
Model Checking Timed Automata �Sergio Yovine yzVERIMAGCentre Equation2, Av. de Vignate38610 Gi�eres, FranceSeptember 9, 19971 IntroductionThe theory of timed automata provides a formal framework to model and toanalyze the behavior of real-time systems, that is, of systems whose correctfunctioning is subject to and must ensure the respect of strict timing constraintssuch as execution times, response times, tasks' periods, communication delaysand so on.Timed automata have been �rst proposed in [4] as an extension of theautomata-theoretic approach to the modeling of real-time systems. Since then,the theory of timed automata has been an intensive �eld of research in computerscience. With the aim of demonstrating that the ultimate goal of the theoreticalachievements is to apply them to solve real-life problems, the work on the theoryof timed automata has been consistently accompanied by the development oftools.1.1 Timed automataA timed automaton is a �nite-state machine equipped with a set of clocks.Clocks are piece-wise continuous real-valued functions of time that preciselyrecord the time elapsed between events. All clocks are synchronized, that is,they all advance at the same pace. More precisely, all clocks have the samederivative with respect to time, which is assumed to be by de�nition equal toone. Discontinuities may occur when a transition is taken. In this case, clocksare allowed to be reset to a new value which becomes the initial value of the next�To appear in LNCS volume on Embedded Systems, G. Rozenberg and F. Vaandrager,editors, Springer-Verlag, 1997.ySergio.Yovine@imag.fr. http://www.imag.fr/VERIMAG/PEOPLE/Sergio.YovinezCurrently visiting California PATH, University of California at Berkeley, Richmond FieldStation Bldg. 452, 1301 S. 46th St, Richmond CA 94804.1

0 t

x
reset

x’=1

guard

Figure 1: A clock (x) is a piece-wise continuous function of time (t).continuous phase. Transitions are associated with a guard which is a predicateover the clocks. The guard determines when a transition can be taken. Thebehavior of a clock as a function of time is illustrated in Figure 1. Timedautomata are formally presented in Section 2.1.2 Algorithmic veri�cationThe constraints imposed on the clocks model the timing constraints the real-timesystem is subject to. Analyzing the behavior of the timed automaton consistsin verifying whether it satis�es the timing properties it is supposed to ensure.Such properties are generically called requirements. Assuming that we have aformal way of expressing the requirements, we can state the veri�cation problemas follows. Given a timed automaton A, a requirement R and a satisfactionrelation j=, does A j= R hold?Researchers focused their work on the development of algorithmic methodsfor solving this problem, mainly along the lines of the so-called model check-ing approach. This approach consists in providing an algorithm that answersyes or no for every instance of a class of veri�cation questions. Such a classof problems is obtained by �xing the formalism to express the requirementsand the satisfaction relation. Some examples of classes of veri�cation problemsare the following: requirements are also expressed as timed automata and thesatisfaction relation corresponds to bisimulation equivalence [17, 34, 41, 43], orrequirements are expressed as formulas of a logic and the satisfaction relationis \being a model of" [5, 3, 30, 12]. 11As a matter of fact, it was this last class of problems that gave the name to the approach.Today, however, the term \model checking" is used as a synonymfor \algorithmicveri�cation",in contrast to \theorem proving" which is used to mean \deductive veri�cation". [42]2

0 1 2 3

1

2

x

y

Figure 2: Partition of the space of clock valuations into regions.1.3 ReachabilityMany di�erent instances of the veri�cation question have been studied in theliterature. In this paper we survey the di�erent algorithms and data-structuresthat have been proposed in the seek for e�ciency. For the sake of simplicity, wefocus our attention on algorithms for solving the so-called reachability problem.This problem is stated as follows. Given two states of the system, is there anexecution starting at one of them that reaches the other?The �rst reason for studying such algorithms is that they allow us to checkfor safety properties, which are expressed as the non-reachability of a set ofstates where the system is consider to show an incorrect or unsafe functioning.Second, the algorithms developed for analyzing other classes of properties areessentially based on the same techniques and data-structures.1.4 AlgorithmsVeri�cation algorithms can be viewed as algorithms that search for particularstates among all the possible states of the system. States are related by atransition relation that speci�es how to move from one state to another. Thatis, the state-space of a system is structured as a graph. Conceptually, the searchcan be performed in either of two ways: forwards or backwards. Forward searchconsists in traversing the state-space by moving from one state to its successors.The backward search analyzes the graph by exploring the predecessors of a state.The state-space of a timed automaton is clearly in�nite since clocks are vari-ables that range over the set of real numbers. A very important observationin [4] is that the space of clock valuations, which is indeed dense, can be par-titioned into a �nite set of classes which are given the name of clock regions.The important property of the partition is that the veri�cation question has the3

same answer for all the clock valuations in a region. 2 This technique is studiedin Section 3.Algorithms directly based on the explicit construction of such a partition arehowever unlikely to perform e�ciently in practice. The main reason for this isthat the size of the partition, that is, the number of regions, is an exponentialfunction of the number of clocks and of the constants against which the clocksare compared to. 3 Thus, di�erent techniques have been proposed in order toovercome this problem.Another approach consists in discretizing the space of clock valuations andthe ow of time in such a way that at least one representative of every clockregion belongs to the discretized space. Though this approach could su�er ofthe same exponential blow-up of the number of representatives, which is atleast as large as the number of regions, its main advantage is the possibility ofusing well-known data-structures and algorithms that have been developed forthe analysis of purely discrete systems. This approach is briey discussed inSection 4.An important corollary that follows from the results in [4] is that sets ofregions can be characterized as conjunctions and disjunctions of linear inequal-ities over the clocks. Thus, a question that naturally arises is the following. Isit possible to analyze a timed automaton without explicitly and a-priori con-structing the partition into regions, but rather by symbolically manipulatingthe inequalities? This problem has been explored in [30] in a more general ver-i�cation problem than reachability, namely the veri�cation of properties statedin the temporal logic called Tctl. Section 5 discusses the application of thetechniques developed in [30] to solve the reachability problem. The veri�cationquestion for Tctl is described in Appendix A.The fourth and last approach over-viewed in this paper consists in �ndinga partition of the state-space that has two properties. First, it is coarser, andhence it has fewer classes, than the partition into regions. Second, for all thestates in the same class, the veri�cation question has the same answer. Thisapproach is explained in Section 6.1.5 Data structures and toolsA consequence of the results in [3, 30] is that convex sets of regions can be rep-resented as conjunctions of inequalities involving only one clock or the di�erence2In [4] this partition is constructed to solve the so-called emptiness problem. Given aninitial state, is there at least one in�nite execution starting from this state? Indeed, laterdevelopments showed that the partitioning of the space into regions is a fundamental propertyof timed automata: all the proofs of decidability and complexity of the veri�cation problemsconsidered in the literature rely on the construction of such a partition. One such proof forinstance is the one provided in [3] concerning the question whether a timed automaton satis�esa speci�cation given as a formula of the temporal logic Tctl.3This complexity is an intrinsic problem of equipping automata with clocks, and it has tobe added to the well-known problem of the combinatorial explosion regarding the analysis ofautomata. 4

between two of them. This observation lead to the study of a data-structurecalled Di�erence Bound Matrices (DBM) [22].4The key idea behind the use of DBM's as a data-structure for encoding thespace of clock valuations is to have a compact representation of sets of adjacentregions. However, a set containing regions that are apart from each other cannotbe e�ciently represented. Instead, a di�erent approach consists in representingeach region by one or more representative clock valuations. In this case, thepartition is viewed as a �nite set of points whose characteristic function can beencoded using Binary Decision Diagrams (BDD) [15]. Such an encoding leadsto a compact representation of a sparse sets of regions.These two data-structures and the tools that used them are discussed inSection 7.2 Timed automata2.1 ClocksLet X be a �nite set of variables called clocks. A clock valuation is a functionthat assigns a non-negative real-value to every clock. The set of valuations ofX, denoted VX , is the set [X tot! RR+] of total mappings from X to RR+.Let v 2 VX and � 2 RR+. We denote by v + � the clock valuation that mapseach clock x 2 X to the value v(x) + �.Let X � be the set X [f0g. An assignment is a function that maps everyclock into another clock or 0. The set of assignments over X, denoted �X , is theset [X tot! X �].Let v 2 VX and 2 �X . We denote by v[] the clock valuation such thatfor all x 2 X, v[](x) = � v((x)) if (x) 2 X,0 otherwise.2.2 Clock constraintsThe set 	X of clock constraints over the set of clocks X is de�ned by the followinggrammar: ::= x � c j x � x0 � c j ^ j : where x; x0 2 X, �2 f<;�g and c 2 ZZ.For 2 	X we write clk() to denote the set of clocks that appear in .4As a matter of fact, DBM's were already used for the analysis of Timed Petri Netsin [37], though their use for analyzing timed automata required the development of newalgorithms [45, 38, 1]. 5

clk() is inductively de�ned as follows:clk(x � c) = fxgclk(x � x0 � c) = fx; x0gclk(^ 0) = clk() [clk(0)clk(:) = clk()Clock constraints are evaluated over clock valuations. A valuation v 2 VX issaid to satisfy the clock constraint 2 	X , denoted v j= , ifv j= x � c i� v(x) � cv j= x � x0 � c i� v(x)� v(x0) � cv j= ^ 0 i� v j= and v j= 0v j= : i� v 6j= We denote by [[]] the set of valuations that satisfy , that is,[[]] = fv 2 VX j v j= g:We denote by s [x=x0] the clock constraint obtained by replacing each occur-rence of x by x0 in .2.3 Timed automataA timed automaton A is a tuple hS;X;�; E; I;�; Pi where:1. S is a �nite set of locations. We distinguish a special location sinit whichis refer to as the initial location of A.2. X is a �nite set of clocks.3. � is a �nite set of labels.4. E is a �nite set of edges. Each edge e is a tuple (s; �; ; ; s0) where(a) s 2 S is the source,(b) s0 2 S is the target,(c) � 2 � is the label,(d) 2 	X is the enabling condition, and(e) 2 �X is the assignment.5. I 2 [S tot! 	X]. We refer to I(s) as the invariant of s.6. � is a �nite set of atomic propositions.7. P 2 [S tot! 2�]. We refer to P(s) as the set of atomic propositions of s.6

