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1 INTRODUCTION 2sional systems of the formM _u+H(u)u+ Lu+ Cp = b; (1.1)CTu = c;where u 2 Rn, p 2 Rm with n > m. M and L are symmetric positivede�nite n� n matrices, H(u) is a nonsymmetric n� n matrix, and C is ann�m matrix of full rank. Linearized stability analysis of (1.1) leads to theproblem of �nding a few eigenvalues of the generalized eigenvalue problemAx = �Bx (1.2)where A =  K CCT 0 ! ; B =  M 00 0 ! ; and x =  up ! : (1.3)In the case of the so-called primative variable formulation of the discretizedNavier Stokes equations for incompressible 
ow, u and p denote the veloc-ity and pressure degrees of freedom, respectively (see, for example, Cli�e,Garratt and Spence, 1993). The matrixM is the mass matrix and K is non-symmetric because of the linearization of the convection term. The matricesK, C, and M are all sparse and in real applications are very large.For stability analysis, the interest lies in computing the eigenvalues ofsmallest real part (the left-most eigenvalues) (Georgescu, 1985 and Sattinger,1973). Of special interest is the case when the eigenvalues of smallest realpart are complex, because algorithms for the detection of Hopf bifurcationsin parameter dependent systems can be developed from knowledge of theseeigenvalues. A complication that arises is that the eigenvalue problem canhave in�nite eigenvalues, corresponding to eigenvectors of the form  0p !(see Malkus, 1981, Ericsson, 1986 and Cli�e, Garratt and Spence, 1994).A standard approach for �nding the left-most eigenvalues of the dis-cretized Navier Stokes equations is to use a rational transformation suchas a shift-invert or a Cayley transformation, and then to apply an iter-ative technique, for example, subspace iteration or Arnoldi's method, tothe transformed problem. Traditionally, subspace iteration has been themethod of choice because Arnoldi's method was perceived as being less reli-able. Experiments reported by Garratt (1991) found that Arnoldi's method



1 INTRODUCTION 3sometimes missed the sought-after left-most eigenvalue and, because relia-bility is more important than e�ciency in linear stability analysis, Garrattfavoured subspace iteration. However, the recent work of Meerbergen andSpence (1997) demonstrates, in theory, that the implicitly restarted Arnoldimethod of Sorensen (1992), combined with shift-invert transformations, canbe successfully employed to compute the left-most eigenvalues of generalizedeigenvalue problems with the block structure (1.3). In this report, we look atusing the package ARPACK of Lehoucq, Sorensen and Yang (1998), whichimplements the implicitly restarted Arnoldi method, to compute eigenvaluesof the discretized Navier Stokes equations. Our results show that implicitlyrestarted Arnoldi methods can be used reliably.The outline of this report is as follows. In Sections 2 and 3 we givebrief introductions to the implicitly restarted Arnoldi method and matrixtransformations for generalized eigenvalues. We then look at shift-invertand Cayley transformations in Sections 4 and 5. We discuss the generalizedCayley and modi�ed Cayley transformations; the latter was introduced byCli�e et al. (1993) as a way of mapping the unwanted in�nite eigenvaluesto a part of the spectrum where they are unlikely to be computed by theeigensolver. The algorithm which we propose for computing eigenvalues ofthe discretized Navier Stokes equations is outlined in Section 6. In Section 7,we explain our choice of linear equation solver. Section 8 introduces thesoftware package ARPACK, that implements the implicitly restarted Arnoldimethod. We also highlight the modi�cations to ARPACK that allowed us touse Cayley transformations. Numerical results are presented in Section 9.Finally, we make some comments on our �ndings and on possible futurework.Throughout this report, the �nite eigenvalues of the generalized eigen-value problem (1.2) are denoted by �i (i = 1; : : : ; n�m) and it is assumedthat they are ordered by increasing real parts i.e. i > j ) Re(�i) � Re(�j).The standard inner product of two vectors x and y is xHy where xH is thecomplex conjugate transpose of x. (If the vector x is real then xH = xT .)The Euclidean norm of a vector x is de�ned to be kxk2 = pxHx. The Bsemi-inner product of two vectors x and y is xHBy and induces the B semi-norm kxkB = pxHBx. The use of kxk implies that either the standard orB semi-norm may be used.



2 THE IMPLICITLY RESTARTED ARNOLDI METHOD 42 The implicitly restarted Arnoldi methodA relatively recent variant of Arnoldi's method is that developed by Sorensen(1992) as a more e�cient and numerically stable way to implement restart-ing. The scheme is called implicit because the starting vector is updated bycombining the implicitly shifted QR algorithm with an Arnoldi reductionto obtain a truncated form of the implicitly shifted QR iteration. One ofthe bene�ts of an implicitly restarted Arnoldi method is that it avoids theneed to restart the Arnoldi reduction from scratch and thus �xes storagerequirements.Consider an Arnoldi reduction of length r of a matrix AAVr = VrHr + freTr ; (2.1)where the n � r matrix Vr has orthogonal columns, V Hr fr = 0, and Hr isan r � r upper Hessenberg matrix. The columns of Vr are an orthogonalbasis for the Krylov space Kr(A; v1) = fv1; Av1; � � � ; Ar�1v1g, where v1 isthe �rst column of Vr: Let  i(�) = Qij=1(� � 
j) where i � r. In the dis-cussion that follows, we will show how to implicitly compute an orthogonalbasis (and corresponding Arnoldi reduction) for the updated Krylov space i(A)Kr�i(A; v1), that is, we compute an orthogonal basis for the updatedspace without using A. In particular, if all the 
j are equal to zero, then wehave equivalently performed subspace iteration on Kr�i(A; v1).A tedious but straightforward induction argument shows that i(A)Vr�i = VrGr�i; (2.2)where Gr�i contains the leading r � i columns of  i(Hr): If the QR factor-ization of Gr�i is U1R1, where R1 is an upper triangular matrix of orderr � i, then  (A)Vr�i = VrU1R1 � V +r�iR1: (2.3)Thus the r� i columns of V +r�i provide an orthogonal basis for the range of (A)Vr�i: In particular, the starting vector v1 associated with the Arnoldireduction (2.1) has been updated with the polynomial �lter  i(�): The rootsor implicit shifts 
j may be selected to �lter unwanted information from thestarting vector and hence from the Arnoldi reduction.Although another Arnoldi reduction can be computed using the �rstcolumn of V +r�i as the starting vector, the Arnoldi reduction (2.1) can beupdated directly to obtainAV +r�i = V +r�iH+r�i + f+r�ieTr�i: (2.4)



2 THE IMPLICITLY RESTARTED ARNOLDI METHOD 5We now brie
y explain how this can be accomplished.1. Perform i steps of the implicitly shifted QR algorithm on Hr: Thisresults in the similarity transformation HrU = UH+r , where U is anorthogonal matrix of order r and H+r is also upper Hessenberg.2. A classical result shows that the �rst r�i columns of U are equal to U1and, therefore, they provide an orthogonal basis for the leading r � icolumns of  i(Hr). (See Stewart, 1973, pages 351{355 or Watkins,1991, pages 293{305.)3. Postmultiply the Arnoldi reduction (2.1) with U1 to obtain AVrU1 =VrHrU1 + freTr U1.4. Equate the �rst r�i columns of HrU = UH+r to get HrU1 = U1H+r�i+�+r�iur�i+1, where H+r�i is the leading principal matrix of order r � iin H+r , �+r�i is the subdiagonal element in row r� i of H+r , and ur�i+1is column r � i+ 1 of U .5. Insert the expression for HrU1 derived in step 4 into the postmultipliedArnoldi reduction of step 3 to obtain (2.4).The above development shows that the IRAM is subspace iteration (via (A)) in disguise. This equivalence was mentioned in Meerbergen andSpence (1997). See Lehoucq (1997) for further details on the connectionbetween subspace iteration and the implicitly shifted QR algorithm.We end our discussion by addressing the issue of the selection of theimplicit shifts 
j. One possible shift selection strategy is the so-called exactshift (Sorensen 1992) strategy, where the r eigenvalues of Hr are partitionedinto a set of k wanted and l unwanted ones according to a selection crite-rion. For example, if the left-most eigenvalues are sought, the unwanted setcomprises the l right-most eigenvalues. The unwanted eigenvalues are usedas the shifts and thus a polynomial �lter of degree i = l is applied. This isequivalent to restarting the Arnoldi reduction with a linear combination ofthe approximate eigenvectors associated with the wanted eigenvalues. An-other possibility is to use implicit shifts of zero. As already discussed, thisis equivalent to performing subspace iteration on Vr�i: The use of implicitshifts of zero is also discussed by Meerbergen and Spence (1997) and will bereported on in our numerical experiments (Section 9).



