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2

Abstract 
2 0

Wnt proteins control multiple cell behaviors during development and tissue homeostasis.  
2 1

However, pathological activation of Wnt signaling is the underlying cause of various 
2 2

human diseases.  The ubiquitin-proteasome system plays important regulatory functions 
2 3

within the Wnt pathway by regulating the activity of several of its core components.  
2 4

Hence, multiple E3 ubiquitin ligases have been implicated in its regulation.  Less is known 
2 5

however about the role of Ubiquitin specific proteases in Wnt signaling.  The analysis of 
2 6

purified AXIN-containing protein complexes by LC-MS/MS revealed the presence of the 
2 7

Ubiquitin protease USP34.  Our results indicate that USP34 functions downstream of the -
2 8

CATENIN destruction complex to control the stability of AXIN and opposes its 
2 9

TANKYRASE-dependent ubiquitination. Reflecting on the requirement for tight control of 
3 0

AXIN homeostasis during Wnt signaling, interfering with USP34 function by RNA 
3 1

interference leads to the degradation of AXIN and to inhibition of -catenin-mediated 
3 2

transcription. Given the numerous human diseases exhibiting spurious Wnt pathway 
3 3

activation, the development of USP34 inhibitors may offer a novel therapeutic opportunity. 
3 4

 
3 5

 
3 6
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Introduction 
4 0

 
4 1

During embryonic development and tissue homeostasis in adults, the Wnt family of 
4 2

secreted glycoproteins modulates several cell behaviors including differentiation, proliferation, 
4 3

cell movement and polarity (32, 37).    Malfunctioning Wnt-activated signaling pathways are 
4 4

associated with multiple human diseases including cancer (10, 38).  The etiology of colon 
4 5

carcinoma is a particularly striking example that reflects the critical importance of the integrity 
4 6

of this signaling cascade during intestinal epithelium homeostasis (45).  Approximately 80% of 
4 7

all colon cancers are molecularly rooted in mutations of Wnt pathway components. These 
4 8

primarily consist of inactivating mutations in the gene coding for the tumor suppressor 
4 9

Adenomatous Polyposis Coli (APC) (44, 47, 51) but also of activating mutations in the 
5 0

transcription factor d-catenin (39) and loss of function mutations in the scaffolding protein Axin 
5 1

(22).  
5 2

APC and Axin are the core components of a cellular machinery dubbed the “destruction 
5 3

complex” that promotes the phosphorylation of the cytoplasmic pool of d-catenin (24). Axin, 
5 4

through binding to the destruction complex kinases Casein Kinase 1 alpha (CK1c) and Glycogen 
5 5

Synthase Kinase 3 (GSK3), orchestrates d-catenin phosphorylation (31). Phospho-d-catenin is in 
5 6

turns recognized by the SCF
d-TrCP 

(Skp1-Cullin1-FBOX) E3 ubiquitin ligase that 
5 7

polyubiquitinates d-catenin and promotes its proteolysis by the proteasome (26, 59). The 
5 8

destruction complex thereby maintains low levels of cytosolic d-catenin in the absence of Wnt 
5 9

stimulation.  The recognition of Wnt ligands by the cell surface receptor complex Frizzled-
6 0

LRP5/6 leads to the activation of Dishevelled (Dsh) (62), which promotes the GSK3- and CK1i- 
6 1



4

dependent phosphorylation of the LRP5/6 cytosolic domain (12, 63). The phosphorylated 
6 2

LRP5/6 cytosolic domain acts as a high affinity binding site for Axin (36, 53) that is suspected to 
6 3

inactivate the destruction complex and to lead to d-catenin accumulation.  Stabilized d-catenin 
6 4

can then enter the nucleus and co-operate with LEF/TCF transcription factors to regulate Wnt-
6 5

dependent transcriptional programs in a context dependent fashion (50).   
6 6

The ubiquitin proteasome system (UPS) is emerging as master regulator of Wnt 
6 7

signaling, controlling the pathway at multiple levels.  In addition to the well-characterized 
6 8

function of the SCF
d-TrCP

 E3 ligase for d-catenin ubiquitination in the absence of Wnt-driven 
6 9

signals (17, 26, 59), other proteins of the pathway are either targeted for degradation or regulated 
7 0

by the UPS.  The ubiquitination of APC (9, 56) and Dishevelled (3, 54), for instance, leads to 
7 1

their proteasome-mediated degradation or to degradation-independent functional regulation.  
7 2

This dual regulation by the UPS depends on whether K48- or K63-linked ubiquitin chains are 
7 3

involved.  Although the E3 ubiquitin ligase for APC has not been identified, this process is 
7 4

thought to involve Axin, at least for the situation where APC is degraded (56).  Another example 
7 5

is the post-translational control of Dsh stability by the Cullin3-KLHL12 E3 ligase (3).  
7 6

Consistent with roles in both d-catenin-dependent and -independent Wnt pathways for Dsh, the 
7 7

activity of this E3 ligase was shown to impact both pathways in Xenopus and zebrafish embryos.  
7 8

Axin has also been postulated to be regulated through the modulation of its stability, which 
7 9

might be a necessary step for the activation of the d-catenin pathway (27, 58).  The precise 
8 0

mechanisms regulating the degradation of Axin are however not known at present but its 
8 1

parsylation by Tankyrase and its sumoylation have recently been shown to control its ubiquitin-
8 2

dependent degradation (20, 23).   
8 3



5

Due to the multiple roles of the UPS in Wnt signaling, it is likely that members of the 
8 4

ubiquitin specific proteases (USP) (also termed de-ubiquitinating enzymes or DUBs) regulate 
8 5

some of these events and could therefore have important functional roles in Wnt signaling.  An 
8 6

estimated 79 USPs are present in humans that function to remove ubiquitin conjugates from 
8 7

target proteins (43).  Supporting the possibility that USPs may regulate Wnt signaling, recent 
8 8

report have identified the ubiquitin protease Trabid (56) and USP4 (64) as novel regulators of 
8 9

this pathway.  Trabid regulates APC function through the editing of its K63-conjugated chains 
9 0

whereas USP4 regulates TCF4 (64). 
9 1

A recurrent theme in Wnt signal transduction is the re-utilization of Wnt pathway 
9 2

components in different subcellular compartments, often to perform alternate functions.  For 
9 3

example, Dsh has been localized to punctate structures within the cytoplasm (7, 49) or to the 
9 4

plasma membrane upon Wnt activation of the Frizzled-LRP receptor complex (5, 62).  However, 
9 5

other studies have shown that Dsh is also translocated to the nucleus where it performs a required 
9 6

but ill-defined role during Wnt signaling (15, 21).  d-catenin-independent Wnt signaling also 
9 7

likely involves the re-localization of Dsh to additional subcellular structures in order to modulate 
9 8

cytoskeleton-associated processes (4).   Likewise, GSK3 acts primarily as a negative regulator of 
9 9

Wnt signaling by promoting the phosphorylation of d-catenin.  However, as mentioned above, 
1 0 0

GSK3 also plays a positive role, at the plasma membrane, via the phosphorylation of the LRP5/6 
1 0 1

Wnt co-receptor (12, 63) and has also been found to have nuclear roles (8).  Similarly, in 
1 0 2

addition to its task in the destruction complex, a nuclear role has been proposed for APC in Wnt 
1 0 3

signaling.  Indeed, APC contains bipartite nuclear localization and nuclear export signals that 
1 0 4

promote its nuclear cytoplasmic shuttling (18, 40, 46).  Nuclear APC antagonizes d-catenin-
1 0 5

mediated transcription either by the modulation of d-catenin nuclear export (18), the 
1 0 6



6

sequestration of d-catenin away from an active transcription complex (41) or via its association 
1 0 7

with transcriptional repressors (16).  In contrast, a recent genetic screen in Drosophila uncovered 
1 0 8

a positive functional role for APC homologs in Wg signaling (52). It is therefore a common 
1 0 9

theme in Wnt signaling that its effectors are re-utilized in a context-dependent manner. 
1 1 0

 Axin, normally associated with the destruction complex, does not escape this trend as it 
1 1 1

is recruited to the activated and phosphorylated LRP5/6 co-receptor (36, 53) at the plasma 
1 1 2

membrane.  Moreover, Axin is also known to shuttle between the nucleus and the cytoplasm (11, 
1 1 3

57) and is greatly enriched in the nucleus of diverse cancer cell lines and tissues (1, 29, 48, 60).  
1 1 4

