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Abstract

We consider symbolic on-the-fly verification methods for systems
of finite-state machines that communicate by exchanging messages via
unbounded and lossy FIFO queues. We propose a novel representation
formalism, called simple reqular expressions (SREs), for representing
sets of states of protocols with lossy FIFO channels. We show that
the class of languages representable by SREs is exactly the class of
downward closed languages that arise in the analysis of such protocols.
We give methods for (i) computing inclusion between SREs, (ii) an
SRE representing the set of states reachable by executing a single
transition in a system, and (iii) an SRE representing the set of states
reachable by an arbitrary number of executions of a control loop of a
program. All these operations are rather simple and can be carried
out in polynomial time.

With these techniques, one can straightforwardly construct an al-
gorithm which explores the set of reachable states of a protocol, in or-
der to check various safety properties. We also show how one can per-
form model-checking of LTL properties, using a standard automata-
theoretic construction. It should be noted that all these methods
are by necessity incomplete, even for the class of protocols with lossy
channels.



To illustrate the applicability of our methods, we have developed
a tool prototype and used the tool for automatic verification of (a
parameterized version of) the Bounded Retransmission Protocol.

1 Introduction

One of the most popular models for specifying and verifying communica-
tion protocols is that of Communicating Finite State Machines (CFSM)
IBZ83, Boc78|. This model consists of finite-state processes that exchange
messages via unbounded FIFO queues. Several verification methods have
been developed for CFSMs [BZ83, CF87, GGLRS&7, Pac87, PP91, SZ91].
However, since all interesting verification problems are undecidable [BZ83],
there is in general no completely automatic verification method for this class
of systems.

A way to obtain a decidable verification problem is to consider lossy channel
systems, where the unbounded FIFO channels are assumed to be lossy, in
the sense that they can at any time lose messages. This restricted model
covers a large class of communication protocols, e.g., link protocols. In our
earlier work [AJ96b], we showed the decidability and provided algorithms
for verification of safety properties and some forms of liveness properties for
lossy channel systems. Our algorithm for verifying safety properties is global,
in the sense that it performs a backward search, starting from a set of “bad”
states and trying to reach some initial state. In contrast, many efficient
verification methods are so-called on-the-fly algorithms [Hol91, CVWY90],
in which the state-space is explored in a forward search, starting from the
initial states. In this paper, we therefore consider how forward verification
can be carried out for lossy channel systems.

For that we adopt a symbolic verification approach. One of the main chal-
lenges in developing verification methods for a class of systems is to choose
a symbolic representation of (possibly infinite) sets of states of a system.
The symbolic representation should be expressive, yet allow efficient perfor-
mance of certain operations which are often used in symbolic verification
algorithms. Examples of such operations include checking for inclusion, and
computing the states that can be reached by executing a transition of the
system. In order to speed up the search through the state space, it is also
desirable to be able to calculate, in one step, the set of states that can be
reached by executing sequences of transitions. For instance, we can consider
the set of sequences corresponding to an arbitrary number of executions of
a control loop. This technique to speed up the reachability search has been



applied e.g. for systems with counters [BW94] and perfect channel systems
[BG96, BGWW97]. Once a symbolic representations has been obtained it
can used for many types of verification and model checking problems.

In this paper, we propose a novel representation formalism, called simple
reqular expressions (SREs), for use in verifying protocols modelled as lossy
channel systems. SREs constitute a subclass of regular expressions. To our
knowledge, this class has not been studied before. Because of the lossiness, we
need only to represent sets of channel contents that are closed with respect to
the subsequence relation. For example, if a channel can contain the sequence
abc, then it can also contain the sequences ab, ac, be, a, b, ¢, and e. It is well-
known that downward closed languages are always regular. We strengthen
this result and show that in fact the class of downward closed languages
corresponds exactly to those recognized by SREs. This implies that for any
lossy channel system we represent the set of reachable states as an SRE. We
suggest methods for computing:

e inclusion between SREs, which can be done in quadratic time,
e an SRE obtained by executing a single transition, and

e an SRE obtained by an arbitrary number of executions of a control
loop of a program. It turns out that this operation can be carried out
in polynomial time.

With these techniques, one can straightforwardly construct an algorithm
which explores the set of reachable states of a protocol, in order to check
various properties. This algorithm is parametrized by the set of control
loops that are used to speed up the reachability set computation. We also
show how one can perform model-checking of LTL properties, using a stan-
dard construction of taking the cross-product of the protocol and a Biichi
automaton that recognizes the complement of the LTL property in question.
It should be noted that all these methods are incomplete, i.e., they may
sometimes not terminate. The incompleteness of our methods is unavoidable
despite the facts that reachability is decidable for lossy channel systems, and
that the set of reachable states is representable by an SRE. This is due to a
basic result [CFI96] saying that there is no general algorithm for generating
the set of reachable states.

To illustrate the applicability of our methods, we have developed a tool pro-
totype, called Lcs. Given a lossy channel system, the tool generates auto-
matically the set of reachable configurations described as SREs, and produces



a symbolic graph which constitutes a finite-state abstract model of the sys-
tem. Furthermore, the tool allows on-the-fly verification of safety properties
given by finite-state labelled transition systems. The Lcs tool is connected
to the CADP toolbox [FGK'96] which provides a variety of procedures on
finite-states labelled transition systems, e.g., comparison and minimization
w.r.t. behavioural equivalences, and model-checking for temporal logics. For
instance, it is possible to generate automatically a finite abstract model of a
system using the Lcs tool, and then apply standard finite-state verification
techniques on the abstract model.

As an experimentation, we have applied the tool for automatic verification of
the Bounded Retransmission Protocol (BRP) of Philips [GvdP93]. The BRP
is a data link protocol which can be seen as an extended version of the well
known alternating bit protocol. It consists of a sender and a receiver that
communicate through two unbounded lossy channels. The service provided
by the protocol is to transmit large files, where each file is a sequence of data
of some arbitrary length. In addition, both the sender and receiver must in-
dicate to their clients whether the whole file has been delivered successfully
or not. The sender reads a sequence of data and transmits successively each
datum in a separate frame following an alternating bit protocol-like proce-
dure. However, the sender can resend a non-acknowledged frame up to a fixed
number of retransmissions MAX, which is a parameter of the protocol. In
our model, we assume that the value of MAX and the sizes of the transmitted
sequences are arbitrary positive integers. The assumption concerning MAX
leads to a model with unbounded channels representing a family of BRPs.
Each member of the family operates on a certain given value of MAX. In
other words, we use the model of unbounded channels to perform parametric
reasoning on an infinite family of systems.

The Lcs tool generates automatically the set of reachable configurations
of the BRP and the corresponding finite symbolic graph (0.56 seconds on
UltraSparc). After projecting this graph on the set of external actions of the
protocol and minimizing it w.r.t. observational trace equivalence, we get an
abstract model with 5 states and 10 transitions which corresponds exactly
to the expected external behaviour of the protocol.