3 INTRODUCTION TO MATRIX TRANSFORMATIONS 63 Introduction to matrix transformationsBefore we can apply an iterative eigensolver, we transform the generalizedeigenvalue problem Ax = �Bx into a standard eigenvalue problem of theform Tx = �x: (3.1)We need to do this because iterative methods such as subspace iteration orArnoldi's method cannot be used directly to solve the generalized eigenvalueproblem. It is well known that iterative eigensolvers rapidly provide approx-imations to well-separated extremal eigenvalues. When the eigenproblemarises from the spatial discretization of a partial di�erential equation, thesought-after eigenvalues (in our application, those of smallest real part) aregenerally not well separated. This results in slow convergence of the iterativemethod and, indeed, the method may never provide good approximations tothe wanted eigenvalues. We therefore want to choose T to have the followingproperties:� The sought-after eigenvalues of (A;B) should be transformed to well-separated extremal eigenvalues of T .� The wanted left-most eigenvalue �1 of (A;B) must be easily recover-able from the dominant eigenvalue of T.� For any v, w = Tv should be e�ciently computed.We shall denote the eigenvalues of T by �i (i = 1; : : : ; n +m) and wewill assume that these eigenvalues are ordered by decreasing order of theirabsolute values i.e. i > j ) j�ij � j�jj.For the generalized eigenvalue problem, Ax = �Bx, rational transfor-mations are an obvious choice because the solution of some linear systeminvolving A, B and/or a linear combination of A and B is needed. In thisreport, we study shift-invert and Cayley transformations.4 Shift-invert techniquesIn this section, we review the use of the shift-invert spectral transformationand the many associated details for the eigenvalue problem (1.2).



4 SHIFT-INVERT TECHNIQUES 74.1 The shift-invert transformationIf we subtract �B (� 6= �) from both sides of Ax = �Bx and then postmul-tiplying by (A� �B)�1(�� �)�1,(A� �B)�1Bx = �x; � = (�� �)�1 (4.1)results. The matrix TSI(�) = (A� �B)�1B (4.2)is termed the shift-invert transformation, and was �rst introduced by Eric-sson and Ruhe (1980) for use in a Lanczos method. The scalar � is referredto as the shift or pole. Since the eigenvectors of (A;B) and TSI are identical,the relationship � = � + 1� (4.3)can be used to recover the eigenvalues of (A;B) from those of the trans-formed problem. The shift-invert transformation combined with an iterativeeigensolver can be used to �nd eigenvalues of (A;B) lying close to � becauseeigenvalues close to � are mapped away from the origin while those lying farfrom � are mapped close to zero.For the shift-invert transformation to be suitable for �nding complexeigenvalues with arbitrary imaginary part, the shift � must be complex. Onepossibility is to work entirely in complex arithmetic but, in our application,the matrices A and B are real. The eigenvalues of (A;B) come in complexconjugate pairs and so it is desirable to use algorithms which compute com-plex conjugate pairs. This is because, if there are pairs of eigenvalues lyingclose to one another, it may be di�cult to match the pairs if the conjugatesare only computed approximately. A wrong match can give incorrect eigen-vectors. The alternative is to work entirely using real arithmetic. This isdiscussed by Parlett and Saad (1987). Maintaining real arithmetic can onlybe done at the cost of either a�ecting sparsity or doubling the dimension ofthe problem. Because of these disadvantages that result from using complexshifts, in this study we do not consider their use.4.2 Shift-invert theory for the discretized Navier Stokes equa-tionsIn this section we consider the discretized linearized Navier Stokes equa-tions (1.2{1.3). From a theoretical point of view, no generality is lost by



4 SHIFT-INVERT TECHNIQUES 8taking the pole � in the shift-invert transformation to be zero. In this casewe de�ne the operator S to beS = TSI(0) = A�1B: (4.4)The following result is given by Meerbergen and Spence (1997) (see also Malkus,1981 and Ericsson, 1986).Theorem 1 S de�ned by (4.4) has n�m nonzero eigenvalues, a zero eigen-value of algebraic multiplicity 2m and geometric multiplicity m. The orderof the Jordan blocks corresponding to the defective eigenvalue 0 is two. Thenull space N � Null(S) = Null(B) has dimension m and the generalizednull space G � Null(S2)nNull(S) also has dimension m. N and G satisfySG = N and S2G = SN = 0, and, if R := Range(S2), C can be representedas a direct sum of N , G, and R.In exact arithmetic, when Arnoldi's method is applied with a starting vectorv1 2 R then only approximations to the nonzero eigenvalues of S can becomputed. Such an initial vector can be chosen as v1 = S2v with v arbitrarybecause S2(N + G) = 0. However, in practice, rounding errors introducecomponents in N +G which corrupt the approximate eigenvalues and eigen-vectors. The paper by Meerbergen and Spence (1997) looks at the e�cientcontrol of these unwanted directions and we discuss this in the rest of thissection.From (1.2{1.3), we see that S has the structureS =  S1 0S2 0 ! S1 2 Rn�n; S2 2 Rm�n: (4.5)Therefore, if x =  up !, u 2 Cn, p 2 Cm is an eigenvector of S, thenS1u = �u and S2u = �p: (4.6)If � 6= 0 (� is �nite), then p = ��1S2u (4.7)and the reduced problem S1u = �u (4.8)



4 SHIFT-INVERT TECHNIQUES 9may be used to determine the nonzero eigenvalues and corresponding eigen-vectors of S. (Since S1 2 Rn�n, there still remains m zero eigenvalues.) Wedid not consider solving this reduced eigenvalue problem because it involvesapplying a projection that includes (CTK�1C)�1.The standard Arnoldi method uses the classical inner product xHy. Forthe generalized eigenvalue problem Ax = �Bx, if the matrix B is symmetricpositive semi-de�nite, the B semi-inner product xHBy may be used instead.The so-called B-orthogonal Lanczos method has been used by Ericsson(1986) and Nour-Omid, Parlett, Ericsson and Jensen (1987) for the symmet-ric generalized eigenvalue problem; Meerbergen and Spence (1997) extendits use to the nonsymmetric problem. They show that the B-orthogonalmethod applied to S is equivalent to the M -orthogonal method applied toS1 and that the Hr produced by Arnoldi's method is only contaminatedby G components in the Arnoldi vectors. Furthermore, their analysis alsoshows that the p component of the eigenvector x does not play a role inthe B-orthogonal Arnoldi method and therefore cannot be guaranteed to becorrect.The p component of x may be computed by applying S to x. This canbe achieved with an implicit application of S. Observe that if x = Vry withHry = �y then a formal step of inverse iteration with S givesSx = VrHry + freTr y = x� + freTr y: (4.9)Ericsson and Ruhe used the above implicit application of S to improvethe quality of the eigenvector x. Following Meerbergen and Spence (seealso Nour-Omid et al. (1987)), we use the expression puri�cation of x torefer to the operation of applying S (or more generally, TSI) to the vectorx. The puri�ed vector is z = x+ freTr y=�.In summary, two applications of S are required to produce approximateeigenvectors and eigenvalues that are not corrupted by components in Nor G. In exact arithmetic, a starting vector in the range of S2 avoids anypossible corruption. However, as usual, rounding errors complicate the sit-uation. Meerbergen and Spence propose an approach that is a combinationof the B-orthogonal implicitly restarted Arnoldi method and puri�cation.Recall from Section 2 that an implicit restart with a zero shift is equivalentto employing a starting vector Sv1. Thus using a zero shift has the e�ectof removing the N component and maps the G component into N . Thisremaining N component may be removed by a second implicit applicationof S using (4.9).



