
Parallel Environments for Implementing Neural NetworksManavendra MisraDept of Mathematical and Computer SciencesColorado School of MinesGolden, CO 80401Ph: (303)-273-3873 Fax: (303)-273-3875email: mmisra@mines.eduWWW: http://www.mines.edu/fs home/mmisra/AbstractAs arti�cial neural networks (ANNs) gain popularity in a variety of application domains, it iscritical that these models run fast and generate results in real time. Although a number ofimplementations of neural networks are available on sequential machines, most of these imple-mentations require an inordinate amount of time to train or run ANNs, especially when the ANNmodels are large. One approach for speeding up the implementation of ANNs is to implementthem on parallel machines. This paper surveys the area of parallel environments for the imple-mentations of ANNs, and prescribes desired characteristics to look for in such implementations.1 IntroductionAlthough traditional von Neumann computing has been successful in many applications, it has not provede�ective in solving a variety of important complex problems. At the same time, it has been observed thathuman beings solve these problems routinely in real time. Typical problems that fall into this class consist ofperception in the visual, auditory and olfactory domains, motor control, and the synthesis and understandingof natural languages. Inspiration from biological systems has resulted in arti�cial neural models that showgreat promise in developing better solutions to these problems.Arti�cial Neural Networks (ANNs) attempt to mimic the computational power of the mammalian brainby massively interconnecting very simple computational \neurons". Typically, the human brain consists ofapproximately 1011 neurons, each with an average of 103{104 connections. It is believed that the immensecomputing power of the brain is the result of the parallel and distributed computing performed by theseneurons [84]. The result of following the design philosophy of massively interconnecting simple units hasprovided models that have proved to be successful in a number of applications, including text to speechconversion [86], protein structure analysis [79], autonomous navigation [75], game playing [92], handwritingrecognition [9], image and signal processing [27, 88], etc. Another area that has bene�ted from ANN modelsis that of building intelligent vision models. Since roughly 60% of the human brain is involved in interpretingvisual input, it is not surprising that biologically inspired systems have proved to be useful in the �eld ofComputer Vision. Developing intelligent arti�cial vision systems has proved to be a very challenging task,and looking towards the human visual system for inspiration has yielded exciting results [21, 54, 74, 99, 100].These arti�cial models rely heavily on highly interconnected computational units functioning in parallel.The inspiration behind ANN models are biological models that are massively parallel, with many simplebiological cells cooperating to solve problems. Therefore, implementations of the resulting massively parallel0Updates, corrections, and comments should be sent to Manavendra Misra at mmisra@mines.edu.Neural Computing Surveys vol 1, 48-60, 1997, http ://www.icsi.berkeley.edu/~jagota/NCS48



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 49models on sequential machines are highly ine�cient, as one processor has to simulate the models unit byunit. This results in inordinately long implementation times. It is therefore natural to try and developimplementations of these models on parallel computers. However, parallel implementation of these neuralmodels is not trivial, and requires sophisticated algorithmic design techniques to e�ciently map the modelonto a chosen parallel computer. The mapping and the algorithms then need to be converted to user-friendlysoftware environments that help neural network users run their models on available parallel machines. Inthis paper, we will discuss e�orts that have attempted to achieve such parallel implementations, includingsupport technologies necessary for these implementations. Our �nal goal is to see if a parallel environmentexists that allows easy mapping of various neural network models onto parallel machines. What are some ofthe desired features to look for in such an environment? The neural network literature presents a numberof models inspired by biology [5, 35]. Each model has strengths and weaknesses, and one model is moreappropriate than another for a given application. A parallel simulation environment should provide the userwith a choice of models. In addition, the user should be able to choose the parallel machine that is availableto the user, and the simulation system should make it easy for the user to implement the chosen model onthe chosen machine. A graphical user interface (GUI) to the environment will enhance its user-friendliness,and is thus desired. We will describe research in the area of parallel implementation of ANNs and commenton how these e�orts can lead up to an ideal environment for parallel ANN implementation. Finally, we willprescribe directions that researchers interested in this area might follow.The next section of the paper (Section 2) describes the state of the art in parallel implementations ofneural networks. Section 3 lists the desired characteristics that a parallel ANN implementation environmentshould possess. Finally, Section 4 presents the conclusions.2 Survey of ResearchBefore we discuss research in the area of parallel implementations of ANNs, let us investigate relevantwork in sequential simulators of ANNs. This will allow us to identify the features that should be carriedover to parallel implementation environments. A signi�cant amount of work has been done in developingsimulation environments for ANNs on sequential machines. An earlier survey of sequential