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SUMMARY

Finding the components of cellular circuits and
determining their functions systematically remains a
major challenge in mammalian cells. Here, we intro-
duced genome-wide pooled CRISPR-Cas9 libraries
into dendritic cells (DCs) to identify genes that control
the induction of tumor necrosis factor (Tnf) by bacte-
rial lipopolysaccharide (LPS), a key process in the
host response to pathogens, mediated by the Tlr4
pathway. We found many of the known regulators of
Tlr4 signaling, as well as dozens of previously un-
known candidates that we validated. By measuring
protein markers and mRNA profiles in DCs that are
deficient in known or candidate genes, we classi-
fied the genes into three functional modules with
distinct effects on the canonical responses to LPS
and highlighted functions for the PAF complex and
oligosaccharyltransferase (OST) complex. Our find-
ings uncover new facets of innate immune circuits
in primary cells and provide a genetic approach for
dissection of mammalian cell circuits.

INTRODUCTION

Regulatory circuits that control gene expression in response to

extracellular signals perform key information processing roles
in mammalian cells, but their systematic unbiased reconstruc-

tion remains a fundamental challenge. There are currently two

major strategies for associating targets with their putative regu-

lators on a genomic scale (reviewed in Kim et al., 2009): (1)

observational (correlative) approaches that relate them based

on statistical dependencies in their quantities or physical associ-

ations and (2) perturbational (causal) approaches that relate

them by the effect that a perturbation in a putative regulator

has on its target.

While observational strategies have become a cornerstone of

circuit inference from genomic data, perturbational strategies

have been more challenging to apply on a genomic scale, espe-

cially in primary mammalian cells. RNAi, which until recently was

the main tool available in mammals, is limited by off-target

effects and lack of sufficient suppression of expression (Eche-

verri et al., 2006), whereas more effective strategies based on

haploid cell lines (Carette et al., 2009) are not applicable to the

diversity of primary cell types and their specialized circuitry. As

a result, a hybrid approach has emerged (Amit et al., 2011),

where genomic profiles (e.g., of mRNAs, protein-DNA binding,

protein levels, protein phosphorylation, etc.) are used to build

observational models from which a smaller set of dozens of

candidate regulators are identified. These candidates are in

turn tested by perturbation.

The recent introduction of genome editing in mammalian cells

using the clustered, regularly interspaced, short palindromic re-

peats (CRISPR)-associated nuclease Cas9 system has enabled

pooled genome-wide screens of gene function (Gilbert et al.,

2014; Konermann et al., 2015; Shalem et al., 2014; Wang et al.,
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Figure 1. A Genome-wide Pooled CRISPR Screen in Mouse Primary DCs

(A) Flow cytometry of intracellular Tnf levels following 8 hr of LPS stimulation for single sgRNAs.

(B) Design of a genome-wide CRISPR screen.

(C) Cumulative distribution function (CDF) plots of the gene level Z-score distribution of genes annotated as ‘‘essential’’ (purple) and ‘‘core essential’’ (black) in

Hart et al. (2014), ‘‘translation’’ (in GO, blue), and all other genes (gray).

(D) (Left) Binned Z scores (ZS) of the Tnflo/Tnfhi ratios (y axis) versus sgRNAmean abundances in Tnflo and Tnfhi (x axis). (Right) Gene score distribution for positive

(ZS) and negative (ZS) regulators (Experimental Procedures).

(E) CDFs of screen ranks for the 35 genes in the TLR pathway from LPS to Tnf (KEGG, blue), non-targeting controls (black), and all other genes (gray).

See also Figure S1.
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2014). In such screens, pooled libraries are introduced into cell

lines and cellular phenotypes are selected based on cell lethality

or growth. To expand the biological processes that can be stud-

ied, there remains a need to adapt these methods for short-term

primary cell cultures and selecting cellular phenotypes based on

more versatile molecular markers.

Here, we present a pooled CRISPR strategy to dissect the

innate immune response of bone-marrow-derived dendritic

cells (BMDCs, or DCs) isolated from Cas9-expressing trans-

genic mice. Building on our recent observation that lentiviruses

expressing single-guide RNAs (sgRNAs) could be used to knock

out genes in these cells (Platt et al., 2014), we infected DCswith a

pooled, genome-wide library of lentiviruses, stimulated them

with lipopolysaccharide (LPS), and monitored their responses

by intra-cellular staining for the inflammatory cytokine Tnf, a ma-

jor marker of the early response to LPS. We used flow cytometry

to isolate cells that failed to fully induce Tnf or that induced it

more strongly, and then we determined sgRNA abundance by

deep sequencing. We recovered many of the key known regula-

tors of TLR signaling, validated dozens of new regulators, and

identified three functional modules of regulators with distinct

regulatory effects. Our study identifies new facets in the complex
2 Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc.
response of immune cells to pathogens and provides a general

strategy for systematically dissecting circuits in other primary

mammalian cells.

RESULTS

A System for Cell-Autonomous, Pooled Genetic Screens
in BMDCs Derived from Cas9-Expressing Mice
To enable genome-wide pooled genetic screens, we developed

a cell-autonomous readout of innate immune activation by intra-

cellular staining of a central inflammatory cytokine, Tnf. To test

the assay, we individually transduced BMDCs with lentiviruses

expressing sgRNAs (Experimental Procedures) that target each

of three genes: (1) Tlr4, the cell membrane receptor that senses

bacterial LPS; (2) Myd88, a key component required for Tlr4

signaling to induce Tnf; and (3) Zfp36 (TTP), an RNA-binding

protein that destabilizes Tnf mRNA. Following LPS activation,

we added Brefeldin A to block Tnf secretion and at 8 hr post-acti-

vation detected Tnf with a fluorescent antibody using flow cy-

tometry. Compared to a non-targeting sgRNA control, sgRNAs

targeting Myd88 or Tlr4 strongly reduced Tnf, whereas sgRNAs

targeting Zfp36 increased Tnf (Figure 1A). These results provide
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an experimental system in BMDCs for an autonomous genome-

wide pooled screen based on cell sorting.

A Genome-wide Pooled sgRNA Library Screen in
Primary BMDCs
Weperformed three independent, pooled genome-wide screens

using a library of lentiviruses harboring 125,793 sgRNAs target-

ing 21,786 annotated protein-coding and miRNA mouse genes

(Sanjana et al., 2014), as well as 1,000 non-targeting sgRNA

as negative controls. In each of the three replicate screens, we

infected 60–200 million BMDCs with the library at a multiplicity

of infection (MOI) of 1, stimulated cells with LPS, and sorted

Cd11c+ cells based on high or low Tnf expression levels (�5

million cells/bin; Figure 1B and Experimental Procedures). We

then amplified and sequenced sgRNAs from four sources

(Figure 1B, thick gray arrows): post-LPS cells with (1) high Tnf

(‘‘Tnfhi’’) or with (2) low Tnf (‘‘Tnflo’’), (3) cells from the last day

of differentiation prior to LPS stimulation (day 9, ‘‘pre-LPS’’),

and (4) plasmid DNA of the input lentiviral library (‘‘Input’’). We

reasoned that sgRNAs against positive regulators of Tnf expres-

sion would be enriched in Tnflo relative to Tnfhi, that sgRNAs

targeting negative regulators will be enriched in Tnfhi relative to

Tnflo, and that sgRNAs targeting genes essential for DC viability

or differentiation would be depleted in pre-LPS compared to

Input. We established two computational methods to address

the inherent noise of the screen (Figure S1A): the first using

Z scores (ZS) of the fold change in normalized sgRNA abun-

dance (and then averaging the top four sgRNAs per gene) and

the second analogous to differential expression (DE) analysis

of sequenced RNA (Love et al., 2014; Experimental Procedures).

The top-ranked genes substantially overlap between the two ap-

proaches (50/100 for positive regulators, 30/100 for negative

regulators, p < 10�10, hypergeometric test), and their rankings

are well correlated (Figures S1B and S1C) up to ranks 150 and

50 for positive and negative regulators, respectively (Figures

S1D and S1E). While our screen is in principle compatible with

discovery of both positive and negative regulators, it was con-

ducted at high (near-saturation) levels of LPS and is thus likely

to be less sensitive for discovery of negative regulators due to

limited dynamic range for observing further Tnf induction.

The Screen Correctly Identifies Known Regulators of
Cell Viability, Differentiation, Tnf Expression, and Tlr4
Signaling
To assess the initial quality of our screen and scoring scheme,

we first determined that, as expected, sgRNAs against ‘‘essen-

tial’’ genes (Hart et al., 2014) were depleted in pre-LPS samples

compared to Input (Figure 1C, Figure S1F, and Table S1).

Next, a comparison of sgRNAs between Tnfhi and Tnflo was

also consistent with our predictions, with sgRNAs targeting

known positive regulators of the response (e.g., Tlr4 and

Myd88) being enriched in Tnflo compared to Tnfhi and those tar-

geting negative regulators (e.g., Zfp36) being depleted in Tnflo

(ZS analysis, Figure 1D and Table S1; DE analysis, Figure S1G

and Table S1). The top-ranked genes were highly enriched for

those annotated as responsive to LPS (the highest-scoring cate-

gory; GOrilla, false discovery rate [FDR] q val = 10�12; Eden et al.,

2009) or assigned to the Tlr4-to-Tnf pathway (in KEGG; Kanehisa
and Goto, 2000, Figure 1E, and Experimental Procedures); they

were also far more likely to be expressed (Figure S1H, e.g., 78%

of the top 169 genes, compared to 44% of all genes; p = 10�16,

hypergeometric test) at higher levels (p = 10�6 Kolmogorov-

Smirnov [KS] test) and were more likely to be differentially ex-

pressed by RNA-seq following LPS stimulation (Experimental

Procedures and Table S1).