5 CAYLEY TRANSFORMATIONS 105 Cayley transformationsThe use of generalized and modi�ed Cayley transformations for the eigen-value problem (1.2) are addressed.5.1 Generalized Cayley transformationGiven real numbers � and � with � 6= �i (i = 1; : : : ; n�m), the generalizedCayley transformation TC (see, for example, Garratt, Moore and Spence,1991) is de�ned byTC(�; �) = (A� �B)�1(A� �B); � < �: (5.1)We term � the pole and � the zero. This is a generalization of the standardCayley transformation where � = �� (Franklin, 1968) and a special case ofthe M�obius transformation(cA+ dB)�1(aA+ bB); ad� bc 6= 0: (5.2)The relationship between the �nite eigenvalues of (A;B) and those of thetransformed problem is � = �� � �� � 1 : (5.3)The usefulness of the generalized Cayley transformation lies in the fact thatRe(�) < 12(� + �) , j�j > 1 (5.4)Re(�) � 12(� + �) , j�j � 1(see Garratt, 1991). Eigenvalues lying far from � and � are mapped closeto +1. This includes eigenvalues with large real parts as well as those withlarge imaginary parts. In many applications arising from discretizations ofpartial di�erential equations, a signi�cant proportion of the eigenvalues of(A;B) have a large positive real part and only a small number of eigenvalueslying close to the imaginary axis are of interest in stability analysis. Sincethe former map close to unity and (small) changes in the pole and zero havelittle e�ect on this, one way that � and � may be chosen is to place the�rst unwanted eigenvalue �s+1 (s � 1) on the unit circle and then maximizethe distance of the dominant eigenvalue �1 from the unit circle. With this



5 CAYLEY TRANSFORMATIONS 11choice, Arnoldi's method can be expected to rapidly provide approximationsto the sought-after eigenvalues.The Cayley transformation (5.1) can also be written in the formTC(�; �) = I + (� � �)TSI(�); (5.5)where TSI(�) is the shift-invert transformation given by (4.2). Thus theCayley transformation is a scaled and translated shift-invert transforma-tion. Since in exact arithmetic Arnoldi's method is translation invariant(see Parlett, 1980), the two formulations (5.1) and (4.2) are equivalent inthe sense that Range(Vr(C)) = Range(Vr(SI)) (provided the poles of thetransformations are equal and the same starting vectors are used).The discussion at the end of section 4.2 explained how we can removecontamination by N and G when using a shift-invert transformation. There-fore, from (5.5) we deduce that an implicit restart with a shift of one removesthe N and maps the G to a N one. To remove this �nal N component, animplicit application with TC � I is performed. This also ensures that the pcomponent of the computed eigenvector is correct.5.2 Modi�ed Cayley transformationA major drawback of the generalized Cayley transformation TC is that thein�nite eigenvalues of the discretized Navier Stokes equations are mappedto +1. It is anticipated that this may cause numerical di�culties because,in general, eigenvalues at +1 lie in the outer part of the spectrum of thetransformed problem and, as a result, approximations to these eigenvaluesare likely to be computed by iterative methods such as Arnoldi's method. Totry and overcome this, Cli�e et al. (1993) propose using a modi�ed Cayleytransformation to solve (1.2). They de�ne the modi�ed problem K � �M �C�CT 0 ! uq ! = � K � �M CCT 0 ! uq ! ; (5.6)with � a real scalar. Clearly, � = 1 corresponds to the generalized Cay-ley transformation applied to the discretized Navier Stokes equations. Themodi�ed Cayley transformation TM is de�ned byTM (�; �; �) = (A(1) � �B)�1(A(�) � �B): (5.7)where A(�) denotes the matrix on the left-hand side of (5.6).It is straightforward to prove the following result for the eigenvalues ofthe modi�ed problem (5.6) (see Garratt, 1991).



5 CAYLEY TRANSFORMATIONS 12Theorem 2 Assume � 6= �i (i = 1; : : : ; n�m). If � is an eigenvalue of thediscretized Navier Stokes equations (1.2), then (�� �)=(�� �) is an eigen-value of the modi�ed problem (5.6). In addition, (5.6) has m eigenvalues �,each with algebraic multiplicity 2 and geometric multiplicity 1.The parameter � is chosen so that the in�nite eigenvalues are mapped insidethe unit circle, where they are much less likely to be computed by an iterativeeigensolver. An obvious choice is � = 0 and this is the value which will beused in our numerical experiments.Garratt also gives the following simple relationship between the eigen-vectors of the original problem (1.2) and those of the modi�ed problem(5.6).Theorem 3 Assume � 6= �i and � 6= (�i � �)=(�i � �) (i = 1; : : : ; n�m),then (�; up !) is an eigensolution of the original problem (1.2) if and onlyif (�; uq !) is an eigensolution of the modi�ed problem (5.6) where� = (�� �)=(�� �) 62 f1; �g; q = (� � 1)=(� � �)p: (5.8)Using this theorem, approximate eigenvectors of (1.2) can easily be obtainedfrom the computed eigenvectors of (5.6).In practice, regardless of the Cayley transformation employed, the Cay-ley parameters � and � are updated at each restart. This allows rapidcomputation of the left-most eigenvalues. If we denote by �(j) and �(j) theCayley parameters during restart or iteration j, then an important conse-quence of the above result is that the eigenvectors computed with � = �(j)and � = �(j) are not identical to those with � = �(j + 1) and � = �(j + 1)(unless the poles and shifts remain the same). Using Theorem 3 it can beshown that the eigenvectors of (5.6) with �(j + 1) and �(j + 1) can be ob-tained from those with �(j) and �(j) by an appropriate scaling of the q termof the eigenvectors. Full details are given by Garratt (1991) (page 98).We would like to avoid having to scale the eigenvectors at the start ofeach iteration. We now discuss how this can be done. With the choice � = 0,the modi�ed problem (5.6) can be rewritten in the formŜ  uq ! =  Ŝ1 0Ŝ2 0 ! uq ! = � uq ! ; (5.9)



6 CAYLEY TRANSFORM ARNOLDI 13where Ŝ has the same structure as the shift-invert operator S for the dis-cretized Navier Stokes equations described in Section 4.2. We also note thatwhen using the modi�ed Cayley transformation in the B-orthogonal Arnoldimethod, the q component of the eigenvector does not play a role and thecorrect eigenvector is obtained by post-processing with Ŝ. The requiredeigenvector  up ! of the discretized Navier Stokes equations can then becomputed using Theorem 3. However, as it is p and not q that is required,we may compute p directly by purifying with TSI .More generally, using either the standard inner product or the B semi-inner product, we can obtain the eigenvector of the original problem byapplying TSI to the computed eigenvector of the modi�ed problem.6 Cayley transform ArnoldiIn this section, we summarize the algorithm we use for the solution of thediscretized linearized Navier Stokes equations. We combine shift-invert andCayley transformations with Arnoldi's method. Shift-invert is used to getan initial approximation to the spectrum and is also used to purify thecomputed eigenvectors. Various implementation details are discussed. InSections 7 and 8 we look at the linear equation solver and the use of theARPACK software to implement our algorithm.6.1 Algorithm outlineWe �rst present an outline of our Cayley transform Arnoldi algorithm. Herewe assume that the number of sought-after eigenvalues is s and the numberof Arnoldi vectors to be generated at each iteration is r.In an abuse of notation, we denote the approximate eigenvalues andeigenvectors computed for TSI or TC by � and x, respectively. Hence, �is a � that is mapped back to an approximate eigenvalue of the originaleigenvalue problem (1.2).Shift-invert iteration:1. Factorize A = LU2. Choose v1 randomly and normalize.3. Compute v1 ( S2v1 (S = A�1B) and normalize.



6 CAYLEY TRANSFORM ARNOLDI 144. Compute �1; �2; : : : ; �r by computing an Arnoldi reduction of length rfor S.5. Let �i = 1n�i, i = 1; 2; : : : ; r.6. Order �i in increasing order of their real parts.Cayley iterations:7. Choose v1 randomly and normalize.8. Compute v1 ( S2v1 and normalize.9. repeat until convergence(a) Choose � < � with (� + �)=2 = Re(�s+1).(b) Factorize A� �B = LU .(c) Compute �1; �2; : : : ; �r by computing an Arnoldi reduction of lengthr for TC .(d) Let �i = T�1C (�i), i = 1; 2; : : : ; r.(e) Order �i in increasing order of their real parts.(f) Construct a new starting vector v1 by implicitly restarting theArnoldi reduction of length r.10. Compute eigenvectors xi of TC corresponding to the converged eigen-values.11. Obtain eigenvectors of (A;B) by purifying xi ( TSI(�)xi.We observe that shift-invert with a zero pole is used to compute an initialapproximation to the spectrum of (A;B). Zero is an appropriate choice forthe pole because the interest is in the eigenvalues lying close to the imaginaryaxis. We do not test for convergence after the shift-invert step because theeigenvalues close to the origin may not be the left-most eigenvalues. Wethus always force at least one step of the Cayley iteration to be performed.During the Cayley iterations, we check at each iteration that � has changedsince the previous iteration to avoid refactorizing A� �B unnecessarily.In our numerical experiments, we used the generalized and modi�edCayley transformations in conjunction with the standard inner or B semi-inner products.