However the precise function of nuclear Axin in Wnt signaling is not well understood.   
1 1 5

Here, using a proteomic approach we show that Axin associates with Ubiquitin-Specific 
1 1 6

Protease 34 (USP34).  Our results indicate that USP34 controls the levels of Axin and positively 
1 1 7

modulate Wnt signaling by acting downstream of d-catenin stabilization through controlling the 
1 1 8

nuclear accumulation of Axin.   
1 1 9

 
1 2 0

Materials and methods 
1 2 1

 
1 2 2

Plasmids 
1 2 3

Human AXIN1 and AXIN2 cDNAs were cloned by PCR from a human brain cDNA 
1 2 4

library into the pGLUE tandem-affinity purification plasmid (3) that contains streptavidin (SBP) 
1 2 5

and calmodulin binding peptides (CBP) to generate pGLUE-hAXIN1 and pGLUE-hAXIN2. 
1 2 6

AXIN1 was also cloned downstream of a cDNA coding for the Venus fluorescent protein in the 
1 2 7

pIRES-puro vector to generate the pIRES-puro-Venus-hAXIN1 plasmid.  Human point mutant 
1 2 8

く-CATENIN (pt.mutant-jくECVGPKP-CBP-HA-SBP) (34) and human DISHEVELLED-2 
1 2 9



7

(pGLUE-hDSH2) (3) were described previously.  USP34core (residues 1892-2241) was 
1 3 0

expressed and purified as a HIS-tagged protein from E. coli. USP2core was expressed and 
1 3 1

purified as previously described (42). All PCR amplified regions were sequence validated.  
1 3 2

Detailed description of plasmid maps and sequences will be provided upon request and are 
1 3 3

posted on the lab web site (http://phm.utoronto.ca/angers/). 
1 3 4

 
1 3 5

Reagents, tissue culture and transfection 
1 3 6

Human HEK293T, RKO colon carcinoma (ATCC: CRL-2577), SW480 colorectal 
1 3 7

adenocarcinoma (CCL-228), HCT116 colorectal carcinoma (CCL-247), and Mouse L cells 
1 3 8

(CRL-2647/CRL-2648) were grown in Dulbecco’s modified Eagle medium (DMEM) 
1 3 9

supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin (Sigma-Aldrich, 
1 4 0

St. Louis, MO) in a 37°C humidified incubator with 5% CO2. HEK293T stable cell lines were 
1 4 1

generated by transfection with calcium phosphate followed by puromycin selection (2og/ml). 
1 4 2

Transient cDNA transfections were performed following the manufacturer’s recommendations 
1 4 3

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). 
1 4 4

For siRNA experiments, cells were transfected with 20nM of siRNA with recommended 
1 4 5

amounts of Lipofectamine RNAiMax (Invitrogen). Previously validated siRNAs against く-
1 4 6

CATENIN, AXIN1, AXIN2 (34), and Control-non targeting (Dharmacon, Lafayette, CO) were 
1 4 7

used, while a set of 4 siRNAs targeting USP34 was obtained from Dharmacon (cat# LQ-006082-
1 4 8

00-0002) and tested using western blotting.  Within this set, USP34 siRNA “A” was the most 
1 4 9

effective and its target sequence was: 5’-GCAGGGAAGUUCUGACGAA-3’.  The target 
1 5 0

sequences of the other USP34 siRNAs were: “B”: 5’-CAACAGAUCAGUAGUAAUU-3’; “C”: 
1 5 1

5’-GCAGCUAUCCAGUAUAUUA-3’; “D”: 5’-CCAUGUGACUGGAGAUUUA-3’. 
1 5 2
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For the epistasis experiments involving expression of pt.mutant-く-CATENIN or DSH2 
1 5 3

with a given siRNA, siRNA were first reverse transfected at the time of seeding cells, followed 
1 5 4

by replacement of media 24h after seeding and cDNA transfection using Lipofectamine 2000.  
1 5 5

Cells were then assayed 36h after cDNA transfection using the TopFlash reporter assay.   pGIPZ 
1 5 6

based shRNA for USP34 were obtained from OpenBiosystems and screened for their efficiency 
1 5 7

by western blotting.  The target sequence of the most efficient USP34 shRNA was 5’-
1 5 8

CCTATGATGGTTGTTCAAATT-3’. 
1 5 9

 
1 6 0

Wnt3A conditioned media 
1 6 1

Mouse L cells expressing Wnt3A (CRL-2647) were cultured until reaching 90% 
1 6 2

confluence, upon which media was collected and refreshed every two days for a total of 6 days.  
1 6 3

Media from different days was assayed using TopFlash assays to determine fractions with 
1 6 4

maximal activity and subsequently used for Wnt stimulation experiments. Conditioned media 
1 6 5

from parental Mouse L cells not producing Wnt3A (CRL-2648) was also collected to use as 
1 6 6

control. 
1 6 7

 
1 6 8

Western Blotting/Antibodies 
1 6 9

Protein lysates were resolved with SDS-polyacrylamide gels and transferred to 
1 7 0

nitrocellulose membranes.  Blots were stained with antibodies indicated in the Figure legends, 
1 7 1

then incubated with horseradish peroxidase-conjugated secondary antibody and detected by 
1 7 2

ejgoknwokpguegpeg0" Cpvkdqfkgu<" g-く-CATENIN (#9587, Cell Signaling Technologies); rabbit 
1 7 3

monoclonal g-AXIN1 (#2074, Cell Signaling Technologies); polyclonal g-AXIN1 (obtained 
1 7 4

from J. Woodgett, Mt. Sinai Toronto); p44/42 MAP Kinase (ERK) (#9102, Cell Signaling 
1 7 5



9

Vgejpqnqikgu+=" g-USP34 (A300-824A, Bethyl Ladu+=" g-LAMIN-B (sc-6217, Santa Cruz 
1 7 6

Dkqvgejpqnqi{+="g-HA (MMS-323R."Eqxcpeg+="g-FLAG (F1804, Sigma); peroxidase-conjugated 
1 7 7

secondary anti-goat/rabbit/mouse (705-035-147, 711-035-152, 715-035-150 Jackson 
1 7 8

ImmunoResearch Laboratories). 
1 7 9

 
1 8 0

Tandem-affinity purification and mass spectrometry 
1 8 1

HEK293T cells (~2×10
8
 cells) expressing SBP-HA-CBP-tagged AXIN1 or AXIN2 were 

1 8 2
used for the tandem-affinity purification procedure as previously described (3).  Briefly, cells 

1 8 3
were lysed with tandem affinity purification lysis buffer (10% glycerol, 50mM Hepes-KOH pH 

1 8 4
8.0, 100mM KCl, 2mM EDTA, 0.1% NP40, 2mM DTT, 10mM NaF, 0.25mM NaOVO3, 

1 8 5
protease inhibitors (Sigma)), lysates were cleared by centrifugation at 16,000g for 10min then 

1 8 6
incubated at 4̇E"ykvj"322たn"rcemgf"uvtgrvcxkfkp"tgukp"*GE Healthcare).  Beads were washed and 

1 8 7
protein complexes were then eluted from the streptavidin resin in Calmodulin Binding Buffer 

1 8 8
supplemented with 2 mM biotin.  The second round of affinity purification was performed using 

1 8 9
100たn" qh" ecnoqfwnkp" tgukp" *GE Healthcare).  Following washes, the protein complexes were 

1 9 0
eluted with two 100たn"elutions with Calmodulin Elution Buffer (50mM Ammonium Bicarbonate 

1 9 1
pH 8.0, 10mM EGTA) and directly digested with sequencing-grade trypsin (Promega).  The 

1 9 2
resulting peptide mixture was then analyzed by LC-MS/MS using data dependent acquisition on 

1 9 3
a LTQ-XL mass spectrometer (Thermo Scientific).  Acquired spectra were searched against a 

1 9 4
FASTA file containing the human NCBI sequences using a normalized implementation of 

1 9 5
SEQUEST.  The resulting peptide identifications returned by SEQUEST were filtered and 

1 9 6
assembled into protein identifications using the transproteomic pipeline softwares running on a 

1 9 7
Sorcerer platform (SageNResearch). 