The top 10 ranked positive regulator genes were almost exclu-

sively populated by the hallmark members of TLR signaling, with

many others among the top 100, showing that an unbiased,

genome-wide screen can decipher near-complete pathways

(Figure 2B and Table S1). Tnf had the top rank, demonstrating

the screen’s quantitative nature. Key regulators of the LPS

response with high ranks in our screen included (Figure 2B):

Tlr4 (rank 10) and its co-receptors Ly96 (MD2) (rank 2) and

Cd14 (rank 3); well-known members of LPS/Tlr4 signaling,

including Ticam2 (TRAM, rank 5), Ticam1 (TRIF, rank 8), Myd88

(rank 4), Tirap (rank 9), and Traf6 (rank 13); Rela (rank 11), a

component of NFKB, which regulates Tnf transcription; and

two regulators of NFKB: Ikbkb and Ikbkg (NEMO) (rank 23 and

rank 84, respectively). Other notable known regulators of the

immune response and DC function include the DC pioneer tran-

scription factor Cebpb (rank 21), Akirin2 (rank 39), and Rnf31

(rank 42) and Rbck1 (rank 19), two subunits of the linear ubiquitin

chain assembly complex (LUBAC) that tags NEMO and enables

NFKB activation. Overall, the top 100 ranked genes were highly

enriched for central genes in the LPS-to-Tnf pathway, as anno-

tated by KEGG (13/35 annotated genes are in the top 100; p =

10�22, hypergeometric test) (Figure 1E).

Dozens of Positive Regulators Identified by the Screen
Validated Using Individually Cloned sgRNAs
To validate the top genes in the ranked list, we next tested two

to three sgRNAs against each of the top 176 (112 positive and

64 negative) ranked candidate regulators in individual, rather

than pooled, assays, along with 53 non-targeting controls. We

measured intracellular Tnf levels by flow cytometry (Figure 2A),

excluding sgRNAs with significant reduction in viability (Table

S2 and Experimental Procedures).

Overall, we verified 57 positive regulators out of 112 tested: 45

with at least two independent sgRNAs and another 12 genes

with one sgRNA (Figure 2C and Table S1), including key known

regulators (Figure 2B, right). The rate of true-positive regulators

was in agreement with our predicted FDR (Figure 2E), and the

effect size of TNF phenotype was well correlated with the original

ranking (Figure 2D), supporting the accuracy of our statistical

framework. Notably, 27 out of 57 validated genes are not previ-

ously annotated for immune function or Tnf regulation (e.g.,

Midn; Experimental Procedures and Table S1).

We explored the basis for false negatives among the positive

regulators by examining 15 known regulators of LPS activation

that were not among the top 100 ranked genes in the screen. Us-

ing 28 additional sgRNAs, we found that 8 of the 15 known reg-

ulators indeed reduced Tnf levels (Figures S2A and S2B; notably,

these eight were better ranked in the original screen (187–4,417)

than the remaining seven genes (2,871–18,314), demonstrating

that some factors outside of our threshold still have functional

impact in this complex response.
Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc. 3
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Figure 2. Individual sgRNAs Verify Dozens of Top Hits from the Pooled Screen

(A) Experimental design to validate top screen hits by individual sgRNA knockouts. Tnf levels were measured by flow cytometry for each sgRNA (filled) versus

control sgRNAs (lines). (Right) The numbers of positive and negative candidate regulators tested and verified using 100 ng/ml or, in parentheses, 20 ng/ml LPS.

(legend continued on next page)
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Optimized Characterization of Novel Negative
Regulators by Analysis at Unsaturated Levels of Tnf
Only 4 of 64 (Figure S2C and Table S1) putative negative reg-

ulators were initially validated by two independent sgRNAs,

including: Zfp36 (rank 1 among the ZS negative regulators; Fig-

ure 1A), Stat5b (rank 9), Pdcd10 (CCM3, rank 32), and Ppp2r1a

(rank 16). Each of these, including Zfp36, our known control,

associates with human disease. Stat5b, a transcription factor

activated in response to cytokine induction (Darnell, 1997), is

important for DC differentiation (Sebastián et al., 2008) (consis-

tent with a low-Cd11c phenotype in its targeted cells; Figure S2E)

but was not previously implicated in regulation of Tnf. Pdcd10

(CCM3) was not previously reported to regulate Tnf and is asso-

ciated with familial cerebral cavernous malformation (CCM)

(Faurobert and Albiges-Rizo, 2010), a vascular pathological con-

dition. Pdcd10 (CCM3) was also found to physically interact with

Ppp2r1a, the fourth negative regulator (Goudreault et al., 2009).

Interestingly, Calyculin A, a drug that inhibits the protein phos-

phatase 1 and protein phosphatase 2A complexes, of which

Ppp2r1a is a member, was previously shown to induce Tnf

secretion (Boehringer et al., 1999).

The small proportion of validated negative regulators and their

relatively subtle phenotype suggested that our screen, conducted

with a high (100 ng/ml) LPS concentration that leads to near-satu-

rated Tnf levels, may be less sensitive for further induction of Tnf

when perturbing negative regulators. To increase sensitivity for

negative regulators, we reduced LPS by 5-fold and observed

higher Tnf for 24 of 37 (65%) retested sgRNAs targeting 22 genes,

including the translation initiation factorEif5 not previously associ-

ated with TNF regulation, and the Rela-homolog DNA-binding

proteinDnttip1 (TdIF1) (Yamashita et al., 2001) (Figure S2D).While

this test is different from the initial screen and thus cannot assess

its FDR, it does provide additional functional regulators.

ADeeper Secondary PooledScreenUncovers Additional
Regulators with Greater Sensitivity and Specificity
To reduce false negatives due to limited cell numbers relative to

the size of the sgRNA library or to sgRNA design, we performed

a secondary pooled screen targeting 2,569 of the top genes

(Table S5) from the genome-wide screen with 10 sgRNAs per

gene (using the improved design of Doench et al. [2014]) and

4.9-fold more cells per sgRNA. The secondary screen showed

greater specificity and sensitivity, as reflected in enrichment of

the known regulators (Figures S2F and S2G), highly correlated

ranking of hits from the Z score and DE analyses (Figure S2H

and Table S1), and reduced FDR compared to the genome-

wide screen (e.g., FDR= 6.7% for top 100 genes, Figure S2I), indi-

cating a reduction in noise and enrichment for true positives. The

hits included: Irak4 (ranked 9 in the secondary screen versus 187
(B) (Left) All components of the TLR pathway (KEGG) linking LPS and Tnf and their

each targeted gene (filled) compared to sgRNA controls (lines).

(C) The intracellular Tnf signal (sgRNA Z score relative to non-targeting sgRNA)

Validated hits.

(D) Mean Tnf Z score for all sgRNAs targeting the same gene at each screen ra

confidence interval shown in gray.

(E) Theoretical (gray) and empirical (blue) FDR by screen rank.

See also Figure S2.
in the primary screen), Irak1 (60 versus 992),Sharpin (another sub-

unit of the LUBAC complex, ranked 36), and Nedd8 (ranked 52)

and its E2 conjugation enzyme,Ube2f (ranked 25). In the second-

ary screen, we found 19 positive regulators with no immune anno-

tation that were not found in the primary screen (Z > 1.5; FDR =

0.094; Table S1; e.g., Gpatch8). A deeper secondary screen is

thus an effective strategy for increasing the rate of true positives

when it is not feasible to expand the primary screen.

Positive Tnf Regulators Are Organized in Functional
Modules by Their Impact on RNA and Protein Expression
While all of the validated regulators affect Tnf levels, the path-

ways and mechanisms through which they act may be distinct.

To help determine those, we first measured the impact of the

validated positive regulators on the expression of four additional

protein markers (Experimental Procedures), each reflecting

distinct facets of DC biology: Cd11c (the defining surface marker

of BMDCs), Cd14 (a Tlr4 co-receptor), Mip1a (an induced che-

mokine), and Il6 (an induced inflammatory cytokine). We statisti-

cally tested the effect of each sgRNA on protein expression

compared to a set of six to eight non-targeting controls (Fig-

ure S3A and Experimental Procedures) and then grouped genes

based on the similarity of their effects (Figures 3A, 3B, and Table

S2). Notably, the Tnf distribution varied from unimodal to

bimodal across different targeted genes (Figure 2B); sequencing

several target genes showed that, in some but not all cases, this

could be explained by the proportion of edited cells (Figures

S4A–S4C).

The genes are largely partitioned into three major modules

(Figure 3A). Module I consisted of sgRNAs targeting 17 genes,

including 9 canonical regulators validated in the screen, each

reducing the levels of Cd14 and Il6, but not Cd11c (Figures

3A–3C and Table S2), consistent with the roles of the known reg-

ulators in LPS signaling. Additional module members (Figure 3A)

included: Ctcf, previously implicated in DC differentiation and

activation (Koesters et al., 2007) and Tnf expression (Nikolic

et al., 2014), and themiRNAmmu-mir-106a, amember of themi-

croRNA-17/20a family. Module II included nine regulators whose

sgRNAs reduced all four proteins, among them: four subunits of

the OST protein glycosylation complex (see below), Alg2, a gly-

cosyltransferase involved in oligosaccharide synthesis (Haeuptle

and Hennet, 2009; Huffaker and Robbins, 1983), and genes

whose molecular functions are currently unknown, such as

Tmem258 (Figure 3A). Module III consisted of sgRNAs targeting

three subunits of the PAF complex and Pol2rg; each reduced

Cd11c and Il6 expression but had a veryminor, albeit consistent,

effect on Mip1a (Figures 3B and 3C) and no effect on CD14.

Some genes were not part of the three modules, including

Midn, which is encoded in a locus associated with ulcerative
ranks in the genome-wide screen (blue scale). (Right) Intracellular Tnf levels for

of candidate positive regulators (right) and non-targeting controls (left). (Blue)

nk. Dark gray line indicates LOESS regression (local regression curve), 95%

Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc. 5
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Figure 3. The Validated Positive Regulators Partition into Key Modules by Their Effect on Protein and RNA Expression

(A) Change in expression (blue, reduced; red, increased; Z score) of five protein markers (labeled columns) measured by flow staining with antibodies (Exper-

imental Procedures) for cells with sgRNAs targeting the indicated genes (rows). Three modules indicated with brackets, and color bar on left corresponds to

legend on right.