Related Work There are several existing works on symbolic verification
of perfect channel systems. Pachl [Pac87| proposed to represent the set of
reachable states of a protocol as a recognizable set. A recognizable set is
a finite union of Cartesian products of regular sets. Pachl gave no efficient
algorithms for computing such a representation. In [FM96] a symbolic anal-



ysis procedure is proposed using a class of regular expressions which is not
comparable with SRE’s. However, the computed reachability set by this
procedure is not always exact.

Boigelot and Godefroid [BG96, BGWW97] use finite automata (under the
name QDDs) to represent recognizable sets of channel contents. In [ BGWW97]
it has been shown that the effect of every loop is recognizable for a system
with a single fifo-channel. As soon as two channels are considered, the effect
of a loop may be non-recognizable (i.e., not QDD-representable). This is
due to the fact that the repeated execution of a loop may create constraints
between the number of occurrences of symbols in different channels. For
instance, the iteration of a loop where a message is sent to two different
channels generates pairs of sequences with the same length (assuming the
channel is initially empty). In [BGWW97] a complete characterization is
given of the types of loops which preserve recognizability. To compute and
represent the effect of any loop in a perfect fifo-channel, a representation
structure, called CQDDs (constrained QDDs), combining finite automata
with linear arithmetical constraints is needed [BH97|. In the case of lossy
channels, the links between the number of occurrences in different channels
are broken due to lossiness, and this simplifies the computation of the ef-
fect of loops, conceptually and practically (i.e., from the complexity point of
view).

We argue that SREs offer several advantages when used as a symbolic rep-
resentation in the context of lossy channel systems. First, the operations
on QDD’s and CQDD’s are of exponential complexity and are performed by
quite non-trivial algorithms (see e.g. [BGWW, BH]), whereas all operations
on SRE’s can be performed by much simpler algorithms and in polynomial
time. Moreover, we describe a normal form for SREs, and provide a poly-
nomial procedure to transform an SRE to an equivalent normal SRE. While
QDD’s admit a canonical form via minimization, a corresponding result is
not known for CQDD’s. Also, SREs are closed under the performance of any
loop, while QDDs are closed only under certain restricted types of loops.

Finally, although the data structures (QDDs and CQDDs) used in [BG96,
BGWW97, BH97| are more general than SREs, the algorithms in [BG96,
BGWW97, BH97] are not able to simulate the ones we present in this paper.
The reason is that the lossy transitions are implicit in our model, whereas all
transitions are explicitly represented in the algorithms in [BG96, BGWW97,
BH97]. Thus to simulate in [BG96, BGWWO97, BH97| the effect of iteration
of a loop in the lossy channel model, we have to add transitions explicitly to
model the losses. These transitions add in general new loops to the system,



implying that a loop in the lossy channel system is simulated by a nested
loop in the perfect channel system. However analysis of nested loops is not
feasible in the approaches of [BG96, BGWW97, BH97|.

Several works have addressed the specification and verification of the BRP.
To tackle the problem of unboundedness of the size of the transmitted files
and the parameter MAX, these works propose proof-based approaches using
theorem provers, combined with abstraction techniques and model checking.
In [GvdP93] the system and its external specification are described in yCRL
and are proved to be (branching) bisimilar. The proof is carried out by hand
and is checked using Coq. An approach based on proving trace inclusion
(instead of bisimulation) on I/O automata is developed in [HSV94]. In [HS96]
the theorem prover PVS is used to prove that the verification of the BRP
can be reduced by means of abstraction to a finite-state problem that can
be solved by model checking. In [GS97, BLO98| a more automated approach
is applied based on constructing automatically a finite abstract model using
PVS, for an explicitly given abstraction function.

Another way to look at our model is to consider the lossy channel system as
an abstraction of an infinite family of the BRPs; namely the family of BRPs
with all possible values of the two parameters: file sizes and value of MAX.
The model is infinite-state: the unboundedness of the parameters is in some
sense transformed into an unboundedness of the channels. Starting from
this infinite-state system, our verification technique is fully automatic. It is
based on an automatic generation of a finite abstract model, without giving
explicitly the abstraction relation. So, our work provides a fully automatic
(and efficient) verification of the (untimed) parameterized version of the BRP.

Finally, we mention two works where the BRP has been verified automatically
but only for some fized instances of its parameters. In [Mat96], an untimed
version of the BRP is verified using both a bisimulation-based approach and
a model checking approach using CADP. In [DKRT97] a timed version of the
BRP is verified using the tools SPIN and UPPAAL. These two works avoid the
issue of parameter unboundedness and use standard finite-state techniques.
The work in [DKRT97] consider timing aspects that we have abstracted since
our model is untimed.

Outline In the next section we give some preliminaries. In Section 3 we
introduce the class Simple Regular Expressions (SREs). In Section 4 we
describe how to check entailment among SREs. In Section 5 we give a normal
form for SREs. In Section 6 we define operations for computing post-images
of sets of configurations, represented as SREs. In Section 7 we show how
to use SREs to perform different verification algorithms for lossy channel



systems. In Section 8 we describe our tool prototype. In Section 9 we present
our modeling and verification of the BRP. Finally, in Section 10 we give some
conclusions.

2 Lossy Channel Systems

We consider system models consisting of asynchronous parallel compositions
of finite-state machines that communicate through sending and receiving
messages via a finite set of unbounded lossy fifo channels (in the sense that
they can nondeterministically lose messages).

A Lossy Channel System (LCS) L is a tuple (S, sinit, C, M, %, J), where

e S is a finite set of (control) states, The control states of a system
with n finite-state machines is formed as the Cartesian product S =

S x --- xS, of the control states of each finite-state machine.

® Siuit € S is an initial state, The initial state of a system with n finite-
state machines is a tuple (Sinit,, - - . , Sinit,, ) Of initial states of the com-
ponents.

e (' is a finite set of channels,

e M is a finite set of messages,

e Y is a finite set of transition (or action) labels,

e § is a finite set of transitions, each of which is of the form (sq, ¢, Op, s9),

where s; and sy are states, £ € ¥, and Op is a mapping from C to
(channel) operations. An operation is either a send operation la, a
recetve operation 7a, or an empty operation nop, where a € M.

For x,y € M*, we let x ® y denote the concatenation of x and y. We use 2"
to denote the concatenation of n copies of x. The empty string is denoted by
e. We use < y to denote that x is a (not necessarily contiguous) substring
of y.

A configuration v of L is a pair (s, w) where s € S is a control state, and w
is a mapping from C' to M* giving the contents of each channel. The initial
configuration Yin; of L is the pair (s;ni, €) where € denotes the mapping where
each channel is assigned the empty sequence e.