1 9 8



1 0

 
1 9 9

TopFlash reporter assays 
2 0 0

Lentivirus containing the superTopFlash d-CATENIN-dependent luciferase reporter 
2 0 1

(Firefly luciferase) and Renilla luciferase were produced and used to establish stable HEK293T, 
2 0 2

RKO, SW480 and HCT116 Wnt-reporter lines.  Cells were seeded on 24-well plates, followed 
2 0 3

by cDNA transfection with Lipofectamine 2000 and/or reverse transfection with Lipofectamine 
2 0 4

RNAiMax for siRNA experiments.  For experiments involving Wnt stimulation, media was 
2 0 5

replaced with a 1:1 mix of fresh DMEM:Wnt3A or DMEM:Control conditioned media. Cells 
2 0 6

were then assayed 24h after stimulation, performed in accordance with the Dual Luciferase assay 
2 0 7

protocol (Promega) using the Envision Multilabel Plate Reader (PerkinElmer). 
2 0 8

 
2 0 9

Co-affinity purification 
2 1 0

For co-affinity purification of endogenous proteins, HEK293T cells (5x10
6
) stably 

2 1 1
expressing pGLUE-HA-hAXIN1 or pGLUE-HA-RADIL were lysed in tandem affinity 

2 1 2
purification lysis buffer (10% glycerol, 50mM Hepes-KOH pH 8.0, 100mM KCl, 2mM EDTA, 

2 1 3
0.1% NP40, 2mM DTT, 10mM NaF, 0.25mM NaOVO3, protease inhibitors (Sigma)). Lysates 

2 1 4
were cleared by centrifugation at 16,000g for 10min and affinity purification was performed 

2 1 5
using streptavidin resin. Purified protein complexes were then analyzed by western blotting, 

2 1 6
using antibodies noted in Figure legends. 

2 1 7
 

2 1 8
K48 Ubiquitin chain cleavage 

2 1 9
3たi of purified K48 chains from Boston Biochem (UC-230) were incubated in USP 

2 2 0
Assay Buffer (20mM Tris pH 8.0, 2mM CaCl2."cpf"4oO"く-mercaptoethanol) with 20nM USP2 

2 2 1



1 1

eqtg."322pO"WUR56"eqtg."3たi"qh"affinity-purified AXIN Complex, or 3たi"of AXIN Complex 
2 2 2

(USP34 shRNA).  The samples were incubated at 37ºC for 30min and the reaction was stopped 
2 2 3

by addition of SDS sample buffer.  The appearance of mono-ubiquitin was monitored by western 
2 2 4

blot using c-UBIQUITIN antibody (Sigma U5379).   
2 2 5

 
2 2 6

UBL-PLA2Assay 
2 2 7

20nM USP2 core, 20nM USP34 core or 1たi of total protein from purified AXIN 
2 2 8

complexes was mixed with 30nM Ub-PLA2 cpf" 42たO" PDF" E8HPC (PLA2 substrate, 
2 2 9

Invitrogen) in a total volume of 100たL/well in a black 96-well-plate (Greiner Bio-One).  Data 
2 3 0

were collected 45min after addition of Ub-PLA2 and NBD C6HPC on a Perkin-Elmer Envision 
2 3 1

fluorescence plate reader with excitation and emission filters of 475nm and 555nm respectively. 
2 3 2

Net RFU was then used to calculate signal (isopeptidase or complexes + reporter) to background 
2 3 3

(reporter) ratio.  UBL-selectivity assays:  Relative isopeptidase activity against various UBL-
2 3 4

PLA2 fusions was determined by adding the USP34 core to a final concentration of 20nM in 
2 3 5

eqodkpcvkqp" ykvj" 42たM NBD C6-HPC and 30nM of the individual UBL-PLA2 reporter 
2 3 6

constructs and expressed as a percentage of control isopeptidase: USP2 core (Ub-PLA2), 
2 3 7

Senp1core (SUMO3-PLA2), Den1 (NEDD8-PLA2), or PLpro (ISG15-PLA2). The UBL-PLA2 
2 3 8

assay reagents are available from LifeSensors, Inc. (www.lifesensors.com) as CHOP reporter 
2 3 9

kits. 
2 4 0

 
2 4 1

In Vitro deubiquitination assay 
2 4 2

HEK293T cells stably expressing STREP-HA-AXIN1 were transfected with a plasmid 
2 4 3

coding for FLAG-UBIQUITIN.  In parallel 2X 100mm petri dishes of HEK293T were 
2 4 4



1 2

transfected with pIRES-puro plasmids expressing STREP-HA-USP34 core domain (amino acids 
2 4 5

1696-2400), or a catalytically inactive STREP-HA-USP34 core domain (C1903S).  16 hours 
2 4 6

before lysis, STREP-HA-AXIN1 cells were treated with 1oM MG132.  Cells were lysed 
2 4 7

separately in TAP lysis buffer supplemented with protease inhibitors in the absence (USP34) or 
2 4 8

presence (AXIN) of 5mM NEM.  Proteins were affinity purified using streptavidin beads. After 
2 4 9

extensive washes in TAP lysis buffer and two washes in DUB buffer (Tris 50mM pH8, NaCl 
2 5 0

150mM, EDTA 2mM, MgCl2 2mM, DTT 2mM), an equivalent amount of AXIN1 was 
2 5 1

incubated for 1 hour at 37°C  with the USP34 core domains as indicated in the figure.  Proteins 
2 5 2

were resolved by SDS-PAGE and blotted with FLAG-antibodies to detect ubiquitin conjugates 
2 5 3

and HA to monitor AXIN and USP34 core domains expression. 
2 5 4

 
2 5 5

Immunofluorescence 
2 5 6

Cells were seeded on poly-D-lysine treated coverslips and, when indicated, reverse 
2 5 7

transfected with siRNA.  48h after transfection cells were fixed with 4% paraformaldehyde/PBS 
2 5 8

for 20min, then permeabilized and blocked with 0.2% Triton X-100 and 10% normal donkey 
2 5 9

serum/PBS for 20min.  Where indicated, cells were treated with 5ng/ml Leptomycin B (LC 
2 6 0

Laboratories, MA) for 3 hours.  Cells were then stained for indirect immunofluorescence using 
2 6 1

polyclonal g-AXIN1 antibodies (provided by Dr. Woodget, Mount Sinai, Toronto) and Alexa488 
2 6 2

conjugated anti-rabbit antibodies.  Cells were mounted with Vectorshield (Vector) and examined 
2 6 3

by laser scanning confocal microscope (Zeiss LSM 510). 
2 6 4

 
2 6 5

Cycloheximide chase 
2 6 6



1 3

HEK293T cells expressing scramble or USP34 shRNA were seeded on 6 wells plate. 
2 6 7

Cells were treated with 3oM XAV939 for 16 hours, were then washed twice with PBS and 
2 6 8

subjected to 10og/mL cycloheximide for the indicated times. Cells were lysed using TAP lysis 
2 6 9

buffer supplemented with protease inhibitors. An equivalent amount of proteins were resolved 
2 7 0

using SDS-PAGE followed by western blotting using AXIN1 or TUBULIN antibodies. 
2 7 1

 
2 7 2

-CATENIN stabilization assay 
2 7 3

RKO cells were reverse transfected with siRNA.  48 hours following transfection, cells 
2 7 4

were stimulated with control or Wnt3A conditioned media (CM) treatment for different times 
2 7 5

(0.5h – 6h).  Cells were washed and lysed with RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM 
2 7 6

NaCl, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS) for 15min then cleared by 
2 7 7

centrifugation at 16,000g for 10min before being resuspended in SDS sample buffer and resolved 
2 7 8

by SDS-PAGE.  d-catenin accumulation was monitored by western blot. 
2 7 9

 
2 8 0

AXIN ubiquitination assay 
2 8 1

HEK293T cells stably expressing human AXIN1 (pGLUE-AXIN1) were transfected with 
2 8 2

FLAG-UBIQUITIN using calcium phosphate.  Cells were lysed 48h after transfection using TAP 
2 8 3

lysis buffer supplemented or not with 20mM N-Ethylmaleimide (Sigma), cleared by 
2 8 4

centrifugation at 16,000g for 10min.  AXIN was then purified by streptavidin affinity 
2 8 5

chromatography for 1h. Resin beads were then washed three times with lysis buffer (also 
2 8 6

supplemented with NEM when indicated) and the protein complexes eluted with 2x SDS sample 
2 8 7

buffer followed by SDS-PAGE electrophoresis and western blotting using FLAG antibodies to 
2 8 8

detect UBIQUITIN-conjugated AXIN proteins. 
2 8 9



1 4

 
2 9 0

Real Time qPCR 
2 9 1

Total RNA from SW480 cells treated with control or USP34 siRNAs was purified using 
2 9 2