ANN simulatorswas provided in [68]. Historically, one of the more popular simulators was provided with the PDP book [84].This simulator was ported to a number of sequential platforms, and provided the user with an opportunityto learn about ANNs, and use them to solve problems. A newer version of this simulator (called PDP++)has been released by the developers [72]. This version provides the user with a graphical user interface (GUI)based on the InterViews toolkit through which the user can choose a particular ANN model to simulate. Inaddition, the GUI can be used to structure the network, choose parameters, set parameters of training, andto inspect the results of the simulation. The software is designed and implemented using object-orientedprinciples and is written in C++. PDP++ also provides a scripting language called CSS (C SuperScript)which can be used to debug a network, access current values of variables in the network, and add featuresto the basic capabilities provided in the software. This makes the simulator very exible. However, addingfeatures using CSS should only be used for prototyping, as code written in the scripting language runs veryslowly. This is not a severe limitation, however, since CSS uses C++ syntax, so a prototype code written inCSS can be compiled into the simulator for additional speed without too much e�ort. The software comeswith an extensive on-line manual, and has been ported to a number of sequential platforms. Executables forcertain platforms, as well as source code is available freely [72]. Although parallel versions of the softwareare not being developed, the design of the simulator presents a number of desirable features that could beused in the development of a parallel environment.Another excellent public domain sequential simulator has been developed at the University of Stuttgart.This simulator is called the Stuttgart Neural Network Simulator or SNNS [109, 110, 111]. Some ideas inthis simulator were inspired by another sequential simulator, the Rochester Connectionist Simulator, RCS[26]. SNNS comes with an extensive and well written user's manual that makes it easy for a user to use andmodify the software. SNNS also provides the user with a GUI interface whereby choices can be made aboutthe ANN model, the structure of the network, the network parameters, etc. Unlike the new version of the



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 50PDP simulator, SNNS has a single kernel and di�erent models are handled as switches in the same program.A parallel version of the SNNS program has been developed for the MasPar [113]. SNNS provides an optionto train multiple copies of the same ANN, or di�erent ANNs simultaneously on a number of networkedworkstations. A version of SNNS that uses training pattern parallelism has also been developed for the IntelParagon (an MIMD distributed memory machine).A description of a number of sequential (and some parallel) ANN simulation environments is presentedin [90] and [108]. These include the UCLA-SFINX [53] environment, Nexus [85], SWIM [13], NSL (NeuronSimulation Language) [104], SNNS [112], RCS [25], and Asprin/Migraines [46]. The book by J. Skrzypektherefore forms a good starting point for anyone interested in learning about software environments forsimulating neural networks on sequential machines. Another interesting e�ort in this regard is described in[45] which talks about a simulation environment to simulate heterogeneous/hybrid ANNs. The environmentis called DESCARTES (Development Environment for Simulating Connectionist ARchiTEctureS), and iswritten in LISP. The paper describes sequential, as well as an SIMD implementation on the ConnectionMachine-2. It also describes how DESCARTES might be implemented on MIMD machines.A number of other commercial and free ANN simulators are also available for sequential machines. Someof these include PlaNet, UCLA-SFINX, Xerion, NeuroGraph, BrainMaker, Asprin-Migraines (also developedfor the Cray family of vector supercomputers), and Pygmalion. Details about these simulators can be foundin the Frequently Asked Questions of the newsgroup comp.ai.neural-nets [70]. Of these, BrainMaker ismarketed by California Scienti�c Software [6] and is one of the more popular commercial programs. Itsbasic capabilities consist of training Back-propagation networks, but additional add-ons can be purchased.It comes with a utility called NetMaker which can import training data from a variety of formats, and thussimplify the process of creating the network. BrainMaker products are available for DOS, Windows, andMacintosh environments as well as the CNAPS parallel hardware from Adaptive Solutions Inc. [52].A number of authors have worked in the area of developing concise languages for describing ANN archi-tectures. These languages can then be used to create simulation environments [10] for both sequential aswell as parallel machines. One e�ort in this regard was the Neuron Simulation Language [104] that can beused to describe single neurons, as well as networks of neurons. Another concise language (MDL) for ANNdescription is described in [91]. MDL allows the speci�cation of a large network in just a couple of pages.Its parallel structure also allows highly optimized implementation on parallel machines. SLONN [103] cane�ciently represent single neurons, small networks, as well as large networks.Before an environment is developed to e�ciently implement ANN models on parallel computers, therehas to be a theoretical analysis of the mapping of ANN models onto various parallel machine models. Anumber of researchers have contributed to the area of parallel implementations of ANNs by designing andanalyzing algorithms to map speci�c ANN models on to speci�c parallel architectures. A discussion of therelated literature follows below.Ghosh et al. [23] discuss the requirements to