We define a labelled transition relation on configurations in the following
manner: (s, w) N (89, wy) if and only if there exists a transition (sq, ¢, Op, s9) €
0 such that, for each ¢ € C, we have:



e if Op(c) =la, then wsy(c) = wi(c) o a,
e if Op(c) =7a, then a @ wy(c) = wy(c),

e if Op(c) = nop, then wy(c) = w(c).

Let < denote the subsequence relation on M*. For two mappings w and
w' from C' to M*, we use w =< w' to denote that w(c) = w'(c) for each
¢ € C. Then, we introduce a weak transition relation on configurations in

the following manner: (s, w) N (s2,w9) if and only if there are w] and
w} such that w] < wy, wy = wj, and (s1,w]) N (s9,wh). Intuitively,
(s1,wr) SN (s9,ws) means that (sy, ws) can be reached from (s, w) by first
losing messages from the channels and reaching (s, w}), then performing the

i ¢ :
transition (s;, w]) — (s9, wh), and thereafter losing messages from channels.

Given a configuration v, we let post(y) denote the set of immediate successors

of 7, i.e, post(y) = {7 : I € X. v N 7'}. The function post is
generalized to sets of configurations in the obvious manner. We let post*
denote the reflexive transitive closure of post, i.e., given a set of configurations
7, post*(7) is the set of all reachable configurations starting from 7. Let
Reach(L) be the set post*(Vini). For every control location s € S, we define
R(s) ={w : (s,w) € Reach(L)}.

A run of L starting from a configuration 7 is a finite or infinite sequence

p = Yoloy1l17s . .. such that vy = v and Vi > 0. ; N Vit1- The trace of the
run p is the sequence of action labels 7 = {145 . ... We denote by Traces(L)
the set of traces of all runs of £ starting from the initial configuration ;.

We introduce two extensions of the basic model given above: the first one
consists in introducing channel emptiness testing: we use enabling condi-
tions on transitions involving a predicate empty on channels telling whether
a channel is empty. The second extension consists in allowing the compo-
nents of a system to test and set boolean shared variables (remember that
we consider here asynchronous parallel composition following the interleav-
ing semantics). The formal semantics of the extended model is an obvious
adaptation of the one given above.

3 Simple Regular Expressions (SREs)

We define a class of languages which can be used to describe the set of reach-
able configurations of a lossy channel system. Let M be a finite alphabet.



We define the set of regular expressions (REs), and the languages generated
by them in the standard manner. For a regular expression r, we use [r] to
denote the language defined by r. For regular expressions r; and ry, we use
rn = 1y (r1 C 79) to denote that [r] = [ro] ([r1] C [r2]). By m = 7o we
mean that r; C ry and 77 # r9. In case r| C ry we say that ry entails ro. We
use A(r) to denote the set of elements of M appearing in r.

We define a subset of the set of regular expressions, which we call the set of
sitmple reqular expressions, as follows.

Definition 3.1 Let M be a finite alphabet. An atomic expression over M
is a regular expression of the form

e (a+¢), where a € M, or of the form

e (a7 +...+ay,)", where a,... ,a, € M.

A product p over M is a (possibly empty) concatenation ¢; e ey ® --- @ ¢, of
atomic expressions ey, ... , e, over M. We use € to denote the empty product,
and assume that [e] = {¢}.

A simple regular expression (SRE) r over M is of the form p; + ... + p,,
where py,...,p, are products over M. We use () to denote the empty SRE,
and assume that [()] is the empty language (). A language L is said to be
stmply reqular if it is representable by an SRE.

Let C' and M be finite alphabets. A C-indezed language over M is a mapping
from C' to languages over M. A C-indexed RE (SRE) R over M is a mapping
from C to the set of REs (SREs) over M. The expression R defines a C-
indexed language K over M where w € K if and only if w(c) € [R(c)] for
each ¢ € (. The entailment relation is extended to indexed REs in the
obvious manner. An indexed language is said to be simply recognizable if it
is a finite union of languages recognized by indexed SREs. O

Definition 3.2 Let M and C be finite alphabets. For a language L C M*,
we say that L is downward closed if v € L and y < x imply y € L. The

definition is generalized in the natural way to C-indexed languages over M.
O

Theorem 3.3 For finite alphabets M and C' and a C-indexed language L
over M, if L is downward-closed then L is simply recognizable.

Proof. The proof can be found in the appendix. O



Since the set of reachable configurations of a lossy channel system is downward-
closed, we get the following.

Corollary 3.4 For a lossy channel system £ and a state s in L, the set R(s)
is simply recognizable.

However, it is shown in [CFI96] that we cannot in general compute a repre-
sentation of R(s). The uncomputability of R(s) is shown through a reduction
to an undecidable problem reported in [AJ96a]. More precisely, in [AJ96a] we
show the undecidability of the recurrent state problem: given a lossy channel
system £ and a state s in £, is there a computation of £ visiting s infinitely
often? In [CFI96] the uncomputability of a representation of R(s) is reduced
to the recurrent state problem as follows. We add a new channel ¢ to the
lossy channel system. Whenever a computation reaches s, an arbitrary mes-
sage is sent to ¢. Suppose that we can compute an indexed SRE R such
that [R] = R(s). It is clear that the existence of a computation visiting s
infinitely often is equivalent to the finiteness of [R(c)].

Theorem 3.5 [CFI96] For a lossy channel system £ and a state s in L,
there is, in general, no algorithm for computing a representation of R(s).

Although we can compute a representation of the set of configurations from
which a given configuration is reachable ([AJ96b]), we cannot in general
compute a representation of the set of configuration which are reachable
from a given configuration (Theorem 3.5). This means that we can have a
complete algorithm for performing backward reachability analysis in lossy
channel systems, while any procedure for performing forward reachability
analysis will necessarily be incomplete.

4 Entailment among SREs

In this section, we consider how to check entailment between SREs. First,
we show a preliminary lemma about entailment.

Lemma 4.1 For products p,pi,... ,pn, if pC p1 + ...+ p, then p C p; for
some i € {1...n}.

Proof. Given any natural number &, we define a sequence z such that = € [p]
and z ¢ [p'], for any product p’, where p [Z p' and where p’ contains at most

10



k atomic expressions. The result follows immediately. Let p =e¢; @ ---0¢,,.
We define © = y; @ - - ey, where y; is defined as follows. If ¢; = (a+¢€) then
yi =a. Ife; = (ay + ...+ ag)* then y; = (a, @ --- @ ay) ! O

Let us identify atomic expressions of form (a;+. . .+a,,)* which have the same
set ay,...,a, of symbols. Then C is a partial order on atomic expressions.
It is the least partial order which satisfies

(a+€) C (a1 +...+ay)" ifae{a,...,an}
((J,1++am)*;(b1++bn)* if{al,... ,am}g{bl,... ,bn}

Lemma 4.2 Entailment among products can be checked in linear time.