Tri-Reagent (Sigma).  After DNaseI (Invitrogen) treatment, RNA was reverse transcribed into 
2 9 3

cDNA using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). Primer 
2 9 4

sequences used are: CYCLOPHILIN 5’-GGAGATGGCACAGGAGGAA-3’, 5’-
2 9 5

GCCCGTAGTGCTTCAGTTT-3’; NKD1 5’-TGAGAAGAAGATGGAGAGAGTGAGCGA-3’, 
2 9 6

5’-GGTGACCTTGCCGTTGTTGTCAAA-3’; TNFRSF19 5’- 
2 9 7

GGAGTTGTCTAAGGAATGTGG-3’, 5’- GCTGAACAATTTGCCTTCTG-3’. Primer pair 
2 9 8

efficiencies were validated as previously described (6).  Quantitative RT-PCR analysis was 
2 9 9

carried out in triplicate using an Applied Biosystems Prism 7900HT instrument.  Each reaction 
3 0 0

contained 12.5ng of cDNA, 150nM of each primer, and Power SYBR green PCR Master Mix 
3 0 1

(Applied Biosystems). Gene expression analysis was performed using the comparative CT 
3 0 2

method, normalized to CYCLOPHILIN expression, and fold changes were calculated relative to 
3 0 3

control siRNA treated cells.   
3 0 4

 
3 0 5

Results 
3 0 6

Targeted proteomic analysis identifies USP34 as an Axin associated protein. 
3 0 7

To further understand the regulation of Axin and its mechanism of action, we isolated 
3 0 8

human AXIN1 and AXIN2 protein complexes and analyzed their compositions using LC-
3 0 9

MS/MS. We constructed two expression vectors pGLUE-AXIN1 and pGLUE-AXIN2 and used 
3 1 0

them to derive HEK293T human cell lines stably expressing fusion proteins of AXIN1 or 
3 1 1

AXIN2 harboring streptavidin- and calmodulin-binding peptides as well as the HA epitope 
3 1 2



1 5

(SBP-HA-CBP) in frame with their N-termini.  We recently optimized this system to rapidly and 
3 1 3

efficiently purify protein complexes from mammalian cells using the dual affinity tags for their 
3 1 4

analysis by a gel-free LC-MS/MS approach (2, 3).  The detection of several proteins previously 
3 1 5

demonstrated to associate with Axin including APC, CK1c, d-CATENIN, PP2A, GSK3d and 
3 1 6

GSK3c" demonstrates the efficiency of our approach (Fig. 1A, green circles and table 1).  
3 1 7

Remarkably, we found in both AXIN1 and AXIN2 protein complexes the previously 
3 1 8

uncharacterized protein UBIQUITIN-SPECIFIC PROTEASE 34 (USP34) (Fig. 1A, blue circle 
3 1 9

and table 1), which contains 3546 amino acids and possesses a central ubiquitin hydrolase 
3 2 0

domain characteristic of DUBs (33).   
3 2 1

The presence of endogenous USP34 in AXIN1 complexes was then confirmed in co-
3 2 2

immunoprecipitation studies (Fig. 1B).  Cell lysates from HEK293T cells stably expressing SBP-
3 2 3

HA-CBP-AXIN1 were subjected to affinity purification using streptavidin affinity 
3 2 4

chromatography to isolate AXIN protein complexes and probed for endogenous USP34 using 
3 2 5

western blot with anti-USP34 polyclonal antibodies (Fig. 1B).  Importantly, a cell line stably 
3 2 6

expressing a control protein (RADIL) identically tagged and expressed at similar levels did not 
3 2 7

co-precipitate with USP34 (Fig. 1B, lane 4).  Probably reflecting the transient nature of the 
3 2 8

interaction, attempts to perform endogenous co-immunoprecipitation of AXIN1 and USP34 were 
3 2 9

challenging.  By stabilizing ubiquitinated AXIN with MG132 we were however able to 
3 3 0

reproducibly detect small amounts of USP34 in AXIN1 immunoprecipitates (data not shown).  
3 3 1

We therefore conclude that AXIN and USP34 are present in the same protein complex.   
3 3 2

 
3 3 3

USP34 confers ubiquitin specific protease activity to the AXIN complex. 
3 3 4



1 6

Since USP34 belongs to the family of ubiquitin-specific proteases (USP) we next tested 
3 3 5

the prediction that USP34 confers ubiquitin-protease activity to the AXIN complex.  To test this 
3 3 6

possibility, we performed ubiquitin protease assays using purified AXIN protein complexes. 
3 3 7

AXIN complexes were isolated from SBP-HA-CBP-AXIN1 expressing cells using a single 
3 3 8

streptavidin affinity chromatography step and were incubated with recombinant K48-linked 
3 3 9

polyubiquitin chains.  The presence of USP activity in the AXIN complexes was revealed by the 
3 4 0

production of a band corresponding to cleaved mono-ubiquitin as detected by western blotting 
3 4 1

(Fig. 2A, lane 3).   
3 4 2

As an alternative approach to monitor USP activity, we employed the newly developed 
3 4 3

UB-PLA2 assay (42) to quantify ubiquitin isopeptidase activity present in purified AXIN 
3 4 4

complexes.  Briefly, this assay consists of a fusion protein containing UBIQUITIN fused to the 
3 4 5

N-terminus of PHOSPHOLIPASE A2 (PLA2) used as a reporter enzyme.  Since PLA2 requires a 
3 4 6

free N-terminus to be catalytically active, the UB-PLA2 fusion is inactive and its enzymatic 
3 4 7

activity is only restored upon cleavcig"qh"vjg"g-peptide linked UBIQUITIN moiety.  Since most 
3 4 8

WURu"vq"fcvg"ecp"engcxg"vjg"g- qt"i- linkage with equal efficiency (25) (30) the UB-PLA2 assay 
3 4 9

can act as a sensitive and quantitative reporter of ubiquitin isopeptidase activity.  Affinity-
3 5 0

purified AXIN or RADIL (control) protein complexes were assayed using the UB-PLA2 assay as 
3 5 1

described in the methods section.  Robust isopeptidase activity could be detected in AXIN 
3 5 2

complexes when compared to control complexes that exhibited background activity (Fig. 2B, 
3 5 3

compare lanes 3&5).  We then tested whether the isopeptidase activity present in the AXIN 
3 5 4

complexes was attributable to USP34, in both these assays, by depleting USP34 levels in SBP-
3 5 5

HA-CBP-AXIN1 cells with the stable expression of a USP34 shRNA that reduced its protein 
3 5 6

levels by 90% (Fig. 2C).  We found that the affinity purified fraction isolated from equivalent 
3 5 7



1 7

number of cells expressing the USP34 shRNA was largely devoid of ubiquitin isopeptidase 
3 5 8

activity (Fig. 2A, lane 4 and Fig. 2B, lane 4).  We also expressed and purified the USP34 core 
3 5 9

region as a recombinant protein in E.coli and found that it exhibited robust ubiquitin isopeptidase 
3 6 0

activity similar to the USP2 core region, which is included as a positive control for the assay 
3 6 1

(Fig. 2A&B compare lanes 1&2).  Variants of this assay where the UBIQUITIN protein fused to 
3 6 2

the N-terminus of PLA2 is replaced with other UBIQUITIN-like proteins such as SUMO, 
3 6 3

NEDD8 or ISG15 allow the determination of the cleavage specificity of the isopeptidase.  Using 
3 6 4

these different reporters we showed that the recombinant core USP34 enzyme exhibits specificity 
3 6 5

for ubiquitin cleavage (Fig. 2D).   
3 6 6

These results led us to investigate whether ubiquitin proteases could control the 
3 6 7

ubiquitination of AXIN.  We used SBP-HA-CBP-AXIN1 stable cells in which we transfected a 
3 6 8

FLAG-UBIQUITIN expression plasmid.  AXIN was then affinity-purified by streptavidin 
3 6 9

affinity chromatography and the UB-AXIN conjugates were detected by western blot using 
3 7 0

FLAG antibodies.  Under our normal protein isolation conditions (first incubated with 1% SDS 
3 7 1

to disrupt protein-protein interactions), only small amounts of ubiquitinated AXIN could be 
3 7 2

detected (Fig. 2E, lane 1).  However, since USP34 is present in AXIN complexes, it may cleave 
3 7 3

AXIN-linked ubiquitin chains. We thus inhibited USP activity by incorporating the sulphydryl 
3 7 4

alkylating agent N-ethylmaleimide (NEM) in the lysis buffer.  NEM is known to react with the 
3 7 5

catalytic cysteine residue within USP core domains to irreversibly inhibit their protease activity.  
3 7 6

