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y veri�cation methods for systemsof �nite-state machines that communicate by exchanging messages viaunbounded and lossy FIFO queues. We propose a novel representationformalism, called simple regular expressions (SREs), for representingsets of states of protocols with lossy FIFO channels. We show thatthe class of languages representable by SREs is exactly the class ofdownward closed languages that arise in the analysis of such protocols.We give methods for (i) computing inclusion between SREs, (ii) anSRE representing the set of states reachable by executing a singletransition in a system, and (iii) an SRE representing the set of statesreachable by an arbitrary number of executions of a control loop of aprogram. All these operations are rather simple and can be carriedout in polynomial time.With these techniques, one can straightforwardly construct an al-gorithm which explores the set of reachable states of a protocol, in or-der to check various safety properties. We also show how one can per-form model-checking of LTL properties, using a standard automata-theoretic construction. It should be noted that all these methodsare by necessity incomplete, even for the class of protocols with lossychannels. 1



To illustrate the applicability of our methods, we have developeda tool prototype and used the tool for automatic veri�cation of (aparameterized version of) the Bounded Retransmission Protocol.1 IntroductionOne of the most popular models for specifying and verifying communica-tion protocols is that of Communicating Finite State Machines (CFSM)[BZ83, Boc78]. This model consists of �nite-state processes that exchangemessages via unbounded FIFO queues. Several veri�cation methods havebeen developed for CFSMs [BZ83, CF87, GGLR87, Pac87, PP91, SZ91].However, since all interesting veri�cation problems are undecidable [BZ83],there is in general no completely automatic veri�cation method for this classof systems.A way to obtain a decidable veri�cation problem is to consider lossy channelsystems, where the unbounded FIFO channels are assumed to be lossy, inthe sense that they can at any time lose messages. This restricted modelcovers a large class of communication protocols, e.g., link protocols. In ourearlier work [AJ96b], we showed the decidability and provided algorithmsfor veri�cation of safety properties and some forms of liveness properties forlossy channel systems. Our algorithm for verifying safety properties is global,in the sense that it performs a backward search, starting from a set of \bad"states and trying to reach some initial state. In contrast, many e�cientveri�cation methods are so-called on-the-
y algorithms [Hol91, CVWY90],in which the state-space is explored in a forward search, starting from theinitial states. In this paper, we therefore consider how forward veri�cationcan be carried out for lossy channel systems.For that we adopt a symbolic veri�cation approach. One of the main chal-lenges in developing veri�cation methods for a class of systems is to choosea symbolic representation of (possibly in�nite) sets of states of a system.The symbolic representation should be expressive, yet allow e�cient perfor-mance of certain operations which are often used in symbolic veri�cationalgorithms. Examples of such operations include checking for inclusion, andcomputing the states that can be reached by executing a transition of thesystem. In order to speed up the search through the state space, it is alsodesirable to be able to calculate, in one step, the set of states that can bereached by executing sequences of transitions. For instance, we can considerthe set of sequences corresponding to an arbitrary number of executions ofa control loop. This technique to speed up the reachability search has been2



applied e.g. for systems with counters [BW94] and perfect channel systems[BG96, BGWW97]. Once a symbolic representations has been obtained itcan used for many types of veri�cation and model checking problems.In this paper, we propose a novel representation formalism, called simpleregular expressions (SREs), for use in verifying protocols modelled as lossychannel systems. SREs constitute a subclass of regular expressions. To ourknowledge, this class has not been studied before. Because of the lossiness, weneed only to represent sets of channel contents that are closed with respect tothe subsequence relation. For example, if a channel can contain the sequenceabc, then it can also contain the sequences ab, ac, bc, a, b, c, and �. It is well-known that downward closed languages are always regular. We strengthenthis result and show that in fact the class of downward closed languagescorresponds exactly to those recognized by SREs. This implies that for anylossy channel system we represent the set of reachable states as an SRE. Wesuggest methods for computing:� inclusion between SREs, which can be done in quadratic time,� an SRE obtained by executing a single transition, and� an SRE obtained by an arbitrary number of executions of a controlloop of a program. It turns out that this operation can be carried outin polynomial time.With these techniques, one can straightforwardly construct an algorithmwhich explores the set of reachable states of a protocol, in order to checkvarious properties. This algorithm is parametrized by the set of controlloops that are used to speed up the reachability set computation. We alsoshow how one can perform model-checking of LTL properties, using a stan-dard construction of taking the cross-product of the protocol and a B�uchiautomaton that recognizes the complement of the LTL property in question.It should be noted that all these methods are incomplete, i.e., they maysometimes not terminate. The incompleteness of our methods is unavoidabledespite the facts that reachability is decidable for lossy channel systems, andthat the set of reachable states is representable by an SRE. This is due to abasic result [CFI96] saying that there is no general algorithm for generatingthe set of reachable states.To illustrate the applicability of our methods, we have developed a tool pro-totype, called Lcs. Given a lossy channel system, the tool generates auto-matically the set of reachable con�gurations described as SREs, and produces3



a symbolic graph which constitutes a �nite-state abstract model of the sys-tem. Furthermore, the tool allows on-the-
y veri�cation of safety propertiesgiven by �nite-state labelled transition systems. The Lcs tool is connectedto the Cadp toolbox [FGK+96] which provides a variety of procedures on�nite-states labelled transition systems, e.g., comparison and minimizationw.r.t. behavioural equivalences, and model-checking for temporal logics. Forinstance, it is possible to generate automatically a �nite abstract model of asystem using the Lcs tool, and then apply standard �nite-state veri�cationtechniques on the abstract model.As an experimentation, we have applied the tool for automatic veri�cation ofthe Bounded Retransmission Protocol (BRP) of Philips [GvdP93]. The BRPis a data link protocol which can be seen as an extended version of the wellknown alternating bit protocol. It consists of a sender and a receiver thatcommunicate through two unbounded lossy channels. The service providedby the protocol is to transmit large �les, where each �le is a sequence of dataof some arbitrary length. In addition, both the sender and receiver must in-dicate to their clients whether the whole �le has been delivered successfullyor not. The sender reads a sequence of data and transmits successively eachdatum in a separate frame following an alternating bit protocol-like proce-dure. However, the sender can resend a non-acknowledged frame up to a �xednumber of retransmissions MAX, which is a parameter of the protocol. Inour model, we assume that the value of MAX and the sizes of the transmittedsequences are arbitrary positive integers. The assumption concerning MAXleads to a model with unbounded channels representing a family of BRPs.Each member of the family operates on a certain given value of MAX. Inother words, we use the model of unbounded channels to perform parametricreasoning on an in�nite family of systems.The Lcs tool generates automatically the set of reachable con�gurationsof the BRP and the corresponding �nite symbolic graph (0.56 seconds onUltraSparc). After projecting this graph on the set of external actions of theprotocol and minimizing it w.r.t. observational trace equivalence, we get anabstract model with 5 states and 10 transitions which corresponds exactlyto the expected external behaviour of the protocol.Related Work There are several existing works on symbolic veri�cationof perfect channel systems. Pachl [Pac87] proposed to represent the set ofreachable states of a protocol as a recognizable set. A recognizable set isa �nite union of Cartesian products of regular sets. Pachl gave no e�cientalgorithms for computing such a representation. In [FM96] a symbolic anal-4