Proof. The result follows from the fact that ¢ C p, p £ € if p # €, and
e1 @ p1 C ey @ py if and only if one of the following holds:

e ¢ [Zeyand e o p C po.
PY 61262:((J,+€) andp1 EPQ

e ¢o=(a;+--+a,* e Cey, and p; C ey @ po.

Lemma 4.3 Entailment among SREs can be checked in quadratic time.
Proof. The proof follows from Lemma 4.1 and Lemma 4.2. O

Corollary 4.4 Entailment among indexed SREs can be checked in quadratic
time.

5 Normal Forms for SREs

In this section, we show how to compute normal forms for SREs. First we
define a normal form for products.

Definition 5.1 A product e; e---e¢, is said to be normal if for each 7 : 1 <
it <n wehave e;@e; .1 Le; 1 and e; 0,1 £ €. O

Lemma 5.2 For each product p, there is a unique normal product, which
we denote P, such that p = p. Furthermore, p can be derived from p in linear
time.

11



Proof. We can define p from p by simply deleting atomic expressions which
are redundant according to Definition 5.1. O

Similarly, we can define a normal form for SREs.

Definition 5.3 An SRE r = p; + ...+ p, is said to be normal if each p; is
normal fori:1 <7 <n,and p; Z p;, fori,j: 1 <i#j<n. O

In the following, we shall identify SREs if they have the same sets of products.

Lemma 5.4 For each SRE r, there is a unique (up to commutativity of
products) normal SRE, which we denote by 7, such that 7 = r. Furthermore,
7 can be derived from r in quadratic time.

Proof. The proof follows from Lemma 4.2, Lemma 4.1 and Lemma 5.2. O

6 Operations on SREs

In this section, we will define operations for computing post-images of sets
of configurations, represented as SREs, with respect to transitions of a lossy
channel system. We will also define operations for computing post-images of
sets of configurations with respect to an arbitrary number of repetitions of
an arbitrary control loop in a lossy channel system.

Throughout this section, we assume a fixed finite set C' of channels and a
finite alphabet M. We will first consider operations on SREs corresponding
to single transitions, and thereafter consider loops.

6.1 Computing the Effect of Single Transitions

Consider a language L and an operation op € {la,?a, nop}. We define L® op
to be the smallest downward closed language such that y € (L ® op) if there
is an x € L satisfying one of the following three conditions: (i) op =la, and
y=xzea;or (ii) op =7a, and a ey = z; or (iii) op = nop, and y = .

For an indexed language K, and a mapping Op from C' to operations, we
define K ® Op to be the indexed language where (K ® Op)(c) = K(c)® Op(c),
for each ¢ € C. Notice that, for a lossy channel system L, and a set 7 of
configurations in £, the set post(?) is given by U, s.0p.sm)esi{s2,w) + w €

(7 © Op)(s1)}-

12



The following propositions show how to compute the effect of single opera-
tions on SREs.

Lemma 6.1 For an SRE r and an operation op, there is an SRE, which we
denote r ® op, such that [r ® op] = [r] ® op. Furthermore, r ® op can be
computed in linear time.

Proof. For a product p and an operation op, we have p® (la) = pe (a +¢),
and p ® (nop) = p. Furthermore, € ® (7a) = (). and if p = e @ py, then

P ife=(a+...4ay)*anda € {a; + ...+ a,}
p® (7a) = 2} ife=(a+e)
m ® (Ta) otherwise

For an SRE p; + ... + p,, we have

(P14 +Dm) ®op = (p1 ®0p) + ...+ (pm ® 0p)

Lemma 6.1 can be generalized in the obvious manner to indexed SREs.

6.2 Computing the Effect of Loops

We study methods to accelerate reachability analysis of lossy channels sys-
tems. The basic idea is that, rather than generating successor configurations
with respect to single =--transitions, we shall consider the effect of per-
forming sets of sequences of transitions in each step. We consider control
loops, i.e., sequences of transitions starting and ending in the same control
state. If ops is the sequence of channel operations associated with a control
loop, then we shall calculate the effect on an SRE of performing an arbitrary
number of iterations of ops. In Lemma 6.3, we show that for each SRE and
sequence ops, there is an n such that the set of all strings which can be
obtained through performing n or more iterations of ops on the SRE can
be characterized by a (rather simple) SRE. In other words, the effect of the
loop “stabilizes” after at most n iterations, in the sense it only generates
strings belonging to a single SRE. This implies that the effect of performing
an arbitrary number of iterations of the loop can be represented as the union
of n SREs: one of them represents all iterations after n, while the remain-
ing SREs each represents the effect of iterating the loop exactly j times for
j:1<j7<n—1.In Corollary 6.4 we generalize the result to indexed SREs.

13



For strings x and y, we use x <. y to denote that there are x; and x5 such
that x = 2, ex5 and zo @27 < y. The relation <. can be decided in quadratic
time. If € < x,y, then we use z <* y to denote that there is an integer m > 1
such that 2™ < y™ L,

Lemma 6.2 For strings z,y, if x <* y then 2™ < y™ !, for some m : 1 <
m < |y|.

Proof. The proof can be found in the appendix. O

From Lemma 6.2 it follows that the relation <" can be checked in quadratic
time. For a sequence ops = op, op, - - - op,, of operations, we define L® ops to
be L& op,®op,®- - -®op,,. We use ops™ (Ops™) to denote the concatenation
of m copies of ops (Ops). By ops! (ops?) we mean the subsequence of ops
which contains only send (receive) operations. For a product p, let |p| denote
the number of atomic expressions in p.

Lemma 6.3 For a product p and a sequence ops of operations, the following
holds. There is a natural number n and a product p’ such that either p ®
ops™ =0 or p’ = Ujs,[p ® ops’]. Furthermore, the value of n is linear in the
size of p, and p’ can be computed in quadratic time.

Proof. Let A(ops!) = {by,...,bg}. There are four cases. In the first two
cases the loop can be iterated an infinite number of times and the channel
contents will be unbounded. In case 3 the loop can be iterated an infinite
number of times but the channel contents will be bounded. In case 4 deadlock
occurs after at most n iterations.

1. If (ops?)* C [p]. This means that either ops? is empty or there is an
atomic expression in p of the form (a; + ... + a,,)* where A(ops?) C
{ai,... ,a,}. In case ops? is empty, we let n = 0 and p’ = pe (b +
-+» 4 bg)*. Otherwise, let e be the first expression in p (starting from
the left) which satisfies the above property, and let p = p; e ¢ @ p,. We
define n = |py| and p' = copy @ (by + -+ -+ by)*.

Intuitively, after consuming the words in p;, the loop can be iterated
an arbitrary number of times producing and adding to the right a
corresponding number of ops!. Hence, due to lossiness, the global effect
is obtained by concatenating to the right of ee py the downward closure
of (ops!)*, which is precisely (by + - -+ bg)*.