e�ciently implement a generic neural network model on amulticomputer. The discussion includes mapping strategies, and an analysis of simulations of the mappings.In a similar vein, Chu and Wah [7, 101] describe optimal mapping of the learning process in multi-layerfeed-forward networks on message-passing multicomputers. Predicted and actual results in applying thisstrategy to implement learning schemes like back-propagation on a network of Sun workstations and theIntel iPSC/2 Hypercube multicomputer are presented.Often, the computational requirements of a neural network can be expressed as matrix-vector compu-tations. In such cases, special algorithms can be developed to map these computations onto SIMD (SingleInstruction, Multiple Data streams) machines. Techniques from the �eld of parallel matrix computations canalso be brought to bear on this problem. Algorithmic work that can be placed in this category includes thatof Przytula and Prasanna [76, 77], Lin, Prasanna and Przytula [47], Scherson [12], Shams [87], Tomboulian[94, 95]. A collection of parallel algorithms to implement ANNs is available in the book edited by Przytulaand Prasanna [78].A number of the algorithms described above deal with fully connected ANNs (networks where each unitis connected to every other unit). However, as we try to solve larger and larger problems that require ANNswith a large number of neural units, it is very likely that the connections between the units will be sparse



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 51(much like the human brain). In addition to being biologically plausible, sparse networks have also beenshown to be useful in applications [3], so a number of researchers have looked at parallel implementations ofsparse networks. Again, in a number of situations, parallel sparse matrix-vector techniques [55, 60] can beused to solve the problem [54, 56, 57, 58, 59, 61]. Gupta et al. have approached the problem of implementingsparse ANNs on the DAP [32], and M�uller et al. have done the same on the RAP [64].A group of researchers have chosen systolic architectures for implementing ANNs. There is an underlyingsimilarity between the simple, special purpose computational units of a neural network, and the dedicatedprocessing elements of a systolic array that apply a prede�ned computation on data elements as the dataare pumped through the array. In [43, 44], S. Y. Kung and J. N. Hwang describe a scheme for designingspecial purpose systolic ring architectures to simulate neural nets. By recognizing that neural algorithmscan be re-written as iterative matrix operations, the authors were able to directly apply techniques formapping iterative matrix algorithms onto systolic architectures. H. T. Kung et al. [42] have reported resultsof implementing the Backpropagation learning algorithm on the CMU Warp. The Warp exploited coarsegrained parallelism in the problem by mapping either partitions or copies of the network onto its ten systolicprocessors. In [51], the authors provide a formal analysis of the systolic processing required to implementa Hop�eld like network for solving a particular problem. The techniques used are similar in spirit to Kungand Hwang [43, 44]. Systolic implementation of associative memory NNs (such as the Hop�eld network,the Bidirectional Associative Memory, Temporal Associative Memory) are presented in [50]. Eswaran et aldescribe a hardware implementation of Hop�eld and Hamming Nets using systolic ideas [17]. Other systolicimplementations are presented by Ramacher [80] and Jones et al [39].A number of researchers have developed algorithms for implementing ANNs on speci�c machines. Zhanget al. describe an implementation of multi-layer feed-forward ANNs running Backpropagation on the Con-nection Machine-2. The authors describe how to implement a multiply-accumulate-rotate iteration for a fullyconnected network, using the 2-D mesh connections of the CM-2. Vipin Kumar et al. present a techniquefor mapping the Backpropagation learning algorithm on hypercubes and related architectures [41]. Theypresent theoretical and experimental results to show that their technique performs quite well on the nCUBEand the CM-5. Other implementations on SIMD machines include Ranka et al [82] and Wilson [106]. Deprit[11] presents results of implementing the Recurrent Backpropagation algorithm on the CM-2. The two algo-rithms used in this work are in turn based on [83] and [94, 95]. Grajski et al. discuss ANN implementationson the MasPar [30, 31]. Singer [89] presents a detailed comparison of �ve di�erent techniques of mappingthe Backpropagation algorithm onto the CM-2. In [15], the authors show that a network of 2,480 neuronswith 921,600 links simulated on 16 transputers runs 14 times faster than on one transputer. The results in[16] use a four transputer network, and simulate a network with 74,996 connections to achieve a performanceof 250,000 CUPS (connection updates per second). The authors of [93] implement a model called EDANN(Entropy Driven ANN) on a transputer array and show an intersting application of ANNs in orientationextraction from images. Barbosa and Lima [4] present an Occam implementation of Hop�eld Nets on dis-tributed memory architectures. Fortuna et al [18] describe a simulator for cellular neural networks calledPSIMCNN that is implemented on transputer based machines. An analysis of ANN implementations ontransputers is presented in [67]. Wang and Wu [102, 107] show how to simulate �ve di�erent NN models(ART1, ART2, feed-forward networks, recurrent networks, and Hop�eld nets) on a shared memory vectormultiprocessor (the Alliant FX/80). El-Amawy and Kulasinghe [14] present a method to implement feed-forward networks on an architecture called Multiple Bus System (MBS). An MBS has p processors, and bbuses, with p � b. The algorithm treats a feed-forward ANN as a feed-forward computational graph, andmaps this graph onto an MBS. The authors show how an optimal mapping of the graph can be carried out.Although the above work is extremely important, most of it focuses on mapping a single ANN to a singlemachine architecture and is therefore limited in scope. An ideal parallel implementation environment wouldprovide users with optimized implementations of a variety of ANN models on a variety of parallel machines.One area of e�ort not covered in this paper is that of simulation environments that attempt to simulatethe operation of a single neuron in great detail (see for example [105]). These simulators model the individualneuron, and are therefore of great interest to neurobiologists.