ysis procedure is proposed using a class of regular expressions which is notcomparable with SRE's. However, the computed reachability set by thisprocedure is not always exact.Boigelot and Godefroid [BG96, BGWW97] use �nite automata (under thename QDDs) to represent recognizable sets of channel contents. In [BGWW97]it has been shown that the e�ect of every loop is recognizable for a systemwith a single �fo-channel. As soon as two channels are considered, the e�ectof a loop may be non-recognizable (i.e., not QDD-representable). This isdue to the fact that the repeated execution of a loop may create constraintsbetween the number of occurrences of symbols in di�erent channels. Forinstance, the iteration of a loop where a message is sent to two di�erentchannels generates pairs of sequences with the same length (assuming thechannel is initially empty). In [BGWW97] a complete characterization isgiven of the types of loops which preserve recognizability. To compute andrepresent the e�ect of any loop in a perfect �fo-channel, a representationstructure, called CQDDs (constrained QDDs), combining �nite automatawith linear arithmetical constraints is needed [BH97]. In the case of lossychannels, the links between the number of occurrences in di�erent channelsare broken due to lossiness, and this simpli�es the computation of the ef-fect of loops, conceptually and practically (i.e., from the complexity point ofview).We argue that SREs o�er several advantages when used as a symbolic rep-resentation in the context of lossy channel systems. First, the operationson QDD's and CQDD's are of exponential complexity and are performed byquite non-trivial algorithms (see e.g. [BGWW, BH]), whereas all operationson SRE's can be performed by much simpler algorithms and in polynomialtime. Moreover, we describe a normal form for SREs, and provide a poly-nomial procedure to transform an SRE to an equivalent normal SRE. WhileQDD's admit a canonical form via minimization, a corresponding result isnot known for CQDD's. Also, SREs are closed under the performance of anyloop, while QDDs are closed only under certain restricted types of loops.Finally, although the data structures (QDDs and CQDDs) used in [BG96,BGWW97, BH97] are more general than SREs, the algorithms in [BG96,BGWW97, BH97] are not able to simulate the ones we present in this paper.The reason is that the lossy transitions are implicit in our model, whereas alltransitions are explicitly represented in the algorithms in [BG96, BGWW97,BH97]. Thus to simulate in [BG96, BGWW97, BH97] the e�ect of iterationof a loop in the lossy channel model, we have to add transitions explicitly tomodel the losses. These transitions add in general new loops to the system,5



implying that a loop in the lossy channel system is simulated by a nestedloop in the perfect channel system. However analysis of nested loops is notfeasible in the approaches of [BG96, BGWW97, BH97].Several works have addressed the speci�cation and veri�cation of the BRP.To tackle the problem of unboundedness of the size of the transmitted �lesand the parameter MAX, these works propose proof-based approaches usingtheorem provers, combined with abstraction techniques and model checking.In [GvdP93] the system and its external speci�cation are described in �CRLand are proved to be (branching) bisimilar. The proof is carried out by handand is checked using Coq. An approach based on proving trace inclusion(instead of bisimulation) on I/O automata is developed in [HSV94]. In [HS96]the theorem prover PVS is used to prove that the veri�cation of the BRPcan be reduced by means of abstraction to a �nite-state problem that canbe solved by model checking. In [GS97, BLO98] a more automated approachis applied based on constructing automatically a �nite abstract model usingPVS, for an explicitly given abstraction function.Another way to look at our model is to consider the lossy channel system asan abstraction of an in�nite family of the BRPs; namely the family of BRPswith all possible values of the two parameters: �le sizes and value of MAX.The model is in�nite-state: the unboundedness of the parameters is in somesense transformed into an unboundedness of the channels. Starting fromthis in�nite-state system, our veri�cation technique is fully automatic. It isbased on an automatic generation of a �nite abstract model, without givingexplicitly the abstraction relation. So, our work provides a fully automatic(and e�cient) veri�cation of the (untimed) parameterized version of the BRP.Finally, we mention two works where the BRP has been veri�ed automaticallybut only for some �xed instances of its parameters. In [Mat96], an untimedversion of the BRP is veri�ed using both a bisimulation-based approach anda model checking approach using Cadp. In [DKRT97] a timed version of theBRP is veri�ed using the tools Spin andUppaal. These two works avoid theissue of parameter unboundedness and use standard �nite-state techniques.The work in [DKRT97] consider timing aspects that we have abstracted sinceour model is untimed.Outline In the next section we give some preliminaries. In Section 3 weintroduce the class Simple Regular Expressions (SREs). In Section 4 wedescribe how to check entailment among SREs. In Section 5 we give a normalform for SREs. In Section 6 we de�ne operations for computing post-imagesof sets of con�gurations, represented as SREs. In Section 7 we show howto use SREs to perform di�erent veri�cation algorithms for lossy channel6



systems. In Section 8 we describe our tool prototype. In Section 9 we presentour modeling and veri�cation of the BRP. Finally, in Section 10 we give someconclusions.2 Lossy Channel SystemsWe consider system models consisting of asynchronous parallel compositionsof �nite-state machines that communicate through sending and receivingmessages via a �nite set of unbounded lossy �fo channels (in the sense thatthey can nondeterministically lose messages).A Lossy Channel System (LCS) L is a tuple (S; sinit; C;M;�; �), where� S is a �nite set of (control) states, The control states of a systemwith n �nite-state machines is formed as the Cartesian product S =S1 � � � � � Sn of the control states of each �nite-state machine.� sinit 2 S is an initial state, The initial state of a system with n �nite-state machines is a tuple hsinit1 ; : : : ; sinitni of initial states of the com-ponents.� C is a �nite set of channels,� M is a �nite set of messages,� � is a �nite set of transition (or action) labels,� � is a �nite set of transitions, each of which is of the form (s1; `;Op; s2),where s1 and s2 are states, ` 2 �, and Op is a mapping from C to(channel) operations. An operation is either a send operation !a, areceive operation ?a, or an empty operation nop, where a 2M .For x; y 2 M�, we let x � y denote the concatenation of x and y. We use xnto denote the concatenation of n copies of x. The empty string is denoted by�. We use x � y to denote that x is a (not necessarily contiguous) substringof y.A con�guration 
 of L is a pair hs; wi where s 2 S is a control state, and wis a mapping from C to M� giving the contents of each channel. The initialcon�guration 
init of L is the pair hsinit; �i where � denotes the mapping whereeach channel is assigned the empty sequence �.We de�ne a labelled transition relation on con�gurations in the followingmanner: hs1; w1i �̀! hs2; w2i if and only if there exists a transition (s1; `;Op; s2) 2� such that, for each c 2 C, we have: 7