Under conditions where NEM is present, we detected robust poly-ubiquitination of AXIN (Fig. 
3 7 7

2E, lane 2).  To directly show that USP34 can cleave UBIQUITIN chains conjugated to AXIN, 
3 7 8

we performed an in vitro deubiquitination reaction.  We purified UBIQUITIN-AXIN (UB-
3 7 9

AXIN) conjugates and the catalytic core domain of USP34 by affinity purification from HEK293 
3 8 0



1 8

transfected cells.  We then incubated equivalent amount of UB-AXIN with (Fig. 2F, lane 2) or 
3 8 1

without (Fig. 2F, lane 1) USP34 core proteins and showed that the core domains could efficiently 
3 8 2

cleave the UBIQUITIN chains associated with AXIN.  As control we generated a catalytically 
3 8 3

inactive USP34 core domain (C1903S), performed the same experiment and showed that it had 
3 8 4

no effect on UB-AXIN conjugates (Fig. 2F, lane 3). 
3 8 5

 Our results suggest that Axin protein complexes exhibit ubiquitin-protease activity and 
3 8 6

that ubiquitin proteases regulate the steady state ubiquitination of AXIN.  We also conclude that 
3 8 7

USP34 can directly deubiquitinate AXIN. 
3 8 8

 
3 8 9

USP34 regulates the stability of AXIN. 
3 9 0

Since AXIN’s stability has been found to be controlled by the ubiquitin-proteasome 
3 9 1

system (20, 23), we tested whether USP34 was involved in this process.  We treated cells stably 
3 9 2

expressing VENUS-AXIN1 with control or USP34 siRNAs and determined the impact on the 
3 9 3

steady state levels of AXIN proteins by fluorescence microscopy and western blotting.  
3 9 4

Consistent with USP34 regulating the ubiquitination status of AXIN, its knockdown led to a 
3 9 5

robust decrease in VENUS-AXIN1 levels (Fig. 3A, compare lanes 1&2 on western blots).  This 
3 9 6

could be efficiently rescued when the cells were treated with 5oM MG132 for 10h prior to assay 
3 9 7

(Fig. 3A, compare lanes 2 and 5).  These results are consistent with the possibility that reducing 
3 9 8

USP34 function leads to an increase in Axin ubiquitination thereby targeting it for proteolysis by 
3 9 9

the 26S proteasome.  Similar results were obtained when studying the stability of endogenous 
4 0 0

AXIN1 (Fig. 3A, western blot on bottom right).  Importantly, two independent USP34 siRNAs 
4 0 1

(A & D) had the same effect on AXIN stability (data not shown).  To quantify AXIN levels, we 
4 0 2



1 9

have also measured the pixel intensities in images taken for several independent cells in the 
4 0 3

different conditions (Fig. 3C).  
4 0 4

Recently, the TANKYRASE-dependent parsylation of AXIN was demonstrated to be a 
4 0 5

pre-requisite for its ubiquitination and the small molecule TANKYRASE inhibitor XAV939 was 
4 0 6

shown to stabilize AXIN and to inhibit Wnt signaling (20).  If the degradation of AXIN induced 
4 0 7

by the depletion of USP34 is mediated through the regulation of its ubiquitination, treating 
4 0 8

USP34 depleted cells with XAV939 should rescue the degradation of AXIN.  To test this 
4 0 9

prediction, we incubated GFP-AXIN1 expressing cells with control or USP34 siRNAs for 48 
4 1 0

hours and added XAV939 for the last 12 hours.  We showed that XAV939 reversed the 
4 1 1

degradation of AXIN resulting from USP34 depletion (Fig. 3B, compare lanes 2&4 on western 
4 1 2

blot).  To determine whether USP34 controls the turnover of AXIN, we performed a 
4 1 3

cycloheximide chase analysis.  To perform this experiment we used HEK293 cells expressing 
4 1 4

control or USP34 shRNA and first stabilized the endogenous pool of AXIN by treating the cells 
4 1 5

with XAV939 for 16 hours.  We then washed the XAV939 to restore the ubiquitination of AXIN 
4 1 6

and incubated the cells for different times in the presence of the protein synthesis inhibitor 
4 1 7

cycloheximide.  We observed that the knockdown of USP34 leads to a precocious turnover of 
4 1 8

AXIN proteins when compared to control shRNA expressing cells (Fig. 3D). 
4 1 9

 
4 2 0

We conclude that USP34 controls the levels of AXIN by opposing its TANKYRASE-
4 2 1

dependent ubiquitination. 
4 2 2

 
4 2 3

USP34 positively regulates -CATENIN dependent transcription downstream of the 
4 2 4

destruction complex. 
4 2 5



2 0

We next assessed the functional importance of USP34 for Wnt signal transduction using 
4 2 6

RNAi. The effectiveness of four independent siRNAs designed to target the USP34 mRNA was 
4 2 7

first established by immunoblotting.  RKO cells were transfected with control or USP34 siRNAs 
4 2 8

for 48 hours and endogenous USP34 protein levels were subsequently measured using western 
4 2 9

blot with anti-USP34 antibodies.  All four USP34 siRNAs could block protein expression with 
4 3 0

varying efficiencies (Fig. 4A, bottom panels) and similar results were obtained with these 
4 3 1

siRNAs in downstream experiments.  This is especially relevant since we were unable to clone 
4 3 2

and express a full length USP34 cDNA (10638bp) to perform rescue experiments.  We also 
4 3 3

attempted to rescue the USP34 siRNA effect with a cDNA expressing only the core domain but 
4 3 4

observed no effect (data not shown).  Given that the core domain was sufficient to deubiquitinate 
4 3 5

AXIN1 in vitro (Fig. 2F), this suggests that other domains of USP34 are required in vivo, 
4 3 6

possibly to control the subcellular localization of USP34 or to regulate its activity.  Since it 
4 3 7

consistently yielded the best knockdown we therefore carried all subsequent experiments with 
4 3 8

siRNA “A”.  HEK293T and RKO cell lines stably expressing a d-CATENIN luciferase reporter 
4 3 9

and a Renilla luciferase control protein were then transfected with control, d-CATENIN or 
4 4 0

USP34 siRNAs.  In the control-transfected HEK293T and RKO cells, addition of Wnt3A led to 
4 4 1

29- and 28-fold activation of the reporter, respectively (Fig. 4B, lanes 4&10) when compared 
4 4 2

with cells treated with control conditioned media.  USP34-depleted cells showed a reduction of 
4 4 3

the Wnt3A mediated activation to 5.9- and 10.9-fold in the HEK293T and RKO cells, 
4 4 4

respectively (Fig. 4B, lanes 6 and 12).  The impact of USP34 depletion was comparable, albeit 
4 4 5

less dramatic, to the depletion of d-CATENIN (Fig 4B, lanes 5 and 11).  We therefore conclude 
4 4 6

that USP34 acts as a positive regulator of Wnt signaling.   
4 4 7



2 1

To functionally position USP34 within the Wnt pathway we next performed epistasis 
4 4 8

experiments where we tested the ability of the USP34 siRNA to block pathway activation at 
4 4 9

different levels.  Strikingly, USP34 depletion inhibited the d-CATENIN reporter activity driven 
4 5 0

by the ectopic expression of a degradation-resistant form of d-CATENIN (Fig. 4C, compare 
4 5 1

lanes 4&2) as well as by DISHEVELLED (data not shown) but not by the constitutively 
4 5 2

activated chimeric VP16-LEF1 protein, a fusion protein between the activation domain of VP16 
4 5 3

and LEF1 (19) known to be insensitive to the d-catenin transactivation properties (Fig. 4C, lanes 
4 5 4

6-8).  These results position the function of USP34 downstream of the d-catenin stabilization 
4 5 5

step and argue that USP34 activity is important for the full activation of target genes.  If USP34 
4 5 6

functions downstream of the destruction complex, its knock-down should not influence the 
4 5 7

stabilization of d-CATENIN in response to Wnt pathway activation.  To test this prediction we 
4 5 8

used RKO cells, which lack d-CATENIN at adherent junctions.  Under resting conditions these 
4 5 9

cells have minimal amount of cytosolic d-CATENIN whose levels can be strongly induced by 
4 6 0