2. If (ops?)* & [p], ops? < ops!, and p® ops # (), then we define n = |p|
and p' = (by + - - + bg)*.
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Intuitively, since (ops?)* € [p], the original contents of the channel
will be consumed after at most n iterations. Furthermore, according to
Lemma 6.2, ops? < ops! implies that there is an m : 1 < m < |ops!|
such that (ops?)™ < (ops!)™ !, Hence that contents of the channel
will grow by at least ops! after each m iterations. By iterating the
loop sufficiently many times we can concatenate any number of copies
of ops! to the end of the channel. Again, by lossiness, the total effect
amounts to (by + -+ -+ b)*. The condition p ® ops # () guarantees that
the first iteration of the loop can be performed. This is to cover cases
where e.g. the channel is initially empty and the receive operations are
performed first in the loop.

I (ops?)* & [pl, ops? £ ops!, ops? <. ops!, and p ® ops? # (), then
n=|pl+1p =p® ops"*t'.

Although the loop can be iterated any number of times, the contents
of the channel will not grow after the n® iteration. Observe that we
demand p ® ops® # 0. The condition p ® ops # @ (in case 2) is not
sufficient here. A counter-example is p = ba and ops = (7b)(?a)(!a)('b).
We get p ® ops = ab and p ® ops?> = (). An explanation is that, for
strings 2 and y, the relation z <% y (a condition of case 2) implies
z =< y, while x <. y (the corresponding condition in case 3) implies
x < y? but not z < y.

. If conditions 1, 2, or 3 are not satisfied, then n = |p| + 1. We have
p® ops™ = ().

In this case the loop can be executed at most n times, after which the
channel becomes empty, and we deadlock due to inability to perform
receive operations.

O

Notice that the proof of Lemma 6.3 gives us a complete characterization of
whether a loop can be executed infinitely often from a certain configuration
(i.e., in cases 1. - 3.), and whether in such a case the contents of channel
grows unboundedly or stays finite.

Also, observe that in case we have an SRE (instead of a product) then we
can apply the lemma to each product separately.

The result of Lemma 6.3 can be generalized to indexed SREs in a straight-
forward manner: The loop can be executed infinitely often if and only if the
loop can be executed infinitely often with respect to each channel. If the loop
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can be executed infinitely often, then we take the Cartesian products of the
expressions computed according to Lemma 6.3. This gives us the following.

Corollary 6.4 For an indexed SRE R and a sequence Ops of indexed op-
erations, there is an indexed SRE, which we denote by R ® Ops*, such that
[R® Ops*] = Up<;[R ® Ops’]. Furthermore, R ® Ops* can be computed in
quadratic time.

7 Use in Verification Algorithms

The SRE representation and the operations presented in the previous sec-
tions can be used in solving verification problems for lossy channel systems.
First, we can use these operations in on-the-fly verification procedures where
properties are checked during the generation of the set of reachable configu-
rations. Another approach is to use reachability analysis to construct a finite
abstract model of the system, which can be handled by means of standard
finite-state techniques.

7.1 On-the-Fly Verification

Suppose we want to check whether some set 7 i of configurations is reachable.
We then search through the (potentially infinite) set of reachable configura-
tions, as follows.

We use symbolic states to represent sets of configurations. A symbolic state
¢ is a pair (s, R), where s is a control state , and R is an indexed SRE
describing the contents of the channels. The language [¢] defined by ¢ is the
set of configurations {(s,w); w € [R]}. We extend the entailment relation
in the obvious way so that (s, R) C (s', R') if and only if s = s’ and RC R'.

We maintain a set V' which we use to store symbolic states which are gen-
erated during the search. At the start, the set V' contains one unexplored
symbolic state representing the initial configuration. From each unexplored
element in V', we compute two sets of new elements: one which corresponds
to performing single transitions (Lemma 6.1), and another which describes
the effect of of control loops. Here, there is a choice in which loops to explore.
A reasonable strategy seems to be to investigate the sequences of transitions
which correspond to simple control loops in the program. A simple control
loop is a loop which enters each control state at most once. By applying these
control loops we get new symbolic states which can be computed according
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to Corollary 6.4. Actually, these loops can be detected automatically during
the search.

When a new element ¢ is generated, it is compared with those which are
already in V. If ¢ C ¢’ for some ¢' € V| then ¢ is discarded (it will not add
new configurations to the searched state space). It is also checked whether ¢
has a non-empty intersection with 7 p. This is easy if e.g., 7 g is a recognizable
set. If the intersection is non-empty, the algorithm terminates. Otherwise,
the algorithm is terminated when no new symbolic states can be generated.

During our search, it can happen that a new element ¢ is added to V, al-
though ¢ will not add any new configurations to the explored state space.
This is due to the fact that even if ¢ £ ¢ for all ¢’ € V, the relation
[¢] € Ugev 9] may still hold. The test for discarding new SREs can there-
fore be modified so that ¢ is discarded if and only if [¢] C [,y [¢]. This
would make the algorithm terminate more often (fewer elements need to be
added to V). However, for indexed SREs (and hence for symbolic states),
the above test has an exponential complexity in the number of channels.

From Theorem 3.5, we know that our algorithm is incomplete. The algorithm
will always find reachable configurations in 7 gz, but it will not necessarily
terminate if all configurations in ? p are unreachable.

The procedure described can be used for checking safety properties since their
verification problem is straightforwardly reducible to a reachability problem.
In fact, we can use a slight extension of this procedure to check whether a
lossy channel system satisfies a linear temporal logic formula over the control
states of the system. By standard techniques [VW86], we can transform this
problem into checking whether a lossy channel system, in which some control
states are designated as “accepting”, has an infinite computation which visits
some accepting control state infinitely often. In our earlier work [AJ96a], we
showed that this problem is undecidable. However, an incomplete check can
be performed as part of the state-space generation in the previous paragraph.
More precisely, when exploring a set of configurations with an accepting
control state we can, as part of exploring the loops, check whether there is a
control loop that can be executed an infinite number of times. We only need
to check whether one of the three first conditions in the proof of Lemma 6.3
holds.

7.2 Generation of Finite Abstractions

Let p be a binary relation on configurations. We say that p is a simulation if
for every pair of configurations ; and 9, and every label £ € X, if (71, 72) € p
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and there is a configuration ~] such that ~, RN 71, then there exists 4 such
that 7, — 74 and (7}, 73) € p.

Let £, and £, be two systems and let . ., and v2,,, be their respective initial
configurations. Then, we say that Lo simulates L if there is a simulation
relation p between the configurations of £, and £, such that (v} .., v2.:,) € p-

It is well known that if £y simulates £, then Traces(Ly) C Traces(Ls).

Now, we introduce the notion of a symbolic graph. Given a lossy channel
system L, we can use reachability analysis to construct a finite symbolic
graph which simulates L.