� if Op(c) =!a, then w2(c) = w1(c) � a,� if Op(c) =?a, then a � w2(c) = w1(c),� if Op(c) = nop, then w2(c) = w1(c).Let � denote the subsequence relation on M�. For two mappings w andw0 from C to M�, we use w � w0 to denote that w(c) � w0(c) for eachc 2 C. Then, we introduce a weak transition relation on con�gurations inthe following manner: hs1; w1i `=) hs2; w2i if and only if there are w01 andw02 such that w01 � w1, w2 � w02, and hs1; w01i �̀! hs2; w02i. Intuitively,hs1; w1i `=) hs2; w2i means that hs2; w2i can be reached from hs1; w1i by �rstlosing messages from the channels and reaching hs1; w01i, then performing thetransition hs1; w01i `�! hs2; w02i, and thereafter losing messages from channels.Given a con�guration 
, we let post(
) denote the set of immediate successorsof 
, i.e., post(
) = f
0 : 9` 2 �: 
 `=) 
0g. The function post isgeneralized to sets of con�gurations in the obvious manner. We let post�denote the re
exive transitive closure of post, i.e., given a set of con�gurations�, post�(�) is the set of all reachable con�gurations starting from �. LetReach(L) be the set post�(
init). For every control location s 2 S, we de�neR(s) = fw : hs; wi 2 Reach(L)g.A run of L starting from a con�guration 
 is a �nite or in�nite sequence� = 
0`0
1`1
2 : : : such that 
0 = 
 and 8i � 0: 
i `i=) 
i+1. The trace of therun � is the sequence of action labels � = `0`1`2 : : : . We denote by Traces(L)the set of traces of all runs of L starting from the initial con�guration 
init.We introduce two extensions of the basic model given above: the �rst oneconsists in introducing channel emptiness testing: we use enabling condi-tions on transitions involving a predicate empty on channels telling whethera channel is empty. The second extension consists in allowing the compo-nents of a system to test and set boolean shared variables (remember thatwe consider here asynchronous parallel composition following the interleav-ing semantics). The formal semantics of the extended model is an obviousadaptation of the one given above.3 Simple Regular Expressions (SREs)We de�ne a class of languages which can be used to describe the set of reach-able con�gurations of a lossy channel system. Let M be a �nite alphabet.8



We de�ne the set of regular expressions (REs), and the languages generatedby them in the standard manner. For a regular expression r, we use [[r]] todenote the language de�ned by r. For regular expressions r1 and r2, we user1 � r2 (r1 v r2) to denote that [[r1]] = [[r2]] ([[r1]] � [[r2]]). By r1 < r2 wemean that r1 v r2 and r1 6� r2. In case r1 v r2 we say that r1 entails r2. Weuse �(r) to denote the set of elements of M appearing in r.We de�ne a subset of the set of regular expressions, which we call the set ofsimple regular expressions, as follows.De�nition 3.1 Let M be a �nite alphabet. An atomic expression over Mis a regular expression of the form� (a + �), where a 2M , or of the form� (a1 + : : :+ am)�, where a1; : : : ; am 2M .A product p over M is a (possibly empty) concatenation e1 � e2 � � � � � en ofatomic expressions e1; : : : ; en overM . We use � to denote the empty product,and assume that [[�]] = f�g.A simple regular expression (SRE) r over M is of the form p1 + : : : + pn,where p1; : : : ; pn are products over M . We use ; to denote the empty SRE,and assume that [[;]] is the empty language ;. A language L is said to besimply regular if it is representable by an SRE.Let C andM be �nite alphabets. A C-indexed language over M is a mappingfrom C to languages over M . A C-indexed RE (SRE) R over M is a mappingfrom C to the set of REs (SREs) over M . The expression R de�nes a C-indexed language K over M where w 2 K if and only if w(c) 2 [[R(c)]] foreach c 2 C. The entailment relation is extended to indexed REs in theobvious manner. An indexed language is said to be simply recognizable if itis a �nite union of languages recognized by indexed SREs. 2De�nition 3.2 Let M and C be �nite alphabets. For a language L � M�,we say that L is downward closed if x 2 L and y � x imply y 2 L. Thede�nition is generalized in the natural way to C-indexed languages over M .2Theorem 3.3 For �nite alphabets M and C and a C-indexed language Lover M , if L is downward-closed then L is simply recognizable.Proof. The proof can be found in the appendix. 29



Since the set of reachable con�gurations of a lossy channel system is downward-closed, we get the following.Corollary 3.4 For a lossy channel system L and a state s in L, the set R(s)is simply recognizable.However, it is shown in [CFI96] that we cannot in general compute a repre-sentation ofR(s). The uncomputability ofR(s) is shown through a reductionto an undecidable problem reported in [AJ96a]. More precisely, in [AJ96a] weshow the undecidability of the recurrent state problem: given a lossy channelsystem L and a state s in L, is there a computation of L visiting s in�nitelyoften? In [CFI96] the uncomputability of a representation of R(s) is reducedto the recurrent state problem as follows. We add a new channel c to thelossy channel system. Whenever a computation reaches s, an arbitrary mes-sage is sent to c. Suppose that we can compute an indexed SRE R suchthat [[R]] = R(s). It is clear that the existence of a computation visiting sin�nitely often is equivalent to the �niteness of [[R(c)]].Theorem 3.5 [CFI96] For a lossy channel system L and a state s in L,there is, in general, no algorithm for computing a representation of R(s).Although we can compute a representation of the set of con�gurations fromwhich a given con�guration is reachable ([AJ96b]), we cannot in generalcompute a representation of the set of con�guration which are reachablefrom a given con�guration (Theorem 3.5). This means that we can have acomplete algorithm for performing backward reachability analysis in lossychannel systems, while any procedure for performing forward reachabilityanalysis will necessarily be incomplete.4 Entailment among SREsIn this section, we consider how to check entailment between SREs. First,we show a preliminary lemma about entailment.Lemma 4.1 For products p; p1; : : : ; pn, if p v p1 + : : : + pn then p v pi forsome i 2 f1 : : : ng.Proof. Given any natural number k, we de�ne a sequence x such that x 2 [[p]]and x 62 [[p0]], for any product p0, where p 6v p0 and where p0 contains at most10



k atomic expressions. The result follows immediately. Let p = e1 � � � � � em.We de�ne x = y1 � � � � � ym, where yi is de�ned as follows. If ei = (a+ �) thenyi = a. If ei = (a1 + : : :+ a`)� then yi = (a1 � � � � � a`)k+1. 2Let us identify atomic expressions of form (a1+: : :+am)� which have the sameset a1; : : : ; am of symbols. Then v is a partial order on atomic expressions.It is the least partial order which satis�es(a+ �) v (a1 + : : :+ am)� if a 2 fa1; : : : ; amg(a1 + : : :+ am)� v (b1 + : : :+ bn)� if fa1; : : : ; amg � fb1; : : : ; bngLemma 4.2 Entailment among products can be checked in linear time.Proof. The result follows from the fact that � v p, p 6v � if p 6= �, ande1 � p1 v e2 � p2 if and only if one of the following holds:� e1 6v e2 and e1 � p1 v p2.� e1 = e2 = (a+ �) and p1 v p2.� e2 = (a1 + � � �+ an)�, e1 v e2, and p1 v e2 � p2. 2Lemma 4.3 Entailment among SREs can be checked in quadratic time.Proof. The proof follows from Lemma 4.1 and Lemma 4.2. 2Corollary 4.4 Entailment among indexed SREs can be checked in quadratictime.5 Normal Forms for SREsIn this section, we show how to compute normal forms for SREs. First wede�ne a normal form for products.De�nition 5.1 A product e1 � � � � � en is said to be normal if for each i : 1 �i < n we have ei � ei+1 6v ei+1 and ei � ei+1 6v ei. 2Lemma 5.2 For each product p, there is a unique normal product, whichwe denote p, such that p � p. Furthermore, p can be derived from p in lineartime. 11