6 CAYLEY TRANSFORM ARNOLDI 156.2 Convergence testingWe have to decide when the computed eigenvalues and eigenvectors aregood approximations to those of (A;B). We proceed to determine this intwo steps. The �rst step checks if � and x are acceptable as approximationsto an eigenpair of TC : The second step checks that � and x produce anacceptable approximation to an eigenpair of (A;B).Let x = Vry with Hry = �y, where kyk2 = 1. Although the direct resid-ual kTCx��xk could be computed, this would involve additional applicationsof TC : However, TCx� �x = TCVry � VrHry = fr eTr y; (6.1)and so the Ritz estimate kfrk jeTr yj is equal to the direct residual. ARPACKaccepts � as a good approximation if kfrk jeTr yj � j�j�U , where �U is a user-speci�ed tolerance. We remark that ARPACK uses kfrkB or kfrk2 dependingon the inner product used. Since the eigenvalues of interest are the eigen-values of TC of largest modulus, normalizing the residual by j�j takes intoaccount the scale of the data.We now discuss how to check whether � and x provide a good approx-imation to an eigenpair of (A;B). A simple rearrangement of (6.1) resultsin Ax� �� � �� � 1 Bx = � eTr y� � 1(A� �B)fr; (6.2)and this is the residual of the computed eigenpair in the original system.However, as discussed in Section 5.1, puri�cation of x is performed|toremove nullspace components of B and as an inexpensive means of improvingthe quality of x|via an implicit application of TSI or, equivalently, viaTC � I. Using (6.1),(TC(�; �)� I)x = (� � 1)x+ eTr yfr: (6.3)The approximate eigenvector x is replaced by the puri�ed vector z = x +eTr y=(�� 1)fr. From (6.2), it is straightforward to show that the residual ofthe puri�ed vector in the original system isAz � �� � �� � 1 Bz = �� �(� � 1)2 (eTr y)Bfr: (6.4)Note that kzk2 = 1 + jeTr yj2j��1j2 kfrk2.



6 CAYLEY TRANSFORM ARNOLDI 16From Equation (6.1), we see that x is orthogonal to the residual TCx��x:This Galerkin condition is lost upon transforming the computed eigenpairto the original system|whether we use x or z. This is because ������1 is notthe Rayleigh quotient associated with x or z. If the B-orthogonal Arnoldimethod is used, then from (6.4)j zHAzzHBz � �� � �� � 1 j = (�� �) jeTr yj2j� � 1j3 kfrk2Bkzk2B � (�� �) jeTr yj2j� � 1j3 kfrk2B : (6.5)The last inequality follows because kzk2B � 1. In other words, the approx-imate eigenvalue (�� � �)=(� � 1) is nearly a Rayleigh quotient for (A;B)when the puri�ed vector z is used as the approximate eigenvector. On theother hand, from Equation (6.2) we deduce thatjxHAx� �� � �� � 1 j = jeTr yjj� � 1jxHAfr (6.6)is the error in using (����)=(�� 1) as a Rayleigh quotient for (A;B) whenthe unpuri�ed eigenvector x is used.Equations (6.4) and (6.5) imply that the puri�ed vector z is a betterapproximation than x for the eigenvector associated with the approximateeigenvalue (����)=(��1) provided that j��1j is greater than one. Moreover,when j��1j > 1, only a moderately-sized Ritz estimate is needed to achievea small direct residual, a small Rayleigh quotient error, and kzk = 1 upto second order terms. If the pole � is near the left-most eigenvalues, thenthese left-most eigenvalues are mapped by TC to large eigenvalues and hencej� � 1j > 1.Our numerical experiments measure the direct residual using both x andz with � = (����)=(��1). We de�ne the relative residual of an approximateeigenvector u to be kAu� �Buk2=kuk2: (6.7)We employ the Euclidean norm for the relative residual regardless of whetherARPACK is used with the standard inner or B semi-inner product so that thepressure component of the approximate eigenvector can be checked. Sec-tion 8.1 will give details of how ARPACK normalizes the computed eigenvec-tors.6.3 Missing eigenvaluesIt is necessary to exercise some caution to avoid accepting an approxima-tion to an eigenvalue that is not the one of smallest real part. Recall that



6 CAYLEY TRANSFORM ARNOLDI 17the parameters � and � are chosen using the latest approximations to theeigenvalues. Suppose the left-most eigenvalue �1 is complex with a largeimaginary part and �3 is real with �3 � Re(�1), and let �i be the eigen-value of the transformed problem corresponding to �i. We have observedduring numerical experiments that j�3j > j�1j with �1 close to +1. In thiscase, Arnoldi's method rapidly produces an accurate �3 and, without furtherchecks, the corresponding eigenvalue �3 is accepted as the left-most eigen-value of the original problem. We stress that this is a result of only havingavailable approximations to the eigenvalues when selecting � and �. Thisproblem was also observed by Garratt (1991) and Meerbergen and Roose(1996).In an attempt to overcome the problem of accepting the wrong eigen-value as the left-most one, we introduce an additional test on the computedeigenvalues. Once the dominant eigenvalues (largest in magnitude) of thetransformed problem are acceptable approximations, we order the r eigen-values of the transformed problem in decreasing order of their moduli. Wethen compute the corresponding r eigenvalues of the original problem andorder them in increasing order of their real parts. By comparing the twoorderings we are able to check whether or not any computed eigenvalues lieto the left of those that are acceptable approximations. If there any sucheigenvalues, we increase the number s of eigenvalues requested. Althoughthis strategy is not guaranteed to �nd eigenvalues that have been missed, itcan help avoid accepting the wrong eigenvalue. Numerical experiments inSection 9 demonstrate that our strategy is e�ective.6.4 Spurious eigenvaluesRecall from Theorem 2 with � = 1 that the generalized Cayley transforma-tion applied to the discretized Navier Stokes equations has 2m eigenvaluesat +1 corresponding to the in�nite eigenvalues of (1.2). These eigenvaluesare not relevant for the stability analysis but are likely to be computed be-cause they lie in the outer part of the spectrum of the transformed problem.It is important when updating the Cayley parameters � and � that we donot use these spurious eigenvalues. The eigenvalues used in choosing � and� are the current s + 1 left-most eigenvalues �1; �2; : : : ; �s+1. From (5.3),it follows that if � = 1 + � with � > 0 small, � will be large and negativeand will be used in selecting the Cayley parameters. On each iteration wetherefore exclude all real �i which lie close to 1. Our numerical experimentsshowed that if we did not do this, the IRAM did not produce approxima-



7 THE LINEAR EQUATION SOLVER 18tions to the wanted eigenvalues. We also exclude spurious eigenvalues whenwe search for possible missing eigenvalues.7 The linear equation solverThe e�ciency of an iterative eigensolver for the generalized eigenvalue prob-lem depends on the e�ciency of the method used to solve linear systems ofthe form (A� �B)x = b: (7.1)Either a direct method or an iterative method may be used. For very largeproblems, direct methods can be prohibitively expensive in terms of bothtime and memory requirements. However, there are also di�culties associ-ated with selecting and using iterative methods for eigenvalue computationsand they have not yet been widely adopted for the solution of industrialproblems (see Meerbergen and Roose, 1996 for a discussion and references).In this study, we use a frontal method for the solution of (7.1). One im-portant reason for this choice is that, in the applications of interest to us,�nite-element discretizations are used and the matrices A, B are availableas unassembled �nite element matrices of the formA = neltXl=1A(l); B = neltXl=1 B(l); (7.2)where A(l) and B(l) are nonzero only in those rows and columns that corre-spond to variables in the lth element. The recent study by Du� and Scott(1996a) has shown that for e�ciency in terms of the factorization time andsparsity of the matrix factors, it is important not to assemble the matricesprior to solving the linear system but the element form should be exploited.Using the element form also allows us to solve much larger systems thanmight otherwise be possible because each element matrix A(l) and B(l) needonly be generated as it is required, substantially reducing storage require-ments. Storage requirements can be further reduced by holding the matrixfactors out-of-core. The only code for nonsymmetric systems we currentlyhave available in the Harwell Subroutine Library (Harwell Subroutine Li-brary 1996) that allows both element input and (optional) out-of-core stor-age is the frontal solver MA42 of Du� and Scott (1993, 1996b), and this isthe code we use in our numerical experiments. For simplicity of notation, in



7 THE LINEAR EQUATION SOLVER 19the following brief discussion of frontal schemes, we assume we are solvingAx = b (that is, � = 0).The frontal method (Irons 1970, Hood 1976, Du� 1984) is a variant ofGaussian elimination and involves the matrix factorizationA = PLUQ;where P and Q are permutation matrices, and L and U are lower andupper triangular matrices, respectively. The solution process is completedby performing the forward eliminationPLy = b; (7.3)followed by the back substitutionUQx = y: (7.4)The method, although originally developed by Irons for symmetric positivede�nite systems, can be used for symmetric and nonsymmetric systems. Ifaij and a(l)ij denote the (i; j)th entry of A and A(l), respectively, the basicassembly operation when forming A is of the formaij ( aij + a(l)ij : (7.5)It is evident that the basic operation in Gaussian eliminationaij ( aij � aiq[aqq]�1aqj (7.6)may be performed as soon as all the terms in the triple product (7.6) arefully summed (that is, are involved in no more sums of the form (7.5)). Thefrontal method interleaves the assembly and Gaussian elimination processesand avoids the explicit assembly of the matrix A. This allows all interme-diate computation to be performed on a dense matrix, termed the frontalmatrix, whose rows and columns correspond to variables that have not yetbeen eliminated but occur in at least one of the elements that have beenassembled. By working within the frontal matrix, it is possible to use denselinear algebra kernels and, in particular, the Level 3 BLAS can be exploited(Dongarra, DuCroz, Du� and Hammarling 1990). The use of BLAS in MA42is described in Du� and Scott (1996b).In practice, for general systems of equations, stability considerations maydelay some eliminations. MA42 uses a threshold criterion of the fromjalkj � u �maxijaikj (7.7)