(B) Violin plots of the distribution of Z scores of true positive regulators of Tnf (left) or of non-targeting control sgRNAs (right) for eachmarker. Functional groups are

colored as in (A).

(C) Effects of selected sgRNAs targeting genes in each of three modules on protein markers for true positives (filled) versus non-targeting controls (lines).

(D–F) Correlation of global RNA expression profiles (normalized to non-targeting control values) for verified positive regulators per time point post-LPS,

as indicated. Color scale: Pearson correlation coefficient.

See also Figure S3.
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colitis (based on GWAS studies; Beck et al., 2014) but has no

known molecular function.

Regulators in each of the modules may affect Tnf levels

through mechanisms that are shared by members of the same

module but are distinct from those of the other modules. To

further assess this, we next measured with RNA-seq the global

effects of each regulator on mRNA levels at 0, 2, 4, and 6 hr

post-LPS (without Brefeldin), compared to 12–14 non-targeting

sgRNAs per time point (Figures 3D–3F, S3B–S3E, and Experi-

mental Procedures). Grouping regulators into modules based

on similarity in their profiles, we found that the modules change

over time, with the distinctions sharpened earlier in the response

and diminishing at later time points as they converge through

likely indirect effects. Pre-LPS (t = 0 hr, Figure 3D), most regula-

tors show little effect compared to non-targeting controls,

except for one group consisting almost entirely of members of

the OST complex, as well as Alg2 and Tmem258. At 2 and 4 hr

(Figures 3E and 3F), the regulators partition to several modules,

including the known TLR regulators, a PAF complexmodule, and

a module associated with RNA regulators including Akirin2,

Polr2g, and Pabpc1. Perturbation of the genes in the latter

module reduces (p < 0.001) the expression of genes involved

in immune effector processes and reduces regulation of immune

system processes (GOrilla qFDR 0.0377 and 0.0246, respec-

tively, at t = 2 hr; Table S3). By 6 hr (Figure S3E), the transcrip-

tional effect of most regulators is more similar. Notably, addition

of Brefeldin in these profiling experiments does not affect Tnf

expression, suggesting that the effect of gene perturbation in

the screen versus the profiling experiment is comparable for in-

flammatory gene expression (Figure S3F).

Taken together, our data suggest three key modules that

impact Tnf levels in distinct ways. We next explored these,

focusing on the modules of the OST and PAF complexes.

Components of theOSTComplex and theER Folding and
Translocation PathwayAre Important for Tnf Expression
in Response to LPS
Among the 57 genes that were confirmed individually were four

structural subunits of the nine-protein oligosaccharyltransferase

complex (OSTc): Dad1, Ddost/OST48, Rpn1, and Rpn2. Consis-

tent with their physical association, they were all members of the

same protein- and RNA-defined modules (Figures 3A and 3D–

3F). The ER-resident OSTc tags asparagine residues of newly

translated proteins with oligosaccharide chains that are critical

for protein folding and transport through the ER. At least six other

genes essential for the ER transport pathway (Alg2, Srpr,

Srp54c, Sec61, Hsp90b, and Sec13; Figure 4A), upstream or

downstream of OSTc, were also among the top-ranking vali-

dated positive regulators (although not necessarily in the OSTc

module).

More than 2,300 proteins are known to be N-glycosylated

(Zielinska et al., 2010), and knocking out subunits of OSTc

may affect Tnf levels directly or indirectly and—in either

case—could reflect a more global effect on N-glycosylated pro-

teins and cell phenotype in LPS-stimulated BMDCs. Since both

Ly96 and Tlr4 are N-glycosylated and Tlr4 transport to the

membrane is disrupted in the absence of tagged asparagines

(da Silva Correia and Ulevitch, 2002), we hypothesized that
OSTc could affect Tnf levels by impacting Tlr4 and/or its

signaling. Indeed, targeting any of the four OSTc structural

subunits or Alg2 (Figures 3C and S4D) strongly reduced each

of the four protein markers (Figure 3A), including CD11c. This

general reduction is consistent with either of two hypotheses:

(1) the cells are not properly differentiated, or (2) the cells

have differentiated properly but their LPS sensing is compro-

mised. In the latter case, OSTc mutants could have either (a)

a global signaling defect (e.g., due to a lack of key membrane

receptors) or (b) a more specific regulatory effect.

To distinguish between these hypotheses, we examined the

specific genes whose expression is affected in OSTc-targeted

cells, compared to cells targeted by known regulators from the

TLR pathway, or in cells with non-targeting sgRNA controls,

either before or after LPS stimulation (Figures 4B–4E and Exper-

imental Procedures). A global differentiation defect should be

apparent in genome-wide expression profiles pre-LPS, and a

global LPS signaling defect would be apparent post-LPS, while

a specific regulatory effect would be manifested as a more

specific transcriptional signature.

Pre-LPS (Figure 4B), there were few transcriptional differ-

ences between cells in which OSTc is targeted or not (Table

S3), except for a group of 60 OST-induced genes that are en-

riched for the ER stress response (FDR q value = 5.83 3 10�16,

GOrilla). Furthermore, 42 (p < 10�10, hypergeometric test) of

these genes are bound by the transcription factor XBP1 at their

proximal promoter in bone-marrow-derived macrophages

(M. Artomov, L. Glimcher, and A.R., unpublished data and Cu-

billos-Ruiz et al., 2015). Thus, OSTc perturbation has a limited

and unique pre-LPS effect on ER stress response genes, and

the reduction in CD11c is not associated with a differentiation

defect. Notably, N-glycosylation and ER stress were previously

shown to interact with the TLR pathway (Komura et al., 2013;

Martinon et al., 2010); however, direct involvement of OSTc

was not shown.

The LPS response in DCs has been previously characterized

(Shalek et al., 2014) by three distinct co-expression signatures:

(1) anti-viral genes (‘‘anti-viral’’), (2) inflammatory genes,

including Tnf, whose expression peaks at 2 hr (‘‘peaked inflam-

matory’’), and (3) inflammatory genes with sustained expression

within the 6 hr timescale (‘‘sustained inflammatory’’). While

several of the mutants in the known TLR pathway genes were

defective in activating all three signatures (Figures 5C–5E), tar-

geting OSTc members reduced the inflammatory signatures

(sustained: p = 0.01; peaked: p = 0.01, t test), but not the

anti-viral signature (p = 0.24, t test) (Figures 4B–4E and 5C–

5E), suggesting a specific rather than global effect on the Tlr4

response.

Additional regulators with the same profile as OSTc may regu-

late Tnf through related pathways. These include Hsp90b and

Alg2, known members of the protein folding and secretion path-

ways (Figure 4A and Figure S4D) and Tmem258, whose human

ortholog resides in a locus associated with Crohn’s disease

(Franke et al., 2010) and targeted by ANRIL, a long non-coding

RNA associated with immune and metabolic diseases (Boche-

nek et al., 2013). Targeting of Tmem258 induced the same

ER stress genes pre-LPS (5/14 genes; 7.73 10�5 q-FDRGOrilla;

Table S3) and similar profiles post-LPS.
Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc. 7
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Figure 4. The OST Complex Strongly Affects the BMDC Inflammatory Response

(A) (Left) Positive regulators in the context of the secretory pathway; (right) intracellular Tnf staining for sgRNAs against each targeted gene (filled) versus

non-targeting controls (lines).

(B–E) Impact of OSTc perturbation on gene expression at indicated times post LPS. (Heatmaps) Row-normalized Z scores (relative to non-targeting controls) of

mRNA levels for each sgRNA-targeted sample (columns). Only mRNAs that are differentially expressed (at least one time point, adjusted p < 0.001) are shown, in

the same order in each panel.

See also Figure S4.
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The PAF Complex and Its Physical Interactors Form a
Module that Positively Regulates Tnf Protein Expression
Five of six known subunits of the PAF complex (PAFc; Paf1, Ctr9,

Wdr61, Rtf1, Leo1), a regulator of transcription elongation and

30 mRNA processing (Jaehning, 2010), were identified as positive

regulators of Tnf expression among the top 100 ranked genes in

the primary screen; each was validated individually (Figures 3C,

5A, 5B, and S5A), did not significantly affect cell proliferation

(data not shown), had a similar effect on RNA and protein expres-

sion, and associatedmost strongly with a singlemodule (Figure 3,

blue). The sixth subunit, Cdc73 (rank 842 in the primary screen),

was likely a falsenegativesince twoadditionally designedsgRNAs
8 Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc.
did reduce Tnf expression (Figure S5B). The Ash2l subunit of the

MLL complex, previously reported to physically interact with

Cdc73 (Rozenblatt-Rosen et al., 2005), was also validated as a

positive regulator of Tnf in our screen (rank 41, Figure S5B).

Regulation of transcription elongation was previously shown

to be an important key step in the DC transcriptional response

(Beaudoin and Jaffrin, 1989; Hargreaves et al., 2009). Prior

studies have implicated Paf1 or PAFc in regulation of antiviral

gene expression (Marazzi et al., 2012), but PAFc was not previ-

ously implicated in Tnf or inflammatory gene expression.

To decipher the specific impact of PAFc, we examined its

effect on each of the transcriptional signatures. Targeting PAFc
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Figure 5. The Paf Complex Strongly Affects the LPS Response

(A and B) Intracellular Tnf staining in cells with sgRNAs targeting Paf1 (A) or Rtf1 (B) (filled), compared to sgRNA controls (lines).

(C–F) Violin plots of the distribution of response scores per sgRNA (calculated as an average of all RNA changes relative to non-targeting controls) in cells treated

with sgRNAs targeting known regulators, non-targeting controls (NT), OSTc members, and PAFc members for each of three response signatures: anti-viral

(C, 4 hr post-LPS), sustained inflammatory (D, 4 hr post-LPS), and peaked inflammatory (E, 2 hr post-LPS), as well as Tnf transcript (F, 2 hr post-LPS). Positive and

negative values: increased and reduced response, respectively.