1

2

0

h1 := r1; r1 := 0RT1h1 � 100 r1 � 2ST1AT1 ES1h1 < 100TT1RT1h1 � 100Idle1
Figure 3: Timed automaton of a FDDI's sender station.Example 1. Figure 3 shows a timed automaton with three locations labeledIdle1, ST1 and AT1, and two clocks, namely h1 and r1. This timed automatonmodels the behavior of a FDDI's sender station [31]. Idle1 is the initial locationof the timed automaton. By de�nition, the initial value of a clock is 0. Inlocation Idle1, the station is waiting for the token. The arrival of the token ismodel by the transition labeled TT1. Clock r1 counts the time elapsed since thelast reception of the token. Each time the token is received, r1 is reset to 0 andh1 is assigned the value of r1. All the assignments are executed in parallel, thatis, the order in which the list of assignments is given is meaningless. In locationST1, the station is sending high-priority messages. This phase can last at most 2time units. This timing constraint is modeled by the invariant condition r1 � 2.The station terminates the transmission either because 2 time units have elapsedor because it has no more high-priority messages to send. If more than 100 timeunits have elapsed since the previous reception of the token, the station goesback to location Idle1, otherwise, it goes to location AT1 where it can sendlow-priority messages while the value of the clock h1 is less than 100. When thestation has no more low-priority messages to send, it releases the token. ut2.4 States and transitionsThe meaning of A is an in�nite transition system hQ; ! ; P �i, where Q is theset of states, ! is the transition relation, and P � is the extension of P tostates. A state of A is given by a location and a valuation of the clocks. Atany state, A can move along one of the outgoing edges or it can remain in thelocation while time passes. In the �rst case, the transition results in a new statewhose location is the target location of the edge and the valuation is modi�edaccording to the assignment. Such a transition is called a discrete transition,and may only happen when the valuation satis�es the enabling condition ofthe edge. Idling in a location during some time results in the values of the7

clocks to be updated by the amount of time elapsed. Such transitions are calledtimed transitions. While remaining in a given location, A must respect thecorresponding invariant condition.Formally, hQ; ! ; P �i is de�ned as follows:1. Q = f(s; v) 2 S � VX j v j= I(s)g. The initial state qinit is the pair(sinit; vinit) where vinit(x) = 0 for all x 2 X. We denote by q+ � the state(s; v + �), and by q[] the state (s; v[]).2. P �(s; v) = P(s).3. The transition relation ! � Q�(�[RR+)�Q is de�ned by the followingrules: e = (s; �; ; ; s0) 2 E v j= v[] j= I(s0)(s; v) �! (s0; v[]) (1)� 2 RR+ 8�0 2 RR+: �0 � �) (s; v + �0) j= I(s)(s; v) �! (s; v + �) (2)2.5 ExecutionsAn execution or run r of A is an in�nite sequence of states and transitions:r = q0 `0! q1 `1! � � �We denote by R the set of runs of A and by R(q) the set of runs starting atthe state q 2 Q.A position p of r is a pair (i; �) 2 NN�RR+ such that � = 0 if `i 2 �, otherwise� = `i. We denote by Pr the set of positions of r. For a given i � 0, the set ofpositions of the form (i; �) characterizes the set of states through which the runr passes while time ows from state qi to state qi+1. We de�ne �(si,vi) to bethe state (si; vi + �). We de�ne a total order � on Pr as follows:(i; �)� (j; �0) i� i < j _ (i = j ^ � � �0):We de�ne �(i) to be the time elapsed from state q0 to state qi. �(i) is induc-tively de�ned as follows: �(0) = 0�(i+ 1) = � 0 if `i 2 �,`i otherwise.We de�ne �(i; �) to be �(i) + �.A run r is said to be time-divergent if limi!1�(i) =1. We denote by R1the set of time-divergent runs of A and by R1(q) the set of runs starting atthe state q 2 Q. 8

A state q0 is reachable from state q if it belongs to some run starting at q.We de�ne Reach(q) to be the set of states reachable from q. That is,Reach(q) = f�(p) j 9r 2 R(q): p 2 Prg:We de�ne Reach1(q) to be the set of states reachable from q along some time-divergent run. That is,Reach1(q) = f�(p) j 9r 2 R1(q): p 2 Prg:A is said to be Non-Zeno or well-timed if for all states q, Reach1(q) 6= ;. Thatis, every state can let time progress without bound.Property1. If A is Non-Zeno, q0 2 Reach1(q) i� q0 2 Reach(q).3 Analysis using the region graphGiven an initial state, we are interested in computing the set of states that arereachable from that state, that is, all the states that belong to some execution rstarting at the initial state. In this section we show how to do so by partitioningthe space of clock valuations.3.1 Region equivalenceLet 	̂ � 	X be a set of clock constraints over X. For all x 2 X, let Cx be thebiggest constant c 2 NN such that either x � c or x� y � c is a sub-formula of aclock constraint in 	̂. We de�ne '	̂� VX � VX to be the largest reexive andsymmetric relation such that v '	̂ v0 i� for all x; y 2 X, the following threeconditions hold:1. v(x) > Cx implies v0(x) > Cx,2. if v(x) � Cx then(a) bv(x)c = bv0(x)c, and(b) #(v(x)) = 0 implies #(v0(x)) = 0,where b�c : RR+ ! NN and #(�) : RR+ ! [0; 1), such that for � 2 RR+, b�c isthe integer part of �, and #(�) its fractional part.3. for all clock constraints of the form x � y � c with c 2 NN and c � Cx,v j= x� y � c implies v0 j= x� y � c.Property2. It is not di�cult to prove that '	̂ is an equivalence relation witha �nite number of classes.'	̂ is called the region equivalence for the set of clock constraints 	̂. We denoteby [v] the equivalence class (or region) of v.9

0 1 2 3

1

2

x

y

b

a

c

vFigure 4: Properties of the region equivalence.Example 2. Figure 2 illustrates the region equivalence for two clocks x and ywith Cx = 3 and Cy = 2. utThe region equivalence has the following properties.Property3. Every region can be characterized by a clock constraint. utProperty4. The number of regions is of the order of n!2n�x2XCx, where n isthe number of clocks. utProperty5. Let v '	̂ v0. For every 2 	̂, v j= i� v0 j= . utProperty6. Let 	̂ be the set of all clock constraints appearing in A, and letv '	̂ v0.1. For all 2 �X, v[] '	̂ v0[].2. For all � 2 RR+, there exists �0 2 RR+, such that v + � '	̂ v0 + �0. utProperty7. Let � be a region such that for all v such that [v] = �, v(x) > Cxfor all x 2 X. Clearly, [v + �] = � for all � 2 RR+. Such a region is said to beunbounded because the values of the clocks may grow without bound. utExample 3. Figure 4 illustrates those properties. Consider the region de�nedby the clock constraint 2 < x < 3 ^ 1 < y < 2 ^ x� y < 1. Let v be any clockvaluation in this region.a. Consider the assignment y := 0. The clock valuation v[y := 0] belongs tothe region 2 < x < 3 ^ y = 0. 10

b. Consider the assignment x := y. The clock valuation v[x := y] belongs tothe region 1 < x < 2 ^ 1 < y < 2 ^ x = y.c. Each time successor of v belongs to some of the regions crossed by a straightline drawn in the direction of the arrow. ut3.2 Region graphLet (Q; !) be the transition system of A. We extend the region equivalence'	̂ to the states of Q as follows. Two states q = (s; v) and q0 = (s0; v0) areregion-equivalent, denoted q '	̂ q0, i� s = s0 and v '	̂ v0. We denote by [q]the equivalence class of q.The region equivalence over states has the following properties.Property8. Let 	̂A be the set of all clock constraints appearing in A, and letq1 '	̂ q2.1. For all � 2 �, whenever q1 �! q01 for some q01, there exists q02 such thatq2 �! q02 and q2 '	̂ q02.2. For all � 2 RR+, whenever q1 �! q01 for some q01, there exists q02 and �0 2 RR+such that q2 �0! q02 and q2 '	̂ q02. utTherefore, if some state q01 is reachable from q1, a region-equivalent state q02 isreachable from q2.Let 	̂ � 	X be a set of clock constraints, 	̂A be the set of clock constraintsof A, and ' be the region equivalence de�ned over 	̂ [̂A .The region graph RG(A; 	̂) is the transition system (Q' ; !), where:1. Q' = f[q] j q 2 Qg.2. � �! �0 i� there exists q; q0 2 Q such that � = [q], �0 = [q0], and q �! q0.3. � "! �0 i�(a) � = �0 is an unbounded region, or(b) � 6= �0 and there exists q 2 Q and � 2 RR+ such that q �! q0, and� = [q], �0 = [q + �], and q �! q0, and for all �0 2 RR+, if �0 � � then[q + �0] is either � or �0.Notice that only unbounded regions have self-loops labeled by ". Thus, theseloops represent the divergence of time at a location.We de�ne Reach(�) to be the set of regions reachable from the region �:Reach(�) = f�0 j � !� �0g11