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 52Special Purpose versus General Purpose hardware: A researcher can choose between developingspecial purpose parallel hardware to implement ANNs and developing software on existing general purposeparallel digital machines. In this paper, we have concentrated on describing the work done in the latter area.However, a brief description of special purpose parallel hardware for ANN implementation is presented forcompleteness.A nice overview of special purpose hardware for ANNs is presented in the book by Glesner and P�ochm�uller[24]. Another overview of hardware implementations of ANNs is presented in [48]. An overview of how ANNscan be implemented in Ultra Large Scale Integration (ULSI) circuits is presented in [28]. Geller [22] andHammerstrom [34] have designed hardware to implement neural models. Similarly, Graf et al. [29] havedeveloped a CMOS implementation of a neural network model. James et al. [38] have also proposed specialpurpose hardware for neural network simulation. Morgan et al. [62, 63] have used the Ring Array Processor(RAP) (designed for speech recognition tasks) for Connectionist applications. Nordstr�om et al. [71] discussthe implementation of ANNs on existing machines, as well as the design of new architectures speci�callytuned to ANN implementation. Researchers at the University College London have built a 16-bit RISCprocessor with local memory and a communication unit on one chip for ANN implementation [73, 96].Turega [97] describes a special purpose architecture consisting of one conventional processor, and a numberof very simple processor and memory nodes. Ariel [20] is an architecture built by Texas Instruments thatuses fast DSPs, and very large semiconductor memories in order to simulate large ANNs. Siemens builtthe SYNAPSE neurocomputer and its architecture is described in [81]. SYNAPSE uses 8 of Siemens' MA-16 matrix-matrix multiplier chips while the SYNAPSE 2 is a PC accelerator board with one MA-16 chip.Adaptive Solutions Inc. [1] markets special purpose ANN hardware under the name CNAPS [52]. CNAPS isbased on the proprietary CNAPS-1064 Digital Parallel Processor chip that has 64 sub-processors operatingin SIMD mode. Each sub-processor can emulate one or more neurons and multiple chips can be groupedtogether. BrainMaker [6] software has also been ported to run on the CNAPS PC cards. Nestor Inc. [69]marketed the NI1000 chip. This chip implements a network with Radial Basis Function neurons. It can storeup to 1024 prototypes, with 256 dimensions, 5-bits per dimension. Another silicon implementation of ANNscame from Intel in the form of the 80170NX Electrically Trainable Analog Neural Network (ETANN) chip[37]. The ETANN implements an analog neural network with 64 inputs, 16 internal biases, and 64 neuronswith sigmoidal transfer functions. It does not provide for on-chip learning. Emulation is done in softwareand the weights have to be downloaded to the chip.One approach to building special purpose hardware for ANNs is to use Digital Signal Processing (DSP)chips as the building blocks for such hardware. A parallel system using DSPs was developed at the FujitsuLabs [40]. The Processing Element (PE) in this machine is the oating point DSP TMS320C30 from TexasInstruments. PEs are arranged in a linear array and an algorithm similar to S.Y.Kung's [43] is used for theimplementation. Another DSP based machine is the MUSIC system (MUlti-Signal processor with IntelligentCommunication) built at ETH [66, 65]. MUSIC too can serve as a special purpose NN machine.Special purpose implementations can be fast, e�cient and cost e�ective. However, these implementationso�er very little exibility. Implementations on a general purpose parallel machine have the advantage thatmany ANN models of di�erent sizes and running various learning algorithms can be simulated on the samearchitecture. Thus, these implementations provide a good balance of speed and exibility. We have thereforechosen to concentrate on general purpose implementations in this paper. Online current information aboutspecial purpose hardware implementations of ANNs can be found at [49].3 Desired CharacteristicsAs is apparent from the above discussion, there has been a substantial amount of research done in the areaof parallel implementations of ANNs. However, there doesn't yet seem to be an integrated environmentthat allows a user to choose a particular ANN model from a menu of the most popular ANN models, andimplement it on a variety of parallel machines. Such an environment would ease the hard transition thatmost researchers face when moving from sequential implementations to parallel implementations. What