Let @ be a finite set of symbolic states. Then, the symbolic graph associated
with @ is the finite-state labelled transition system Gg¢ such that the set of
states is ® and, Vo1, o € &. VL € Y. ¢ LN Oo iff 3y € P, 72 € 2. 1 L
72. We consider as initial state in Gg any configuration which contains the
initial configuration ~;,;.

In particular, we consider the partition of Reach(L) according to the control
states, i.e., &, = {(s,R) : s € Sand [R] = R(s)}. The labelled transition
system Gg, is called the canonical symbolic graph of L.

Lemma 7.1 For every finite set of symbolic states @, if Reach(L) C (J,eq [9],
then Ge simulates L.

Indeed, it is easy to see that the membership relation, i.e., the relation p
such that yp¢ iff v € [¢], is a simulation relation (using the fact that every
reachable configuration of £ belongs to at least one symbolic state in ®).

Clearly, Lemma 7.1 holds for the canonical symbolic graph of £. This means
that if Reach(L) can be constructed, we obtain directly a finite-state abstrac-
tion of the system L. This abstract model can be used to check linear-time
properties and, if the result is positive, to deduce that the same result holds
for the concrete system L£!. More precisely, given an oo-regular linear-time
property Il i.e., a set of finite or infinite traces over Y, a system L satisfies
IT if Traces(L) C II. By Lemma 7.1, we have Traces(L) C Traces(Go,)-
Hence, for every oo-regular property I, if Gg, satisfies II, then £ satisfies I1
too.

Notice that if Gs, does not satisfy II, this could be due to the fact that
the abstraction corresponding to the partition of Reach(L) according to the

!This approach can also be applied for branching-time properties expressed in universal
positive fragments of temporal logics or p-calculi like VCTL* [GL91] or OL, [BBLS92].
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control states is too coarse. Then, one could try to check II on refinements
of this partition.

8 The tool Lcs

We implemented our techniques in a tool prototype called L.cs. The input of
the Lcs is a finite set of communicating automata, given separately. Then,
the tool allows the following options:

e Generation of the reachability set: The tool allows calling a pro-
cedure which computes a representation of the reachability set of the
system by means of (normal) SREs. The computation is done accord-
ing to a depth-first-search strategy, and uses the acceleration principle
as described in Sections 6 and 7. Notice that the loops used for accel-
eration are found on-the-fly and are not given explicitly by the user.

e On-the-fly checking of safety properties: Given a safety property
described as a deterministic labelled transition system II over a set
observable actions () C X, the tool checks whether the projection of the
system on € (i.e., the system obtained after hiding all actions except
those in 2) satisfies the property II. This verification is done on-the-fly
(the procedure stops as soon as the property is falsified) following the
principle described in Section 7.

e Generation of the canonical symbolic graph: During the compu-
tation the reachability set, the LCs tool can construct the correspond-
ing canonical symbolic graph (transitions between symbolic states).

The symbolic graph is produced in the input format of the CADP tool-
box (CAESAR/ALDEBARAN Development Package) [FGK'96] which
contains several tools on finite-state labelled transition systems, e.g.,
graphical visualization, comparison with respect to various behavioural
equivalences and preorders like observational bisimulation and simu-
lation, minimization, on-the-fly automata-based verification, model-
checking for an ACTL-like temporal logic (action-based variant of CTL)
and the alternation-free modal p-calculus.

Example: Alternating Bit Protocol

Let us illustrate the use of our tool on the Alternating Bit Protocol (ABP
for short). We model the ABP by two finite-state machines, a sender and
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Sender Receiver

Figure 1: Alternating Bit Protocol

a receiver, communicating through two unbounded lossy channels K and L
(see Figure 1).  The procedure implemented in the LcS tool terminates

‘ Sender ‘ Receiver ‘ Channel K ‘ Channel L

0 0 1* 1*
1 0 1*0* 1*
1 1 0* 1*
1 2 0* 10
2 2 0* 0*
3 2 0*1* 0*
3 3 1* 0*
3 0 1* 0*1*

Table 1: Reachability set of the ABP

and generates automatically the reachability set of the ABP (see Table 1),
as well as the corresponding canonical symbolic graph (see Figure 2). The
execution time is 0.07 seconds (UltraSparc). Then, using the ALDEBARAN
tool [FM91], we minimize this graph according to observational trace equiva-
lence by considering that SND and RCV are the only observable actions. The
resulting minimal transition system is shown in Figure 2. It is clear from
this transition system that the external behaviour of the ABP is equivalent
to the behaviour of a one-place buffer.

Remark The minimization we considered removes all silent (non-observable)
transitions, including silent loops. This can be done since we are only inter-
ested in safety properties on observable actions. This is, however, not sound
for checking liveness properties (silent loops leading to divergence must be
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Figure 2: Canonical symbolic graph of the ABP and its minimal version

taken into account in this case).

9 The Bounded Retransmission Protocol

In this section we describe the verification of the Bounded Retransmission
Protocol in the Lcs tool.

9.1 Specification of the Service

The Bounded Retransmission Protocol (BRP for short) is a data link pro-
tocol. The service it delivers is to transmit large files (sequences of data of
arbitrary lengths) from one client to another one. Each datum is transferred
in a separate frame. Both clients, the sender and the receiver, obtain an
indication whether the whole file has been delivered successfully or not.

More precisely, at the sender side, the protocol requests a sequence of data
s =dy,...,d, (action REQ) and communicates a confirmation which can be
SOK, SNOK, or SDNK. The confirmation SOK means that the file has been
transferred successfully, SNOK means that the file has not been transferred
completely, and SDNK means that the file may not have been transferred
completely. This occurs when the last datum d,, is sent but not acknowledged.
Now, at the receiver side, the protocol delivers each correctly received datum
with an indication which can be RFST, RINC, or ROK. The indication RFST
means that the delivered datum is the first one and more data will follow,
RINC means that the datum is an intermediate one, and ROK means that this
was the last datum and the file is completed. However, when the connection
with the sender is broken, an indication RNOK is delivered (without datum).
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Properties the service must satisfy are:

1. a request REQ must be followed by a confirmation (SOK, SNOK, or
SDNK) before the next request,

2. a RFST indication (delivery of the first datum) must be followed by
one of the two indications ROK or RNOK before the beginning of a new
transmission (next request of the sender),

3. a SOK confirmation must be preceded by a ROK indication,

4. a ROK indication can be followed by either a SOK or a SDNK confir-
mation, but never by a SNOK (before next request),

5. a RNOK indication must be preceded by SNOK or SDNK (abortion),

6. if the first datum has been received (with the RFST indication), then a
SNOK confirmation is followed by a RNOK indication before the next
request.

