the available throughput
when a segment is received too late.

Hence, the probability of receiving a segment too late
in the MR-Streaming case is the probability of suffering a
throughput reduction, which can be calculated following
Eq. (1), where p4 and pg are the probabilities of having
a channel with an available throughput equal to 4 an
6 Mbps, respectively, and can be obtained by calculating
the steady state vector, i.e. eigenvector corresponding to
the eigenvalue 1 of the matrix P

Pinterruption = Pa*Daz +De*Pe2 +Pe*Dea 1M

For SVC, a playout interruption event is subject to
additional conditions. Note that due to the working
principle of SVC-PMD, if throughput reductions are
detected while downloading lower layers, requests for
higher layers are omitted, avoiding thus playout inter-
ruptions. Playout interruption would only occur, if the
throughput reduction is not detected for low layers but
during download of a certain higher layer. By late detec-
tion of throughput reduction, the requested layer down-
load would last too long and it would not be possible to
download the following segments on time, resulting in

Time for deciding whether
to download higher layer

or not
AVC high quality avc3 avc3
AVC low quality | avcl | [avcl | - -—ra—>
SVC| b el e2 b b el b el e2

Available representations

Lowest representation

Middle representation Highest representation

downloaded downloaded downloaded
Fig. 16. Available representations and download options.
P22 P24 P26
P42 Pag Pag | .with pi=1- 2Pi
Vi#i
P62 Pe4 Pe6

Pe2

Fig. 17. Model for channel throughput variation.

Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342 341

a playout interruption. Therefore, for the SVC case the
addends of Eq. (1) are multiplied by a scaling factor before
summing them up, as shown in Eq. (2)

Pinterruptian = k42 *P4*Pay + k62 *Pe*Pe2 + k64*p6 *Dea (2)

The scaling factor k,, corresponds to the probability
that the throughput reduction is detected too late at some
higher layers. Layers are ordered from lower to higher
ones, where the lowest layer is considered to be the base
layer and layers depending on others are considered to be
higher. Note that as mentioned in Section 7 rate reduc-
tions are related to TCP packet losses. Hence, k,, can be
calculated as the probability that no TCP packet from
certain lower layers, in the following referred to as L
layers, is lost and at least one packet in any layer higher
than the L layers is lost. Which layers are in the set of L
layers depends on the throughput reduction. The L layers
consist of the maximum number of lower layers for which
detection of throughput reduction would let the SVC-PMD
technique to omit requests for higher layers and avoid
playout interruption. Detection of throughput reduction
for any layer higher than the L layers result in a playout
interruption. The scaling factors ky, for the selected
scenario shown in Fig. 17 are summarized in the
following:

- ks =Probability that no packet from the base layer
is lost and at least one packet in enhancement layer 1
(el in Fig. 16) is lost.

- kg =Probability that no packet from the base layer is
lost and at least a packet in enhancement layer 1 (el in
Fig. 16) is lost+ probability that no packet from the
base layer and enhancement layer 1 is lost and at least
a packet in enhancement layer 2 (e2 in Fig. 16) is lost.

- kg4=Probability that no packet from the base layer and
enhancement layer 1 is lost and at least a packet in
enhancement layer 2 (e2 in Fig. 16) is lost.

The probabilities described above can be calculated as
shown in Eq. 3, as follows:

k= (1-p)"s(1-(1-p)) 3)

where p is the packet loss probability of the new state,
n is the number of packets corresponding to the layers
where no packet is lost and N includes the amount of
packets in the layer where the loss occurs and in the
lower ones.

The Markov model considered for the presented
results, can be summarized with the transition probabil-
ities p;=0.005 for i#j and p;=0.99 and probabilities in
steady state p;=0.33. With the rates for the considered in
for the SVC stream and assuming a segment length of
0.5s, the scaling factors for SVC-PMD are calculated
following Eq. (3) as k42=0.25, kg;=0.55 and kgs=0.35.

Taking these values into account the probability of
suffering a playout interruption can be calculated as
aforementioned, following Eqgs. (1) and (2), and is shown
in Table 2.

Table 2
Playout interruption probability.

Playout interruption

probability
MR-Streaming 0.5%
SVC-PMD 0.19%

9. Conclusions

HTTP-Streaming is increasingly gaining popularity due
to its benefits over UDP, caused by the better traversal of
NAT and firewalls, ease of deployment and built-in
friendly bandwidth sharing. The Scalable Video Coding
(SVC) can improve the performance of HTTP-based IPTV in
a wide range of areas.