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 53characteristics should such an environment possess? The following are some prescriptions for the workneeded to create an environment that allows a user to generate optimized parallel code to implement aparticular ANN model on a particular parallel machine:� Theoretical analysis of the inherent parallelism: Before we can create an environment for paral-lel ANN implementation, a thorough analysis of the parallelism inherent in the ANN models needs tobe carried out. Such an analysis will look at each model, and analyze the inherent parallelism at the�nest grain. Next, this analysis should investigate which parallel computation models can best exploitthe parallelism in each model. The parallel computational and communication complexity of each ofthe ANN architectures should be computed on the common models of parallel computation such asPRAM [19], BSP [98], C3 [33], logP [8], L-PRAM [2], H-PRAM [36], etc. This will provide researcherswith an idea of the amount of parallelism that can be exploited when each model is implemented onthe appropriate parallel machine. This theoretical analysis will also ensure that the parallel implemen-tations generated by the environment will be e�cient1. As shown in the previous section, a number ofsteps have already been taken in this direction.� Portability: The turnover in the world of parallel computers is such that the life of a particularparallel machine is generally only a few years. A user who had developed code for one machine acouple of years ago, often has to rewrite it for another machine if the original machine is no longeravailable. In the right kind of simulation environment, the users should be able to easily update theirimplementations for a new machine through the environment. One way of achieving this portabilityis to develop the environment in a modular fashion, where the description of a particular ANN ismaintained in a machine independent format, and translation modules are available for each parallelmachine. This way, the extinction of a machine will mean the removal of the appropriate translationmodule, and a new machine will mean that the environment's designers create a new translation modulefor that machine. All of this development e�ort can be transparent to the user.� Ease of use from the user's perspective: The environment should provide a graphical user interface(GUI) that allows a user to input information into the system. The user should be able to choose aparticular ANN architecture, set appropriate parameters, and choose the target parallel machine, allfrom the GUI. The environment should then generate optimized code to implement the chosen ANNarchitecture on the chosen machine. Another important function that the graphical interface shouldserve is to help visualize the learning and the structure of the network.� Access to ANN model description at various levels: the environment should provide userswith access to the description of the ANN at various levels. For instance, the novice user can use theenvironment purely at the GUI level, choose the ANN model to be implemented, set parameters, andchoose the parallel machine at that level. The user with an intermediate level of expertise should beable to access the machine-independent description of the neural model, and modify it directly at thatlevel. Finally, the expert user should be able to access the parallel code directly, and make changes asdesired.An ideal environment for implementing ANNs on parallel machines should therefore be a portable, easy touse environment that allows users to implement a variety of ANN models on a variety of parallel architecturesin an e�cient manner. 4 ConclusionsThe paper surveys the research being performed in the development of environments for the parallel imple-mentation of neural networks. After a discussion of the related literature in this area, we have identi�ed the1Note that for a model of parallel computing to accurately predict the performance on a real machine, the parameters of themodel have to capture all the salient features of the real machine. This is not always possible if one wants to work at a highlevel of abstraction.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 54desired characteristics that such an environment should possess. These prescriptions should provide guidingdirections for researchers working in this area.5 AcknowledgementsThe author would like to thank the anonymous reviewers for their thorough reviews and valuable suggestions.References[1] Adaptive solutions inc web page. http://www.asi.com/.[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication Complexity of PRAMs. TheoreticalComputer Science, 71:3{28, 1990.[3] D. M. Anthony. Reducing connectivity in compression networks. Neural Network Review, 1990.[4] V. C. Barbosa and P. Lima. On the distributed parallel simulation of Hop�eld's neural networks.Software, practice and experience, 20(10):967{983, Oct 1990.[5] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.[6] Brainmaker home page. http://www.calsci.com/home.htm.[7] L.-C. Chu and B. W. Wah. Optimal mapping of neural network learning on message passing multi-computers. Journal of Parallel and Distributed Computing, 14:319{339, 1992.[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. vonEicken. LogP: Towards a Realistic Model of Parallel Computation. In 4th ACM SIGPLAN Symposiumon Principles and Practices of Parallel Programming, pages 1{12, 1993.[9] Y. L. Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Hubbard, and L. D. Jackel. Backpropagationapplied to handwritten zip code recognition. Neural Computation, 1:541{551, 1989.[10] C. D'Autrechy, J. Reggia, G. Sutton, and S. Goodall. A general purpose simulation environment fordeveloping connectionist models. Simulation, 51(1), July 1988.[11] E. Deprit. Implementing recurrent back-propagation on the Connection Machine. Neural Networks,2:295{314, 1989.[12] K. I. Diamantara, D. L. Heine, and I. D. Scherson. Implementation of neural network algorithms onthe P 3 parallel associative processor. In International Conference on Parallel Processing, volume I,pages 247{250, 1990.[13] O. Ekeberg, P. Hammarlund, B. Levin, and A. Lansner. Swim: A simulation environment for realisticneural network modeling. In J. Skrzypek, editor, Neural Network Simulation Environments, chapter 3.Kluwer Academic Publishers, 1993.