(G and I) Scatter plots of two independent immunopurifications (IP) of Paf1 (G) or Rtf1 (I) followed by LC-MS/MS. (Blue dots) Interactors tested by individual sgRNA

experiments for an effect on Tnf expression. (Bold) IP target.

(H and J) Intracellular Tnf staining in cells with sgRNAs targeting Auh (H) or Irf4 (J) (filled), compared to sgRNA controls (lines).

Also see Figure S5, related to Figure 5.
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subunits significantly reduces the expression of the anti-viral

and sustained inflammatory signatures (p = 0.0002 and 0.001,

respectively, t test) and has a weaker, albeit significant (p =

0.01), effect on the peaked inflammatory signature, including

on Tnf mRNA (Figures 5C–5F).

Tobetter understandPAFc’s function,we analyzedPAFc inter-

actors by immunopurification of Paf1 from BMDCs followed by

mass spectrometry (MS) (Figure 5G and Table S4). We re-identi-

fied all known complex components, except Rtf1, and identified

interactions with several RNA-processing factors (Table S4),

including the AU-rich RNA-binding and leucine metabolism pro-

tein AUH (Kurimoto et al., 2009; Nakagawa et al., 1995), an inter-

action confirmedbywesternblot (FigureS5E).Usingan individual

sgRNA targetingAuh (Figure 5H), we found significant reductions

in Tnf levels, whereas Srsf1 did not affect Tnf levels (Figure S5D).

Since AUHbinds AU-richmotifs in 30 UTRs and the stability of the

Tnf transcript is known to be regulated through an AU-rich motif

by three other RNA-binding proteins (AUF1 [Khabar, 2010], Zfp36

[Carballo et al., 1998], and HuR [Dean et al., 2001; Tiedje et al.,

2012]), it would be interesting to test whether AUH also interacts

with the 30 UTR of Tnf directly to regulate RNA levels.

Although Rtf1 interacts with Paf1 in lower organisms (Mueller

and Jaehning, 2002), we did not observe a direct interaction

between PAFc and Rtf1 when immunopurifying either Paf1

(Figure 5G) or Rtf1 (Figure 5I and Table S4). Of four Rtf1 inter-

actors tested (Git1, Git2, Arhgef6, and Irf4), only one, Irf4, signif-

icantly reduced Tnf expression (Figure 5J), consistent with its

ranking in the secondary screen (rank 13). We also found that

Irf4 affects Cd11c (Figure S5C), consistent with previous findings

(Lehtonen et al., 2005; Tussiwand et al., 2012). The interaction

between Irf4 and Rtf1 may suggest that PAFc, Rtf1, and other

accessory proteins can perform immune-specific transcriptional

activation by recruiting sequence-specific transcription factors.

DISCUSSION

We developed a genome-wide genetic screen in primary cells,

based on our previous demonstration that the genomes of

BMDCs from Cas9-expressing mice could be edited effectively

within a relatively short time window ex vivo (Platt et al., 2014).

By focusing on a quantitative cellular marker rather than cell

viability, we illustrate the versatility of pooled screens and pro-

vide an effective approach for screening in primary cells derived

from the Cas9 transgenic mouse. Our secondary pooled screen

illustrates how increases in the number and efficacy of sgRNAs

per gene and number of cells infected per sgRNA can substan-

tially improve the specificity and sensitivity of a pooled screen.

We thus employed a strategy that uses the results of the primary

screen with a relatively permissive FDR threshold to then

guide both a large number of individual sgRNA validation exper-

iments and a secondary screen with a much lower FDR. Using

these approaches, we systematically identified previously un-

recognized regulators of Tnf in response to LPS, including

two conserved protein complexes and many others (e.g., Tti2,

Ruvbl2, Tmem258, Midn, Ddx39b, Stat5b, and Pdcd10).

To determine whether the genes that affect Tnf act through

different cellular pathways, we quantified how these regulators

alter expression of additional protein markers and genome-
10 Cell 162, 1–12, July 30, 2015 ª2015 Elsevier Inc.
wide mRNAs and partitioned the regulators into three modules

that are dominated by known Tlr4 pathway components, the

OST complex or the PAF complex (Figure 3), thus providing clues

for the functions of genes within each module. While we do not

yet have a molecular model for how OSTc and PAFc impact

the TLR pathway, we found that targeting subunits of the

OSTc results in baseline ER stress that is likely regulated by

XBP1 and may contribute to the reduction in TNF response (Cu-

billos-Ruiz et al., 2015). Our unbiased approach reveals how

conserved cellular processes can have relatively specific effects

on a well-defined response, offering a more comprehensive and

unified view of how cellular functions are linked within a cell.

Our genome-wide, unbiased approach allowed us to uncover

new modules and factors even in a heavily investigated immune

pathway and will be useful across diverse biological systems,

especially when coupled with advances in single-cell profiling

that bridge the gap between genome-wide pooled screens and

deep molecular readouts.

EXPERIMENTAL PROCEDURES

For full methods see, see the Supplemental Experimental Procedures.

Pooled Genome-wide CRISPR Screens

For the pooled genome-wide CRISPR screen, BMDCs were isolated from 6- to

8-week-old constitutive Cas9-expressing female mice and used as described

previously (Platt et al., 2014). Cells were infectedwith the pooled lentiviral library

at an MOI of 1 at day 2. At day 9, BMDCs were stimulated with 100 ng/ml LPS,

and after 30 min, Brefeldin A (GolgiPlug, BD Biosciences) was added. After

8 hr of LPS stimulation, cells were harvested, fixed, and stained for Tnf (Ram-

irez-Ortiz et al., 2015) and Cd11c and then FACS sorted (Supplemental Experi-

mental Procedures). The genome-wide screens were performed as three

independent replicates; in the first screen, 60 million infected cells yielded 350

million cells at day 9, while in the second and third screens, 200 million infected

cells yielded 1 billion BMDCs at day 9. The secondary pooled screen (using a

reduced library)wasdoneusing thesameprotocolwith200million infectedcells.

For individual sgRNA experiments, we used a similar protocol, except BMDCs

were infected with high MOI and selected with puromycin (Invitrogen).

Cloning of Individual and Libraries of sgRNAs and Subsequent Viral

Production

For the primary screen, we used the GeCKOv2mouse library in the lentiGuide-

Puro vector (Sanjana et al., 2014). For the secondary screen, we designed

10 sgRNAs per gene (Doench et al., 2014) to target 2,569 of the top genes

(Table S5) in the DE analysis of the primary screen and added 2,500 non-tar-

geting sgRNAs (Table S5). For library construction, we used a previously pub-

lished protocol (Shalem et al., 2014). For individual sgRNA cloning, pairs of

oligonucleotides (IDT) with BsmBI-compatible overhangs were separately an-

nealed and cloned into the lentiGuide-Puro plasmid (also available at Addg-

ene, plasmid #52963) using standard protocols. Lentivirus was made using

293T cells transfected with lentiGuide-Puro, psPAX2 (Addgene 12260), and

pMD2.G (Addgene 12259) at a 10:10:1 ratio, using Lipofectamine LTX and

plus reagents according to the manufacturer’s instructions.

Amplification and Sequencing of sgRNAs from Cells

After sorting, DNA was purified using QIAGEN DNeasy Blood & Tissue Kit ac-

cording to the manufacturer’s instruction. PCR was performed as previously

described (Shalem et al., 2014), and the PCR products were sequenced on

a HiSeq 2500. The reads were aligned to the sgRNAs using Bowtie 1 (Lang-

mead et al., 2009).

Analysis of Screen

To score sgRNAs and genes based on their abundance in the different bins,

we used two strategies: in the first (DE), we normalized the raw reads and
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averagedon all the sgRNAsper gene and then performeddifferential expression

analysis on three biological repeats using the R package DESeq2 (Love et al.,

2014), which fits a negative binomial generalized linear model (GLM). In the sec-

ond strategy (ZS), we combined all low and high bins from the three experiments

intoa singlepair ofTNFlowandTNFhi bins, and fold changesofTNFlow/TNFhiwere

Z score normalized. To collapse to gene level, the mean of the top four ranked

sgRNAs was taken for positive regulators and the bottom four ranked sgRNAs

for negative regulators. For the secondary screen, we used all sgRNAs in both

methods. All of the ranks in the paper are based on ZS unless otherwise noted.

Analysis of Protein and RNA Expression

Day 9 differentiated and transduced BMDCswere activated with LPS for 0, 2, 4,

and 6 hr for the RNA-seq experiments or for 8 hr before stainingwith Il-6,MIp1a,

CD11c, and CD14 antibody. Cells with gene-specific sgRNAs were compared

to those with non-targeting sgRNAs. For RNA purification, we used QIAGEN

RNAeasy 96 Kit and constructed RNA libraries using the SMART-seq2 protocol

(Picelli et al., 2013) in a 96-well plate format followedbyNextera XTDNASample

Preparation (Illumina) and deep sequencing on a HiSeq 2500.

Protein Immunopurification

For each IP, 20 million unstimulated BMDCs were used. Each Paf1 or Rtf1 IP

was always performed in parallel to a control IP and in two independent repli-

cates. In one replicate of the experiment, the digested proteins were labeled

with iTRAQ, and in the second replicate, they were labeled with TMT10plex.