8 THE SOFTWARE PACKAGE ARPACK 20where the stability threshold u 2 (0; 1] is a parameter chosen by the user.Note that using a small value of u will lead to few delays and minimize thenumber of entries in the factors while a larger value of u (for example, thedefault value u = 0:1) improves stability. The choice u = 1:0 corresponds topartial pivoting.By holding the matrix factors in direct access �les, the frontal methodcan solve quite large problems with modest amounts of high-speed memory.We remark that, because the size of the frontal matrix increases when avariable appears for the �rst time and decreases whenever it is eliminated,the order where the elements are assembled has a crucial e�ect on the stor-age requirements and on the number of 
oating-point operations. Elementsshould be preordered to reduce the size of the frontal matrices. In our ex-periments the elements are preordered using the Harwell Subroutine Librarycode MC43.Once the matrix factors have been formed and stored, the MA42 packagehas a separate entry, MA42C, that uses the factors for solving a linear systemwith multiple right-hand sides b. As well as using high level BLAS in thefactorization, the BLAS are used when performing the forward elimination(7.3) and the backward substitution (7.4). When solving for a single right-hand side, the Level 2 BLAS are used but if there are multiple right-handsides, the Level 3 BLAS are used. Since greater e�ciency is achieved byusing the Level 3 BLAS and the factors have only to be read in once foreach call to MA42C, the performance of MA42 improves with the number ofright-hand sides. This is illustrated in Section 9 (see also Du� and Scott,1993).When using a shift-invert or Cayley transformation, the matrix A� �Bmust be refactorized each time the pole � is updated. A disadvantage ofusing Arnoldi's method as the eigensolver is that it requires the repeatedsolution of linear systems with a single right-hand side. This is in contrastto the subspace iteration method, where the number of right-hand sides isequal to the subspace dimension r. Partly because of this, Lehoucq andMaschho� (1997) have recently developed a block version of the implicitlyrestarted Arnoldi method.8 The software package ARPACKIn this section, we summarize ARPACK and the modi�cations we made sothat Cayley transformations could be used.



8 THE SOFTWARE PACKAGE ARPACK 218.1 Introduction to ARPACKThe ARPACK software package (Lehoucq et al., 1998) provides subroutinesthat implement the implicitly restarted Arnoldi metho (IRAM). ARPACK wasdeveloped for �nding a few eigenvalues of large-scale symmetric, nonsym-metric, standard or generalized eigenvalue problems (complex arithmeticversions are available). An important feature of the package is the reversecommunication interface. This feature provides a convenient way to interfacewith application codes without imposing a structure on the user's matrix oron the way in which matrix-vector products are computed. In particular, ifthe matrix is not available explicitly, the user is free to express the actionof the matrix on a vector through a subroutine call or code segment. Thismakes the code attractive for our applications where the matrices A andB are unassembled �nite-element matrices (see (7.2)). For large problems,there may be insu�cient storage to hold all the element matrices A(l) andB(l) in-core. The use of an eigensolver which does not require the matricesto be held using a prescribed format is therefore essential.Another important feature of ARPACK is that full numerical orthogonality(to machine precision) of the Arnoldi basis vectors is maintained. A pointwe wish to emphasize is that the cost of this orthogonality often representsless than 5 % of the total cost of the eigensolver. For large-scale problems,the dominant cost is that of performing matrix-vector products.There are many di�erent options included within the ARPACK package.Here we brie
y mention those that are useful for solving the problems ofinterest to us: full details of ARPACK are given in Lehoucq et al. (1998).� The user may select the implicit shifts in the implicitly shifted QRalgorithm performed during each iteration. This allows implicit shiftsof zero to be used.� The initial starting vector v1 may be chosen by the user. In our ex-periments, we want to purify the starting vector before using ARPACKand this option enables us to do this.� The default convergence tolerance �U used by ARPACK is machine pre-cision. Since our main interest is in determining whether the left-mosteigenvalue has a positive or negative real part, we do not need tocompute the eigenvalues to a large number of decimal places. There-fore, in our experiments we will use a larger convergence tolerance (seeSection 9).



8 THE SOFTWARE PACKAGE ARPACK 22� When using ARPACK to solve the generalized eigenvalue problem, Ax =�Bx, where B is a symmetric positive semi-de�nite matrix, the Bsemi-inner product may be used. We will use both the standard innerproduct and the B semi-inner product.� For the generalized eigenvalue problem, the user has the option of usinga shift-invert transformation TSI(�) or, if A is symmetric, a standardCayley transformation TC(�;��). If the shift-invert or Cayley modeis used, ARPACK accepts a computed eigenvalue and eigenvector of TSIor TC if the associated Ritz estimate (6.1) is su�ciently small. See thediscussion after (6.1).� Eigenvectors may be computed on request once approximations to thesought-after eigenvalues have converged. If eigenvectors are requestedand a shift-invert or Cayley transformation has been employed, thecomputed eigenvalues are mapped to those of the original system.We conclude by explaining how ARPACK normalizes the computed eigen-vectors. If the standard inner product is used, the computed eigenvector ucorresponding to a real computed eigenvalue is normalized so that kuk2 = 1;if the B semi-inner product is used, then kukB = 1. When the eigenvec-tors corresponding to a computed complex conjugate pair of eigenvalues arecomputed, the real and imaginary parts, uR and uI , of the vector associatedwith the computed eigenvalue with positive imaginary part are stored. If thestandard inner product is used, u is normalized so that uTRuR + uTI uI = 1;if the B semi-inner product is used, then uTRBuR + uTI BuI = 1.8.2 Modi�cations to ARPACKTo use ARPACK for computing the left-most eigenvalues of the discretizedNavier Stokes problems, it was necessary to make a small number of mod-i�cations to the package. These modi�cations essentially involved makingthe existing reverse communication interface more 
exible. This 
exibilitywas necessary to accommodate our use of spectral transformations. As men-tioned above, for the generalized eigenvalue problem Ax = �Bx, the usermay optionally use a shift-invert transformation TSI(�). When using thisoption, it is assumed that the user has chosen the pole � and that the samepole is used throughout the computation: a facility for updating the shiftis not explicitly o�ered. There is also no option for using a Cayley trans-form when A is nonsymmetric. We had to make minor changes to ARPACK



9 NUMERICAL EXPERIMENTS 23so that we could use the generalized or the modi�ed Cayley transforma-tion. In addition, we needed changes to enable us to switch between usingshift-invert and Cayley, and to allow us to update the Cayley parametersat each iteration. Our modi�ed codes are available by anonymous ftp fromftp.caam.rice.edu in the directory pub/software/ARPACK/CONTRIBUTED.We observe that MA42 does not assume the degrees of freedom are num-bered contiguously from 1 to n+m. MA42 is designed in this way because inmany �nite-element applications (including the examples used in our numer-ical experiments), the boundary conditions imply that some of the degreesof freedom are known and so do not appear in the element data passed tothe linear solver. As a result, the largest integer used to index a variable isgreater than the order of the system. However, ARPACK does require contigu-ous numbering and we therefore have to map between the global freedomnumbers used by MA42 and the local freedom numbers used by ARPACK. Us-ing MA42 with ARPACK also means that we have two reverse communicationinterfaces to deal with, and this adds to the programming complexity.9 Numerical experimentsIn this section, we present numerical results for three tests problems. Thetest problems were supplied to us by Simon Tavener of Pennsylvania StateUniversity and were obtained using the �nite-element package ENTWIFE(Cli�e, 1996). ENTWIFE was developed by AEA Technology to solvediscretized elliptic and parabolic partial di�erential equations using �nite-element methods. The code is used to compute singular points such as limitpoints, symmetry-breaking bifurcation points, and Hopf bifurcation pointsof the steady solution set. The current interest is in stability of laminar
ows both in expanding channels and pipes and past bodies in pipes andchannels. ENTWIFE uses subspace iteration as its eigensolver and employsthe frontal code MA42 as its linear equation solver. Experience has shownthe subspace iteration solver to be reliable but the method is too slow tosolve the large problems (up to 250,000 degrees of freedom) that are nowof interest. One of the major aims of this project was to investigate thereliability of implicitly restarted Arnoldi with a view to using ARPACK asthe eigensolver in ENTWIFE.The problems used in our tests, while not as large as those AEA Tech-nology would like to solve, are typical of the problems of interest. All thetests were performed on a SUN Ultra 1 workstation using double precision