[14] A. El-Amawy and P. Kulasinghe. Algorithmic mapping of feedforward neural networks onto multiplebus systems. IEEE Transactions on Parallel and Distributed Systems, 8(2):130{136, February 1997.[15] C. Ernoult. Performance of backpropagation on a parallel tranputer-based machine. In Neuro Nimes88, pages 311{324, 1988.[16] H. Ernst, B. Mokry, and Z. Schreter. A transputer based general simulator for connectionist models.In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems andComputers, pages 283{286. North-Holland, Amsterdam, 1990.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 55[17] C. Eswaran and K. V. Asari. Systolic array implementation of arti�cial neural networks. Microproces-sors and Microsystems, 18(8):481{488, 1994.[18] L. Fortuna, G. Manganaro, and G. Nunnari. Parallel simulation of cellular neural networks. Computers& Electrical Engineering, 22(1):61{84, 1996.[19] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In 10-th ACM Symposium onTheory of Computing, pages 114{118, 1978.[20] G. Frazier. Ariel: A scalable multiprocessor for the simulation of neural networks. Computer Archi-tecture News, 18(1):107{114, Mar 1990.[21] K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant ofdeformations and shifts in position. Pattern Recognition, 15(6):455{469, 1982.[22] R. D. Geller and D. W. Hammerstrom. A VLSI architecture for a neurocomputer using high-orderpredicates. In Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence,pages 153{161, 1987.[23] J. Ghosh and K. Hwang. Mapping Neural Networks onto Message-Passing Multicomputers. Journalof Parallel and Distributed Computing, 6:291{330, 1989.[24] M. Glesner and W. P�ochm�uller. Neurocomputers{An overview of Neural Networks in VLSI. Chapman& Hall Neural Computing Series. Chapman and Hall, 1994.[25] N. Goddard. Rochester Connectionist Simulation Environment. In J. Skrzypek, editor, Neural NetworkSimulation Environments, chapter 10. Kluwer Academic Publishers, 1993.[26] N. H. Goddard, K. J. Lynne, T. Mintz, and L. Bukys. The Rochester Connectionist Simulator: UserManual. University of Rochester, Tech Report 233, 1989.[27] R. Gorman and T. Sejnowski. Analysis of hidden units in a layered network trained to classify sonartargets. Neural Networks, 1:75{89, 1988.[28] K. F. Goser. Implementation of arti�cial neural networks into hardware: Concepts and limitations.Mathematics and computers in simulation, 41(1/2):161{171, Jun 1996.[29] H. P. Graf and P. deVegar. A CMOS implementation of a neural network model. In P. Losleben,editor, Advanced Research on VLSI, pages 351{367. MIT Press, Cambridge, MA, 1987.[30] K. A. Grajski. Neurocomputing using the MasPar MP-1. Technical Report 90-010, Ford Aerospace,Advanced Dev. Dept., Mail Stop X-22, San Jose, CA 95161-9041, 1990.[31] K. A. Grajski, G. Chinn, C. Chen, C. Kusymail, and S. Tomboulian. Neural network simulation onthe MasPar MP-1 massively parallel processor. In Proceedings of the INNC, Paris, France, 1990.[32] S. N. Gupta, M. Zubair, and C. E. Grosch. Simulation of neural networks on massively parallelcomputer (DAP-510) using sparse matrix techniques. Technical report, Dept of Computer Science,Old Dominion University, VA 23529-0162, May 1990.[33] S. E. Hambrusch and A. A. Khokhar. C3: A parallel model for coarse-grained machines. Journal ofParallel and Distributed Computing, 32(2):139{154, Feb 1996.[34] D. Hammerstrom. A VLSI architecture for high-performance, low-cost, on-chip learning. In Interna-tional Joint Conference on Neural Networks, volume II, pages 537{544, 1990.[35] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. AddisonWesley, 1991.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 56[36] T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel Computation: I. The Model.Journal of Parallel and Distributed Computing, 16:212{232, 1992.[37] M. Holler. Intel 80170NX Electrically Trainable Analog Neural Network (ETANN). In Proc. Int. JointConf. on Neural Networks, Washington D.C., volume II, page 191, 1989.[38] M. James and D. Hoang. Design of low-cost, real-time simulation systems for large neural networks.Journal of Parallel and Distributed Computing, 14:221{235, 1992.[39] S. Jones, K. Sammut, and J. Hunter. Learning in linear systolic neural network engines: Analysis andimplementation. IEEE Transactions on Neural Networks, 5(4):5844, 1994.[40] H. Kato, H. Yoshizawa, H. Iciki, and K. Asakawa. A parallel neurocomputer architecture towardsbillion connection updates per second. In International Joint Conference on Neural Networks IJCNN90, volume II, pages 47{50, January 1990.[41] V. Kumar, S. Shekhar, and M. B. Amin. A scalable parallel formulation of the backpropagationalgorithm for hypercubes and related architectures. IEEE Transactions on Parallel and DistributedSystems, 4(10):1073{1090, 1994.[42] H. T. Kung, D. A. Pomerleau, G. L. Gusciora, and D. S. Touretzky. How we got 17 million connectionsper second. In International Conference on Neural Networks, volume 2, pages 143{150, 1988.[43] S. Y. Kung. Parallel architectures for arti�cial neural nets. In International Conference on SystolicArrays, pages 163{174, 1988.[44] S. Y. Kung and J. N. Hwang. A Uni�ed Systolic Architecture for Arti�cial Neural Nets. Journal ofParallel and Distributed Computing, 6:358{387, 1989.[45] T. Lange. Simulation of heterogeneous neural networks on serial and parallel machines. Parallelcomputing, 14(3):287{303, Aug 1990.[46] R. Leighton and A. Wieland. The Asprin/Migraines software package. In J. Skrzypek, editor, NeuralNetwork Simulation Environments, chapter 11. Kluwer Academic Publishers, 1993.[47] W.-M. Lin, V. K. Prasanna, and K. W. Przytula. Algorithmic mapping of neural network models ontoparallel SIMD machines. IEEE Transactions on Computers, 40(12):1390{1401, December 1991.