Wnt3A conditioned-media (Fig. 4D).  We performed a time-course experiment of Wnt3A-
4 6 1

induced d-CATENIN stabilization in control or USP34 siRNA treated cells and observed that 
4 6 2

both the kinetic and magnitude of d-CATENIN stabilization were unchanged (Fig. 4D, middle 
4 6 3

panels).  Importantly, we show that USP34 was efficiently knocked-down in USP34 siRNA 
4 6 4

treated cells (Fig. 4D, upper panels).   
4 6 5

To further support the site of USP34 action downstream of the destruction complex, we 
4 6 6

tested the effect of USP34 depletion on the constitutive Wnt signaling observed in SW480 and 
4 6 7

HCT116 colon cancer cells.   These two cell lines were chosen as they harbor inactivating APC 
4 6 8

and activating d-CATENIN mutations, respectively.  To monitor d-CATENIN-dependent 
4 6 9



2 2

transcription, the cell lines were transduced with lentivirus coding for the d-CATENIN 
4 7 0

responsive luciferase reporter TopFlash and for Renilla Luciferase under the control of the 
4 7 1

constitutive EF1c promoter as a normalization probe.  As the Wnt pathway is strongly and 
4 7 2

constitutively activated in these cells (39, 55), a high ratio of Firefly/Renilla luciferase activity 
4 7 3

was predictably observed (Fig. 4E, lanes 1&4).  The constitutive reporter activity was d-
4 7 4

CATENIN dependent since d-CATENIN knockdown virtually eliminated the TopFlash signal 
4 7 5

(Fig. 4E, lanes 3&6).  USP34 knockdown also inhibited d-CATENIN signaling indicating that it 
4 7 6

is also required in this context (Fig. 4E, lanes 2&5).  To confirm whether the results obtained 
4 7 7

using the synthetic TopFlash reporter could be applicable to bona fide Wnt target genes, we 
4 7 8

examined the impact of USP34 depletion on the transcript levels of NAKED1 and TNFRSF19, 
4 7 9

two genes strongly regulated by d-CATENIN in colon cancer cells (35).  Knock-down of USP34 
4 8 0

in SW480 cells reduced the steady-state levels of the NAKED1 and TNFRSF19 transcripts by 
4 8 1

38% and 56%, respectively (Fig. 4F, compare lanes 2&5 vs lanes 1&4).  We conclude that 
4 8 2

USP34 is required at a step subsequent to d-CATENIN stabilization. 
4 8 3

 
4 8 4

Role of Axin downstream of the -catenin destruction complex during Wnt signaling. 
4 8 5

AXIN has previously been shown to localize to the nucleus of colon cancer cells (1), to 
4 8 6

undergo nucleo-cytoplasmic shuttling (11, 57) and to translocate to the nucleus following Wnt 
4 8 7

stimulation in normal cells (61).  Furthermore, we noted in a recent whole genome siRNA screen 
4 8 8

of the Wnt pathway that depletion of the two AXIN genes, in colon cancer cells with stabilized d-
4 8 9

CATENIN, consistently led to inhibition of d-CATENIN mediated transcription (35).  These 
4 9 0

results argue that AXIN, in addition to its well described function as a negative regulator of the 
4 9 1



2 3

pathway, may be required downstream of the destruction complex to fulfill positive regulatory 
4 9 2

roles during pathway activation.  We first confirmed these results by depleting AXIN1 and 
4 9 3

AXIN2 transcripts in SW480 and HCT116 by siRNA.  As suggested by the Major et al. study 
4 9 4

(35), we found that independent knockdown of AXIN1 and AXIN2 using established siRNAs (34) 
4 9 5

inhibited Wnt reporter activity in both cell lines (data not shown). When co-transfected together, 
4 9 6

AXIN1/2 siRNAs reduced the constitutive activity of the reporter to 64% and 30% of control 
4 9 7

siRNA treated HCT116 and SW480 cells, respectively (Fig. 5A, lanes 2&5).  This is in sharp 
4 9 8

contrast to what is usually observed in cells presumed to have intact Wnt pathway components 
4 9 9

such as human HEK293 kidney cells or RKO colon carcinoma cells.  At resting state, these cells 
5 0 0

exhibit a low level of spontaneous activity of the d-CATENIN reporter that can be strongly 
5 0 1

induced by treatment with Wnt3A conditioned-media (Fig. 5B, lanes 2&5).  In this context 
5 0 2

however, and as expected from the known negative role of AXIN proteins in Wnt signal 
5 0 3

transduction, the reduction of function for AXIN1 and AXIN2 potentiated the Wnt3A-mediated 
5 0 4

activation (Fig. 5B, compare lanes 3&6 to lanes 2&5).  However, when a degradation-resistant 
5 0 5

mutant of d-CATENIN is introduced in HEK293T cells to constitutively activate the pathway, a 
5 0 6

condition mimicking the mutated state of the signaling cascade in HCT116 colon cancer cells, 
5 0 7

the activity of the TopFlash reporter was antagonized by AXIN knockdown (Fig. 5C, compare 
5 0 8

lanes 4 and 2). 
5 0 9

Since activation of the Wnt pathway in SW480 and HCT116 cells results from d-
5 1 0

CATENIN escaping its normal regulation by the destruction complex, the above results suggest 
5 1 1

that AXIN performs a positive regulatory function downstream of d-CATENIN stabilization 
5 1 2

when the destruction complex is disassembled.  This prompted us to examine the subcellular 
5 1 3

localization of AXIN in these cells with an anti-AXIN1 peptide antibody by indirect 
5 1 4



2 4

immunofluorescence.  Consistent with previous reports (1), AXIN is localized mostly to the 
5 1 5

nucleus of these cells (Fig. 6A, left panels).  Pre-treatment with AXIN1 siRNA largely eliminated 
5 1 6

the observed immunoreactivity, confirming the specificity of the AXIN1 antibody (Fig. 6A, 
5 1 7

middle panels).  Treatment of SW480 and HCT116 cells with USP34 siRNA established that the 
5 1 8

accumulation of AXIN in the nucleus of colon cancer cells depends on USP34 (Fig. 6A).  
5 1 9

Treatment of the cells with MG132 could rescue the nuclear localization of AXIN in USP34 
5 2 0

siRNA treated cells.  Together with the results described above this supports a role for USP34 in 
5 2 1

controlling AXIN stability and exclude that the reduction of nuclear AXIN could be due to an 
5 2 2

effect on nuclear import and/or export.   
5 2 3

At steady-state, in cells with normal Wnt signaling, AXIN is mostly found in the 
5 2 4

cytoplasm but undergoes nucleo-cytoplasmic shuttling as it accumulates in the nucleus when 
5 2 5

cells are treated with the CRM1-dependent nuclear export inhibitor Leptomycin B (LMB) (11, 
5 2 6

57). We thus asked whether the stabilization of AXIN by USP34 is required to observe the 
5 2 7

accumulation of AXIN in the nucleus following LMB treatment.  As shown in Fig. 6B, whereas 
5 2 8

AXIN is predominantly nuclear in control-transfected HEK293T cells incubated with LMB, 
5 2 9

AXIN does not accumulate in the nucleus of USP34-depleted cells.  These results indicate that 
5 3 0

the activity of USP34 is important for the nuclear accumulation of AXIN.   
5 3 1

 We conclude from these observations that in transformed colon cancer cells, where Wnt 
5 3 2

signaling is constitutively activated, AXIN plays a positive regulatory role.  In two genetically 
5 3 3

different colon cancer cells exhibiting defective Wnt signaling and in LMB-treated HEK293T 
5 3 4

cells where the Wnt pathway is normal, AXIN exhibits a USP34 dependent nuclear 
5 3 5

accumulation.  The simplest explanation for these results is that the inhibition of Wnt signaling 
5 3 6



2 5

resulting from USP34 depletion (Fig. 4) is a consequence of AXIN destabilization and impaired 
5 3 7

nuclear accumulation.   
5 3 8

 
5 3 9

 
5 4 0

Discussion 
5 4 1

The ubiquitin proteasome system controls multiple steps in Wnt signaling through the 
5 4 2

regulation of protein stability or function.  Recently, AXIN has been shown to be parsylated by 
5 4 3

TANKYRASE, a step required for its ubiquitin-dependent degradation (20).  Although the 
5 4 4

precise mechanisms controlling AXIN levels are still unknown, this study highlighted the 
5 4 5

importance of AXIN as a key regulatory node in Wnt signaling.  Our findings add to the 
5 4 6

mechanism controlling AXIN levels by identifying USP34 as the ubiquitin specific protease 
5 4 7

opposing the TANKYRASE dependent ubiquitination of AXIN and reveal that this regulation is 
5 4 8

important for the nuclear accumulation of AXIN during Wnt signaling to positively influence d-
5 4 9