First, by only using SVC without any further system
changes, the caching efficiency is significantly increased,
since the storage capacity of the caches is more efficiently
used than when different versions of the same video are
stored with AVC.

Second, in VoD scenarios, there is a trade-off between
service smoothness, in the sense that adaptation is rarely
performed trying to play always the highest possible
quality, and playout delay, during which a pre-buffering
phase is carried out to playout-buffer data to overcome
possible problems within the network during the stream-
ing service. Especially for small values of playout-buffer
SVC allows for downloading an average video rate signifi-
cantly higher than with multi-rate AVC, due to better
efficiency in performing the adaptation.

Finally, we show that SVC-based HTTP-Streaming
outperforms AVC-based HTTP-Streaming for live IPTV.
More concretely, by using SVC, receivers can request a
representation that approximates more to the average
TCP throughput than when AVC is considered, for which
the receivers have to play a more conservative role and
renounce to higher quality representations and download
representations at lower bitrates in order to have a live
service. Furthermore, the receivers can react much faster
to network variations using SVC, which prevents the video
from being disrupted when the traffic in the network
unexpectedly increases.

References

[1] J. Postel, User Datagram Protocol (UDP) IETF RFC 768, August 1980,
¢ http://[tools.ietf.org/html/rfc768 >.

[2] R. Fielding,]. Gettys,]J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol—HTTP/1.1 IETF RFC 2616,
June 1999, (http://www.ietf.org/rfc/rfc2616.txt).

[3] Transmission Control Protocol (TCP) IETF RFC 793, September 1981,
{http://[tools.ietf.org/html/rfc793 >.

[4] H.Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A Transport
Protocol for Real-Time Applications July 2003, <http://www.ietf.
org/rfc/rfc3550.txt ».

[5] Information Technology - Dynamic Adaptive Streaming Over HTTP
(DASH) - Part 1, Media Presentation Description and Segment
Formats, ISO/IEC DIS 23009-1, August 2011.

[6] 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end Packet-
switched Streaming Service (PSS); Protocols and codecs (Release 9);
3GPP TS 26.234 V9.3.0 (2010-06), Section 12: Adaptive HTTP
Streaming.

http://tools.ietf.org/html/rfc768
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc793
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt

342 Y. Sanchez et al. / Signal Processing: Image Communication 27 (2012) 329-342

[7] T. Stockhammer, 3GPP dynamic adaptive streaming over HTTP -
standards and design principles, in: Proceedings of Multimedia
Systems Conference - Special Session Media Transport, San Jose,
USA, February 23-25, 2011.

[8] Open IPTV Forum - Release 2 Specification, HTTP Adaptive Stream-
ing, Draft V0.06 - June 7, 2010.

[9] Adobe Systems, Real Time Messaging Chunk Stream Protocol
(RTMP) Specification, draft-rtmpcs-01.txt , June 2009.

[10] A. Zambelli, IIS smooth streaming technical overview, Microsoft
Corporation (2009).

[11] HTTP Live Streaming Archictecture, Technical Report, Apple Inc.,
2010.

[12] T. Wiegand, G.J. Sullivan, G Bjentegaard, Ajay Luthra, Overview of
the H.264/AVC Video Coding Standard, IEEE Transactions on Cir-
cuits and Systems for Video Technology 13 (7) (2003) 560-576.

[13] H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable video
coding extension of the H.264/AVC standard, IEEE Transactions on
Circuits and Systems for Video Technology 17 (9) (2007)
1103-1120.

[14] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De
Vleeschauwer, W. Van Leekwijck, Y. Le Louedec, Improved caching
for HTTP-based video on demand using scalable video coding, in:
Proceedings of the Eighth Annual IEEE Consumer Communications
and Networking Conference-Special Session IPTV and Multimedia
CDN - (CCNC2011 - SS IPTV), Las Vegas (NV), January 9-12, 2011.

[15] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De
Vleeschauwer, W. Van Leekwijck, Y. Le Louedec, iDASH: improved
dynamic adaptive streaming over HTTP using Scalable Video
Coding, in: Proceedings of Multimedia Systems Conference-
Special Session Media Transport, San Jose, USA, February 23-25,
2011.

[16] Information technology—Generic coding of moving pictures and
associated audio information: Systems. ISO/IEC 13818-1, 2007.