ACCESSION NUMBERS

The RNA-Seq data is deposited in the Gene Expression Omnibus (GEO:

GSE67164). The sgRNA sequencing data is deposited in http://www.

broadinstitute.org/pubs/TNF_CRISPR_DCs/. The processed mass spectrom-

etry data is reported in Table S4, and raw mass spectrometry data is available

upon request.
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Supplemental Figures

Figure S1. Quality Measures of a Genome-wide Pooled CRISPR Screen in Mouse Primary DC, Related to Figure 1

(A) Reproducibility. Shown are scatterplots comparing the log2(quantile normalized read counts) of sgRNAs between two replicate screens for the lowest bin (left),

2nd lowest bin (middle), and highest bin (right). Pearson correlation coefficient (r) is shown in top left corner. (B-E) Top ranked screen hits compare well between

the DESeq and Z-score approaches. (B,C) Scatter plots compare the ranks based on the DE-Seq approach (x axis) and Z score approach (y axis) for either

positive regulators (B) or negative regulators (C) among the top-100 ranked genes. The Spearman rank correlation coefficient (r) is noted. (D, E) Shown is the

Jaccard index between the Z-score and DE-Seq based approaches (y axis, intersection over union) for sliding windows of 50 genes from top of the ranked lists

(x axis) for the true ranking (black) and with random shuffling (gray) of the Z-score ranks, for either the positive (D) or negative (E) regulators. The signal is

diminished at rank �150 and �50 for positive and negative regulators, respectively. (F) sgRNAs that target translation genes are enriched in the ‘‘Input’’ library

versus ‘‘Pre-LPS.’’ Left: Scatterplot compares the normalized fold change in sgRNAs (Input / Pre-LPS) to the mean abundance in the two libraries. Middle and

Right: Distribution of the normalized fold change (Input / Pre-LPS; y axis) in either sgRNAs (middle) or genes (right; mean of the top 4 ranked sgRNAs). Orange:

translation genes; black: all genes; gray: non-targeting controls. (G) sgRNAs targeting known regulators of LPS response are highly significant in DE-Seq analysis.

MA-plots compare for either sgRNAs (left) or genes (right), the DE-Seq calculated fold-change between TNFhi and TNFlow (y axis) to the mean abundance of the

sgRNA or gene. (H) Screen hits are more likely to be expressed post-LPS and at higher level than all other genes. Violin plots show the distribution of mean

expression (y axis) along LPS stimulation (0h, 2h, 4h, 6h) in control cells, for top-169 hits (right) and for all other genes (left).
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Figure S2. Assessing False Negatives, Negative Regulators, and Analysis of the Secondary Library, Related to Figure 2

Each panel in A-D shows flow cytometry staining of intracellular Tnf levels (x axis) for each targeted gene (colored histogram; gene name in top left corner)

compared to sgRNA controls (black curves). (A, B) Determining the false negative rate. Known regulators of the LPS response that did not rank within the top-100

in the screen were tested individually by single sgRNAs followed by Tnf staining and flow cytometry (Figure 2A). (A) 8 tested genes did influence Tnf expression

and are considered false negatives. (B) 6 tested genes did not influence Tnf expression and are considered true negatives. (C-E) Sensitive validation of novel

negative regulators requires screening at unsaturated levels of Tnf. BMDCs transduced with single sgRNAs targeting candidate negative regulators from the

screen, and stained with anti-Tnf antibody after stimulation with either (C) 100ng/mL LPS (two different sgRNAs shown for each gene) or (D) 20ng/mL LPS (single

sgRNA shown for each gene). (E) BMDCs transduced with an sgRNA targeting Stat5b were stained with Cd11c antibody. (F-G) Secondary library sgRNAs

targeting known regulators of LPS response (orange) have highly significant Z-scores, compared to those targeting other genes (black) and non-targeting

controls (gray). Shown are MA-plots that relate for either sgRNAs (F) or genes (G) the fold-change or z-score, respectively, between TNFhi and TNFlow (y axis) to

themean abundance of the sgRNA or gene (x axis). (H) Top ranked screen hits comparewell between theDE and ZS approaches. Scatter plot compares the ranks

of each gene by the DE (y axis) and ZS (x axis) approaches, for the top ranked 200 genes, of which they share 170. The Spearman rank correlation coefficient is

noted at the upper left corner. (I) Secondary screen improves specificity. Shown are the theoretically estimated FDRs (y axis), based on shuffling the guides before

collapsing to genes, for the secondary screen (orange) and the primary screen (calculated as elsewhere based on top 4 sgRNAs, black; or according to all

sgRNAs, gray). The empirical FDR for the first screen, as determined by validation experiments, is marked by light blue at all ranks up to 100.
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Figure S3. Partitioning of the Validated Positive Regulators into Key Modules by Their Effect on Protein Markers and RNA Profiles and the

Effect of Brefeldin A, Related to Figure 3

(A) Positive regulators group by distinct effects on protein expression. For each sgRNA targeting a positive regulator (rows) shown are its effects (Z score for each

marker compared to non-target sgRNA; Experimental Procedures) on the expression of each of five proteins (columns) measured by staining with antibodies

(Experimental Procedures). Three broad categories of responses can be defined, each preferentially associated with distinct proteins. Based on this matrix,

sgRNAswere collapsed to score gene level effects as in Figure 3A. (B-E) Positive regulators partition tomodules based on their effect onmRNA profiles over time.

Shown are clustered correlation matrix of verified positive regulators (rows, columns) based on global RNA expression profiles in cells where the regulator is

targeted relative to non-targeting control (Experimental Procedures). Data from each time point is analyzed and clustered (B) t = 0h; (C) t = 2h; (D) t = 4h; (E) t = 6h).

Genes in 3 key categories are color coded as in (A). Color bar is the Pearson correlation coefficient. Matrices are exactly as shown in Figure 3D-F, except that a

matrix is also shown for t = 6h, and that gene names are labeled. (F) Effect of Brefeldin on the expression of the different modules. Violin plots show for each

validated regulator (dot) the ratio of expression values (log(TPM+)) when comparing between Brefeldin versus no Brefeldin conditions, in each of 3 modules and

TNF (x axis).
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Figure S4. Sequence Analysis of Sorted Mutants and the Effect of Knockout OSTc Subunits on Different Markers, Related to Figure 4

BMDCs were transduced with sgRNA targeting the indicated gene ((A) Paf1, (B) Dad1 and (C) Cd14; marked on top), stimulated with LPS, and flow-sorted based

on high or low Tnf antibody staining. Genomic DNAwas isolated from sorted cells (‘‘low Tnf’’ and ‘‘high Tnf’’), unsorted cells (‘‘Pre-sort’’), and cells without relevant

sgRNA (control; only in A and C). The region surrounding the sgRNA target site was amplified and sequenced to analyze mutational composition of the targeted

locus. (D) Each panel shows flow cytometry staining of the levels (x axis) of each of five protein markers (from left to right: Tnf, Cd11c, Cd14,Mip1a, Il6) in cells with

individual sgRNA targeting specific genes (colored histogram; gene name on top) compared to sgRNA controls (black curves). Data is shown (from top to bottom)

for three representative members of OSTc (Ddost, Rpn1, Rpn2), and two other members of the module: Alg2 and Tmem258.
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Figure S5. The PAFc Module, Related to Figure 5

(A-D) Each panel shows flow cytometry staining of either intracellular Tnf levels (A, B, D; x axis) or Cd11c levels (C, x axis) for each targeted gene (colored

histogram; gene name in top left corner) compared to sgRNA controls (black curves). (E) Validation of Paf1 and Auh interaction by western blot. Shown are the

immunopurifications (IPs) in BMDCs performed with either Paf1 antibody (PAF) or IgG antibody (Control). Input or IP samples were incubated with either Paf1

antibody (top) or Auh antibody (bottom). IPs were performed in unstimulated BMDCs (LPS ‘‘-‘‘) or in BMDCs stimulated with LPS for 2h (LPS ‘‘+ ‘‘).
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Supplemental Experimental Procedures 

 

Bone marrow derived dendritic cells (BMDCs)  

All animal protocols were reviewed and approved by the MIT / Whitehead Institute / 

Broad Institute Committee on Animal Care (CAC protocol 0609-058-12). To obtain 

sufficient number of cells, we implemented a modified version of the DCs isolation 

protocol as previously described (Amit et al., 2009; Chevrier et al., 2011; Garber et al., 

2012; Lutz et al., 1999). Briefly, for all CRISPR knockout experiments six- to eight-week 

old constitutive Cas9-expressing female mice were used as described previously (Platt et 

al., 2014). For all other experiments C57BL/6J female mice were obtained from the 

Jackson Laboratories. RPMI medium (Invitrogen) supplemented with 10% heat 

inactivated FBS (Invitrogen), β-mercaptoethanol (50µM, Invitrogen), L-glutamine (2mM, 

VWR), penicillin/streptomycin (100U/ml, VWR), MEM non-essential amino acids (1X, 

VWR), HEPES (10mM, VWR), sodium pyruvate (1mM, VWR), and GM-CSF (20 

ng/ml; Peprotech) was used throughout the study.  

 

Primary and Secondary Screen  

At day 0, cells were collected from femora and tibiae and plated in 100mm non tissue 

culture treated plastic dishes using 10ml medium per plate at concentration of 2 × 105/ml. 

At day 2, cells were infected with the pooled lentiviral library at an MOI of 1 and 6 hours 

later fed with another 10ml of medium per dish. At day 5, 12ml of the medium were 

carefully removed (to avoid removal of cells) and 10ml of fresh medium were added back 

to the original dish. Cells were fed with another 5ml medium at day 7. At day 8, all non-



adherent and loosely bound cells were collected and harvested by centrifugation. Cells 

were then re-suspended with medium, plated at a concentration of 10x106 cells in 10ml 

medium per 100mm dish. At day 9, cells were stimulated for various time points with 

LPS (100ng/ml, rough, ultrapure E. coli K12 strain, Invitrogen) and harvested.  

For the primary screen we sorted the cells as shown in Figure 1B, each of the three bins 

containing approximately 5% of the cells. For the secondary screen, we sorted the cells to 

two bins: low (15%) and high (5%). The sorted cells in the low bin were divided to 

three samples and the libraries were prepared separately. 

Volumes were adjusted in proportion for different sized plates or wells (e.g. 96 well 

plates), but cells were always plated at concentration of 2 × 105/ml at day 0.   