CATENIN mediated transcription. 
5 5 0

 
5 5 1

USP34 regulates AXIN stability 
5 5 2

Our data agree with others to show that AXIN levels are dynamically regulated by the 
5 5 3

ubiquitin proteasome system (20, 23).  Recently, the TANKYRASE-mediated parsylation of 
5 5 4

AXIN was showed to be required for its ubiquitination and degradation.  The E3 ubiquitin ligase 
5 5 5

catalyzing AXIN ubiquitination remains to be identifed but our findings suggest that USP34 
5 5 6

counteracts this reaction.  Recently, the SUMOylation of AXIN on a C-terminal domain and its 
5 5 7

phosphorylation by GSK3 were shown to protect AXIN from ubiquitination (23).  Although the 
5 5 8

precise functional interplay between these processes and USP34 needs to be studied, one 
5 5 9



2 6

possibility is that these signals recruit USP34 to AXIN to promote its deubiquitination.  Another 
5 6 0

important question to be addressed is the understanding of the cellular signals that control USP34 
5 6 1

and ultimately AXIN ubiquitination and stability.  For example more work is now needed to 
5 6 2

determine if the catalytic activity of USP34 is regulated during Wnt signaling and/or whether 
5 6 3

AXIN is recruited to USP34 following the disassembly of the destruction complex.   
5 6 4

 
5 6 5

Positive role for nuclear AXIN during Wnt/ -catenin signaling 
5 6 6

Although the precise mechanistic details remain unclear, our study suggests that AXIN 
5 6 7

plays a positive role in the nucleus for the transmission of Wnt/d-CATENIN signaling.  In cells 
5 6 8

with normal Wnt pathways, AXIN undergoes nuclear-cytoplasmic shuttling (11, 57), a process 
5 6 9

suggested to be important for the nuclear export of"d-CATENIN in the absence of Wnt signaling.  
5 7 0

However, the precise function of the nuclear pool of AXIN and the regulatory mechanisms 
5 7 1

influencing this localization are still poorly defined.  Our study contributes to the understanding 
5 7 2

of this process by unraveling a positive regulatory role of AXIN in the nucleus during signaling 
5 7 3

and identifying USP34 as a protein influencing its stability.  The positive signaling role for 
5 7 4

nuclear AXIN has eluded the numerous screens and studies performed on the Wnt pathway.  It is 
5 7 5

likely that, under normal circumstances, this positive function is masked by the strong negative 
5 7 6

regulatory task of AXIN within the destruction complex.  Supporting this, the positive roles of 
5 7 7

GSK3 and AXIN at the plasma membrane when they are recruited to the Wnt co-receptor LRP6 
5 7 8

have also escaped these screens.  Similarly, the appreciation that APC has dual positive and 
5 7 9

negative regulatory functions for Wg signaling has only been uncovered recently using a 
5 8 0

repressor screen in Drosophila (52).  Alternatively, it is possible that in lower organisms where 
5 8 1

the majority of the pioneer screens have been performed, AXIN does not perform nuclear 
5 8 2



2 7

functions.  The use of two colon cancer cell lines where the destruction complex machinery is 
5 8 3

defective and where AXIN accumulates in the nucleus, has allowed us to uncover this novel 
5 8 4

function.  Further work is now needed to address how AXIN exert this positive role in the 
5 8 5

nucleus.  Two possibilities are that AXIN serves as escort protein for d-CATENIN and 
5 8 6

influences its residency in the nucleus or that AXIN is an integral part of the d-CATENIN 
5 8 7

transcriptional machinery participating in the recognition of target genes as recently found for 
5 8 8

Dsh (15).  In any case, Axin is likely not absolutely required for d-catenin signaling but rather 
5 8 9

could determine the duration and the strength of signaling by regulating the availability of 
5 9 0

activated nuclear d-catenin.  What emerges from our study however is that the tight regulation of 
5 9 1

the balance of AXIN ubiquitation/de-ubiquitination is likely an important control point during 
5 9 2

Wnt signaling.   
5 9 3

Compounds interfering with Axin stability as drug targets 
5 9 4

Since the nuclear localization of AXIN and d-CATENIN are associated with Wnt 
5 9 5

pathway activation and are constitutively found in the nucleus in several human cancers, the 
5 9 6

control of their residency in the nucleus by modulating USP34 activity could represent a novel 
5 9 7

therapeutic approach for not only the treatment of cancers but of the numerous human diseases 
5 9 8

exhibiting spurious Wnt/d-CATENIN pathway activity.    Current strategies for small molecule 
5 9 9

inhibitors of the Wnt pathway have relied, with limited success, on compounds inhibiting 
6 0 0

protein-protein interactions (14, 28).  The protease activity of USPs, however, makes them 
6 0 1

highly amenable to inhibition by small molecules (13).  That promoting AXIN stability or 
6 0 2

degradation both lead to inhibition of Wnt signaling suggests that the precise control of AXIN 
6 0 3

levels dictates the outcome of signaling but also indicates that the ubiquitin proteasome system 
6 0 4



2 8

may be adjusting the availability of different pools of AXIN underlying its negative function 
6 0 5

within the destruction complex and its positive role in the nucleus.   
6 0 6
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FIG. 1. Identification of UBIQUITIN-SPECIFIC PROTEASE 34 (USP34) as an AXIN 
8 1 5

interacting protein. 
8 1 6

(A) Human AXIN1 & AXIN2 protein interactions network. Lines represent interactions found in 
8 1 7

AXIN1 and AXIN2 (red circles) pull-down experiments using LC-MS/MS.  Green circles are 
8 1 8

previously described associated proteins, yellow are new associations and the blue circle 
8 1 9

represents USP34. (B) Confirmation of the AXIN-USP34 interaction using co-affinity 
8 2 0

purification.  In HEK293T cells, endogenous USP34 associates with AXIN1 (Lane 3) but not 
8 2 1

with the unrelated protein RADIL (Lane 4). 
8 2 2

 
8 2 3

FIG. 2. USP34 confers ubiquitin protease activity to the AXIN protein complex. 
8 2 4

(A) Cleavage of K48-linked ubiquitin by recombinant USP2 and USP34 core domains and by 
8 2 5

purified AXIN1 protein complexes but not by AXIN1 protein complexes isolated from cells 
8 2 6

where USP34 expression was knocked down using shRNA.  Cleavage efficiency is monitored 
8 2 7

with the appearance of mono-ubiquitin from the poly-ubiquitin chains. (B) Quantification of 
8 2 8

ubiquitin protease activity using the UBIQUITIN-PLA2 assay.  Purified AXIN1 complexes from 
8 2 9

SBP-HA-CBP-AXIN1 cells but not from cells expressing a USP34 shRNA exhibited USP 
8 3 0

activity.  Similar amount of the unrelated RADIL protein complex showed no activity.  
8 3 1

Recombinant USP2 and USP34 were used as positive controls in this assay. (C) Western blot 
8 3 2

verification of endogenous USP34 knockdown in HEK293T SBP-HA-CBP-AXIN1 cells stably 
8 3 3

expressing USP34 shRNA. (D)  Cleavage specificity of the USP34 core domains.  UB- SUMO3- 
8 3 4



3 4

ISG15- and NEDD8-PLA2 assays were used to demonstrate that the USP34 core domain 
8 3 5

preferentially cleaves UBIQUITIN.  (E) Ubiquitinated AXIN is sensitive to USP activity. Cells 
8 3 6

stably expressing SBP-HA-CBP-AXIN1 were transfected with FLAG-UBIQUITIN.  Input 
8 3 7

lysates prepared for streptavidin affinity purification were left untreated (Lane 1) or treated with 
8 3 8

the non-specific cysteine protease inhibitor NEM (Lane 2).  UBIQUITIN-linked AXIN 
8 3 9

conjugates were resolved by SDS-PAGE and detected using anti-FLAG antibodies (top panel).  
8 4 0