where !� is the reexive and transitive closure of !.We denote by hqi any clock constraint 2 	 such that q j= , and forall 0 2 	, if q j= 0 then implies 0. That is, hqi is the tightest (moduloequivalence) clock constraint that characterizes the values of the clocks in q.Now, the question whether the state q0 is reachable from the state q can beanswered as follows.Property9. Let A be a timed automaton, q; q0 2 Q, and let RG(A; fhqi; hq0ig)be the corresponding region graph.q0 2 Reach(q) i� [q0] 2 Reach([q]):Notice that the constraints hqi and hq0i characterize exactly the equivalenceclasses [q] and [q0], respectively. utProperty 9 says that the reachability problem for q and q0 has the same answerfor all the states which are region-equivalent to them.Property10. Because of Property 1, if A is Non-Zeno, Property 9 also holdsfor reachability along time-divergent executions.3.3 Region-graph based algorithmsThe last property says that verifying whether q0 is reachable from q is decidable.Indeed, it is possible to �nd the answer to such question by traversing the regiongraph. There are basically two ways of doing so.Forward traversal. This method consists in starting from [q] and visitingthe set of its successors and the successors of those and so on, until all thereachable regions have been visited. In other words, it consists in constructingthe sequence of sets of regions F0 � F1 � � � � , such thatF0 = [q]Fi+1 = Fi [Suc(Fi)where Suc(Fi) = f� j 9�i 2 Fi: �i ! �g.Property11. [q0] 2 Reach([q]) i� [q0] 2 Si�0Fi. utBackward traversal. This method consists in starting from [q0] and visitingthe set of its predecessors and the predecessors of those and so on, until all theregions from which is possible to reach [q0] have been visited. It consists thenin constructing the sequence of sets of regions B0 � B1 � � � � , such thatB0 = [q0]Bi+1 = Bi [Pre(Bi)where Pre(Bi) = f� j 9�i 2 Bi: � ! �ig.Property12. [q0] 2 Reach([q]) i� [q] 2 Si�0Bi. ut12

4 Analysis using representativesLet X = fx1; � � � ; xng. Each region of the region graph can be representedby associating with every clock x 2 X, either a constant c 2 f0; � � � ; Cxg,an interval (c � 1; c) with c 2 f1; � � � ; Cxg, or the interval (Cx;1), and anordering xi1#i1 � � �#inxin , with # 2 f<;�;=g, that encodes the ordering ofthe fractional parts.Another approach consists in representing a region by one or more represen-tatives. This method is equivalent to discretizing the space of clock valuationsand the ow of time in such a way that at least one representative of every clockregion belongs to the discretized space.4.1 PropertiesDiscretizing the state space consists in taking a rational constant d, cutting thespace into a d-grid, and providing a transition relation between the points of thegrid. The discretization and the transition relation must satisfy the followingconditions.1. If a region � has a transition to a region �0, then all the points of the gridthat belong to � have a transition to some point that belongs to �0.2. If a point of the grid has a transition to another point, then the region towhich the former belongs has a transition to the region in which the latterresides.These conditions ensure that the transition relation over the discretized state-space has the same properties than the region graph.We denote by rep(�) the set of representatives of region �, and by (D;!)the discretized graph, and by d the elements of D. We de�ne Reach(d) to bethe set fd0 j d !� d0g.Property13. �0 2 Reach(�) i� rep(�0) \ Reach(rep(�)) 6= ;.4.2 AlgorithmsThe algorithms for computing Reach(d) are basically the same used before tocompute Reach(�).Forward traversal. This method consists in computing the sequence of setsof representatives F0 � F1 � � � � , such thatF0 = rep([q])Fi+1 = Fi [Suc(Fi)where Suc(Fi) = fd j 9di 2 Fi: di ! dg.13

0

1

1 x

y

0

1

1 x

y

0

1

1 x

y

a
b

a
b

a

c

b

c c(a)� = 1=2n (b)� = 1=(n+ 1) (c)� = 1=nFigure 5: Discretizations of the space of clock valuations.Backward traversal. This method consists in computing the sequence of setsof representatives B0 � B1 � � � � , such thatB0 = rep([q0])Bi+1 = Bi [Pre(Bi)where Pre(Bi) = fd j 9di 2 Bi: d ! dig.4.3 Discretization schemesIn [26] two discretization schemes have been proposed with � = 1=(n + 1) and� = (1=2n). Figures 5(a) and 5(b) illustrate these two discretizations. Noticethat for (D;!) to satisfy the properties stated before, some \adjustments"need to be done to the computation of the time-successors. For instance, thetime-successor of point a in Figures 5(a) and 5(b), is not point c as we couldimagine, but point b. This is because when moving from a to c we miss theregion represented by c.In [8, 14] a simpler discretization has been proposed based on the followingobservation. The special class of timed automata where all the clock conditionsare of the form x � c or x < c, admits a slightly simpler and coarser region graph[29]. For these automata, a discretization with � = 1=n, where the passage oftime is simply the addition of � to all the clocks, is su�cient (see Figure 5(c)).5 Analysis using clock constraintsLet F be the set of regions Si�0Fi computed by the forward traversal algorithmexplained in Section 3. Then F can be characterized as a disjoint union of theform Us2S Fs , where Fs is the clock constraint that characterizes the set ofregions that belong to F whose location is equal to s. The same observationholds for B. Indeed, such characterization can be computed without a-prioriconstructing the region graph. 14

0 1 2 3

1

2

x

y

c

b

a

�1 �5�4�2�3Figure 6: Representation of sets of regions as clock constraints.Example 4. Consider the example illustrated in Figure 6. Let be the clockconstraint 1 < y < 2 ^ 2 < x ^ x� y < 2. represents the union of 5 regions.a. Consider the assignment y := 0. The set of regions obtained by setting to 0the value of y in all the clock valuations v 2 [[]] is characterized by theclock constraint 2 < x ^ y = 0.b. Consider the assignment x := y. The set of regions obtained by assigning tox the value of y in all the clock valuations v 2 [[]] is characterized by theclock constraint 1 < x < 2 ^ 1 < y < 2 ^ x = y.c. The set of regions corresponding to the clock valuations reachable from theclock valuations in [[]] by letting time pass is characterized by the clockconstraint 1 < y ^ x� y < 2 ^ y � x < 0.This example suggests that we can actually compute the set of successor regionsby symbolically manipulating the clock constraints. The same argument holdsfor predecessor regions. ut5.1 Forward computation of clock constraintsLet s 2 S, s 2 	X and e = (s; ; �; ; s0) 2 E. We denote by Suce(s) thepredicate over X that characterizes the set of clock valuations that are reachablefrom the clock valuations in s when the timed automaton executes the discretetransition corresponding to the edge e. That is,v j= Suce(s) i� 9v0 2 Q: v = v0[]^ v0 j= (s ^):Property14. Suce(s) 2 	X . ut15

Example 5. Consider again the example illustrated in Figure 6. Recall that is the clock constraint 1 < y < 2 ^ 2 < x ^ x� y < 2.a. The result of executing the transition resetting x to 0 is computed as follows.Suca(s) == 9x0; y0: s [x=x0; y=y0] ^ y = 0 ^ x = x0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = 0 ^ x = x0= 9y0: 1 < y0 < 2 ^ 2 < x ^ x� y0 < 2 ^ y = 0= 2 < x ^ x < 4 ^ y = 0Since the upper bound of 4 is greater than the constant Cx = 3, we caneliminate the clock constraint x < 4 and obtain: Suca(s) = 2 < x^y = 0.b. Now, consider the assignment x := y.Sucb(s) == 9x0; y0: s[x=x0; y=y0] ^ y = y0 ^ x = y0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = y0 ^ x = y0= 9x0: 1 < y < 2 ^ 2 < x0 ^ x0 � y < 2 ^ x = y= 1 < y < 2 ^ 0 < y ^ x = y= 1 < y < 2 ^ x = y utIn other words, to compute Suce(s) is equivalent to visit all the regions thatare e-successors of the regions in s , but without having to explicitly representeach one of them.Let s 2 S and s 2 	X . We denote by Suc"(s) the predicate over Xthat characterizes the set of clock valuations that are reachable from the clockvaluations in s when the timed automaton lets time pass at s. That is,v j= Suc"(s) i� 9� 2 RR+: v � � j= s ^ 8�0 2 RR+: �0 � �) v � �0 j= I(s):Property15. Suc"(s) 2 	X . utExample 6. Consider again the example illustrated in Figure 6. Case c corre-sponds to letting time pass at the location. For simplicity, we assume here thatthe invariant condition is true.Suc"(s) == 9� 2 RR+: s [x=x� �; y=y � �]= 9� 2 RR+: 1 < y � � < 2 ^ 2 < x� � ^ (x� �) � (y � �) < 2= 9� 2 RR+: 1 < y � � < 2 ^ 2 < x� � ^ x� y < 2 ^= 1 < y ^ 2 < x ^ y � x < 0 ^ x� y < 2 ut16