9 NUMERICAL EXPERIMENTS 24arithmetic. All timings are CPU times in seconds. As explained at the endof section 6.2, the Euclidean norm is used for computing all residuals. Ineach test, we were seeking the two left-most eigenvalues.In our tables of results, the residual is given both before and after puri�-cation, that is, before and after the computed eigenvectors x =  up ! arepremultipled by the shift-invert operator TSI . Recall that for the modi�edCayley transformation TM , the p component of x is not guaranteed correctuntil premultiplication by TSI has been performed and so, in this case, theresidual is only given after puri�cation.We also point out that, as mentioned, ARPACK maintains full (numerical)orthogonality of all r Arnoldi vectors. It should be emphasized that thedominant costs in time when computing eigenvalues of our test problemsare those associated with performing matrix factorizations, solving linearsystems using the matrix factors, and performing matrix-vector productswith A(�) and B. Our experience was that the time required to maintainthe full orthogonality of the Arnoldi vectors along with all the other costsassociated with the ARPACK implementation of the IRAM represented only2%{3% of the total computation time. This is why in our tables of results weonly give the total time together with the times for the matrix factorizations,solving linear systems, and performing matrix-vector products.9.1 Problem 1The �rst problem we look at is that of two-dimensional double-di�usiveconvection in a box (see Ortega, 1973, chapter 8, and Garratt, 1991, page102). The model used has the following non-dimensional parameters: thePrandtl number Pr, the Rayleigh number Ra, the salinity Rayleigh numberRs and � , the ratio of solutal and temperature di�usivities. A mixed �nite-element approximation is used, with nine-noded quadrilateral elements withbiquadratic interpolation for velocities, temperatures, and salinities, anddiscontinuous piecewise linear interpolation for pressures. This leads to asystem of equations of the form (1.1), where u 2 Rn represents velocity,temperature, and salinity, and p 2 Rm represents pressure. Using a 16� 16grid, there are a total of 4859 degrees of freedom. Although it is possibleto solve the linearized stability problem analytically, the problems whichare obtained by varying the parameters are ideally suited for testing thee�ectiveness of our eigensolver for detecting Hopf bifurcations. We computethe left-most eigenvalues using the parameter values Rs = 2000, Pr = 10,



9 NUMERICAL EXPERIMENTS 25and � = 10�2 and three di�erent values of the Rayleigh number Ra. Foreach value, the left-most eigenvalues are listed below (see Cli�e et al., 1993).� Ra = 2440:�1 = 9:8696 � 10�2, �2 = 3:9478 � 10�1,�3;4 = 3:9478 � 10�1 � i2:4561 � 10.� Ra = 2480:�1;2 = 4:7486 � 10�2 � i2:4502 � 10, �3 = 9:8696 � 10�2.� Ra = 2520:�1;2 = �3:5071 � 10�1 � i2:4437 � 10, �3 = 9:8696 � 10�2.The interest lies in the loss of stability as Ra increases. The values Ra =2440 and 2480 correspond to stable steady state solutions and Ra = 2520 isan unstable steady state. The change in stability is due to a complex pairof eigenvalues crossing the imaginary axis at a Hopf bifurcation at Ra �2484. We anticipate that Ra = 2480 may cause our eigensolver di�cultiesbecause jRe(�1) � Re(�3)j is small relative to jIm(�1)j. For Ra = 2440the left-most eigenvalues are real and shift-invert with a zero shift will besuccessful. However, for Ra = 2480 and 2520, shift-invert misses the left-most eigenvalues.We also consider varying Rs, with Ra = 2440 and the remaining param-eters unchanged.� Rs = 1900:�1;2 = �4:6001 � 10�1 � i3:3800 � 10, �3 = 9:8696 � 10�2.� Rs = 1950:�1;2 = �7:5082 � 10�3 � i2:4185 � 10, �3 = 9:8696 � 10�2.� Rs = 1975:�1 = 9:8696 � 10�2, �2;3 = 2:2047 � 10�1 � i2:4374 � 10,�4 = 3:9478 � 10�1.Rs = 1900 and 1950 correspond to unstable steady state solutions whileRs = 1975 is a stable steady state. We expect that �nding �2 will bedi�cult in the case Rs = 1975 since �2 has a large imaginary part and liesbetween 2 real eigenvalues with jRe(�1) � Re(�2)j and jRe(�4) � Re(�2)jsmall compared to jRe(�2)j.In Table 1 we present statistics for this problem for factorizing A andsolving systems Ax = b using MA42. We give results for the �rst set ofparameter values given above (Rs = 2000, Pr = 10, � = 10�2, Ra = 2440)



9 NUMERICAL EXPERIMENTS 26but similar results are obtained for the other parameter values used, Hereand in other tables where the number of 
oating-point operations (\
ops")are quoted, we count all operations (+,-,*,/) equally. Following advice fromAEA Technology, here and elsewhere the threshold parameter u (7.7) is setto 10�7. For our test examples, we found that this choice of u did notlead to any instabilities and gave signi�cantly sparser factors than thoseobtained using the default value of 0.1. Sparse factors are important for thefactorization and solve times.Table 1: MA42 statistics for problem 1 (Rs = 2000, Pr = 10, � = 10�2,Ra = 2440). u = 10�7 u = 10�1Flops for factorization 1:19 � 108 1:17� 109Real factor storage (Kwords) 965 3037Integer factor storage (Kwords) 92 217Minimum in-core storage (Kwords) 23 286Factorize time (secs) 6.7 113.8Solve time: 1 right-hand side (secs) 0.5 1.5Solve time: 10 right-hand sides (secs) 1.5 4.4In Tables 2 and 3 we present results for problem 1, using the general-ized Cayley transformation TC and the modi�ed Cayley transformation TM .Since we want to locate on which side of the imaginary axis the left-mosteigenvalues lie, we do not need to compute the eigenvalues to a large numberof decimal places. However, if we do not choose the convergence tolerancesmall enough, wanted eigenvalues may be missed. We set the convergencetolerance in ARPACK to �U = 10�6 and the number r of Arnoldi vectors isset to 20. We see from the tables that Arnoldi's method rapidly producesgood approximations and, except for the case Rs = 1975, only two LUfactorizations are required, corresponding to the factorization of S for theshift-invert step and a single Cayley iteration. For Rs = 1975, the test de-scribed in Section 6.3 found that the left-most eigenvalues had been missed.At this point r was increased to 25 and the number of requested eigenvalueswas increased to 4. The computation then continued and the correct eigen-values converged. We remark that this check for missing eigenvalues andthe subsequent increase in r and the number of sought-after eigenvalues isperformed automatically within our code: no action is required by the user.
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Table 2: Basic operations, times, and residuals for TC and TM for problem1 with a range of values of Ra. Zero shifts and the B semi-inner productare used. For TC , � = 1:0 and for TM , � = 0:0.Ra = 2440 Ra = 2480 Ra = 2520TC TM TC TM TC TMBasic operations:Factorizations 2 2 2 2 2 2Linear solves 46 46 46 46 46 46A(�) � x 20 20 20 20 20 20B � x 126 126 127 127 127 127(A(�)� �B) � x 1 1 1 1 1 1Times (secs):Factorizations 14.6 14.2 14.3 14.1 14.2 14.0Linear solves 23.9 24.9 24.0 24.2 24.6 25.1A(�) � x 4.3 12.8 4.4 13.0 4.3 12.9B � x 30.5 30.3 30.9 30.2 30.4 30.8(A(�)� �B) � x 0.4 0.8 0.4 0.6 0.4 0.7Total 75.4 84.8 75.7 83.7 75.5 85.1Relative residuals:Before puri�cation 1.74d-17 1.19d-08 1.17d-08After puri�cation 1.61d-17 1.63d-17 5.90d-10 5.90d-10 4.65d-10 4.65d-12
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Table 3: Basic operations, times, and residuals for TC and TM for problem1 with a range of values of Rs. Implicit shifts of zero and the B semi-innerproduct are used. For TC , � = 1:0 and for TM , � = 0:0.Rs = 1900 Rs = 1950 Rs = 1975TC TM TC TM TC TMBasic operations:Factorizations 2 2 2 2 5 5Linear solves 46 46 46 46 119 119A(�) � x 20 20 20 20 90 90B � x 126 126 127 127 339 339(A(�)� �B) � x 1 1 1 1 4 4Times (secs):Factorizations 14.2 14.0 14.3 14.0 35.3 34.9Linear solves 25.1 25.0 24.9 24.9 64.5 64.3A(�) � x 4.3 12.8 4.3 12.8 19.2 58.0B � x 30.0 30.2 30.1 30.2 80.1 81.4(A(�)� �B) � x 0.4 0.7 0.4 0.8 1.7 2.6Total 75.7 84.3 75.7 84.4 205.3 245.6Relative residuals:Before puri�cation 6.39d-09 8.74d-09 1.49d-08After puri�cation 4.31d-10 4.31d-10 5.69d-10 5.69d-10 7.71d-10 1.49d-10