 

Individual sgRNA CRISPR knockout experiments  

Individual sgRNA mediated CRISPR knockout experiments were performed as described 

previously (Platt et al., 2014). Briefly, BMDCs were isolated and grown as described 

above, but in addition were infected with lentiviruses encoding sgRNAs of interest at 

high MOI at day 2. Cells were expanded in the presence of GM-CSF. At day 6, infected 

cells were selected by adding puromycin (Invitrogen) at 5 μg/ml. At day 9, cells were 

stimulated with LPS for the appropriate time and harvested. For subsequent antibody 

staining (e.g., anti-Tnf), cells were stimulated with 100 ng/ml LPS (or 20 ng/ml for a 

number of potential negative regulators; see Results) and after 30min Brefeldin A 

(GolgiPlugTM, BD Biosciences) was added to trap secreted protein within the cells. 8h 

post LPS stimulation the cells were harvested, fixed and stained. 

 



Virus production  

To produce lentivirus for the screen, we used the GeCKOv2mouse library in the 

lentiGuide-Puro vector (Sanjana et al., 2014). 10cm plates of 70% confluent 293T cells 

were transfected with 9 μg of the plasmid library, 9 μg of PAX2 vector (Addgene) and 

0.9 μg pVSVg using Lipofectamine® LTX and plus reagents according to the 

manufacturer’s instructions.  Supernatant was collected after 48 and 72 hours and then 

spun for 10 min at 4°C (3000 RPM) and then filtered with a 0.45μm membrane (PALL) 

and concentrated using Millipore® Amicon® Ultra-15 Centifugal Filter (40 min at 4°C at 

4000 RPM). The virus was aliquoted and frozen at -80°C. The titer of the virus was 

determined by using BMDC from C57BL/6 mice followed by puromycin selection. 

 

To produce lentiviruses containing individual sgRNAs for all validation and follow-up 

experiments, we used 96 well plates, analogous to the way described above, but with 1% 

of the reagents, without filtering or concentrating the virus. 20μl of the virus was then 

used to infect cells in each well of a 96 well plate and 200 μl to infect cells in each well in 

12 well plates (in both cases the BMDCs were derived from Cas9 expressing mice).  

 

Fluorescent cell staining and FACS 

For the pooled genome-wide and secondary CRISPR screens, BMDC activated with LPS 

in the presence of Brefeldin A were harvested on ice by scraping, washed twice with cold 

PBS, and fixed in 4% formaldehyde (Thermo Scientific) for 10 minutes at room 

temperature. After a further PBS wash, cells were washed with PBS containing 0.1% 

saponin (Sigma) and resuspended in PBS containing 0.1% saponin supplemented with the 



following fluorescent antibodies: eBioscience 12-7321-81 Anti-Mouse TNF alpha PE, 

Biolegend 117309 APC anti-mouse CD11c Antibody diluted 1:200. After an incubation 

of 30 minutes on ice, the stained cells were washed once with PBS containing 0.1% 

saponin, and twice with PBS before sorting.  

 

FACS sorting was performed at the Bauer Core Laboratory, Harvard FAS Center for 

Systems Biology, Cambridge, MA.  In two out of the three replicates of the screen, 

Cd11c+ cells were sorted into three bins. Two bins had low Tnf expression, to capture 

cells containing sgRNA targeting positive regulators. The third bin collected the highest 

5% of Tnf-expressing cells. In the first experiment, the cells were sorted into two bins 

(low and high). The bin boundaries were guided by our observations of Tnf expression in 

cells infected with sgRNAs targeting the known regulators Tlr4, Myd88, and Zfp36 

(Figure 1A). 

 

For non-pooled CRISPR knockout experiments with individual sgRNAs, cell harvesting 

and staining was as described above, with the following modifications. Because of cell 

death caused by puromycin selection of lentivirus-infected cells, dead cells were labeled 

prior to fixation with Fixable Viability Dye eFluor® 520 (eBioscience) in the majority of 

experiments, following the manufacturer’s instructions. In these experiments, each 

sample was divided in half after fixation and stained with two antibody panels. Both 

panels contained Biolegend 117326 PerCP anti-mouse CD11c Antibody. Panel 1 

additionally contained Tnf-PE as described above and eBioscience 17-0141-81 Anti-

Mouse CD14 APC. Panel 2 additionally contained R&D Systems IC450P Mouse 



CCL3/MIP-1 alpha Phycoerythrin mAb, and Biolegend 504508 APC anti-mouse IL-6 

Antibody. In a minority of experiments, cells were stained with only one panel, in the 

same way as for the screen, with the addition of eBioscience 11-0141-82 Anti-Mouse 

CD14 FITC. All antibody dilutions were 1:200, except anti-CCL3/Mip-1 alpha was 1:20. 

Flow cytometry was performed on a BD Accuri C6 cytometer in 96- well plates. Analysis 

was done with FlowJo (Treestar). 

 

In non-pooled CRISPR knockout experiments with individual sgRNAs, low cell growth 

or viability could be caused by sgRNA-mediated mechanisms, or by low lentiviral titer. 

To distinguish between these, we separately transduced BMDC from Cas9 mice and 

C57BL/6 mice (which do not express Cas9). On day 9 of cell growth we harvested the 

cells and measured viability with Fixable Viability Dye eFluor® 520 followed by flow 

cytometry analysis, as described above. An sgRNA was considered to cause a cell growth 

or viability phenotype if the proportion of live cells in Cas9-expressing cells was reduced 

compared to the proportion of live cells in the C57BL/6 cells. Based on these 

experiments, we excluded several genes that reduce viability as well as any guides that 

did not show a consistent phenotype (Table S2). 

 

DNA purification from infected cells and library preparation to determine which 

sgRNAs were expressed in the infected DCs 

 

DNA was purified using Qiagen DNeasy Blood & Tissue Kit according to the 

manufacturer’s instruction. Briefly, the cross-linked cells were first treated with 



Proteinase K and incubated at 55°C for 4h to de-crosslink the DNA. DNA was purified 

according to the kit’s protocol and eluted in 400 µl H2O. We performed two successive 

PCR reactions of 20 cycles each as described previously (Shalem et al., 2014) using 

Herculase II Fusion DNA Polymerase (Agilent). 15µl from the first PCR was used for the 

second PCR (100µl) primers included barcodes as described (Shalem et al., 2014). The 

final PCR product was run on a gel and the right size fragment was gel extracted and 

sequenced on a Hi-seq 2500. On average, we sequenced 4-6 aligned reads per sorted cell 

in each of the bins. 

 

Cloning individual sgRNAs 

Pairs of oligonucleotides (IDT) with BsmBI-compatible overhangs were separately 

annealed and ligated to lentiGuide-Puro plasmid (also available at Addgene, plasmid # 

52963) using standard protocols. sgRNA target sequences were taken from the GeCKO 

library (Sanjana et al., 2014) to validate screen results, or were generated using a 

previously described sgRNA design algorithm (Doench et al., 2014) (Table S5). 

Oligonucleotide pairs were designed as follows: 

Forward: 5’ CACCG<sgRNA target sequence> 3’ 

Reverse: 5’ AAAC<sgRNA target reverse complement>C 3’ 

 

In addition, for the initial calibration experiment (Figure 1A) we used the following 

sgRNAs: 

Myd88 5’ CCCACGTTAAGCGCGACCAA 3’ 

Zfp36%%MGLibA_60687 5’ GGATCTCTCTGCCATCTACG 3’ 



Tlr4%%MGLibA_54042 5’ GATCTACTCGAGTCAGAATG 3’ 

NonTargeting     5’ GGGGTAGGCCTAATTACGGA 3’ 

 

Design and cloning of the secondary library  

For the secondary screen, we targeted the top 2,569 genes in the DE analysis of the 

primary screen. We used the method of (Doench et al., 2014) to design 10 sgRNAs per 

gene and included another 2,500 non targeting sgRNAs (Table S5). For library 

construction we used a previously published protocol (Shalem et al., 2014). Briefly, 

synthesized oligos (Broad Technology Labs) were amplified using the following primers:  

Forward    

TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC 

GAAACACCG  

Reverse ACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCT 

AGCTCTAAAAC  

and cloned to BsmBI (Fermentas) digested lentiGuide-Puro plasmid (also available at 

Addgene, plasmid # 52963) using Gibson ligation reaction (NEB). The ligation reaction 

was performed using molar ratio of 1:5 of the vector to insert.  

 

Electrocompetent Endura™ Competent Cells (Lucigen) were transformed with the 

products of the ligation reaction according to the manufacturer’s protocol using a 

GenePulser (BioRad). 10 parallel transformations were performed and plated onto 245 

mm x 245 mm plates with carbenicillin selection (100 ug/ml), for 16 hours at 32 degrees. 

Colonies were collected and plasmid DNA extraction was made using Endotoxin-Free 



Plasmid Maxiprep (Qiagen). Virus production and all subsequent steps were performed 

as described for the primary screen.  

 

sgRNA sequence analysis 

Raw sequencing reads were converted to FASTA files using fastq_to_fasta (FASTX-

Toolkit http://hannonlab.cshl.edu/fastx_toolkit/), sequences flanking the guides sequence 

were trimmed using cutadapt-1.4.1 (Martin 2011) and the trimmed reads were aligned to 

the sgRNA sequences in the plasmid library using Bowtie 1 (Langmead et al., 2009), 

with no mismatches allowed. To exclude lowly abundant sgRNAs, the lowest 5% 

quantile of guides in the input lentiviral libraries was removed from all samples. 

In the last two replicate experiments of the screen, we found sgRNA contamination that 

resulted from individual sgRNA cloning of the following guides: 

Tlr4%%MGLibA_54042, Tlr4%%MGLibB_54025, Dgke%%MGLibB_14010, 

Dgke%%MGLibA_14019, Rab13%%MGLibB_44085, Rab13%%MGLibA_44099, 

Tnf%%MGLibB_55164, Tnf%%MGLibA_55183. Those guides were discarded from our 

analysis.  