Notice that Suc"(s) characterizes the set of the regions that contains the re-gions characterized by s and the regions reachable from them by taking only"-transitions.Now, we can solve the reachability problem by computing the sequence ofsets of clock constraints F0; F1; � � � as follows:F0 = hqiFi+1 =]s2S Suc"(Fi;s)]]e2E Suce(Fi;s)!Notice that Fi;s implies Fi+1;s for all i � 0 and s 2 S.Property16. Let F = Si�0 Fi, q = (s; v), and q0 = (s0; v0). [q0] 2 Reach([q])i� hq0i implies Fs0. ut5.2 Backward computation of clock constraintsLet s 2 S, s 2 	X and e = (s0; ; �; ; s) 2 E. We denote by Pree(s) thepredicate over X that characterizes the set of clock valuations that can reach aclock valuation in s when the timed automaton executes the discrete transitioncorresponding to the edge e. That is,v j= Pree(s) i� v j= ^ v[] j= sProperty17. Pree(s) 2 	X . utExample 7. Consider the example illustrated in Figure 7. Let s be the clockconstraint 0 � y < 2 ^ 1 < x < 2.a. Suppose that the edge we are considering has a guard given by the con-straint y > x + 1. The predecessors of s with respect to the transitionthat resets y to 0 are computed as follows.Prea(s) = s [y=0] ^ = 0 � 0 < 2 ^ 1 < x < 2 ^ y > x+ 1= 1 < x < 2 ^ y > x+ 1b. Now, consider the assignment x := y and suppose that the edge has a guard given by the constraint x > y + 1.Preb(s) = s[x=y] ^ = 0 � y < 2 ^ 1 < y < 2 ^ x > y + 1= 1 < y < 2 ^ x > y + 1 ut17

Again, to compute Pree(s) is equivalent to visit all the regions that are e-predecessors of the regions in s , but without having to explicitly representeach one of them.Let s 2 S and s 2 	X . We denote by Pre"(s) the predicate over X thatcharacterizes the set of clock valuations that can reach a clock valuation in swhen the timed automaton lets time elapse at location s.v j= Pre"(s) i� 9� 2 RR+: v + � j= s ^ 8�0 2 RR+: �0 � �) v + �0 j= I(s):Property18. Pre"(s) 2 	X . utExample 8. Consider again the example illustrated in Figure 7. Case c corre-sponds to letting time pass at the location.Pre"(s) = 9� 2 RR+: s [x=x+ �; y=y + �]= 9� 2 RR+: 0 � y + � < 2 ^ 1 < x+ � < 2= 0 � y < 2 ^ 0 � x < 2 ^ y � x < 1 ^ x� y < 2 utThat is, Pre"(s) characterizes the set of regions that contains the regions char-acterized by s and all the regions that can reach one of them by taking only"-transitions of the region graph.Now, we can solve the reachability problem by computing the sequence ofsets of clock constraints B0; B1; � � � as follows:B0 = hq0iBi+1 =]s2S Pre"(Bi;s)]]e2E Pree(Bi;s)!Notice that Bi;s implies Bi+1;s for all i � 0 and s 2 S.Property19. Let B = Si�0Bi, q = (s; v), and q0 = (s0; v0). [q0] 2 Reach([q])i� hqi implies Bs . ut6 Analysis using bisimulation equivalencesRecall that the region graph is the quotient of the transition system of a timedautomaton with respect to the region equivalence. Another way of trying to copewith the complexity of building the region graph consists in building a graphwhich is the quotient with respect to an equivalence such that it is smaller thanthe region graph but it satis�es the same properties than the region graph, andtherefore it can be used instead of the latter for veri�cation purposes. In thissection we de�ne one such equivalence and explain how to construct the quotientgraph. 18

0 1 2 3

1

2

x

y

c

a

bFigure 7: Computing predecessors.6.1 Time-abstracting equivalenceA time-abstracting bisimulation is a symmetric binary relation B � Q � Qbetween states such that for all q1; q2 2 Q, (q1; q2) 2 B, if1. For all � 2 �, whenever q1 �! q01 for some q01, there exists q02 such thatq2 �! q02 and (q2; q02) 2 B.2. For all � 2 RR+, whenever q1 �! q01 for some q01, there exists q02 and �0 2 RR+such that q2 �0! q02 and (q2; q02) 2 B.The time-abstracting equivalence, denoted �, is the the largest time-abstractingbisimulation. Notice that the region equivalence is a time-abstracting bisimula-tion. However, it is not necessarily the largest such bisimulation.The largest time-abstracting bisimulation is an equivalence relation. Thus,computing such a bisimulation consists in constructing a partition of the state-space. Let B and C two sets of regions. We de�ne the following operators:Pre� [B](C) = f� 2 B j 9�0 2 C: � �! �0gPre"[B](C) = f�0 j 9�n 2 C; n � 1: �0 "! � � � "! �n ^ 80 � i < n: �i 2 BgLet
 be a partition ofQ such that every B 2
 is a set of regions. The quotientof (Q; !) with respect to
 is transition system (
; !), such that for allB;C 2
, and for all ` 2 L = � [f"g,B !̀ C i� Pre`[B](C) 6= ;:We write B ! C if B !̀ C for some `. B is stable with respect to C if for all` 2 L, Pre`[B](C) is either B or empty. B is stable with respect to
 if it is stablewith respect to all C 2
.
 is stable if all B 2
 are stable with respect to
.We de�ne Suc
(B) = fC 2
 j B ! Cg and Pre
(B) = fC 2
 j C ! Bg.19

 :=
0; (0)Acc := fB 2
 j B \ Init 6= ;g; (1)Sta := ;; (2)while 9B 2 Acc n Sta (3)CB := Split(B;
) (4)if (CB = fBg) (5)then (6)Sta := Sta [fBg; (7)Acc := Acc [Suc
(B); (8)else (9)Acc := Acc n fBg; (10)
 := (
 n fBg) [CB; (11)Sta := Sta n Pre
(B); (12)if B \ Init 6= ; (13)then (14)Acc := Acc [fC 2 CB j C \ Init 6= ;g; (15)end (16)Figure 8: Algorithm for computing the coarsest partition.Property20. Let
� be the partition induced by �. Clearly,
� is stable.The quotient of (Q; !) with respect to the time-abstracting equivalence isthe quotient of (Q; !) with respect to the coarsest partition
 which is stable.6.2 Computing the coarsest partitionSeveral algorithms have been proposed in the literature to compute the coarsestpartition which is stable with respect to a transition relation [35, 11]. Here weadapt the generic algorithm developed in [11] in order to construct the partition
�. The algorithm is illustrated in Figure 8.The algorithm constructs the coarsest stable partition containing only classesthat are reachable from a given set Init of initial regions.
 is the currentpartition. Acc is the set of reachable classes, that is, those classes containingat least one reachable region. Sta � Acc is the set of stable reachable classes.Split(B;
) re�nes the class B by choosing a class C with respect to which B ispotentially unstable, and then computing CB = fB1; B2g with B1 = Pre`[B](C)and B2 = B n Pre`[B](C) for some ` 2 L. If indeed Bi 6= ;, for i = 1; 2, B ise�ectively split (11-12), its predecessors become unstable (13), and the elementsof CB that contain an initial region are added to Acc (14-15). If CB = fBg, Bis both stable (7) and reachable, so its successor classes in
 are added to theset of reachable classes (8). 55This algorithm constructs the minimal �nite transition system which is equivalent to20

For better understanding how the algorithm works, we have explained itas if the region-graph had been constructed before. However, in order for thealgorithm to be useful, it should be implemented without a-priori constructingthe region-graph. This can be done following a clock-constrained based ap-proach [41]. The operator Pre`[B](C) can be de�ned as we de�ned the operatorPre`(C) in Section 5. As a matter of fact, Pre`[B](C) is de�ned in Appendix Asince it is needed for veri�cation of Tctl.7 Data-structuresIn this section we present two data-structures used by the implementations ofthe algorithms presented in the previous sections.7.1 Di�erence Bound MatricesLet X = fx1; � � � ; xng, and let � � 	X be the set of clock constraints over Xde�ned by conjunctions of constraints of the form xi � c and xi�xj � c. Let x0be a clock whose value is always 0, that is, its value does not increase with timeas the values of the other clocks. Then, the constraints in � can be uniformlyrepresented as bounds on the di�erence between two clock values, where forxi 2 X, xi � c is expressed as xi � x0 � c, and c � xi as x0 � xi � �c.Such constraints can be then encoded as a (n + 1)� (n + 1) square matrixD whose indices range over the interval [0; � � � ; n] and whose elements belongto ZZ � f<;�g. The �rst column of D encodes the upper bounds of the clocks.That is, if xi � x0 � c appears in the constraint, then Di0 is the pair (c;�),otherwise it is (1; <) which says that the value of clock xi is unbounded. The�rst row ofD encodes the lower bounds of the clocks. If x0�xi � �c appears inthe constraint, D0i is (�c;�), otherwise it is (0;�) because clocks can only takepositive values. The element Dij for i; j > 0, is the pair (c;�) which encodesthe constraint xi � xj � c. If a constraint on the di�erence between xi and xjdoes not appear in the conjunction, the element Dij is set to (1; <).Example 9. Let � be the clock constraint 1 < y < 2 ^ 1 < x ^ x � y < 2.Figure 9a shows its matrix representation. utAs a matter of fact, many di�erent DBM's represent the same clock region.This is because some of the bounds may not be tight enough.Example 10. Consider again the clock constraint depicted in Figure 9. Thematrix b is an equivalent encoding of the clock constraint obtained by settingthe upper bound of x1 to be (3; <) and the di�erence x2�x1 to be (1; <). Noticethat this two constraints are implied by the others.the region-graph upto time-abstracting bisimulation. Another di�erent approach consists inminimizing the timed automaton itself, rather than its model, in order to obtain an equivalenttimed automaton which is minimal upto a stronger notion of bisimulation. This subject hasbeen explored in [39]. A more practical point of view is adopted in [21], also explained inAppendix B. 21