[48] C. Lindsey and T. Lindblad. Review of hardware neural networks: a user's perspective. In Proceedingsof ELBA94, 1994. Also available from http://www1.cern.ch/NeuralNets/nnwInHepHard.html.[49] C. S. Lindsey, B. Denby, and T. Lindblad. Neural networks in hardware web page.http://www1.cern.ch/NeuralNets/nnwInHepHard.html.[50] K. Margaritis. On the systolic implementation of associative memory arti�cial neural networks. ParallelComputing, 21(5):825{840, May 1995.[51] K. Margaritis and D. Evans. Systolic implementation of neural networks for searching sets of properties.Parallel computing, 18(3):325{334, Mar 1992.[52] H. McCartor. Back propagation implementation on the Adaptive Solutions CNAPS neurocomputerchip. In R. L. et al., editor, Advances in Neural Information Processing Systems 3, pages 1028{1031. Morgan Kaufmann Publishers, 1991. More details about CNAPS can be found at the AdaptiveSolutions web site at http://www.asi.com.[53] E. Mesrobian, J. Skrzypek, A. Lee, and B. Ringer. A simulation environment for computationalneuroscience. In J. Skrzypek, editor, Neural Network Simulation Environments, chapter 1. KluwerAcademic Publishers, 1993.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 57[54] M. Misra. Implementation of Neural Networks on Parallel Architectures. PhD thesis, Dept. of EE-Systems, University of Southern California, 1992.[55] M. Misra and V. K. P. Kumar. E�cient VLSI Implementation of Iterative Solutions to Sparse LinearSystems. In J. McCanny, J. McWhirter, and E. S. Jr., editors, Systolic Array Processors, pages 52{61.Prentice Hall, 1989. Proceedings of the 3rd Int. Conf. on Systolic Arrays.[56] M. Misra and V. K. P. Kumar. Massive Memory Organizations for Implementing Neural Networks. InInternational Conference on Pattern Recognition, volume II, pages 259{264, June 1990.[57] M. Misra and V. K. P. Kumar. Neural network simulation on a Reduced Mesh of Trees organization.In SPIE/SPSE Symposium on Electronic Imaging, Feb. 1990.[58] M. Misra and V. K. P. Kumar. Implementation of Sparse Neural Networks on Fixed Size Arrays. InM. A. Bayoumi, editor, Parallel Algorithms and Architectures for DSP Applications. Kluwer AcademicPublishers, 1991.[59] M. Misra and V. K. P. Kumar. Implementation of neural networks on parallel architectures. InB. Sou�cek, editor, Fast Learning and Invariant Object Recognition. John Wiley and Sons, Inc., 1992.In print.[60] M. Misra, D. Nassimi, and V. K. Prasanna. E�cient VLSI implementation of iterative solutions tosparse linear systems. Parallel Computing, 19:525{544, 1993.[61] M. Misra and V. K. Prasanna. Implementation of neural networks on massive memory organizations.IEEE Transactions on Circuits and Systems, 39(7):476{480, July 1992.[62] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer. The RAP: a Ring Array Processorfor Layered Network Calculations. In Proc. of Intl. Conf. on Application Speci�c Array Processors,Princeton, N.J., pages 296{308, 1990.[63] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer. The Ring Array Processor: A mul-tiprocessing peripheral for connectionist applications. Journal of Parallel and Distributed Computing,14:248{259, 1992.[64] S. M. M�uller and B. Gomes. E�cient mapping of randomly sparse neural networks on parallel vectorsupercomputers. In Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing,Dallas, October 1994.[65] U. Muller, A. Gunzinger, and W. Guggenbuhl. Fast neural net simulation with a DSP processor array.IEEE Transactions on Neural Networks, 6(1):203{213, Jan 1995.[66] U. A. Muller, B. Baumle, PeterKohler, and AntonGunzinger. Achieving supercomputer performancefor neural net simulation with an array of digital signal processors. IEEE micro, 12(5):55{65, Oct1992.[67] J. M. J. Murre. Transputers and neural networks: An analysis of implementation constraints andperformance. IEEE Transactions on Neural Networks, 4(2):284{292, March 1993.[68] J. M. J. Murre. Neurosimulators. In M. A. Arbib, editor, Handbook of Brain Research and NeuralNetworks. MIT Press, 1995.[69] Nestor web site. http://www.nestor.com.[70] Neural Networks: Frequently Asked Questions web page.http://www-leibniz.imag.fr/RESEAUX/osorio/faqs/FAQ.html#questions.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 58[71] T. Nordstr�om and B. Svensson. Using and designing massively parallel computers for arti�cial neuralnetworks. Journal of Parallel and Distributed Computing, 14:260{285, 1992.[72] R. C. O'Reilly, C. K. Dawson, and J. L. McClelland. PDP++ users manual. Technical report, CarnegieMellon University, April 1997. Available from http://www.cnbc.cmu.edu/PDP++/PDP++.html.[73] M. Pacheco and P. Treleaven. Neural-RISC: A Processor and Parallel Architecture for Neural Networks.In International Joint Conference on Neural Networks IJCNN 92, volume II, pages 177{182, November1992.[74] T. Poggio and S. Edelman. A neural network that learns to recognize three-dimensional objects.Nature, 343(6255):263{266, Jan 18 1990.[75] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. S. Touretzky, editor,Advances in Neural Information Processing Systems I, pages 305{313. Morgan Kaufman, San Mateo,1988.[76] K. W. Przytula and V. K. P. Kumar. Algorithmic mapping of neural networks models on parallelSIMD machines. In International Conference on Application Speci�c Array Processing, 1990.[77] K. W. Przytula, W.-M. Lin, and V. K. P. Kumar. Partitioned implementation of neural networks onmesh connected array processors. In Workshop on VLSI Signal Processing, 1990.[78] K. W. Przytula and V. K. Prasanna, editors. Digital Parallel Implementations of Neural Networks.Prentice Hall, Spring 1992.[79] N. Qian and T. J. Sejnowski. Predicting the secondary structure of globular proteins using neuralnetwork models. Journal of Molecular Biology, 202:865{884, 1988.