9 NUMERICAL EXPERIMENTS 29Our results show that, for problem 1, that when using implicit shiftsof zero during the restart and the B semi-inner product, there is little tochoose between the generalized and modi�ed Cayley transformations. Bothuse the same number of factorizations and linear solves. However, in termsof time, TM is slightly more expensive. This is accounted for by the way wehold the element data. For each of our test problems, the data supplied tous is in the form of the element matrices for K CCT 0 ! ;  M 00 0 ! ; and  M CCT 0 ! : (9.1)To form A(�) � x, we only need the �rst of these matrices when � = 1:0,but when � = 0:0, all 3 are needed. The overhead of reading and usingthese extra element matrices makes TM more expensive to use. Moreover,puri�cation must be done explicitly when using TM ; an implicit puri�cationmay instead be used when using TC .Table 4: Basic operations, times, and residuals for TC for problem 1 withRs = 1975 using a range of values of r. Implicit shifts of zero and the Bsemi-inner product are used. � denotes �2 was missed.r = 10 r = 20 r = 25 r = 30 r = 35rout 10 25 25 30 35Basic operations:Factorizations � 5 3 2 2Linear solves � 119 82 66 76A � x � 90 50 30 35B � x � 339 233 186 216(A� �B) � x � 4 2 1 1Times (secs):Factorizations � 35.3 21.0 14.5 14.5Linear solves � 64.5 44.4 34.9 39.3A � x � 19.2 10.7 6.6 7.7B � x � 80.1 55.6 45.1 53.3(A� �B) � x � 1.7 0.8 0.4 0.4Total � 205.3 135.7 104.6 119.2Relative residuals:Before puri�cation � 1.49d-08 2.13d-06 3.26d-07 3.20d-08After puri�cation � 1.71d-10 2.43d-08 1.83d-08 8.09d-10In Table 4 we report results for problem 1 with Rs = 1975 for a rangeof values of r. In this table, rout denotes the �nal value of r. We see that,



9 NUMERICAL EXPERIMENTS 30even with the test for missing eigenvalues discussed in Section 6.3, withr = 10, �2 is missed. As r is increased, the number of factorizations (whichis equal to one more than the number of Cayley iterations) decreases, untilwith r = 30 the number of factorizations is the minimum possible. Thishighlights one of the di�culties of using ARPACK to solve a problem whenthe user has no prior knowledge of the spectrum. The user must select r.If r is too small, the sought-after eigenvalues may be missed, and if r istoo large, unnecessary work is performed. As discussed earlier, the mostexpensive parts of the eigenvalue computation in terms of time are those as-sociated with performing matrix factorizations, solving linear systems usingthe matrix factors, and performing matrix-vector products with A(�) andB. Increasing r increases the number of matrix-vector products performedon each iteration. If the number of iterations does not decrease, this cansigni�cantly increase the computation time. We see this in Table 4 whenwe compare r = 30 with r = 35. If it is important that no eigenvalues aremissed, the user should be cautious in the choice of r, and consider checkingresults by rerunning with an increased value of r and, optionally, increasethe number of eigenvalues requested.In Tables 5 and 6, we present results for problem 1 with Ra = 2480 forimplicit shifts of zero and exact shifts, both with the B semi-inner productand the standard inner product.We see that using the B semi-inner product is more reliable than usingthe standard inner product. With the standard inner product, the modi�edCayley transformation TM failed to compute the left-most eigenvalues. Thegeneralized Cayley transformation TC was successful in �nding the requiredeigenvalues but, as in the case Rs = 1975 discussed above, r was increasedto 25 by the test for missing eigenvalues, and this increases the cost of thecomputation. For this problem, using the B semi-inner product gave theminimum number of restarts; the results were identical for zero and exactimplicit shifts. We performed additional experiments with TC where wedid not purify the starting vector v1. We found that, if the B semi-innerproduct was used, the number of LU factorizations required for convergenceincreased from 2 to 4 while if the standard inner product was used, theleft-most eigenpair was not found. This demonstrates the importance of thechoice of starting vector in these calculations.All the results for problem 1 show the bene�ts of purifying the computedeigenvectors.
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Table 5: Basic operations, times, and residuals for TC for problem 1 withRa = 2480 and r = 20. B semi-inner Standard innerproduct productZero Exact Zero Exactshifts shifts shifts shiftsBasic operations:Factorizations 2 2 4 4Linear solves 46 46 98 98A � x 20 20 0 0B � x 127 127 25 25(A� �B) � x 1 1 73 73Times (secs):Factorizations 14.3 14.3 27.9 28.0Linear solves 24.0 25.0 56.6 52.9A � x 4.4 4.2 0.0 0.0B � x 30.9 30.0 5.9 5.9(A� �B) � x 0.4 0.4 30.8 30.8Total 75.7 75.7 124.8 121.3Relative residuals:Before puri�cation 1.19d-08 1.19d-08 2.62d-09 9.29d-09After puri�cation 5.90d-10 5.90d-10 7.63d-11 4.35d-10



9 NUMERICAL EXPERIMENTS 32Table 6: Basic operations, times, and residuals for TM for problem 1 withRa = 2480 and r = 20. � denotes �1 was missed.B semi-inner Standard innerproduct productZero Exact Zero Exactshifts shifts shifts shiftsBasic operations:Factorizations 2 2 � �Linear solves 46 46 � �A(0:0) � x 20 20 � �B � x 127 127 � �(A(0:0)� �B) � x 1 1 � �Times (secs):Factorizations 14.1 14.3 � �Linear solves 24.2 24.8 � �A(0:0) � x 13.0 12.8 � �B � x 30.2 29.9 � �(A(0:0)� �B) � x 0.6 0.8 � �Total 83.7 84.3 � �Relative residuals 5.90d-10 5.90d-10 � �9.2 Problem 2The second problem is that of the 
ow of a Newtonian 
uid past a cylinderin a channel. The problem has 600 elements with a total of 6,398 degrees offreedom. The �rst bifurcation is a Hopf bifurcation with�1;2 = 2:6886 � 10�1 � i1:0963 � 10; �3 = 2:3827:MA42 statistics for this problem are given in Table 10. In Tables 8 and 9,we present results for problem 2 with r = 20. The convergence tolerancewas set to 10�6. Results are given for the generalized and modi�ed Cayleytransformations using implicit shifts of zero and exact shifts, both with theB semi-inner product and the standard inner product.For this problem, using the B semi-inner product does not improve con-vergence but only adds to the computational cost. Using exact shifts givesslightly slower convergence than implicit shifts of zero.



9 NUMERICAL EXPERIMENTS 33
Table 7: MA42 statistics for problem 2 (u = 10�7).Flops for factorization 9:99� 107Real factor storage (Kwords) 908Integer factor storage (Kwords) 155Minimum in-core storage (Kwords) 28Factorize time (secs) 5.6Solve time: 1 right-hand side (secs) 0.6Solve time: 10 right-hand sides (secs) 1.5

Table 8: Basic operations, times, and residuals for TC for problem 2 withr = 20. B semi-inner Standard innerproduct productZero Exact Zero Exactshifts shifts shifts shiftsBasic operations:Factorizations 4 5 4 5Linear solves 86 107 86 107A � x 60 80 0 0B � x 222 243 23 23(A� �B) � x 3 4 63 84Times (secs):Factorizations 26.4 32.6 26.3 32.5Linear solves 49.2 65.3 48.8 65.0A � x 26.5 34.2 0.0 0.0B � x 99.2 108.6 10.2 10.2(A� �B) � x 2.6 3.4 54.4 71.2Total 207.5 248.0 143.6 182.8Relative residuals:Before puri�cation 1.23d-03 2.03d-04 1.21d-04 1.86d-05After puri�cation 9.70d-06 1.51d-06 7.39d-05 1.27d-05