0 1 2 3

1

2

b

ax2
x1 x0 (0;�) (�1; <)(�1; <)(1; <)(3; <)x1x2 x2x0 x1DD0x0 (0;�) (�1; <)(�1; <)(1; <)(0;�)(1; <)x1x2 (1; <) x2x0 x1

(0;�)(0;�)(1; <) (0;�)(2; <)(2; <)Figure 9: Representation of convex sets of regions by DBM's.However, given a clock constraint in �, there exists a canonical representa-tive. Such a representative exists because pairs (c;�), called bounds, can beordered. This induces a natural ordering of the matrices. Bounds are orderedas follows. We take < to be strictly less than �, and then (c;�) � (c0;�0) i�c < c0 or c = c0 and �<�0. Now, D � D0 i� for all 0 � i; j � n, Dij � D0ij.Example 11. Consider the two matrices in Figure 9. Notice that D0 � D.For every clock constraint in �, there exists a matrix C that encodes theconstraint, and for every other matrix D that also encodes the constraint, wehave that C � D. Given D, we denote by cf(D) the matrix C.6 We say thatD is in canonical form or is a canonical representative if D = cf(D). Havinga canonical representative gives us a simple method for checking whether twomatrices represent the same constraint: D and D0 encode the same constrainti� cf(D) = cf(D0).Example 12. In Figure 9, D0 = cf(D).Encoding convex timing constraints by DBM's requires then O(n2) memoryspace, where n is the number of clocks. Several algorithms have been proposedto reduce the memory space needed [21, 32]. The algorithm proposed in [21] isexplained in Appendix B.The veri�cation algorithms require basically six operations to be imple-mented over matrices: conjunction, time successors, reset successors, time pre-decessors, reset predecessors and disjunction. These operations are implementedas follows.Conjunction. Given D and D0, D ^ D0 is such that for all 0 � i; j � n,(D ^D0)i;j = min(Dij ; D0ij).6cf(D) can be computed using the Floyd-Warshall algorithm.22

Time successors. As time elapses, clock di�erences remain the same, sinceall clocks increase at the same rate. Lower bounds do not change either sincethere are no decreasing clocks. Upper bounds have to be pushed to in�nity,since an arbitrary period of time may pass. Thus, for a canonical representativeD, Suc"(D) is such that:Suc"(D)ij = � (1; <) if j = 0,Dij otherwise.Reset successors. First notice that resetting a clock to 0 is the same assetting its value to the value of x0, that is, (xi) = 0 is the same as (xi) = x0.Now, when we set the value of xi to the value of xj, xi and xj become equal andall the constraints on xj become also constraints on xi. Having this in mind,the matrix characterizing the set of reset-predecessors of D by reset consistsin just copying some rows and columns. That is, the matrix D0 = Suc (D)is such that for all 0 � i; j � n, if (xi) = xj then rowi(D0) = rowj(D) andcoli(D0) = colj(D).Time predecessors. To compute the time predecessors we just need to pushthe lower bounds to 0, provided that the matrix is in canonical form. Thus, fora canonical representative D, Pre"(D) is such that:Pre"(D)ij = � (0;�) if i = 0,Dij otherwise.Reset predecessors. Recall that the constraint characterizing the set of pre-decessors is obtained by substituting each clock xi by (xi). Now supposethat we have two constraints xk � xl < ckl and xr � xs < crs and we sub-stitute xk and xr by xi, and xl and xs by xj. Then, we obtain the con-straints xi � xj < ckl and xi � xj < crs which are in conjunction, and soxi � xj < min(ckl; crs). Thus, the matrix D0 = Pre (D) is such that for all0 � i � n, D0ij = minfDkl j (xk) = xi ^ (xl) = xjg.Disjunction. Clearly, the disjunction of two DBM's is not necessarily a DBM.That is, � is not closed under disjunction. Usually, the disjunction of D and D0is represented as the set fD;D0g. Thus, a lot of computational work is neededin order to determine whether two sets of DBM's represent the same constraint.It may turn out, for example, that a set of DBM's can replaced by a singleDBM. The tool Kronos, for instance, use some heuristics to check whether theunion of two DBM's represent is indeed a DBM. Such heuristics are applied whenthe number of DBM's stored in memory becomes greater than some threshold.However, checking whether a set of more than two DBM's can be representedas a DBM is computationally expensive.23

7.2 Symbolic GraphsOne solution adopted in some of the veri�cation tools to overcome the problemof the non-convexity of the union of DBM's, consists in structuring the set ofreachable states as a graph rather than as a union of DBM's. The main di�erencebetween this graph and the region graph is that its nodes are pairs (s;D), whereD 2 �, instead of regions. This graph is called forward-simulation graph orbackward-simulation graph, according to which method is used to construct it.Let q and q0 be two states. To verify whether q0 2 Reach(q), the forward-simulation graph is the pair (N;E) constructed as follows:1. Suc"(hqi) 2 N .2. For every (s;D) 2 N , and for every e = (s; �; ; ; s0) 2 E, if D0 =Suc"(Suce(D)) 6= ;, then (s0; D0) 2 N and e 2 E.The backward-simulation graph is the pair (N;E) constructed as follows:1. Pre"(hq0i) 2 N .2. For every (s;D) 2 N , and for every e = (s0; �; ; ; s) 2 E, if D0 =Pre"(Pree(D)) 6= ;, then (s0; D0) 2 N and e 2 E.These graphs can be constructed using a depth-�rst or a breadth-�rst techniquesindistinctly. For instance, the algorithm for constructing the forward-simulationgraph using a breadth-�rst technique is illustrated in Figure 10.These algorithms only store matrices in canonical form and only one copy ofeach matrix is stored, making the test whether a node already exists very simpleindeed. The major drawback of these algorithms is that they can introduce a lotof redundancy, in the sense that the same region can belong to many nodes ofthe graph. The number of nodes of the graph can be reduced by testing whetherthe matrix of the newly constructed node is included in, instead of equal to, analready existing node.Besides, they do not need to be entirely constructed, that is, their construc-tion can be stopped as soon as a node is found to intersect hq0i, in the case ofthe forward-simulation graph, or hqi in the other case.7.3 Decision DiagramsOther data-structures that have been proposed are based on the so-called BinaryDecision Diagrams. BDD's, �rst introduced in [15], are e�cient canonical rep-resentations of a formulas of propositional logic. BDD's have been successfullyused in veri�cation, especially in the analysis of digital circuits [16, 36].The �rst idea consists in encoding the regions and the transition relationde�ned by the region graph using BDD's, based on the fact that the regiongraph is just a �nite graph. This approach is followed in [7].BDD's are also used by the algorithms based on the discretization of thestate-space. For instance, when � = 1=n, such algorithms can be e�ciently im-plemented using the so-called Numeric Decision Diagrams [8]. The idea behind24

M := Suc"(hqi);N := ;;while M 6= ; dolet M = (s;D) �M 0;N := N [f(s;D)g;M :=M 0;for all e = (s; �; ; ; s0) 2 E doif (D0 = Suc"(Suce(D)) 6= ;) & (s0; D0) 62 N [Mthen M :=M � (s0; D0)endendFigure 10: Forward-simulation graph using a breadth-�rst technique.NDD's is very simple. Suppose that each clock can take values in the range[0; k), and consider a discretization of time such that the possible clock valuesare K = f0; : : : ; k � 1g. Each clock can be treated as a bounded integer vari-able and any of its possible values can be encoded in binary using log k bits.Consequently, any subset of Kn can be viewed as a subset of f0; 1gn log k andrepresented by a BDD over n log k boolean variables. Given a �xed variable or-dering, this representation is canonical. All the operations described for DBM'scan be simply implemented as operations on BDD's.7.4 ToolsA lot of tools have been developed based on the algorithms and data-structuresdescribed in this paper. It is not the purpose of this paper to review each ofthem in detail. The reader is referred to the bibliography and to the web pages(whenever available) for a more detailed information about the tools.� Cospan [27] has been extended in several di�erent ways to deal withtiming [19, 7, 6].� Epsilon [18]7 and Real Time Explorer [43] are two tools based on thenotions of bisimulation and re�nement.� Kronos8 implements the model-checking algorithm for Tctl describedin Appendix A, the backward and forward reachability algorithms usingDBM's [20, 13] and NDD's [14], and the algorithm for computing thecoarsest partition modulo the timed-abstracting bisimulation [41]. This7http://www.cs.auc.dk/general/FS/epsilon-dir/folder.html8http://www.imag.fr/VERIMAG/PEOPLE/Sergio.Yovine25