9.2 Description of the Protocol

The BRP consists of two processes, the sender S and the receiver R, that
communicate through two unbounded lossy fifo channels K and L: messages
can either be lost or arrive in the same order in which they are sent. The
BRP can be seen as an extended version of the alternating bit protocol.
Messages sent from the sender S to the receiver R through the channel K are
frames of the form (first,last,toggle, datum) where a datum is accompanied
by three bits: first and last indicate whether the datum is the first or
the last one of the considered file, toggle is the alternating bit allowing to
detect duplications of intermediate frames. As for the acknowledgments (sent
from R to S through L), they are frames of the form (first,last,toggle).
Notice that in the description we consider of the BRP, the value of toggle is
relevant only for intermediary frames. Indeed, the first and last frames can
be distinguished from the intermediary ones using the booleans first and
last.

The behaviours of S and R are the following: The sender S starts by reading
(action REQ) a sequence s = dy,... ,d,. We consider here that n > 2, the
case n = 1 does not introduce any difficulty. Then, S sends to R through
K the first data frame (1,0,0,d;), and waits for the acknowledgment. Let
us consider first the ideal case where frames are never lost. When R receives
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the frame from K, it delivers to its client the datum d; with the indication
RFST, and sends to S an acknowledgment frame (1,0, 0) through the channel
L. When S receives this acknowledgment, it transmits to R the second frame
(0,0,0,ds) (toggle is still equal to 0 since its value is relevant for intermediate
frames). Then, after reception, R delivers dy with the indication RINC and
sends the acknowledgment (0,0,0) to S. Then, the next frame sent by S
is (0,0,1,ds) (now toggle has flipped), and the same procedure is repeated
until the last frame (0,1, —, d,,) is sent (here again, like in the case of the first
frame, the value of toggle is not relevant). When R receives the last frame,
it delivers d,, with the indication ROK, and acknowledges receipt. Then, the
sender S communicates to its client the confirmation SOK meaning that the
whole sequence s has been successfully transmitted.

Now, let us consider the case where frames are lost. When S send a data
and realizes that it may be lost (a timer T expires and it did not receive a
corresponding acknowledgment from R), it retransmits the same frame and
waits again for the acknowledgment. However, it can try only up to a fixed
maximal number of retransmissions MAX which is a parameter of the proto-
col. So, the sender maintains a counter of retransmissions CR, and when CR
reaches the value MAX, it gives up and concludes that the connection with
the receiver is broken. Then, it informs its client that a failure occured by
communicating one of the two confirmations: SNOK if the frame in consid-
eration is not the last frame of the sequence, or SDNK if it is the last one
(the sender cannot know if the frame was lost or if its acknowledgment was
lost). On the other side, the receiver R uses also a timer 7, to measure the
time elapsed between the arrival of two different frames. When R receives a
new frame, it resets 7, and, it delivers the transmitted datum with the cor-
responding indication, otherwise it resends the last acknowledgment. If the
timer expires, it concludes that the connection with the sender is broken and
delivers an indication RNOK meaning that the transmission failed. Notice
that if the first frame is continuously lost, the receiver has no way to detect
that the sender is trying to start a new file transmission. In addition, two
assumptions are made on the behaviour of S and R:

A1 R must not conclude prematurely that the connection with S is broken.

A2 In case of abortion, S cannot start transmitting frames of another file
until R has reacted to abortion and informed its client.

Assumption A1 means that 7, must be large enough to allow MAX retrans-
missions of a frame. Assumption A2 can be implemented for instance by
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SNOK:Op2

L7last Kllast

SOK L71 L70
SDNK: L7last

Opa QL?ﬁ
(@ T.7last e Kl

K!0
O L7fst
Klfst
\ |
0\ REQ ‘® K!fst _
Op1 L7fst
a SNOK:Opa
SNOK:Op2

Op1 = —rtrans A empty(K) A empty(L) — abort := false
Op2 = empty(L) — abort := true

Figure 3: The sender S

imposing to S to wait enough time after abortion to be sure that 7, has
expired.

9.3 Modeling the BRP as a Lossy Channel System

We model the BRP as a lossy channel system which consists of two commu-
nicating finite-state machines, the sender S and the receiver R represented in
Figures 3 and 4 (with obvious notational conventions). For that, we proceed
as follows:

Frames: Since the control of the BRP does not depend on the transmitted
data, we hide their values and consider only the informations (first, last, toggle).
The set of relevant informations of such form corresponds to a finite alpha-
bet M = {fst, last, 0, 1}, where fst (resp. last) represents the first (resp. last)
frame, and 0 and 1 represents the intermediate frames since only toggle is
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RNOK: abort A empty(K) — rtrans := false

K?0, .10

@

K7fst, L!fst

RINC: —abort
K70, L!0

RINC: —abort

RNOK:
abort A

K70, L0

RINC:

rtrans :

—abort
RFST: ROK: —abort K?l, L1
—abort, K?last, L!last
K7fst
Lifst — ROK: —abort
rtrans := true K7?last, Lllast K?1, L1

K?last, L!last

RNOK: abort A empty(K) — rtrans := false

Figure 4: The receiver R
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relevant in this case.

To model the protocol we use two extensions of the basic model described in
Section 2. The semantics of these two operations can easily be expresses in
the basic model of Section 2. the first operation consists in introducing chan-
nel emptiness testing. we use enabling conditions on transitions involving a
predicate empty on channels telling whether a channel is empty. The second
extension consists in allowing the components of a system to test and set
boolean shared variables (recall that we consider here asynchronous parallel
composition following the interleaving semantics).

The number of transmitted frames: The only relevant information is
whether a frame is the first one, the last one, or an intermediate one. We
abstract from the actual value n corresponding to the size of the transmitted
sequence of frames, and assume that it can be any positive integer, chosen
nondeterministically (by the sender).

Time-outs: Since our model is untimed, we cannot express time-outs ex-
plicitly, we assume that the sender and the receiver decide nondeterministi-
cally when time-outs occur, provided that their corresponding input channels
are empty (we use the channel emptiness testing operation).

The counter CR and the value MAX: The only relevant information is
whether CR < MAX or CR > MAX. We assume that the sender can resend
frames an arbitrary number of times before deciding that MAX is reached
and aborting the transmission. This makes the size of the channels K and
L unbounded. Our model is an abstraction of the whole family of BRPs for
arbitrary values of MAX.

Assumptions A1 and A2: Again, since our model is untimed, we can-
not impose real-time constraints to implement the assumptions A1l and A2.
Instead, we use boolean shared variables to synchronise the sender and the
receiver. We consider the two following variables: abort which tells whether
the sender has decided abortion, and rtrans which tells whether the receiver
considers that the transmission of a sequence of frames has started and is not
finished yet, i.e., from the moment it receives the first frame until it informs
its client that the transmission is terminated, either successfully or not.
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Figure 5: The minimized symbolic graph of the BRP

9.4 Verifying the BRP

To verify the BRP, we proceed as follows: First, we use our LcCS tool to
generate automatically the set of reachable configurations of the BRP and the
corresponding canonical symbolic graph. The obtained graph has 24 symbolic
states and 61 transitions. The execution time is 0.56 seconds (UltraSparc).