[17] Information technology - Coding of audio-visual objects — Part 12:
ISO base media File Format. ISO/IEC 14496-12, 2008.

[18] T. Schierl, K. Griineberg, T. Wiegand, Scalable Video Coding over
RTP and MPEG-2 Transport Stream in Broadcast and IPTV Channels,
IEEE Wireless Communications Magazine 16 (5) (2009) 64-71.

[19] Information technology - Coding of audio-visual objects — Part 15:
Advanced Video Coding (AVC) file format. ISO/IEC 14496-15, 2010.

[20] P. Amon, T. Rathgen, D. Singer, File format for Scalable Video
Coding (SVC), IEEE Transactions on Circuits and Systems for Video
Technology, SI on SVC 17 (9) (2007) 1174-1185.

[21] Information technology - Coding of audio-visual objects - Part 12:
ISO base media File Format ISO/IEC 14496-12:2008/PDAM3, 2011.

[22] S. Tullimas, T. Nguzen, R. Edgecomb, S. Cheung, Multimedia
Streaming using multiple TCP connections, ACM Multimedia Com-
puting, Communications, and Applications 4 (2008).

[23] R. Kuschnig, I. Kofler, H. Hellwagner, Improving internet video
streaming performance by parallel TCP-based request-response
streams, in: Proceedings of the Seventh Annual IEEE Consumer
Communications and Networking Conference (CCNC2010),
January, 2010.

[24] K. Evensen, D. Kaspar, C. Gridwodz, P. Halvorsen, A. F. Hansen, P.
Engelstad, Improving the performance of quality-adaptive video
streaming over multiple heterogeneous access networks, in: Pro-
ceedings of Multimedia Systems Conference-Special Session Media
Transport, San Jose, USA, February 23-25, 2011.

[25] Y. Schierl, R. Sanchez, C. Globisch, Hellge, T. Wiegand, Priority-
based Media Delivery using SVC with RTP and HTTP streaming,
Springer Multimedia Tools and Application (2010) September.

[26] H. Schwarz, T. Wiegand, Further results for an rd-optimized multi-
loop SVC encoder, JVT-W071, JVT Meeting San Jose, USA, 2007,
(ftp://avguest@ftp3.itu.int/jvt-site/2007_04_Sanjose/JVT-W071.zip>.

[27] S. Podlipnig, L. Bosz6rményi, A survey of Web cache replacement
strategies, ACM Computing Surveys 35 (2003) (2003) 331-373.

[28] D. Hong, D. De Vleeschauwer, F. Baccelli, A chunk-based caching
algorithm for streaming video, in: Proceedings of the Fourth
Workshop on Network Control and Optimization, Ghent (Belgium),
November 29-December 1, 2010.

[29] H. Fall, S. Floyd, Simulation-based comparison of Tahoe, Reno and
SACK TCP, ACM SIGCOMM Computer Communication Review 26
(1996) July.

[30] TCP/IP Illustrated, Vol. 1 The Protocols, 10th ed. Reading, MA:
Addison-Wesley, 1997.

[31] B. Wang, J. Kurose, P. Shenoy, D. Towsley, Multimedia streaming via
TCP: an analytic performance study, in: Proceedings of the 12th
Annual ACM International Conference on Multimedia, New York,
USA, October 10-16, 2004.

[32] The Network Simulator NS-2, ¢http://www.isi.edu/nsnam/ns).

[33] J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP Reno
performance: a simple model and its empirical validation, IEEE/
ACM Transactions on Networking 8 (2000) 133-145.

[34] D. Kaspar, K. Evensen, P. Engelstad, AF. Hansen, Using HTTP
pipelining to improve progressive download over multiple hetero-
geneous interfaces, in: Proceedings of International Conference on
Communications (ICC), Cape Town, South Africa, 2010.

ftp://avguest@ftp3.itu.int/jvt-site/2007_04_SanJose/JVT-W071.zip
http://www.isi.edu/nsnam/ns

	Efficient HTTP-based streaming using Scalable Video Coding
	Introduction
	DASH
	Receiver's behavior
	Scalable Video Coding
	Caching efficiency
	Rate adaptation
	Considerations on live streaming
	Adaptation vs. live latency
	Live streaming with an acceptable latency of some seconds
	Live streaming with no delay (minimal playout buffer of a segment)

	Conclusions
	References