last algorithm allows using the tool Aldebaran [25] 9 to check for di�er-ent kinds of bisimulation equivalences.� Rt-Spin [40] extends the on-the-y, depth-�rst, forward veri�cation algo-rithm of Spin10 using DBM's for encoding timing constraints.� Uppaal11 implements forward and backward reachability algorithms basedon DBM's [33, 10, 28] that allow checking for safety properties.� Veriti [44, 23] implementa reachability algorithmthat uses data-structuresthat combine both BDD's and DBM's to check for safety properties. Thetool also implements an algorithm that computes the coarsest partitionmodulo the timed-abstracting equivalence [2, 1].8 ConclusionsIn this paper we have over-viewed four di�erent techniques for analyzing prop-erties of real-time systems speci�ed as timed automata. For the sake of simplic-ity, we have only discussed how these techniques are used to solve the so-calledreachability problem. Other veri�cation problems can also be solved by adapt-ing these four basic procedures. As an example, we discuss in Appendix A howthe region-graph and clock-constraint based algorithms can be used to solve themodel-checking problem for Tctl.The algorithms we have studied always terminate with a yes or no answerfor the reachability problem. As we have already mentioned in the introduction,the complexity of this problem is exponential on the number of clocks and inthe encoding of the constants12. Even though these algorithms and the data-structures they used have been designed to try to avoid that complexity inpractice, the state-space to be explored for a given system could anyway exceedthe memory capabilities.To overcome this problem, some of the algorithms described in this paperhave been modi�ed in such a way that they do no longer analyze the exact setof reachable states but an over- or under-approximated one. These algorithmsrely on the fact that even if the state-space is larger, its representation is morecompact, that is, it requires less memory space.One such algorithm is the one described in [9] where the state-space is over-approximated by replacing the disjunction operator of clock constraints by theconvex hull of them, that is, by the smallest convex clock constraint that containsthe disjunction of them. This technique, combined with a BDD-based encodingof the state-space, permit a very compact representation of the set of reachablestates. This method allows us to partially solve the veri�cation question forsafety properties. That is, the property is satis�ed if the algorithm does not9http://www.imag.fr/VERIMAG/DIST SYS/aldebaran-english.html10http://netlib.bell-labs.com/netlib/spin/whatispin.html11http://www.docs.uu.se/docs/rtmv/uppaal/index.shtml12It is indeed PSPACE-complete [4]. 26

�nd an unsafe state in the larger space, however, if such a state is indeed found,we cannot immediately conclude that the system does not satisfy the propertybecause that particular state may not belong to the exact set of reachable states.This problem is solved in [23]. There, both under- and over-approximationsof the set of reachable states are maintained. Basically, the algorithm iteratesand repeatedly changes from one approximating set to the other according to theresults obtained in the previous iteration. At each iteration, the approximationsare made more accurate, and therefore, eventually become equal to the set ofreachable states. This algorithm gives an exact answer to the problem, andit takes advantage of the compact representation of the approximated state-spaces. However, it might end up by constructing the exact state-space beforebeing able to verify the property, in which case, it will perform worst than theexact algorithms.References[1] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Animplementation of three algorithms for timing veri�cation based on au-tomata emptiness. In Proc. 13th IEEE Real-Time Systems Symposium.IEEE Computer Society Press, 1992.[2] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Min-imization of timed transition systems. In W.R. Cleaveland, editor, CON-CUR 92: Theories of Concurrency, pages 340{354. Lecture Notes in Com-puter Science 630, Springer-Verlag, 1992.[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-tems. In Proc. 5th Symp. on Logics in Computer Science, pages 414{425.IEEE Computer Society Press, 1990. See also \Model checking in densereal time",Information and Computation, 104(1):2{34, 1993.[4] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc.17th ICALP, pages 322{335. Lecture Notes in Computer Science 443,Springer-Verlag, 1990. See also \A theory of timed automata", TheoreticalComputer Science, 126:183{235, 1994.[5] R. Alur and T. Henzinger. Logics and models of real-time: a survey. InProc. REX Workshop \Real-Time: Theory in Practice", the Netherlands,June 1991. Lecture Notes in Computer Science 600, Springer-Verlag.[6] R. Alur, A. Itai, R. Kurshan, and M. Yannakakis. Timing veri�cationby successive approximation. In Proc. 4th Workshop on Computer-AidedVeri�cation. Lecture Notes in Computer Science 663, Springer-Verlag, 1992.Also in Information and Computation, 118(1):142{157, 1995.[7] R. Alur and R.P. Kurshan. Timing analysis in cospan. In T.A. HenzingerR. Alur and E. Sontag, editors, Hybrid Systems III, pages 220{231. LNCS1066, Springer-Verlag, 1996. 27

[8] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-structures for the veri�cation of timed automata. In O. Maler, editor, Proc.HART'97, pages 346{360. LNCS 1201, Springer-Verlag, 1997.[9] F. Balarin. Approximate reachability analysis of timed automata. In Proc.1996 IEEE Real-Time Systems Symposium, RTSS'96, Washington, DC,USA, December 1996. IEEE Computer Society Press.[10] J. Bengtsson, W. Gri�oen, K. Kristor�ersen, K. Larsen, F. Larsson, P. Pet-tersson, and Wang Yi. Veri�cation of an audio protocol with bus using Up-paal. In Proc. 8th Conference Computer-Aided Veri�cation, CAV'96, pages244{256, Rutgers, NJ, July 1996. Lecture Notes in Computer Science 1102,Springer-Verlag.[11] A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-tel. Minimal state graph generation. Science of Computer Programming,18:247{269, 1992.[12] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model checking for extendedtimed temporal logics. In Proc. 4th Intl. Symp. Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT'96, Uppsala, Sweden, Septem-ber 1996.[13] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-y symbolic model-checking for real-time systems. In Proc. 18th IEEE Real-Time SystemsSymposium, RTSS'97, San Francisco, USA, December 1997. IEEE Com-puter Society Press.[14] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the sym-bolic veri�cation of timed automata. In Proc. 1997 Computer-Aided Veri-�cation, CAV'97, Israel, June 1997. to appear in LNCS, Springer-Verlag.[15] R.E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on Computers, 35(8):677{692, 1986.[16] J.B. Burch, E.M. Clarke, D.Dill, L.J. Hwang, and K.L. McMillan. Symbolicmodel checking: 1020 states and beyond. In Proc. 5th Symp. on Logics inComputer Science, pages 428{439. IEEE Computer Society Press, 1990.[17] K. �Cer�ans. Decidability of bisimulation equivalences for parallel timer pro-cesses. In Proc. 4th Workshop on Computer-Aided Veri�cation. LectureNotes in Computer Science 663, Springer-Verlag, 1992.[18] K. Cerans, J. C. Godskesen, and K. G. Larsen. Timed modal speci�cations- theory and tools. In C. Courcoubetis, editor, Proc. 5th Computer-AidedVeri�cation, pages 253{267. LNCS 697, Springer-Verlag, June 1993.[19] C. Courcoubetis, D. Dill, M. Chatzaki, and P. Tsounakis. Veri�cation withreal-time COSPAN. In Proc. 4th Workshop on Computer-Aided Veri�ca-tion. Lecture Notes in Computer Science 663, Springer-Verlag, 1992.28

[20] C. Daws and S. Yovine. Two examples of veri�cation of multirate timedautomata with KRONOS. In Proc. 1995 IEEE Real-Time Systems Sympo-sium, RTSS'95, Pisa, Italy, December 1995. IEEE Computer Society Press.[21] C. Daws and S. Yovine. Reducing the number of clock variables of timedautomata. In Proc. 1996 IEEE Real-Time Systems Symposium, RTSS'96,Washington, DC, USA, December 1996. IEEE Computer Society Press.[22] D. Dill. Timing assumptions and veri�cation of �nite-state concurrent sys-tems. In J. Sifakis, editor, Proc. 1st Workshop on Computer-Aided Veri-�cation, France, 1989. Lecture Notes in Computer Science 407, Springer-Verlag.[23] D. L. Dill and H. Wong-Toi. Veri�cation of real-time systems by succes-sive over and under approximation. In Pierre Wolper, editor, Proceedingsof the Seventh Conference on Computer-Aided Veri�cation, CAV'95, Lec-ture Notes in Computer Science 939, pages 409{422, Liege, Belgium, 1995.Springer-Verlag.[24] E.A. Emerson and E. Clarke. Design and synthesis of synchronization skele-tons using branching-time temporal logic. In Proc. Workshop on Logic ofPrograms. Lecture Notes in Computer Science 131, Springer-Verlag, 1981.[25] J.C. Fernandez and L. Mounier. On the y veri�cation of behaviouralequivalences and preorders. In Proc. CAV'91. LNCS 757, Springer-Verlag,1991.[26] A. G�oll�u, A. Puri, and P. Varaiya. Discretization of timed automata. InProc. 33rd CDC, 1994.[27] Z. Har'El and R. Kurshan. Automatic veri�cation of coordinating systems.In J. Sifakis, editor, Proc. 1st Workshop on Computer-Aided Veri�cation.Lecture Notes in Computer Science 407, Springer-Verlag, 1989.[28] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modellingand analysis of an audio/video protocol: an industrial case study usinguppaal. In Proc. 18th IEEE Real-Time Systems Symposium, RTSS'95, SanFrancisco, California, USA, December 1997. IEEE Computer Society Press.[29] T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? InProc. REX Workshop \Real-Time: Theory in Practice", New York, 1992.Springer-Verlag.[30] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for real-time systems. In Proc. 7th Symp. on Logics in ComputerScience, pages 394{406. IEEE Computer Society Press, 1992. Also in In-formation and Computation, 111(2):193{244, 1994.[31] R. Jain. FDDI handbook: high-speed networking using �ber and other me-dia. Addison-Wesley, 1994. 29