9 NUMERICAL EXPERIMENTS 34Table 9: Basic operations, times, and residuals for TM for problem 2 withr = 20. B semi-inner Standard innerproduct productZero Exact Zero Exactshifts shifts shifts shiftsBasic operations:Factorizations 4 5 4 5Linear solves 86 107 86 107A(0:0) � x 60 80 0 0B � x 220 243 23 23(A(0:0)� �B) � x 3 4 63 84Times (secs):Factorizations 26.0 32.7 26.6 32.7Linear solves 48.3 60.1 48.2 60.0A(0:0) � x 77.0 102.7 0.0 0.0B � x 98.0 108.3 10.2 10.2(A(0:0)� �B) � x 4.1 5.2 82.9 109.3Total 256.8 312.7 171.5 216.2Relative residuals 1.61d-05 1.48d-05 1.07d-04 9.36d-089.3 Problem 3Our third test problem is that of the 
ow of a Newtonian 
uid in a pipe withsudden symmetric expansion. The problem has 5800 elements and 87; 000degrees of freedom. The left-most eigenvalue is real but there are severalcomplex eigenvalues �j such that Re(�j)� �1 is small. In particular,�1 = 1:962; �2;3 = 2:014 � i4:118 � 10�1: (9.2)MA42 statistics for this problem are presented in Table 10. In our ex-periments, we set r = 30 because we found the left-most eigenvalue wasmissed if we selected a smaller value, such as r = 20. For this large problem,while the CPU time required for each LU factorization and each solve is notprohibitive, the additional cost of reading the element matrices from �leswas found to be high. To limit the time needed to perform each experimentinvolving this problem, we restricted the maximum number of LU factor-izations allowed to 10. With this restriction, the modi�ed Cayley transfor-mation using the B semi-inner product and exact shifts failed to converge.Because of this and the results of our previous experiments, we decided to



9 NUMERICAL EXPERIMENTS 35Table 10: MA42 statistics for problem 3 (u = 10�7).Flops for factorization 3:54� 109Real factor storage (Kwords) 20702Integer factor storage (Kwords) 2553Minimum in-core storage (Kwords) 40Factorize time (secs) 185.2Solve time: 1 right-hand side (secs) 14.0Solve time: 10 right-hand sides (secs) 34.0limit further investigations to using implicit shifts of zero. Results are givenin Table 11.Table 11: Basic operations, times, and residuals for the generalized Cayleytransformation (� = 1:0) and the modi�ed Cayley transformation (� = 0:0)for problem 3 with r = 30. Implicit shifts of zero are used.TC TMInner product Inner productB Standard B StandardBasic operations:Factorizations 3 4 3 3Linear solves 95 126 95 95A(�) � x 60 0 60 0B � x 271 33 271 33(A(�)� �B) � x 2 93 2 62Times (secs):Factorizations 588 782 588 586Linear solves 1352 1736 1310 1304A(�) � x 358 0 1102 0B � x 1634 213 1685 212(A(�)� �B) � x 23 1124 36 1134Total 4087 4008 4864 33529.4 Balancing theory and numerical experimentsWe end this section on numerical experiments with some overall comments.Part of the motivation for this report was to numerically verify the the-oretical results presented in the paper by Meerbergen and Spence (1997).



9 NUMERICAL EXPERIMENTS 36As explained in Sections 4.2 and 5.1, care must taken to ensure that thecomputed eigenvalues and eigenvectors are not contaminated by the N orG components that arise in S. In exact arithmetic, this is accomplished byusing a starting vector in the range of S2.To mitigate the in
uence that rounding errors might introduce, thescheme proposed by Meerbergen and Spence is to use the B-orthogonalArnoldi method using one implicit shift of zero per restart and a �nal im-plicit puri�cation (via S) of the computed eigenvectors. However, becausewe use Cayley transformations, their scheme requires us to use an implicitshift equal to +1 per restart and to implicitly purify the computed eigen-vectors with TC � I.Here is a summary of our �ndings:1. Experiments revealed that the use of the B semi-inner product im-proved the results. In theory, only G components in the Arnoldi vec-tors can contaminate Hr.2. Using at least one implicit shift equal to +1 per restart did not preventHr from producing spurious eigenvalues. In theory, this cannot occurbecause an implicit shift of +1 per restart should produce a Hr thatis not contaminated by G components (or N components that mightbe present due to rounding errors). We explain why this is so below.3. r � s implicit shifts of zero per restart gave consistently good results.In theory, this is equivalent to performing subspace iteration with T r�sCon Vs (per restart). Again, in theory, Hr could be a�ected by G com-ponents in the Arnoldi vectors.4. The implicit puri�cation of the computed eigenvectors via TC � I al-ways decreased the size of the direct residuals.5. We did not �nd it necessary to apply TSI a second time to the com-puted eigenvectors. Theory indicates that the puri�ed eigenvectorsmay contain N components arising from a G component in the unpu-ri�ed eigenvector.6. Our results always used a random starting vector in the range of S2.In theory, this is not needed when using the scheme proposed by Meer-bergen and Spence (adapted for Cayley transformations), because ofitems 3 and 5. We performed some experiments where the starting



9 NUMERICAL EXPERIMENTS 37vector was not puri�ed. We found that convergence was either sig-ni�cantly slower or the left-most eigenvalue was actually missed (seeSection 9.1).7. It must be emphasized that r must be selected large enough. Exceptfor the possible additional storage, the cost of maintaining the orthogo-nality of r Arnoldi vectors is not a factor. The cost of the computationis dominated by the cost of factorizing and solving linear systems withA and/or B. Increasing r increases the number of solves which mustbe performed following a factorization.Item 2 is easily the most fascinating. The explanation is subtle, butstraightforward. From Section 2, an implicit shift equal to +1 is equivalentto orthogonalizing the columns of (TC � I)Vr�1. By (5.5), this is equivalentto orthogonalizing the columns of (� � �)TSIVr�1. Thus, if V +r�1 denotesthe updated matrix of Arnoldi vectors produced by the IRAM, the cor-responding H+r�1 contains no spurious eigenvalues. However, as explainedin Lehoucq and Sorensen (1996), implicit restarting occasionally undergoesforward instability due to rounding errors. An implicit shift of +1 trig-gers this instability because the Cayley transformation maps the in�niteeigenvalues of (1.2) to eigenvalues at +1. Because the computed Hr has aneigenvalue equal to +1 with an associated eigenvector y, where eTr y is small,a small Ritz estimate (see (6.1)) results. This implies that +1 is a goodapproximation for an eigenvalue of TC . Forward instability results preciselywhen this nearly converged eigenvalue is used as an implicit shift. Forwardinstability implies that k(TC � I)Vr�1�V +r�1k � k(TC � I)Vr�1k�M : (We re-mark that this can happen even though the columns of V +r�1 are orthogonalto machine precision.)In summary, using implicit shifts equal to +1 ampli�es any G or Ncomponents that might be present due to rounding errors when using aCayley transformation. We remark that Meerbergen and Spence conjecturedthat spurious eigenvalues could also be computed|even with their scheme.They presented a way to check whether spurious eigenvalues were computed.However, our check (that of using implicit shifts with small Ritz estimates)is cheaper.



10 CONCLUSIONS AND FUTURE DIRECTIONS 3810 Conclusions and future directionsWe have shown that it is possible to use the implicitly restarted Arnoldimethod combined with a generalized Cayley transformation to compute theeigenvalues of the discretized Navier Stokes equations. Our results suggestthat although using the B semi-inner product is more expensive than thestandard inner product, it does o�er advantages in terms of reliability and,in general, gives smaller residuals for the same number of iterations. Becauseof the connection with subspace iteration, we also found it is more reliable touse zero shifts rather than exact shifts during the implicit restarting used bythe IRAM. We have experimented with using a generalized and a modi�edCayley transformation. The numerical results for both transformations aresimilar although, for our examples, use of the modi�ed Cayley transforma-tion was more expensive than the generalized Cayley transformation. Theaccuracy of the eigenvectors computed using the generalized Cayley trans-formation can be reduced, sometimes very signi�cantly, by puri�cation withTSI .Based on our �ndings, we plan to incorporate the ARPACK softwarepackage with the �nite-element package ENTWIFE. In the future, we alsointend to experiment with a block version of the IRAM (Lehoucq andMaschho� 1997). Since it is signi�cantly more e�cient when using thelinear equation solver MA42 to solve for multiple right-hand sides, we an-ticipate that this will improve the computation times, particularly for thelarge problems which are of current interest to AEA Technology.11 AcknowledgementsThis study is part of a larger project to replace the eigensolvers currentlyused in the �nite-element package ENTWIFE by more e�cient and robusteigensolvers. We would like to thank Andrew Cli�e of AEA Technologyfor his interest and for allowing us access to the ENTWIFE code. We arealso very grateful to Simon Tavener of Pennsylvania State University forproviding us with the test problems for use in this study and for helpfuldiscussions. We thank Gene Golub for some helpful comments at the startof our study, Iain Du� of the Rutherford Appleton Laboratory, AndrewCli�e, and Simon Tavener for helpful comments on this report, and KarlMeerbergen of Numerical Technologies for some very useful discussions.
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