Proof. We can de�ne p from p by simply deleting atomic expressions whichare redundant according to De�nition 5.1. 2Similarly, we can de�ne a normal form for SREs.De�nition 5.3 An SRE r = p1 + : : :+ pn is said to be normal if each pi isnormal for i : 1 � i � n, and pi 6v pj, for i; j : 1 � i 6= j � n. 2In the following, we shall identify SREs if they have the same sets of products.Lemma 5.4 For each SRE r, there is a unique (up to commutativity ofproducts) normal SRE, which we denote by r, such that r � r. Furthermore,r can be derived from r in quadratic time.Proof. The proof follows from Lemma 4.2, Lemma 4.1 and Lemma 5.2. 26 Operations on SREsIn this section, we will de�ne operations for computing post-images of setsof con�gurations, represented as SREs, with respect to transitions of a lossychannel system. We will also de�ne operations for computing post-images ofsets of con�gurations with respect to an arbitrary number of repetitions ofan arbitrary control loop in a lossy channel system.Throughout this section, we assume a �xed �nite set C of channels and a�nite alphabet M . We will �rst consider operations on SREs correspondingto single transitions, and thereafter consider loops.6.1 Computing the E�ect of Single TransitionsConsider a language L and an operation op 2 f!a; ?a; nopg. We de�ne L
opto be the smallest downward closed language such that y 2 (L
 op) if thereis an x 2 L satisfying one of the following three conditions: (i) op =!a, andy = x � a; or (ii) op =?a, and a � y = x; or (iii) op = nop, and y = x.For an indexed language K, and a mapping Op from C to operations, wede�ne K
Op to be the indexed language where (K
Op)(c) = K(c)
Op(c),for each c 2 C. Notice that, for a lossy channel system L, and a set � ofcon�gurations in L, the set post(�) is given by S(s1;`;Op;s2)2�fhs2; wi : w 2(�
 Op)(s1)g. 12



The following propositions show how to compute the e�ect of single opera-tions on SREs.Lemma 6.1 For an SRE r and an operation op, there is an SRE, which wedenote r 
 op, such that [[r 
 op]] = [[r]] 
 op. Furthermore, r 
 op can becomputed in linear time.Proof. For a product p and an operation op, we have p
 (!a) = p � (a+ �),and p
 (nop) = p. Furthermore, �
 (?a) = ;. and if p = e � p1, thenp
 (?a) = 8<: p if e = (a1 + : : :+ an)� and a 2 fa1 + : : :+ angp1 if e = (a+ �)p1 
 (?a) otherwiseFor an SRE p1 + : : :+ pm we have(p1 + : : :+ pm)
 op = (p1 
 op) + : : :+ (pm 
 op) 2Lemma 6.1 can be generalized in the obvious manner to indexed SREs.6.2 Computing the E�ect of LoopsWe study methods to accelerate reachability analysis of lossy channels sys-tems. The basic idea is that, rather than generating successor con�gurationswith respect to single =)-transitions, we shall consider the e�ect of per-forming sets of sequences of transitions in each step. We consider controlloops, i.e., sequences of transitions starting and ending in the same controlstate. If ops is the sequence of channel operations associated with a controlloop, then we shall calculate the e�ect on an SRE of performing an arbitrarynumber of iterations of ops. In Lemma 6.3, we show that for each SRE andsequence ops, there is an n such that the set of all strings which can beobtained through performing n or more iterations of ops on the SRE canbe characterized by a (rather simple) SRE. In other words, the e�ect of theloop \stabilizes" after at most n iterations, in the sense it only generatesstrings belonging to a single SRE. This implies that the e�ect of performingan arbitrary number of iterations of the loop can be represented as the unionof n SREs: one of them represents all iterations after n, while the remain-ing SREs each represents the e�ect of iterating the loop exactly j times forj : 1 � j � n� 1. In Corollary 6.4 we generalize the result to indexed SREs.13



For strings x and y, we use x �c y to denote that there are x1 and x2 suchthat x = x1 �x2 and x2 �x1 � y. The relation �c can be decided in quadratictime. If � � x; y, then we use x �+ y to denote that there is an integer m � 1such that xm � ym�1.Lemma 6.2 For strings x; y, if x �+ y then xm � ym�1, for some m : 1 �m � jyj.Proof. The proof can be found in the appendix. 2From Lemma 6.2 it follows that the relation �+ can be checked in quadratictime. For a sequence ops = op1op2 � � �opn of operations, we de�ne L
ops tobe L
op1
op2
� � �
opn. We use opsm (Opsm) to denote the concatenationof m copies of ops (Ops). By ops! (ops?) we mean the subsequence of opswhich contains only send (receive) operations. For a product p, let jpj denotethe number of atomic expressions in p.Lemma 6.3 For a product p and a sequence ops of operations, the followingholds. There is a natural number n and a product p0 such that either p 
opsn = ; or p0 = [j�n[[p
 opsj]]. Furthermore, the value of n is linear in thesize of p, and p0 can be computed in quadratic time.Proof. Let �(ops!) = fb1; : : : ; bkg. There are four cases. In the �rst twocases the loop can be iterated an in�nite number of times and the channelcontents will be unbounded. In case 3 the loop can be iterated an in�nitenumber of times but the channel contents will be bounded. In case 4 deadlockoccurs after at most n iterations.1. If (ops?)� � [[p]]. This means that either ops? is empty or there is anatomic expression in p of the form (a1 + : : : + am)� where �(ops?) �fa1; : : : ; amg. In case ops? is empty, we let n = 0 and p0 = p � (b1 +� � � + bk)�. Otherwise, let e be the �rst expression in p (starting fromthe left) which satis�es the above property, and let p = p1 � e � p2. Wede�ne n = jp1j and p0 = e � p2 � (b1 + � � �+ bk)�.Intuitively, after consuming the words in p1, the loop can be iteratedan arbitrary number of times producing and adding to the right acorresponding number of ops!. Hence, due to lossiness, the global e�ectis obtained by concatenating to the right of e�p2 the downward closureof (ops!)�, which is precisely (b1 + � � �+ bk)�.2. If (ops?)� 6� [[p]], ops? �+ ops!, and p
ops 6= ;, then we de�ne n = jpjand p0 = (b1 + � � �+ bk)�. 14