[32] K. G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. E�cient veri�cationof real-time systems: compact data structure and state-space reduction. InProc. 18th IEEE Real-Time Systems Symposium, RTSS'95, San Francisco,California, USA, December 1997. IEEE Computer Society Press.[33] K. G. Larsen, P. Petterson, and Wang Yi. Compositional and symbolicmodel-checking of real-time systems. In Proc. 1995 IEEE Real-Time Sys-tems Symposium, RTSS'95, Pisa, Italy, December 1995. IEEE ComputerSociety Press.[34] K. G. Larsen and Y. Wang. Timed abstracted bisimulation: implicit spec-i�cation and decidability. In Proc. MFPS'93, 1993.[35] D. Lee and M. Yannakakis. Online minimization of transition systems. InACM Symp. on Theory of Computing. ACM Press, 1992.[36] K.L. McMillan. Symbolic model-checking: an approach to the state-explosion problem. Kluwer, 1993.[37] M. Measche and B. Berthomieu. Time petri-nets for analyzing and verifyingtime dependent communication protocols. In H. Rudin and C.H. West,editors, Protocol Speci�cation, Testing and Veri�cation, III. IFIP, North-Holland, 1983.[38] A. Olivero. Mod�elisation et analyse de syst�emes temporis�es et hybrides.Th�ese, Institut National Polytechnique de Grenoble, Grenoble, France,September 1994.[39] J.G. Springintveld and F.W. Vaandrager. Minimizable timed automata. InB. Jonsson and J. Parrow, editors, Proc. FTRTFT'96, Uppsala, Sweden,1996. LNCS 1135, 130{147, Springer-Verlag.[40] S. Tripakis and C. Courcoubetis. Extending promela and spin for real time.In TACAS'96, Passau, Germany, 1996. Lecture Notes in Computer Science1055, Springer-Verlag.[41] S. Tripakis and S. Yovine. Analysis of timed systems based on time{abstracting bisimulations. In Proc. 8th Conference Computer-Aided Veri-�cation, CAV'96, pages 232{243, Rutgers, NJ, July 1996. Lecture Notes inComputer Science 1102, Springer-Verlag.[42] VERIMAG. School on Methods and Tools for the Veri�cation of In�nite-State Systems. http://www.imag.fr/VERIMAG. Grenoble, France, March1997.[43] C. Weise and D. Lenzkes. E�cient scaling invariant checking of timedbisimulation. In STACS'97. Springer-Verlag, 1997.30

[44] Howard Wong-Toi and David L. Dill. Approximations for verifying timingproperties. In Teo Rus and Charles Rattray, editors, Theories and Ex-periences for Real-Time System Development (Proceedings First AMASTWorkshop on Real-Time System Development), chapter 7, pages 177{204.World Scienti�c Publishing, 1994.[45] S. Yovine. M�ethodes et outils pour la v�eri�cation symbolique de syst�emestemporis�es. Th�ese, Institut National Polytechnique de Grenoble, Grenoble,France, May 1993.A The logic TCTLIn the previous sections we have studied the so-called reachability problem. Inthis section we de�ne the temporal logicTctl and explain how to check whethera timed automaton satis�es a formula of the logic. Tctl is an extension of thetemporal logic Ctl [24].A.1 SyntaxLet A be a timed automaton with set of clocks X and set of atomic propositions�, and let Z be a set of clocks disjoint with X, that is, Z \ X = ;. The set�X;Z;� of formulas of Tctl are de�ned by the following grammar:' ::= j � j z:' j :' j '1 _ '2 j '19U'2 j '18U'2where 2 	X[Z , � 2 �, and z 2 Z.Let ' 2 �X;Z;�. We de�ne free(') to be the set of free clocks of '. free(')is inductively de�ned as follows:free() = clk()free(�) = ;free(z:') = free(') n fzgfree(:') = free(')free('1 _ '2) = free('1) [free('2)free('19U'2) = free('1) [free('2)free('18U'2) = free('1) [free('2)We say that ' is closed if free(') � X, that is, every occurrence of a clock z 2 Zis under the scope of a \z." operator. Table 1 shows some typical abbreviationsand their intuitive meaning.Example 13. Consider the FDDI system depicted in Figure 3. Some propertiesthat we would like the system to satisfy are the following.1. At any state, each station eventually has time to send low-priority mes-sages. This property can be expressed in Tctl as follows:(Idle1 ^ h1 = 0 ^ r1 = 0)) 8�8�AT1:31

Abbrev. Formula Explanation9�' true9U' a state satisfying ' is reachable8�' :9�:' ' holds along all executions8�' true8U' all executions lead to a state satisfying '9�' :8�:' there is an execution along which ' holds everywhere9��c' z:9�(' ^ z � c) ' is reachable within a time less than or equal to c8��c' z:8�(' ^ z � c) all executions lead to ' in at most c time unitsTable 1: Typical abbreviations and their meaning.2. After having released the token, the station eventually gets the token ina time less than or equal to 104:Idle1) 8��104ST1: utA.2 SemanticsThe formulas of �X;Z;� are interpreted over extended states. An extended stateis a triplet (s; v; �) such that (s; v) 2 Q is a state of A, and � 2 [Z tot! RR+] is avaluation of the clocks in Z. We de�ne v + � to be the following valuation:(v + �)(y) = � v(y) if y 2 X,�(y) if y 2 Z.Let ' 2 �X;Z;� be a closed formula. An extended state (s; v; �) satis�es theformula ', denoted (s; v; �) j= ', if(s; v; �) j= i� v + � j= (s; v; �) j= � i� � 2 P(s)(s; v; �) j= z:' i� (s; v; �[z=0]) j= '(s; v; �) j= :' i� (s; v; �) 6j= '(s; v; �) j= '1 _ '2 i� (s; v; �) j= '1 or (s; v; �) j= '2(s; v; �) j= '19U'2 i� 9r 2 R1(s; v):9p 2 P(r):(�(p); � +�(p)) j= '28̂p0 � p: (�(p0); � +�(p0)) j= '1 _ '2(s; v; �) j= '18U'2 i� 8r 2 R1(s; v):9p 2 P(r):(�(p); � +�(p)) j= '28̂p0 � p: (�(p0); � +�(p0)) j= '1 _ '2A state (s; v) satis�es ' if the extended state (s; v; �) satis�es ' where � is suchthat �(z) = 0 for all z 2 Z. The set of states that satisfy the formula ', denoted[[']], is called the characteristic set of '. A satis�es ', denoted A j= ', if allthe states of A satisfy '. 32

A.3 Region-graph based algorithmGiven a timed automatonA and a Tctl-formula ', we are interested in check-ing whether A satis�es '. Let 	̂ be the set of sub-formulas of ' that belong to	. The region graph RG(A; 	̂) can be used to solve the problem.Let ['] to be the set of regions de�ned as follows.[] = f[(s; v; �)] j v + � j= g[�] = f[(s; v; �)] j � 2 P(s)g[z:'] = f[(s; v; �)] j [(s; v; �[z=0])] 2 [']g[:'] = Q' n [']['1 _ '2] = ['1][['2]['19U'2] = EU (['1]; ['2])['18U'2] = AU (['1]; ['2])where EU (R1; R2) = Si�0Ei such thatE0 = R2Ei+1 = Ei [R1 \ Pre(Ei)and AU (R1; R2) = Si�0Ai such thatA0 = R2Ai+1 = Ei [R1 \ Pre(Ei) \gPre(Ei)where gPre(Ei) = Q' n Pre(Q' n Ei). That is, a region belongs to gPre(Ei) ifall its successors belong to Ei. Thus, Pre(Ei) \gPre(Ei) characterizes all theregions that have a successor that belongs to Ei and all its successors belongto Ei. This prevents considering regions that do not have any successors. SeeFigure 11.Property21. Let A be a Non-Zeno timed automaton. A region � belongs toEU (R1; R2) if there is a sequence of regions and transitions starting at � thatreaches a region in R2 such that all the intermediate regions belong to R1:EU (R1; R2) = f�0 j 9�0 ! �1 � � � :9n 2 NN: �n 2 R2 ^ 8i � n:�i 2 R1 [R2g:That is, EU (['1]; ['2]) characterizes the set of states of A that satisfy the for-mula '19U'2. Non-Zenoness ensures that the sequence of states and transitionsis indeed a time-divergent execution. utProperty22. Let A be a Non-Zeno timed automaton. A region � belongs toAU (R1; R2) if every sequence of regions and transitions starting at � reaches aregion in R2 and all the intermediate regions belong to R1:AU (R1; R2) = f�0 j 8�0 ! �1 � � � :9n 2 NN: �n 2 R2 ^ 8i � n:�i 2 R1 [R2g:That is, AU (['1]; ['2]) characterizes the set of states that satisfy the formula'18U'2. This holds because in the region graph there are no self-loops labeled" other than the ones at unbounded regions, and also because Non-Zenonessensures that every region has at least one successor.33