Equivalent pull-down of AXIN was monitored using anti-HA antibodies (bottom panel).  The 
8 4 1

inhibition of USP activity robustly increased the amount of ubiquitinated AXIN (compare lane 2 
8 4 2

vs 1). (F) The USP34 core domain deubiquitinates AXIN in vitro.  FLAG-UBIQUITIN-AXIN 
8 4 3

conjugates, WT and catalytically inactive (C1903S) core domains of USP34 were separately 
8 4 4

purified from transfected cells using affinity purification.  FLAG-UB-AXIN proteins were then 
8 4 5

incubated alone (lane 1) with WT- (lane 2) or catalytically inactive-USP34 core domain (lane 3) 
8 4 6

proteins for 1h.  The reaction was stopped by addition of 2X sample buffer and samples were run 
8 4 7

on a 8% SDS-PAGE. UB-AXIN conjugates were detected using FLAG antibodies and AXIN1 
8 4 8

and the core domains of USP34 with HA antibodies. 
8 4 9
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FIG. 3. USP34 regulates the stability of AXIN. 
8 5 1

(A) A HEK293 cell line stably expressing Venus-AXIN1 was derived.  These cells were 
8 5 2

transfected with control, AXIN1 or USP34 siRNAs.  48h post-transfection the cells were fixed or 
8 5 3

lysed and the levels of Venus-AXIN1 were evaluated by fluorescence microscopy (left panels) or 
8 5 4

western blotting using anti-GFP antibodies (top right panels).  Where indicated, MG132 was 
8 5 5

added for the last 10h to inhibit the proteasome.  A similar experiment using WT-HEK293 cells 
8 5 6

and probing for endogenous AXIN1 with a monoclonal rabbit antibody was also performed 
8 5 7



3 5

(bottom right panels).  (B)  The same experiment performed in (A) was repeated but instead of 
8 5 8

MG132 the TANKYRASE inhibitor XAV939 was added for the last 12h.  AXIN1 levels were 
8 5 9

monitored by fluorescence microscopy (left panels) and western blotting using anti-GFP 
8 6 0

antibodies (right panels).  Both MG132 and XAV939 were able to rescue the degradation of 
8 6 1

AXIN1 resulting from the depletion of USP34.  C) Quantification of 3A and B. Regions of 
8 6 2

interest were drawn randomly around the periphery of cells taking the phase contrast images as 
8 6 3

template, and the pixel intensity of the fluorescence images were quantified using ImageJ (N=20-
8 6 4

25 cells). Error bars represent S.E.M; Single star represents statistical significance compared to 
8 6 5

Ctl siRNA condition, whereas double star represents statistical significance compared to USP34 
8 6 6

siRNA condition. D) USP34 regulates the turnover of AXIN.  HEK293 cells expressing control 
8 6 7

or USP34 shRNA were treated with 3oM XAV939 for 12h.  Cells were washed twice and were 
8 6 8

switched to media containing 10og/ml cycloheximide for the indicated times.  Lysates were 
8 6 9

collected and proteins resolved on a 8% SDS PAGE gel.  AXIN levels were determined by 
8 7 0

western blot using anti-AXIN1 antibodies (left), quantified by densitometry and normalized to 
8 7 1

TUBULIN levels for each time points (right). 
8 7 2
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FIG. 4. USP34 has a positive regulatory function in Wnt signaling.  (A) Validation of USP34 
8 7 4

siRNAs.  Lysates from RKO cells treated with control siRNA (Lanes 1&2), four different USP34 
8 7 5

siRNAs (Lanes 3-6) or d-CATENIN siRNA (Lane 7) were  resolved by SDS-PAGE and probed 
8 7 6

using anti-USP34 antibodies to monitor USP34 knockdown and anti-ERK antibodies as loading 
8 7 7

controls (bottom panels).  Each USP34 siRNA was able to reduce the Wnt3A stimulated 
8 7 8

activation of the TopFlash reporter (Top panel). (B) TopFlash assays were performed in 
8 7 9

HEK293T and RKO cells treated with control (lanes 1,4,7,10) く-CATENIN (lanes 2,5,8,11) or 
8 8 0



3 6

USP34 (lanes 3,6,9,12) siRNA and stimulated with control conditioned media (lanes 1,2,3,7,8,9) 
8 8 1

or Wnt3A conditioned media (Lanes 4,5,6,10,11,12).  USP34 knockdown inhibited Wnt3A 
8 8 2

mediated activation of the reporter in both cell lines (compare lanes 4 and 6, lanes 10 and 12). 
8 8 3

(C) Epistasis analysis of USP34 function: TopFlash assays in HEK293T cells showed that 
8 8 4

USP34 and く-CATENIN siRNAs antagonized the activation of the pathway by overexpression of 
8 8 5

vjg" uvcdknk¦gf" hqto"qh"く-CATENIN (compare lanes 2, 3 and 4) but not by the chimeric VP16-
8 8 6

LEF1 protein (compare lanes 6,7 and 8).  (D) USP34 knockdown does not influence Wnt3A-
8 8 7

ipfwegf" uvcdknk¦cvkqp" qh" く-CATENIN.  RKO cells treated with control or USP34 siRNA were 
8 8 8

stimulated with Wnt3A eqpfkvkqpgf"ogfkc" hqt" vjg" kpfkecvgf"fwtcvkqp"cpf" n{ucvgu"rtqdgf" hqt"く-
8 8 9

CATENIN levels using western blots. (E) TopFlash assays in HCT116 and SW480 cells treated 
8 9 0

with USP34 siRNA showed that the constitutive cevkxcvkqp"qh"vjg"く-CATENIN reporter in these 
8 9 1

cells requires USP34 function (compare lanes 1 and 2, lanes 4 and 5). (F) Quantitative RT-PCR 
8 9 2

analysis of SW480 cells treated with USP34 siRNA shows reduced expression of Wnt target 
8 9 3

genes NKD1 and TNFRSF19.  Levels are expressed as a percentage of control siRNA.   
8 9 4

 
8 9 5

FIG. 5. Positive role of AXIN during Wnt signaling in colon cancer cells. 
8 9 6

TopFlash assays in (A) HCT116 and SW480 colon cancer cells or (B) HEK293T and RKO cells 
8 9 7

treated with control, く-CATENIN or AXIN siRNAs.  In (A) AXIN1+2 siRNAs inhibit the 
8 9 8

eqpuvkvwvkxg" Ypv" rcvjyc{" cevkxcvkqp" fwg" vq" owvcvkqpu" kp" CRE" *UY6:2+" qt" く-CATENIN 
8 9 9

(HCT116) while in (B) AXIN1+2 knock-downs potentiate the Wnt3A-stimulated activity of the 
9 0 0

reporter.  (C) The activation of the Wnt pathway in HEK293T cells using a degradation resistant 
9 0 1

く-CATENIN owvcpv" *rv0く-CATENIN) is inhibited by AXIN1+2 siRNAs.  Figures are 
9 0 2

representative of at least three independent experiments performed in duplicates where the error 
9 0 3



3 7

bars represent the standard errors.  In (A) TopFlash levels are expressed as percent activation 
9 0 4

compared to the basal constitutive levels observed with control siRNA (100%). 
9 0 5

 
9 0 6

FIG. 6. USP34 controls the nuclear accumulation of AXIN.  (A) AXIN1, detected using 
9 0 7

polyclonal anti-AXIN1 antibodies, localizes to the nucleus of SW480 and HCT116 colon cancer 
9 0 8

cells (left panels). Specificity of the antibody was controlled using AXIN1 siRNA (middle 
9 0 9

panels).  USP34 siRNA (right panels) inhibits the strong nuclear localization of AXIN seen in 
9 1 0

cells treated with control siRNA (left panels). Where indicated 1oM MG132 was added for the 
9 1 1

last 12 hours. Quantification: Regions of interest were drawn around the nuclear region as 
9 1 2

indicated by counterstaining and the pixel intensity quantified using ImageJ (N>80 cells).  Error 
9 1 3

bars represent S.E.M; Single star represents statistical significance compared to Ctl siRNA 
9 1 4

condition. (B) USP34 depletion also inhibits the nuclear accumulation of AXIN in HEK293T 
9 1 5

cells observed when the CRM1 dependent nuclear export is blocked with Leptomycin B. 
9 1 6

 
9 1 7

Table 1. Representative LC-MS/MS analysis of (A) AXIN1 and (B) AXIN2 affinity-purified 
9 1 8

protein complexes. “Total Peptides” column denotes total number of peptides successfully 
9 1 9

matched to protein identity, while “Unique Peptides” signify number of distinct peptide 
9 2 0

fragments identified.  Four independent purifications of AXIN1 and AXIN2 complexes were 
9 2 1

analyzed by LC-MS/MS, and one representative pull-down experiment is shown in the table.  
9 2 2

The frequency a protein was identified in the four pull-downs is noted in the ‘#n pulldowns’ 
9 2 3

column. 
9 2 4
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