[80] U. Ramacher and J. Beichter. Systolic Architectures for Fast Emulation of Arti�cial Neural Networks.In J. McCanny, J. McWhirter, and E. S. Jr., editors, Systolic Array Processors, pages 277{286. PrenticeHall, 1989. Proceedings of the 3rd Int. Conf. on Systolic Arrays.[81] U. Ramacher, W. Raab, J. Anlauf, J. Beichter, U. Hachmann, N. Br�uls, M. Wesseling, E. Sicheneder,R. M�anner, J. Gr�ass, and A. Wurz. Multiprocessor and memory architecture of the neurocomputerSYNAPSE I. In Digest ICANN '93, pages 1034{1039, 1993.[82] S. Ranka, N. Asokan, R. Shankar, C. K. Mohan, and K. Mehrotra. A neural network simulator on theConnection Machine. In Fifth IEEE International Symposium on Intelligent Control, September 1990.[83] C. R. Rosenberg and G. Blelloch. An implementation of network learning on the Connection Machine.In D. Waltz and J. Feldman, editors, Connectionist Models and their Implications. Ablex, Norwood,NJ, 1988.[84] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed Processing:Exploration in the Microstructure of Cognition, volume 1. MIT Press, Cambridge, Massachusetts,1986.[85] P. Sajda, K. Sakai, S.-C. Yen, and L. Finkel. Nexus: A neural simulator for integrating top-down andbottom-up modeling. In J. Skrzypek, editor, Neural Network Simulation Environments, chapter 2.Kluwer Academic Publishers, 1993.[86] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce English text. ComplexSystems, 1:145{168, 1987.[87] S. Shams and K. W. Przytula. Mapping of neural networks onto programmable parallel machines. InInternational Symposium on Circuits and Systems, May 1990.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 59[88] P. Simpson. Arti�cial Neural Systems: Foundations, Paradigms, Applications and Implementations.Elmsford Press: Pergamon Press, 1990.[89] A. Singer. Implementations of arti�cial neural networks on the Connection Machine. Parallel Comput-ing, 14:305{315, 1990. Also appears as Technical Report RL90-2 from Thinking Machines Corporation,MA, USA.[90] J. Skrzypek, editor. Neural Network Simulation Environments. Kluwer Academic Publishers, 1993.[91] J. Teeters. MDL: A system for fast simulation of large layered neural networks. Simulation, 56(6):369{379, 1991.[92] G. Tesauro and T. J. Sejnowski. A neural network that learns to play backgammon. In D. Z. Anderson,editor, Neural Information and Processing Systems (Denver 1987), pages 442{456. Americal Instituteof Physics, New York, 1988.[93] T. Tollenaere, M. M. V. Hulle, and G. A. Orban. Parellel implementation and capabilities of entropy-driven arti�cial neural networks. Journal of Parallel and Distributed Computing, 14(3):286{305, Mar1992.[94] S. Tomboulian. A system for routing arbitrary directed graphs on SIMD architectures. TechnicalReport ICASE Report No. 87-14, Institute for Computer Applications in Science and Engineering,NASA Langley Research Center, March 1987.[95] S. Tomboulian. Introduction to a system for implementing Neural Net connections on SIMD ar-chitectures. Technical Report ICASE No. 88-3, Institute for Computer Applications in Science andEngineering, NASA Langley Research Center, January 1988.[96] P. Treleaven, M. Pacheco, and M. Vellasco. VLSI Architectures for Neural Networks. IEEE Micro,pages 8{27, December 1989.[97] M. Turega. A computer architecture to support neural net simulation. The Computer Journal,35(4):350{360, Aug 1992.[98] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103{111,August 1990.[99] C. von der Malsburg. Goal and architecture of nueral computers. In Eckmiller, editor, Neurocomputers.Springer-Verlag, 1988.[100] C. von der Malsburg. Pattern recognition by labeled graph matching. Neural Networks, 1:141{148,1988.[101] B. W. Wah and L.-C. Chu. E�cient mapping of neural networks on multicomputers. In InternationalConference on Parallel Processing, volume I, pages 234{238, 1990.[102] C.-J. Wang and C.-H. Wu. Parallel simulation of neural networks. Simulation, pages 223{232, April1991.[103] D. Wang and C. Hsu. SLONN: A simulation language for modeling of neural networks. Simulation,55(2):69{83, Aug 1990.[104] A. Weitzenfeld and M. Arbib. NSL: Neural Simulation Language. In J. Skrzypek, editor, NeuralNetwork Simulation Environments, chapter 4. Kluwer Academic Publishers, 1993.[105] M. Wilson, U. Bhalla, J. Uhley, and J. Bower. GENESIS: A System for Simulating Neural Networks.In D.S.Touretzky, editor, Advances in Neural Information Processing Systems I. Morgan KaufmannPublishers, 1989.



Neural Computing Surveys vol 1, 48-60, 1996, http://www.icsi.berkeley.edu/~jagota/NCS 60[106] S. S. Wilson. Neural computing on a one dimensional SIMD array. In International Joint Conferenceon Arti�cial Intelligence, pages 206{211, 1989.[107] C.-H. Wu, C.-J. Wang, and S. Sivasundaram. Neural network simulation on shared-memory vectormultiprocessors. Proceedings of Supercomputing 89, Reno NV., pages 197{203, 1989.[108] A. Zell. Simulation Neuronaler Netze. Addison Wesley, Germany, 1994. Only available in German.[109] A. Zell et al. SNNS Manual. SNNS can be retrieved from ftp.informatik.uni-stuttgart.de from/pub/SNNS.[110] A. Zell, T. Korb, N. Mache, and T. Sommer. Recent developments of the SNNS Neural NetworkSimulator. In Proceedings of the Applications of Neural Networks Conference, SPIE, volume 1294,1991.[111] A. Zell, T. Korb, T. Sommer, and R. Bayer. A neural network simulation environment. In Proceedingsof the Applications of Neural Networks Conference, SPIE, volume 1294, pages 534{544, 1990.[112] A. Zell, N. Mache, R. Hubner, G. Mamier, M. Vogt, M. Schmalzl, and K.-U. Herrmann. SNNS(Stuttgart Neural Network Simulator). In J. Skrzypek, editor, Neural Network Simulation Environ-ments, chapter 9. Kluwer Academic Publishers, 1993.[113] A. Zell, N. Mache, M. Vogt, and M. Huettel. Problems of massive parallelism in neural networksimulation. In Proceedings of the IEEE Int. Conf. on Neural Networks, San Francisco, CA, volumeIII, pages 1890{1895. IEEE Press, March 1993.