RPre(R)Pre(R)\gPre(R)Figure 11: Pre(R) and gPre(R).Property23. If A is Non-Zeno, q j= ' i� [q] 2 ['].A.4 Clock-constraint based algorithmLet A be a Non-Zeno timed automaton and ' a formula of Tctl. We presenthere an algorithm that constructs a disjoint union of clock constraints Us2S s ,denoted ((')), that characterizes [[']] without explicitly building a-priori theregion graph.For formulas ' not containing the temporal operators 9U and 8U, ((')) isde�ned as follows. (()) = Us2S I(s) ^ ((�)) = Us2S;�2P(s) I(s)((z:')) = Us2S I(s) ^ (('))s [z=0]((:')) = Us2S I(s) ^ :(('))s(('1 _ '2)) = (('1)) [(('2))where (('))s is the clock constraint corresponding to s in ((')).Now, let s 2 S and 0; s 2 	X . We denote by Pre" [0](s) the predicateover X that characterizes the set of clock valuations that can reach a clockvaluation in s when the timed automaton lets time elapse at location s suchthat all the clock valuations in between satisfy either 0 or s .v j= Pre" [0](s) i� 9� 2 RR+:v + � j= s8̂�0 2 RR+: �0 � �) v + �0 j= I(s) ^ 0:That is, Pre" [0](s) characterizes the set of regions that contains the regionscharacterized by s and all the regions characterized by 0 that can reach themby taking only "-transitions (Figure 12).34

0 1 2 3

1

2

x

y RR0Pre" [R0](R)Figure 12: Conditional timed predecessors.Property24. Pre" [0](s) 2 	X . utThe algorithm for constructing (('19U'2)) is very similar to the one basedon the region graph. That is,(('19U'2)) = EU ((('1)); (('2)))where EU (R1; R2) = Si�0Ei such thatE0 = R2Ei+1 =]s2S Pre" [R1;s](Ei;s)]]e2E Pree(Ei;s)!The algorithm for computing (('18U'2)) is however di�erent to the one basedon the region graph. For the sake of simplicity, we only explain here the algo-rithm for computing ((8�')). The full algorithm is given in [30]. The algorithmrelies on the following observation. The set of states that eventually reach astate in a set of regions, say A0, can be iteratively approximated by computingthe sequence of sets of regions A0 � A1 � � � � where Ai+1 = 8��cAi. Figure 13illustrates this observation. Now, the characteristic set of 8�' is((8�')) = AD(((')))where AD(R) = Si�0Ai such thatA0 = RAi+1 = Ai] ((8��cAi))where c 2 NN is any constant such that c � 1.It remains now to give the algorithm to compute ((8��cAi)). This algorithmis based on the following property. 35

A0A1 = 8��cA0A2 = 8��cA1Figure 13: Computing 8�A0.Property25. If A Non-Zeno, 8��c' is equivalent to :z:(:'9Uz > c). utThat is, all executions reach a state satisfying ' within a time less than or equalto c i� no execution continuously satisfy :' for a time greater than c. Thus,((8��c')) = ((:z:(:'9Uz > c))):A.5 Verifying the Non-Zenoness hypothesisThe two algorithms proposed above to verify whether a timed automaton Asatis�es a Tctl-formula ' rely on the hypothesis that A is in fact a Non-Zenotimed automaton. But how do we check if A is indeed Non-Zeno?.Recall that A is Non-Zeno if every state has a time-divergent executionstarting at it. The following property has been proven in [30].Property26. A is Non-Zeno i� for all states q 2 Q, q j= 9�=1true.In other words, verifying the Non-Zenoness hypothesis amounts to checkingwhether all the states of A can let time progress by 1.Now, if A turns to be a Zeno timed automaton, we can compute the largestset of Non-Zeno states as NZ = Ti�0NZi, where:NZ0 = trueNZi+1 = NZi \ ((9�=1NZi))From A, we can construct the Non-Zeno timed automaton ANZ containing allthe Non-Zeno states of A by taking the invariant condition of each locations 2 S to be NZs . 36

B Reduction of the number of clocksRecall that the complexity of analyzing timed automata is exponential on thenumber of clocks. In this section we present two algorithms that can be used toreduce the number of clock variables of a timed automaton. These algorithmshave been developed in [21].B.1 EquivalenceLet A be a timed automaton and (Q; !) its transition system.A timed bisimulation B � Q � Q is a symmetric binary relation betweenstates such that for all q1; q2 2 Q, (q1; q2) 2 B, if for all ` 2 � [RR+,1. if q1 !̀ q01 for some q01, there exists q02 such that q2 !̀ q02 and (q01; q02) 2 B.The timed equivalence, denoted �, is the the largest timed bisimulation.B.2 RenamingGiven a timed automaton A over a set of clocks X, our aim is to �nd a setof clocks Z smaller than X, such that appropriately renaming conditions andassignments of A with clocks in Z we obtain an equivalent behavior.Let X and Z be two disjoint sets of clocks, A be a timed automaton over X,and < be a family of partial functions <s from X to Z. We denote <(A) thetimed automaton obtained from A by replacing clocks in X by clocks in Z inall conditions and assignments as follows. For all s 2 S,1. <(I(s)) 2 	Z is obtained by replacing every x 2 X by <s(x) in I(s), and2. for every edge e = (s; �; ; ; s) 2 E, the corresponding edge <(e) =(s; �;<();<(); s0) is such that,(a) <() 2 	Z is obtained by replacing every x 2 X by <s(x) in ,(b) <() is the assignment 0 2 �Z such that 0 � <s0 = <s � , where �denotes the composition of functions.For <(A) to be well de�ned we need to require that for all s 2 S,1. <s(x) is de�ned for all x 2 clk(I(s)), and2. for all e = (s; �; ; ; s0) 2 E,(a) <s(x) is de�ned for all x 2 clk(), and(b) <s0(x) = <s0(y) then <s((x)) = <s((y)).The aim is to �nd a set of clocks Z with card(Z) � card(X) and clock renaming< from X to Z such that <(A) is bisimular to A. This notion of reductionis global, that is, card(Z) of clocks are globally required to model the samebehavior. However, it may happen that not all the clocks are always necessary.37

More formally, it may be the case that <s is such that every state (s; v) isbisimular to (s; v̂), where v̂ 2 V<s (X), is such that v̂(z) = v(x), for z = <s(x).Therefore, only card(<s(X)) of clocks are locally needed at location s to modelthe same behavior.B.3 ActivityThe �rst algorithm is based on the notion of activity of a clock. Intuitively, aclock is active at some location if its value at the location may inuence thefuture evolution of the system. This may happen whenever the clock appearsin the invariant condition of the location, it is tested in the condition of someof the outgoing edges, or an active clock takes its value when moving throughan outgoing edge.We de�ne the function act that associates with each location s 2 S the setact(s) � X of active clocks at s as follows. For all s 2 S, act(s) = Si�0 acti(s),where: act0(s) = clk(I(s)) [[(s;�; ;;s0)2E clk()acti+1(s) = acti(s) [[(s;�; ;;s0)2E (acti(s0))where (X) � X is such that, y 2 (X) i� there exists x 2 X such that (x) = y.Notice that the de�nition of acti+1(s) says that if a clock x is active in s0,and there is an edge with an assignment such that (x) = y, then y is activein s, since in fact, the value of x in s0 is the value of y in s.Property27. Let s 2 S and v; v0 2 VX , with v(x) = v0(x) for all x 2 act(s).Then, (s; v) � (s; v0).Property28. Let < be any renaming such that for all s 2 S, <s is an injectivefunction de�ned for all x 2 act(s). Then, A � <(A).B.4 EqualityThe second algorithm is based on the notion of equality between clocks. Intu-itively, two clocks x; y 2 X are equal in s 2 S if they have the same value inthat location for every run, that is, if for every reachable state (s; v) we havethat v(x) = v(y). In this case, only one of the clocks is necessary to determinethe behavior of the system at the location.We de�ne the equality relation such that two clocks are equal in a locationif they are set by the assignment of every incoming edge either both to 0 or toclocks that are themselves equal in the source location.Let R � X�X. We denote R� the relation R[f(0; 0)g. Let be an assign-ment. We denote (R) the set of pairs (x; y) 2 X�X such that ((x); (y)) 2 R�.38

Now we formally de�ne the equality relation equ to be the family of relationssuch that for all s 2 S, equ(s) = Si�0 equi(s), where:equ0(s) = X � Xequi+1(s) = equi(s) \ \(s0;�; ;;s)2E (equi(s0))That is, the algorithm starts by assuming that all clocks are equal everywhere.The de�nition of equi+1(s) says that if two clocks x and y are equal in s, andthey both get assigned the values of two clocks x0 and y0 that are equal in s0 orthey are both reset to 0 when taking a transition from s0 to s, then they remainequal. However, if x0 and y0 are not equal in s0, or one of them is reset but notthe other, then the pair (x; y) is removed from the relation associated with s.Property29. For all s 2 S, equ(s) is an equivalence relation.Property30. Let < be any renaming such that for all s 2 S, <s is a totalfunction such that for all x; y 2 X, <s(x) = <s(y) i� (x; y) 2 equ(s). Then,A � <(A).

39