Intuitively, since (ops?)� 6� [[p]], the original contents of the channelwill be consumed after at most n iterations. Furthermore, according toLemma 6.2, ops? �+ ops! implies that there is an m : 1 � m � jops!jsuch that (ops?)m � (ops!)m�1. Hence that contents of the channelwill grow by at least ops! after each m iterations. By iterating theloop su�ciently many times we can concatenate any number of copiesof ops! to the end of the channel. Again, by lossiness, the total e�ectamounts to (b1+ � � �+ bk)�. The condition p
 ops 6= ; guarantees thatthe �rst iteration of the loop can be performed. This is to cover caseswhere e.g. the channel is initially empty and the receive operations areperformed �rst in the loop.3. If (ops?)� 6� [[p]], ops? 6�+ ops!, ops? �c ops!, and p 
 ops2 6= ;, thenn = jpj+ 1 p0 = p
 opsn+1.Although the loop can be iterated any number of times, the contentsof the channel will not grow after the nth iteration. Observe that wedemand p 
 ops2 6= ;. The condition p 
 ops 6= ; (in case 2) is notsu�cient here. A counter-example is p = ba and ops = (?b)(?a)(!a)(!b).We get p 
 ops = ab and p 
 ops2 = ;. An explanation is that, forstrings x and y, the relation x �+ y (a condition of case 2) impliesx � y, while x �c y (the corresponding condition in case 3) impliesx � y2 but not x � y.4. If conditions 1, 2, or 3 are not satis�ed, then n = jpj + 1. We havep
 opsn = ;.In this case the loop can be executed at most n times, after which thechannel becomes empty, and we deadlock due to inability to performreceive operations. 2Notice that the proof of Lemma 6.3 gives us a complete characterization ofwhether a loop can be executed in�nitely often from a certain con�guration(i.e., in cases 1. - 3.), and whether in such a case the contents of channelgrows unboundedly or stays �nite.Also, observe that in case we have an SRE (instead of a product) then wecan apply the lemma to each product separately.The result of Lemma 6.3 can be generalized to indexed SREs in a straight-forward manner: The loop can be executed in�nitely often if and only if theloop can be executed in�nitely often with respect to each channel. If the loop15



can be executed in�nitely often, then we take the Cartesian products of theexpressions computed according to Lemma 6.3. This gives us the following.Corollary 6.4 For an indexed SRE R and a sequence Ops of indexed op-erations, there is an indexed SRE, which we denote by R 
 Ops�, such that[[R 
 Ops�]] = [0�j[[R 
 Opsj]]. Furthermore, R
 Ops� can be computed inquadratic time.7 Use in Veri�cation AlgorithmsThe SRE representation and the operations presented in the previous sec-tions can be used in solving veri�cation problems for lossy channel systems.First, we can use these operations in on-the-
y veri�cation procedures whereproperties are checked during the generation of the set of reachable con�gu-rations. Another approach is to use reachability analysis to construct a �niteabstract model of the system, which can be handled by means of standard�nite-state techniques.7.1 On-the-Fly Veri�cationSuppose we want to check whether some set �F of con�gurations is reachable.We then search through the (potentially in�nite) set of reachable con�gura-tions, as follows.We use symbolic states to represent sets of con�gurations. A symbolic state� is a pair hs; Ri, where s is a control state , and R is an indexed SREdescribing the contents of the channels. The language [[�]] de�ned by � is theset of con�gurations fhs; wi ; w 2 [[R]]g. We extend the entailment relationin the obvious way so that hs; Ri v hs0; R0i if and only if s = s0 and R v R0.We maintain a set V which we use to store symbolic states which are gen-erated during the search. At the start, the set V contains one unexploredsymbolic state representing the initial con�guration. From each unexploredelement in V , we compute two sets of new elements: one which correspondsto performing single transitions (Lemma 6.1), and another which describesthe e�ect of of control loops. Here, there is a choice in which loops to explore.A reasonable strategy seems to be to investigate the sequences of transitionswhich correspond to simple control loops in the program. A simple controlloop is a loop which enters each control state at most once. By applying thesecontrol loops we get new symbolic states which can be computed according16



to Corollary 6.4. Actually, these loops can be detected automatically duringthe search.When a new element � is generated, it is compared with those which arealready in V . If � v �0 for some �0 2 V , then � is discarded (it will not addnew con�gurations to the searched state space). It is also checked whether �has a non-empty intersection with �F . This is easy if e.g., �F is a recognizableset. If the intersection is non-empty, the algorithm terminates. Otherwise,the algorithm is terminated when no new symbolic states can be generated.During our search, it can happen that a new element � is added to V , al-though � will not add any new con�gurations to the explored state space.This is due to the fact that even if � 6v �0 for all �0 2 V , the relation[[�]] � S�02V [[�0]] may still hold. The test for discarding new SREs can there-fore be modi�ed so that � is discarded if and only if [[�]] � S�02V [[�0]]. Thiswould make the algorithm terminate more often (fewer elements need to beadded to V ). However, for indexed SREs (and hence for symbolic states),the above test has an exponential complexity in the number of channels.From Theorem 3.5, we know that our algorithm is incomplete. The algorithmwill always �nd reachable con�gurations in �F , but it will not necessarilyterminate if all con�gurations in �F are unreachable.The procedure described can be used for checking safety properties since theirveri�cation problem is straightforwardly reducible to a reachability problem.In fact, we can use a slight extension of this procedure to check whether alossy channel system satis�es a linear temporal logic formula over the controlstates of the system. By standard techniques [VW86], we can transform thisproblem into checking whether a lossy channel system, in which some controlstates are designated as \accepting", has an in�nite computation which visitssome accepting control state in�nitely often. In our earlier work [AJ96a], weshowed that this problem is undecidable. However, an incomplete check canbe performed as part of the state-space generation in the previous paragraph.More precisely, when exploring a set of con�gurations with an acceptingcontrol state we can, as part of exploring the loops, check whether there is acontrol loop that can be executed an in�nite number of times. We only needto check whether one of the three �rst conditions in the proof of Lemma 6.3holds.7.2 Generation of Finite AbstractionsLet � be a binary relation on con�gurations. We say that � is a simulation iffor every pair of con�gurations 
1 and 
2, and every label ` 2 �, if (
1; 
2) 2 �17