 

Since the C57BL/6 genome was the template for the sgRNA, we assessed the possibility 

that any sgRNA overlapped a single nucleotide polymorphism (SNP) in two additional 

genomes that contributed to the CAS-9 transgenic mice. Specifically, The CAS-9 mice 

were created using 3 different mouse strains, C57BL/6, 129 and FVB. In order to 

examine possible effects of single nucleotide polymorphism (SNP) between the strains on 

the sgRNA efficiency, we compared the coordinates of the SNP data 



(http://www.sanger.ac.uk/resources/mouse/genomes/) to the genomic mappings of the 

sgRNA sequences. Of 119,364 sgRNA sequences perfectly and uniquely matching the 

mm10 genome, only 3,350 sgRNA contained one SNP to one of the other two genomes, 

255 sgRNAs contained 2 SNPs and 34 sgRNAs contained 3 or more SNPs.  

 

Scoring sgRNA enrichment or depletion by differential expression analysis 

To score sgRNAs whose levels are distinct between the TNFlow and TNFhi cells, we used 

a differential expression analysis. First, we combined the two TNFlow bins by averaging 

for each sgRNA its read counts in the two bins. Next, we performed differential 

expression analysis on three biological repeats of TNFlow and TNFhigh bins using the R 

package DESeq2 (Love et al., 2014) that fits a negative binomial generalized linear 

model (GLM). Normalization factors were provided to DESeq2 using non-parametric 

quantile normalization (R package EDASeq, ‘betweenLaneNormalization’). Significant 

differences in abundance in TNFlow versus TNFhigh bins were tested using a likelihood 

ratio test, testing the difference in deviance between a reduced model: counts ~ 

experiment and a full model: counts ~ experiment + TNFlow/TNFhigh.  

 

For the secondary screen, the three “low” TNF libraries were treated as technical 

replicates for the DE analysis, and averaged for the Z score analysis (see below). In 

addition in the secondary screen the default size factor normalization of DESeq2 was 

used and differential expression was tested using a Wald test. 

 

  

http://www.sanger.ac.uk/resources/mouse/genomes/


Scoring sgRNA enrichment or depletion by Z-score analysis 

As a second strategy to score sgRNAs whose levels are distinct between the TNFlow and 

TNFhi cells, we used a Z-score based approach. First, we added one read to all the 

samples, and then quantile normalized the samples. We combined all low and high bins 

from the three experiments, into a single pair of TNFlow and TNFhi bins, using the 

geometric mean of the quantile-normalized values. We performed the same procedure on 

all post-LPS, pre-LPS, and Input libraries. To control for the correlation of fold change to 

mean abundance, fold changes of TNFlow / TNFhi were standard normalized in 12 bins of 

mean abundance (mean of TNFlow and TNFhi), each containing ~10,000 guides. To 

collapse to gene level, the mean of the top four ranked sgRNAs was taken for positive 

regulators, and the bottom four ranked sgRNAs for negative regulators. Empirical P-

values were calculated by randomly assigning sgRNAs to genes and false discovery rates 

(FDR) were assessed using the method (Benjamini and Hochberg 1995).  

 

For the secondary library, we normalized each sample by the total number of reads and 

multiplied by 106. Because the secondary library is enriched for regulators, the fold 

changes of TNFlow / TNFhi were standard normalized with respect to the non-targeting 

guides within each window (6 windows in total). We then averaged on all sgRNAs per 

gene, the non-targeting guides were randomly collapsed to “genes” (10 sgRNAs per 

“gene” to mimic the analysis for the targeting sgRNAs). The ranking in the secondary 

screen section in the Results is based on Z score of positive regulators, the FDR include 

the positive and negative regulators.  

 



In both analysis methods we include only genes that had 4 or more sgRNAs that pass the 

abundance filter.  

1471 sgRNAs perfectly mapped to more than one gene. 1302 genes are affected by this 

redundancy. Of these, for 434 genes, all sgRNAs map to an indistinguishable member(s) 

of a paralogous gene family. We report arbitrarily one of the genes names in Tables S1-

S4 and report the 434 genes names in Table S5. 

For the remaining 868 genes, at least one sgRNA is multiply-mapped, leading to potential 

loss of sensitivity and confounding effects. We report these genes in Table S5. 

 

Classification of known genes that have immune annotation 

We analyzed five major databases of immune gene annotations: Immport (Bhattacharya 

et al., 2014), IRIS (Kelley et al., 2005), Immunome (Ortutay and Vihinen, 2006), MAPK-

NFkB network (Lynn et al., 2008), and the TLR pathway as defined by KEGG (Kanehisa 

and Goto, 2000). Genes that are not included in any of those databases (Table S1) were 

related as “new” or “not previously annotated”. 

 

To define a core gene set known to regulate our model system, we chose the subset of 

KEGG’s TLR pathway genes that can directly connect LPS to Tnf in the pathway map 

found at this link: http://www.genome.jp/kegg-bin/show_pathway?mmu04620. This gene 

set was used for Figure 1E and Figure 2B. 

 

  

http://www.genome.jp/kegg-bin/show_pathway?mmu04620


Identifying significant effects on protein expression  

To assess the impact on marker protein expression by individual sgRNAs and the genes 

they target we used the following procedure. First, for each protein marker and sgRNA, 

we tested for a significant difference between the distribution of protein expression (from 

flow cytometry) measured for the sgRNA and the distribution of protein expression from 

all non-targeting sgRNAs within the same plate, using a KS-test and reporting the KS-

statistic, Dn. We then signed the KS-statistic D by a one-sided Wilcoxon rank sum test. 

For each non-targeting sgRNA we determined an individual KS-statistic Dn using all 

non-targeting sgRNAs within the same plate as described above. To control for any plate 

effects, the KS-statistics within each plate were further standard normalized using the 

mean and standard deviations of the D (KS-statistic) values calculated for the non-

targeting sgRNAs in that plate. Samples that had a cell count lower than 1,500 were 

excluded from further downstream analysis.  

 

Next, we collapsed biological repeats of the same sgRNA using the mean of the Z-scored 

KS-statistic. High quality plates that included live / dead staining were favored over other 

plates; only when no measurement in the high quality plates was available for a given 

sgRNA, the measurements of the low quality plates were included. A tested sgRNA was 

considered a true positive regulator of Tnf if it passed the cutoff of -1.5 Z-score, which 

was determined using the Tnf Z-scores of the non-targeting sgRNAs.  

 

Finally, true positive guides were collapsed to genes by taking the mean of the Z-scored 

KS-statistic across the sgRNAs, again favoring the high quality plates as we did for 



collapsing biological repeats of the same guide. For Figure 3A and Figure S3A, we 

conservatively excluded genes if one sgRNA targeting the gene showed a significant 

effect on a marker  (cutoff -1.5 Z-score) and the other sgRNA did not, and the absolute Z-

score difference was >2.5. Five genes were filtered due to such discrepancies (Tnf, 

Gpkow, Pabpc1, Map3k8, Srpr).  

 

Note, that since the distribution can be multi-modal and skewed in varied ways, we also 

manually visually inspected – independently and blindly to the computational analysis – 

the distributions in each individual experiment and each individual marker. There were 

four discrepancies between the automated and manual calls (Traf6, Akrin2, Ddx39b), and 

they therefore are not presented in Figure 3A. 

 

RNA-Seq 

BMDCs were infected with individual sgRNAs, expanded and differentiated in the 

presence of puromycin (from day 6 onward) in 96 well plates. At day 9, LPS was added 

for 2, 4 or 6 hours with or without Brefeldin (or not added at all – time point 0h). RNA 

was purified using Qiagen RNAeasy 96 Kit according to the manufacturer’s instructions. 

The RNA was eluted in a volume of 50µl. For library construction we used the SMART-

seq2 protocol (Picelli et al., 2013) in a 96 well plate format and with several 

modifications. 2μl of RNA sample per well were mixed with 2µl RT primer (10µM 5 ́-

AAGCAGTGGTATCAACGCAGAGTACT30VN-3 ́), 2µl dNTP mix (10mM each, 

Agilent Technologies) and 2µl Recombinant RNase Inhibitor (RRI-Clontech). This mix 

was incubated for 3min at 72°C and immediately placed on ice. To perform reverse 



transcription (RT) we added a mix of 1.5µl H2O, 4µl Maxima buffer (ThermoFisher 

Scientific), 4µl Betaine (5M SIGMA-ALDRICH), 1.8µl MgCL2, 2µl TSO (10µM 

AAGCAGTGGTATCAACGCAGAGTACrGrG+G), 0.5µl RRI and 0.2µl Maxima H 

Minus Reverse Transcriptase enzyme (ThermoFisher Scientific). We incubated the RT 

reaction mix at 42°C for 90 min followed by 10 cycles of 50°C for 2 min, 42°C for 2 min, 

afterwards heat inactivated the enzyme for 15 min at 70°C. We used 11µl of the RT 

reaction for the PCR reaction by adding 12.5µl KAPA HiFi Hotstart (KAPA 

Biosystems), 1µl H2O and 0.5µl of (10µM 5’-AAGCAGTGGTATCAACGCAGAGT-3 ́) 

primer under the following conditions: 98°C for 3 min, 14 cycles of (98°C for 15 sec, 

67°C for 20 sec, 72°C for 6 min), final extension at 72°C for 5 min. The PCR product 

was used for library preparation with Nextera XT DNA Sample Preparation (Illumina) 

according to the manufacturer’s instructions. Samples were combined and purified using 

Ampure XP Agencourt beads (Beckman Coulter) and sequenced on a Hi-Seq 2500 

(Illumina), to generate paired-end 25bp reads. Each sample was sequenced to an average 

depth of four million reads (IQR-2.3 -5.5 million). 

 

RNA-seq analysis 

We created a Bowtie index based on the mm9 mouse reference genome, and then aligned 

paired-end reads directly to this index using Bowtie v 0.12.7 (Trapnell et al., 2009). Next, 

we ran RSEM v1.11 (Li and Dewey, 2011) with default parameters on these alignments 

to estimate expression levels. RSEM’s gene level expression estimates (tau) were 

multiplied by 1,000,000 to obtain transcript per million (TPM) estimates for each gene. 