Then, we use the tool ALDEBARAN to minimize this graph according to the
observational trace equivalence where the set of observable actions is {REQ,
SOK, SNOK, SDNK, RFST, RINC, ROK, RNOK}. We obtain the finite-state
labelled transition system with 5 states and 10 transitions given in Figure 5.
Properties such as those given in Section 9.1 are expressible in ACTL (the
action-based variant of CTL) and can be automatically model checked on
the obtained finite-state abstract model of the BRP.

10 Conclusions

We present a method for performing symbolic forward reachability analy-
sis of lossy channel systems: systems which consist of finite-state machines
communicating over unbounded lossy channels. In spite of the restriction of
lossiness, we can model the behaviour of many interesting systems such as
link protocols which are designed to operate correctly even in the case where
the channels are lossy and can lose messages. Also lossy channel systems
offer a conservative approximations when checking linear time properties of
systems with perfect channels. This is because the set of computations of a
lossy channel system is a superset of the set of computations of the corre-
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sponding system with perfect channels, and hence if a linear time property
holds in the first it will also hold in the second.

To perform the reachability analysis, we define a subclass of regular expres-
sions which we call SREs, and show that the set of reachable configurations
in any lossy channel system can always be described as an SRE. Further-
more, we describe the reachability algorithm by means of a set of operations
on SREs each of which can be performed in polynomial time

In this paper, we accelerate the forward search of the state space, by consid-
ering (besides single transitions) the effect of “meta-transitions” which are
simple loops entering each control state at most once.

We have applied our approach to the non-trivial example of the BRP. We
show how to use unbounded channels in order to perform parametric rea-
soning: unboundedness of the channels models the fact that the number of
retransmissions can be any arbitrary positive integer. Our experimentation
with the LLcs tool suggests that the verification algorithms give quite satis-
factory performances in practice.
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A Appendix - Proofs of Some Lemmas

Proof of Theorem 3.3

First, we show some auxiliary lemmas.

Lemma A.1 For a finite alphabet M and a string x € M*, there is a product
p such that y € [p] if and only if z A y.

Proof. Let x be of the form ajas---a,. Let e; be the atomic expression
(a1, ... @i 1,041, ,a,)* Wedefiner = e;o(a;+¢)oese(agte) - (am, 1+
€) ®ep,. O

In Lemma A.2 we show that each downward-closed language can be char-
acterized through a finite set of counter-examples. The proof of the lemma
relies on Higman’s theorem [Hig52| which states the following: for any finite
alphabet M, and for any infinite sequence xy, zo, ... of strings over M, there
are ¢ < j such that x; < ;.

Lemma A.2 For a finite alphabet M and a downward-closed language L
over M, there is a finite set {z1,...,x,} of strings over M, such that for
any string y € M*, it is the case that y € L if and only if z; A y, for each
1:1 < <n.

Proof. Consider the complement L' of L. It is clear that L’ is upward-closed.
We show that there is a finite set {x,...,x,} of strings over M, such that
for any string y, we have y € L' if and only if z; <y, for some i : 1 < i < n.
The result follows immediately.

Suppose that no such a set exists. We derive an infinite sequence xg, x1, s, . . .
violating Higman’s lemma. We take z any element of L. We define z; to be
any string in L such that x; A x; for all ¢ : 0 <4 < j. The string z; exists
by the assumption. O

Lemma A.3 For products p; and po, there is an SRE p; A py such that
[p1 A pa] = [p1] N [po].
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Proof. We define p; A py as follows.

AP =
( () if either r; = 0 or 79 = ()
€ if either r; = € and ry # () or
ro =€ and ry # ()
(a+e€)e(ri ATl ifri=(a+e)eri and ro = (a+¢€) @7}
(ri A o) + (1 ATY) if ry = (a; +¢€) @7} and
r9 = (ag +€) @7, and a; # ay
(a+€)e(r] Ary) if ry = (a+e¢€)er] and
19 = (a1 + -+ ap)* @7 and
a€d{an,. .., an}
(a+¢€)o(riAry) if ri = (a1 + -+ an)" or; and
ro = (a+€) o1l and
a€{ay,...,an}
(dy+ - +dp) e (ri ATY)+ ifry = (a1 + -+ a,)* er; and
(dy+---+dp)* e (ri Ary) 9= (by+---+b,)* er, and
L {dl,...,dk}:{al,...,am}ﬂ{bl,...,bn}
O

Proof of Theorem 3.3 We show that if a language L is downward-closed
then L is simply regular. The result follows immediately. Assume that
L is downward-closed. By Lemma A.2 it follows that there is a finite set
{z1,...,z,} of strings over M, such that for any string vy, it is the case that
y € L if and only if z; A y, for each 7 : 1 < i < n. By Lemma A.1 it follows
that there are products py, ... ,p, such that L = [p;[N---N[p,]. The result
follows from Lemma A.3. 0
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Proof of Lemma 6.2

First, we show some auxiliary definitions and lemmas. For strings « and y,
we define y © x as follows.

Y ife=c¢

undefined ify =€ and z # ¢

Y1 © 11 ify=aey,andr=0bex; and a="0
S ify=aey, and x =bex; and a # b

yor =

Observe that y © x is defined if and only if x < y.

Lemma A.4 For strings x and y, if z < y and y™*' © 2™ = y™ o 2™,
then y" © 2" = y™ & 2™ for each n > m.

Proof. We use induction on n —m. The base case is trivial. Since x < y we
know that y" ©z" is defined and hence y" ™' 2" = ((y" © 2") e y) O x. By
the induction hypothesis it follows that y" © 2" = y™ S 2™, so y"H O 2"t =
((ym =) xm) ° y) S = ym—|—1 =) xm—l—l — ym o ™.

O

Proof of Lemma 6.2 We show that either y £ y™ & 2™ for all m > 0, or
there is m < |y| such that y < y™ © ™. The result follows immediately.

Notice that if there is j : 0 < j < |y| such that y < 7 © 27, then the claim
holds trivially. Otherwise, there are two cases.

e If there exists k : 0 < k < |y| such that y**! o 2*+1 = yk o 2% By
Lemma A4 it follows that y™ © 2™ = y* © 2% for all m > k. This
means that y £ y™ © 2™ for all m > 0.

o If for each k : 0 < k < |y it is the case that y**! © 2%t £ % o 2.
This implies # < y. It follows that y* © 2% < y*+1 © 2%*1, and hence
k < |y* © |, for each k : 0 < k < |y|. This implies that y < y™ & 2™,
where m = |y|.
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