and there is a con�guration 
01 such that 
1 `�! 
01, then there exists 
02 suchthat 
2 `�! 
02 and (
01; 
02) 2 �.Let L1 and L2 be two systems and let 
1init and 
2init be their respective initialcon�gurations. Then, we say that L2 simulates L1 if there is a simulationrelation � between the con�gurations of L1 and L2 such that (
1init; 
2init) 2 �.It is well known that if L2 simulates L1, then Traces(L1) � Traces(L2).Now, we introduce the notion of a symbolic graph. Given a lossy channelsystem L, we can use reachability analysis to construct a �nite symbolicgraph which simulates L.Let � be a �nite set of symbolic states. Then, the symbolic graph associatedwith � is the �nite-state labelled transition system G� such that the set ofstates is � and, 8�1; �2 2 �: 8` 2 �: �1 `�! �2 i� 9
1 2 �1; 
2 2 �2: 
1 `�!
2. We consider as initial state in G� any con�guration which contains theinitial con�guration 
init.In particular, we consider the partition of Reach(L) according to the controlstates, i.e., �L = fhs; Ri : s 2 S and [[R]] = R(s)g. The labelled transitionsystem G�L is called the canonical symbolic graph of L.Lemma 7.1 For every �nite set of symbolic states �, ifReach(L) � S�2� [[�]],then G� simulates L.Indeed, it is easy to see that the membership relation, i.e., the relation �such that 
�� i� 
 2 [[�]], is a simulation relation (using the fact that everyreachable con�guration of L belongs to at least one symbolic state in �).Clearly, Lemma 7.1 holds for the canonical symbolic graph of L. This meansthat if Reach(L) can be constructed, we obtain directly a �nite-state abstrac-tion of the system L. This abstract model can be used to check linear-timeproperties and, if the result is positive, to deduce that the same result holdsfor the concrete system L1. More precisely, given an 1-regular linear-timeproperty �, i.e., a set of �nite or in�nite traces over �, a system L satis�es� if Traces(L) � �. By Lemma 7.1, we have Traces(L) � Traces(G�L).Hence, for every 1-regular property �, if G�L satis�es �, then L satis�es �too.Notice that if G�L does not satisfy �, this could be due to the fact thatthe abstraction corresponding to the partition of Reach(L) according to the1This approach can also be applied for branching-time properties expressed in universalpositive fragments of temporal logics or �-calculi like 8CTL� [GL91] or 2L� [BBLS92].18



control states is too coarse. Then, one could try to check � on re�nementsof this partition.8 The tool LcsWe implemented our techniques in a tool prototype called Lcs. The input ofthe Lcs is a �nite set of communicating automata, given separately. Then,the tool allows the following options:� Generation of the reachability set: The tool allows calling a pro-cedure which computes a representation of the reachability set of thesystem by means of (normal) SREs. The computation is done accord-ing to a depth-�rst-search strategy, and uses the acceleration principleas described in Sections 6 and 7. Notice that the loops used for accel-eration are found on-the-
y and are not given explicitly by the user.� On-the-
y checking of safety properties: Given a safety propertydescribed as a deterministic labelled transition system � over a setobservable actions 
 � �, the tool checks whether the projection of thesystem on 
 (i.e., the system obtained after hiding all actions exceptthose in 
) satis�es the property �. This veri�cation is done on-the-
y(the procedure stops as soon as the property is falsi�ed) following theprinciple described in Section 7.� Generation of the canonical symbolic graph: During the compu-tation the reachability set, the Lcs tool can construct the correspond-ing canonical symbolic graph (transitions between symbolic states).The symbolic graph is produced in the input format of the Cadp tool-box (Caesar/Aldebaran Development Package) [FGK+96] whichcontains several tools on �nite-state labelled transition systems, e.g.,graphical visualization, comparison with respect to various behaviouralequivalences and preorders like observational bisimulation and simu-lation, minimization, on-the-
y automata-based veri�cation, model-checking for an ACTL-like temporal logic (action-based variant of CTL)and the alternation-free modal �-calculus.Example: Alternating Bit ProtocolLet us illustrate the use of our tool on the Alternating Bit Protocol (ABPfor short). We model the ABP by two �nite-state machines, a sender and19



Sender
K!0

Receiver
L?1 K?1 K?0

K?1L?1 RCV RCVSND
SND L!0K!1 2

10
32

10
3 K?0

L!1L?0 L?0
Figure 1: Alternating Bit Protocola receiver, communicating through two unbounded lossy channels K and L(see Figure 1). The procedure implemented in the Lcs tool terminatesSender Receiver Channel K Channel L0 0 1� 1�1 0 1�0� 1�1 1 0� 1�1 2 0� 1�0�2 2 0� 0�3 2 0�1� 0�3 3 1� 0�3 0 1� 0�1�Table 1: Reachability set of the ABPand generates automatically the reachability set of the ABP (see Table 1),as well as the corresponding canonical symbolic graph (see Figure 2). Theexecution time is 0.07 seconds (UltraSparc). Then, using the Aldebarantool [FM91], we minimize this graph according to observational trace equiva-lence by considering that SND and RCV are the only observable actions. Theresulting minimal transition system is shown in Figure 2. It is clear fromthis transition system that the external behaviour of the ABP is equivalentto the behaviour of a one-place bu�er.Remark The minimization we considered removes all silent (non-observable)transitions, including silent loops. This can be done since we are only inter-ested in safety properties on observable actions. This is, however, not soundfor checking liveness properties (silent loops leading to divergence must be20
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Figure 2: Canonical symbolic graph of the ABP and its minimal versiontaken into account in this case).9 The Bounded Retransmission ProtocolIn this section we describe the veri�cation of the Bounded RetransmissionProtocol in the Lcs tool.9.1 Speci�cation of the ServiceThe Bounded Retransmission Protocol (BRP for short) is a data link pro-tocol. The service it delivers is to transmit large �les (sequences of data ofarbitrary lengths) from one client to another one. Each datum is transferredin a separate frame. Both clients, the sender and the receiver, obtain anindication whether the whole �le has been delivered successfully or not.More precisely, at the sender side, the protocol requests a sequence of datas = d1; : : : ; dn (action REQ) and communicates a con�rmation which can beSOK, SNOK, or SDNK. The con�rmation SOK means that the �le has beentransferred successfully, SNOK means that the �le has not been transferredcompletely, and SDNK means that the �le may not have been transferredcompletely. This occurs when the last datum dn is sent but not acknowledged.Now, at the receiver side, the protocol delivers each correctly received datumwith an indication which can be RFST, RINC, or ROK. The indication RFSTmeans that the delivered datum is the �rst one and more data will follow,RINC means that the datum is an intermediate one, and ROK means that thiswas the last datum and the �le is completed. However, when the connectionwith the sender is broken, an indication RNOK is delivered (without datum).21