To transform expression levels to log-space, we took the log2(TPM+1). Sequencing 



libraries that correlated poorly (Pearson r<0.8) with the majority of samples or had fewer 

than 500,000 expected counts across the transcriptome were removed from further 

analysis. 

 

The log2(TPM+1) values were then quantile normalized, which reduced the coefficient of 

variation for each gene across samples. Without batch correction, samples separated 

strongly according to the experiment and plate in the first two principal components 

within a given time point. Batch correction was performed using the SVA package in 

R (Leek et al., 2012) using ComBat (Johnson et al., 2007). The primary known batch 

covariate was the plate on which the sample was processed. After batch correction, the 

effects associated with batch were attenuated. 

 

To determine mRNAs whose expression is affected by knockout of individual genes, we 

first collapsed expression profiles from multiple sgRNAs that target the same gene, as 

long as those sgRNAs had expression profiles that were significantly correlated. To 

determine with sgRNAs had significantly correlated profiles, we compared their pair-

wise linear (Pearson) correlation to a background distribution of Pearson correlation 

coefficients between non-targeting sgRNAs and all other sgRNAs within a time point.  

We then averaged the batch-corrected log2(TPM+1) data for all sgRNAs targeting the 

same gene whose pair-wise correlations exceeded the threshold of one standard deviation 

from the background distribution. Finally, we Z-transformed the expression profiles 

(collapsed from guides to genes) relative to the expression values for non-targeting 

sgRNAs at the same time point. We set a threshold for significance of the effect of a 



perturbed gene on a target mRNA to a Z-score of four. We clustered the collapsed and Z-

transformed profiles using hierarchical agglomerative clustering with complete linkage 

and a Pearson correlation (Figure 3D).  

 

To identify genes that are differentially expressed between a set of experiments involving 

members of one module or complex vs. other modules or non-targeting controls (as per 

Figure 4B-F) we used differential expression analysis with the Wald test in the DESeq2 

package (Love et al., 2014) with default parameters using the expected counts from 

RSEM. Batch correction was taken into account in the experimental design. Analysis of 

differential expression by complex/module was performed between the expression 

profiles from all samples transduced with sgRNAs targeting the complex to the 

expression of samples containing non-targeting sgRNAs collected at the same time point.  

 

Paf1 and Rtf1 Immunopurification (IP) followed by quantitative mass spectrometry 

to identify interaction partners  

For each IP 20 million unstimulated BMDCs (day 9) derived from C57BL/6J female 

mice were used. Paf1 IP was performed by using anti-Paf1 antibody (Bethyl 

Laboratories, A300-173A) and Rtf1 IP by using anti-Rtf1 antibody (Bethyl Laboratories, 

A300-178A). Control IPs were performed with a rabbit IgG control antibody (Bethyl 

Laboratories, P120-101). Each Paf1 or Rtf1 IP was always performed in parallel to a 

control IP and in two independent replicates.  

 



BMDCs were harvested and washed twice with ice-cold PBS and lysed for 30 min in 

400μl ice-cold lysis buffer (150mM NaCl, 50mM Tris/HCl pH 7.5, 1% IGPAL-CA-630 

(Sigma, #I8896), 5% Glycerol, 2μg/mL aprotinin (Sigma, A6103), 10μg/mL leupeptin 

(Roche, #11017101001), 1 mM PMSF (Sigma, 78830). Lysates were centrifuged at 

14,000g for 10 min. In parallel, 100μl of Protein G Dynabeads (Life Technologies) per IP 

were washed 3 times in 500μl lysis buffer. Cleared lysate, washed Protein G Dynabeads 

and 10μg of antibody were all mixed together in a 1.7ml Eppendorf tube and incubated 

on a rotator at 4°C overnight (16-18 hours). After overnight incubation, the supernatant 

was removed, the beads washed twice with 500μl ice-cold wash buffer (150mM NaCl, 50 

mM Tris/HCl pH 7.5, 5% Glycerol) + 0.05% IGPAL-CA-630 (Sigma, #I8896) and two 

additional times with 500μl ice-cold wash buffer only. The beads were then incubated 

with 80μl urea/trypsin buffer (2M urea, 50mM Tris/HCl pH 7.5, 1mM DTT, 5μg/ml 

Trypsin (Promega)) for 1 hour at 25°C on a shaker (1,000 rpm) in order to release the 

bound proteins by an on-bead protein digest. Next, the supernatant was transferred to a 

new Eppendorf tube and the beads were washed twice with 60μl urea buffer (2M urea, 

50mM Tris/HCl pH 7.5). The supernatant of the two washes and the on-bead digest were 

combined (total of 200μl), centrifuged at 5,000g in order to remove residual beads and 

the supernatant was further processed for mass spectrometry. 

 

Disulfide bonds were reduced with 5mM dithiothreitol (DTT) and cysteines were 

subsequently alkylated with 10mM iodoacetamide. Samples were further digested by 

adding 0.5μg sequencing grade modified trypsin (Promega) at 25°C. After 16 h of 

digestion, samples were acidified with 1% formic acid (final concentration). Tryptic 



peptides were desalted on C18 StageTips according to (Rappsilber et al., 2007) and 

evaporated to dryness in a vacuum concentrator. 

 

Desalted peptides of the first repeat of the IPs (replicate 1) were labeled with the iTRAQ 

reagent according to the manufacturer’s instructions (AB Sciex) and as previously 

described (Mertins et al., 2012). Briefly, 0.5 units of iTRAQ reagent were used per IP. 

Peptides were dissolved in 15μl of 0.5 M TEAB pH 8.5 solution and the iTRAQ reagent 

was added in 35μl of ethanol. After 1 h incubation the reaction was stopped with 100 mM 

Tris/HCl (pH 8.0). Differentially labeled peptides were mixed and subsequently desalted 

on C18 StageTips (Rappsilber, Mann, and Ishihama 2007) and evaporated to dryness in a 

vacuum concentrator. Peptides were reconstituted in 10μl 3% MeCN/0.1% formic acid. 

LC-MS/MS analysis was performed as previously described (Mertins et al., 2013).  

 

Desalted peptides of the second repeat of the IPs (replicate 2) were labeled with the 

TMT10plex mass tag labeling reagent according to the manufacturer’s instructions 

(Thermo Scientific) with small modifications. Briefly, 0.1 units of TMT10plex reagent 

was used per IP. Peptides were dissolved in 10μl of 50mM Hepes pH 8.5 solution and the 

TMT10plex reagent was added in 4.1μl of MeCN. After 1 h incubation the reaction was 

stopped with 1 μl 5% Hydroxylamine for 15 min at 25°C. Differentially labeled peptides 

were mixed and subsequently desalted on C18 StageTips (Rappsilber et al., 2007) and 

evaporated to dryness in a vacuum concentrator. Peptides were reconstituted in 20 ul 3% 

MeCN/0.1% formic acid. LC-MS/MS analysis was performed as previously described 

(Mertins et al., 2013).  



 

All mass spectra were analyzed with MaxQuant software version 1.5.2.8 (Cox and Mann, 

2008) using the mouse UniProt database (July 2014) (UniProt, 2015). MS/MS searches 

for the proteome data sets were performed with the following parameters: Oxidation of 

methionine and protein N-terminal acetylation as variable modifications; 

carbamidomethylation as fixed modification. Trypsin/P was selected as the digestion 

enzyme and 2 missed cleavages per peptide were allowed. The mass tolerance for 

precursor ions was set to 20 p.p.m. for the first search (used for nonlinear mass re-

calibration) and 6 p.p.m. for the main search. Fragment ion mass tolerance was set to 20 

p.p.m. For identification, we applied a maximum FDR of 1% separately on the protein 

and peptide level. We required 2 or more unique/razor peptides for protein identification 

and a ratio count of 2 or more for protein quantification per replicate measurement in at 

least one of the two replicates. 

 

We calculated for each protein the log2 ratio between each candidate IP (Paf1 or Rtf1) 

over its control IP (rabbit IgG) for each replicate independently. We then subtracted for 

each replicate and IP the median of the distribution of the log2 transformed values (across 

all proteins that passed our filter: quantified in both replicates and in at least one replicate 

by two or more unique/razor peptides for protein identification and a ratio count of 2 or 

more for protein quantification) from the individual log2 ratios of each protein, to center 

the log2 ratio distribution around 0. Proteins with a log2 ratio > 0.8 (> 1.7 fold) in both 

replicate IPs were considered to be interactors. 

 



Verification of the Paf1 and Auh interaction by Western blot 

We performed Western plot on the cleared cell lysate (=Input) and the Protein G 

dynabeads after overnight incubation with the cell lysate and either Paf1 antibody or 

control rabbit IgG and the subsequent four washes (IP). We used anti-Paf1 antibody 

(Bethyl Laboratories, A300-173A) and anti-Auh antibody (ABCAM, ab155980). 

 

DNA sequencing of cut site 

To quantify the fraction of sequencing reads that reflect loss-of-function alleles we 

examined their alignments to the genomic target region. First, we excluded contaminating 

reads that do not have an exact match to at least one 20bp segment in the genomic target 

region. Second, we used Smith-Waterman local alignment and identified all mismatches, 

insertions and deletions (indels) in the read relative to the aligned portion of the genomic 

target region. We focused on indels, since the effect of mismatches on protein function is 

not easily predicted. We then calculated the combined length of the shift due to the 

remaining indels, i.e., the total length of insertions minus the total length of deletions. 

Note that most reads contain only a single indel. All reads with indels whose combined 

length is not a multiple of three were defined as frame-shift reads and thus loss-of-

function alleles, while all other non-excluded reads were defined as functional alleles. 

 

Accession numbers 

The RNA-Seq data is deposited in the Gene Expression Omnibus accession number 

GSE67164. The sgRNA sequencing data is deposited in 

http://www.broadinstitute.org/pubs/TNF_CRISPR_DCs/ 

http://www.broadinstitute.org/pubs/TNF_CRISPR_DCs/


 The processed mass spectrometry data is reported in Table S4 and raw mass 

spectrometry data is available upon request. 
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