Properties the service must satisfy are:1. a request REQ must be followed by a con�rmation (SOK, SNOK, orSDNK) before the next request,2. a RFST indication (delivery of the �rst datum) must be followed byone of the two indications ROK or RNOK before the beginning of a newtransmission (next request of the sender),3. a SOK con�rmation must be preceded by a ROK indication,4. a ROK indication can be followed by either a SOK or a SDNK con�r-mation, but never by a SNOK (before next request),5. a RNOK indication must be preceded by SNOK or SDNK (abortion),6. if the �rst datum has been received (with the RFST indication), then aSNOK con�rmation is followed by a RNOK indication before the nextrequest.9.2 Description of the ProtocolThe BRP consists of two processes, the sender S and the receiver R, thatcommunicate through two unbounded lossy �fo channels K and L: messagescan either be lost or arrive in the same order in which they are sent. TheBRP can be seen as an extended version of the alternating bit protocol.Messages sent from the sender S to the receiver R through the channel K areframes of the form (first; last; toggle; datum) where a datum is accompaniedby three bits: first and last indicate whether the datum is the �rst orthe last one of the considered �le, toggle is the alternating bit allowing todetect duplications of intermediate frames. As for the acknowledgments (sentfrom R to S through L), they are frames of the form (first; last; toggle).Notice that in the description we consider of the BRP, the value of toggle isrelevant only for intermediary frames. Indeed, the �rst and last frames canbe distinguished from the intermediary ones using the booleans first andlast.The behaviours of S and R are the following: The sender S starts by reading(action REQ) a sequence s = d1; : : : ; dn. We consider here that n � 2, thecase n = 1 does not introduce any di�culty. Then, S sends to R throughK the �rst data frame (1; 0; 0; d1), and waits for the acknowledgment. Letus consider �rst the ideal case where frames are never lost. When R receives22



the frame from K, it delivers to its client the datum d1 with the indicationRFST, and sends to S an acknowledgment frame (1; 0; 0) through the channelL. When S receives this acknowledgment, it transmits to R the second frame(0; 0; 0; d2) (toggle is still equal to 0 since its value is relevant for intermediateframes). Then, after reception, R delivers d2 with the indication RINC andsends the acknowledgment (0; 0; 0) to S. Then, the next frame sent by Sis (0; 0; 1; d3) (now toggle has 
ipped), and the same procedure is repeateduntil the last frame (0; 1;�; dn) is sent (here again, like in the case of the �rstframe, the value of toggle is not relevant). When R receives the last frame,it delivers dn with the indication ROK, and acknowledges receipt. Then, thesender S communicates to its client the con�rmation SOK meaning that thewhole sequence s has been successfully transmitted.Now, let us consider the case where frames are lost. When S send a dataand realizes that it may be lost (a timer Ts expires and it did not receive acorresponding acknowledgment from R), it retransmits the same frame andwaits again for the acknowledgment. However, it can try only up to a �xedmaximal number of retransmissions MAX which is a parameter of the proto-col. So, the sender maintains a counter of retransmissions CR, and when CRreaches the value MAX, it gives up and concludes that the connection withthe receiver is broken. Then, it informs its client that a failure occured bycommunicating one of the two con�rmations: SNOK if the frame in consid-eration is not the last frame of the sequence, or SDNK if it is the last one(the sender cannot know if the frame was lost or if its acknowledgment waslost). On the other side, the receiver R uses also a timer Tr to measure thetime elapsed between the arrival of two di�erent frames. When R receives anew frame, it resets Tr and, it delivers the transmitted datum with the cor-responding indication, otherwise it resends the last acknowledgment. If thetimer expires, it concludes that the connection with the sender is broken anddelivers an indication RNOK meaning that the transmission failed. Noticethat if the �rst frame is continuously lost, the receiver has no way to detectthat the sender is trying to start a new �le transmission. In addition, twoassumptions are made on the behaviour of S and R:A1 R must not conclude prematurely that the connection with S is broken.A2 In case of abortion, S cannot start transmitting frames of another �leuntil R has reacted to abortion and informed its client.Assumption A1 means that Tr must be large enough to allow MAX retrans-missions of a frame. Assumption A2 can be implemented for instance by23
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Figure 3: The sender Simposing to S to wait enough time after abortion to be sure that Tr hasexpired.9.3 Modeling the BRP as a Lossy Channel SystemWe model the BRP as a lossy channel system which consists of two commu-nicating �nite-state machines, the sender S and the receiver R represented inFigures 3 and 4 (with obvious notational conventions). For that, we proceedas follows:Frames: Since the control of the BRP does not depend on the transmitteddata, we hide their values and consider only the informations (first; last; toggle).The set of relevant informations of such form corresponds to a �nite alpha-bet M = ffst; last; 0; 1g, where fst (resp. last) represents the �rst (resp. last)frame, and 0 and 1 represents the intermediate frames since only toggle is24
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relevant in this case.To model the protocol we use two extensions of the basic model described inSection 2. The semantics of these two operations can easily be expresses inthe basic model of Section 2. the �rst operation consists in introducing chan-nel emptiness testing: we use enabling conditions on transitions involving apredicate empty on channels telling whether a channel is empty. The secondextension consists in allowing the components of a system to test and setboolean shared variables (recall that we consider here asynchronous parallelcomposition following the interleaving semantics).The number of transmitted frames: The only relevant information iswhether a frame is the �rst one, the last one, or an intermediate one. Weabstract from the actual value n corresponding to the size of the transmittedsequence of frames, and assume that it can be any positive integer, chosennondeterministically (by the sender).Time-outs: Since our model is untimed, we cannot express time-outs ex-plicitly, we assume that the sender and the receiver decide nondeterministi-cally when time-outs occur, provided that their corresponding input channelsare empty (we use the channel emptiness testing operation).The counter CR and the value MAX: The only relevant information iswhether CR < MAX or CR � MAX. We assume that the sender can resendframes an arbitrary number of times before deciding that MAX is reachedand aborting the transmission. This makes the size of the channels K andL unbounded. Our model is an abstraction of the whole family of BRPs forarbitrary values of MAX.Assumptions A1 and A2: Again, since our model is untimed, we can-not impose real-time constraints to implement the assumptions A1 and A2.Instead, we use boolean shared variables to synchronise the sender and thereceiver. We consider the two following variables: abort which tells whetherthe sender has decided abortion, and rtrans which tells whether the receiverconsiders that the transmission of a sequence of frames has started and is not�nished yet, i.e., from the moment it receives the �rst frame until it informsits client that the transmission is terminated, either successfully or not.
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Figure 5: The minimized symbolic graph of the BRP9.4 Verifying the BRPTo verify the BRP, we proceed as follows: First, we use our Lcs tool togenerate automatically the set of reachable con�gurations of the BRP and thecorresponding canonical symbolic graph. The obtained graph has 24 symbolicstates and 61 transitions. The execution time is 0.56 seconds (UltraSparc).Then, we use the tool Aldebaran to minimize this graph according to theobservational trace equivalence where the set of observable actions is fREQ,SOK, SNOK, SDNK, RFST, RINC, ROK, RNOKg. We obtain the �nite-statelabelled transition system with 5 states and 10 transitions given in Figure 5.Properties such as those given in Section 9.1 are expressible in ACTL (theaction-based variant of CTL) and can be automatically model checked onthe obtained �nite-state abstract model of the BRP.10 ConclusionsWe present a method for performing symbolic forward reachability analy-sis of lossy channel systems: systems which consist of �nite-state machinescommunicating over unbounded lossy channels. In spite of the restriction oflossiness, we can model the behaviour of many interesting systems such aslink protocols which are designed to operate correctly even in the case wherethe channels are lossy and can lose messages. Also lossy channel systemso�er a conservative approximations when checking linear time properties ofsystems with perfect channels. This is because the set of computations of alossy channel system is a superset of the set of computations of the corre-27



sponding system with perfect channels, and hence if a linear time propertyholds in the �rst it will also hold in the second.To perform the reachability analysis, we de�ne a subclass of regular expres-sions which we call SREs, and show that the set of reachable con�gurationsin any lossy channel system can always be described as an SRE. Further-more, we describe the reachability algorithm by means of a set of operationson SREs each of which can be performed in polynomial timeIn this paper, we accelerate the forward search of the state space, by consid-ering (besides single transitions) the e�ect of \meta-transitions" which aresimple loops entering each control state at most once.We have applied our approach to the non-trivial example of the BRP. Weshow how to use unbounded channels in order to perform parametric rea-soning: unboundedness of the channels models the fact that the number ofretransmissions can be any arbitrary positive integer. Our experimentationwith the Lcs tool suggests that the veri�cation algorithms give quite satis-factory performances in practice.References[AJ96a] Parosh Aziz Abdulla and Bengt Jonsson. Undecidable veri�ca-tion problems for programs with unreliable channels. Informa-tion and Computation, 130(1):71{90, 1996.[AJ96b] Parosh Aziz Abdulla and Bengt Jonsson. Verifying pro-grams with unreliable channels. Information and Computation,127(2):91{101, 1996.[BBLS92] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis.Property-preserving simulations. In CAV'92. LNCS 663, 1992.[BG96] B. Boigelot and P. Godefroid. Symbolic veri�cation of commu-nication protocols with in�nite state spaces using QDDs. InAlur and Henzinger, editors, Proc. 8th Int. Conf. on ComputerAided Veri�cation, volume 1102 of Lecture Notes in ComputerScience, pages 1{12. Springer Verlag, 1996.[BGWW] B. Boigelot, P. Godefroid, B. Willems, andP. Wolper. The power of QDDs. Available athttp://www.montefiore.ulg.ac.be/~biogelot/research/BGWW97.ps.28
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A Appendix - Proofs of Some LemmasProof of Theorem 3.3First, we show some auxiliary lemmas.Lemma A.1 For a �nite alphabetM and a string x 2M�, there is a productp such that y 2 [[p]] if and only if x 6� y.Proof. Let x be of the form a1a2 � � �am. Let ei be the atomic expression(a1; : : : ; ai�1; ai+1; : : : ; am)�. We de�ne r = e1�(a1+�)�e2�(a2+�) � � � (am�1+�) � em. 2In Lemma A.2 we show that each downward-closed language can be char-acterized through a �nite set of counter-examples. The proof of the lemmarelies on Higman's theorem [Hig52] which states the following: for any �nitealphabet M , and for any in�nite sequence x1; x2; : : : of strings over M , thereare i < j such that xi � xj.Lemma A.2 For a �nite alphabet M and a downward-closed language Lover M , there is a �nite set fx1; : : : ; xng of strings over M , such that forany string y 2 M�, it is the case that y 2 L if and only if xi 6� y, for eachi : 1 � i � n.Proof. Consider the complement L0 of L. It is clear that L0 is upward-closed.We show that there is a �nite set fx1; : : : ; xng of strings over M , such thatfor any string y, we have y 2 L0 if and only if xi � y, for some i : 1 � i � n.The result follows immediately.Suppose that no such a set exists. We derive an in�nite sequence x0; x1; x2; : : :violating Higman's lemma. We take x0 any element of L. We de�ne xj to beany string in L such that xi 6� xj for all i : 0 � i < j. The string xj existsby the assumption. 2Lemma A.3 For products p1 and p2, there is an SRE p1 ^ p2 such that[[p1 ^ p2]] = [[p1]] \ [[p2]].
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Proof. We de�ne p1 ^ p2 as follows.p1 ^ p2 =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

; if either r1 = ; or r2 = ;� if either r1 = � and r2 6= ; orr2 = � and r1 6= ;(a+ �) � (r01 ^ r02) if r1 = (a+ �) � r01 and r2 = (a+ �) � r02(r01 ^ r2) + (r1 ^ r02) if r1 = (a1 + �) � r01 andr2 = (a2 + �) � r02 and a1 6= a2(a+ �) � (r01 ^ r2) if r1 = (a+ �) � r01 andr2 = (a1 + � � �+ am)� � r02 anda 2 fa1; : : : ; amg(a+ �) � (r1 ^ r02) if r1 = (a1 + � � �+ am)� � r01 andr2 = (a + �) � r02 anda 2 fa1; : : : ; amg(d1 + � � �+ dk)� � (r1 ^ r02)+ if r1 = (a1 + � � �+ am)� � r01 and(d1 + � � �+ dk)� � (r01 ^ r2) r2 = (b1 + � � �+ bn)� � r02 andfd1; : : : ; dkg = fa1; : : : ; amg \ fb1; : : : ; bng2Proof of Theorem 3.3 We show that if a language L is downward-closedthen L is simply regular. The result follows immediately. Assume thatL is downward-closed. By Lemma A.2 it follows that there is a �nite setfx1; : : : ; xng of strings over M , such that for any string y, it is the case thaty 2 L if and only if xi 6� y, for each i : 1 � i � n. By Lemma A.1 it followsthat there are products p1; : : : ; pn such that L = [[p1]]\ � � �\ [[pn]]. The resultfollows from Lemma A.3. 2
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Proof of Lemma 6.2First, we show some auxiliary de�nitions and lemmas. For strings x and y,we de�ne y 	 x as follows.y 	 x = 8>><>>: y if x = �unde�ned if y = � and x 6= �y1 	 x1 if y = a � y1 and x = b � x1 and a = by1 	 x if y = a � y1 and x = b � x1 and a 6= bObserve that y 	 x is de�ned if and only if x � y.Lemma A.4 For strings x and y, if x � y and ym+1 	 xm+1 = ym 	 xm,then yn 	 xn = ym 	 xm for each n � m.Proof. We use induction on n�m. The base case is trivial. Since x � y weknow that yn	xn is de�ned and hence yn+1	xn+1 = ((yn 	 xn) � y)	x. Bythe induction hypothesis it follows that yn	xn = ym	xm, so yn+1	xn+1 =((ym 	 xm) � y)	 x = ym+1 	 xm+1 = ym 	 xm. 2Proof of Lemma 6.2 We show that either y 6� ym 	 xm for all m � 0, orthere is m � jyj such that y � ym 	 xm. The result follows immediately.Notice that if there is j : 0 � j < jyj such that y � yj 	 xj, then the claimholds trivially. Otherwise, there are two cases.� If there exists k : 0 � k < jyj such that yk+1 	 xk+1 = yk 	 xk. ByLemma A.4 it follows that ym 	 xm = yk 	 xk for all m � k. Thismeans that y 6� ym 	 xm for all m � 0.� If for each k : 0 � k < jyj it is the case that yk+1 	 xk+1 6= yk 	 xk.This implies x � y. It follows that yk 	 xk � yk+1 	 xk+1, and hencek � jyk 	 xkj, for each k : 0 � k � jyj. This implies that y � ym 	 xm,where m = jyj. 2
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