Model Checking Timed Automata *

Sergio Yovine T
VERIMAG
Centre Equation
2, Av. de Vignate
38610 Gieres, France

September 9, 1997

1 Introduction

The theory of timed automata provides a formal framework to model and to
analyze the behavior of real-time systems, that is, of systems whose correct
functioning is subject to and must ensure the respect of strict timing constraints
such as execution times, response times, tasks’ periods, communication delays
and so on.

Timed automata have been first proposed in [4] as an extension of the
automata-theoretic approach to the modeling of real-time systems. Since then,
the theory of timed automata has been an intensive field of research in computer
science. With the aim of demonstrating that the ultimate goal of the theoretical
achievements is to apply them to solve real-life problems, the work on the theory
of timed automata has been consistently accompanied by the development of
tools.

1.1 Timed automata

A timed automaton is a finite-state machine equipped with a set of clocks.
Clocks are piece-wise continuous real-valued functions of time that precisely
record the time elapsed between events. All clocks are synchronized, that is,
they all advance at the same pace. More precisely, all clocks have the same
derivative with respect to time, which 1s assumed to be by definition equal to
one. Discontinuities may occur when a transition is taken. In this case, clocks
are allowed to be reset to a new value which becomes the initial value of the next

*To appear in LNCS volume on Embedded Systems, G. Rozenberg and F. Vaandrager,
editors, Springer-Verlag, 1997.

tSergio.Yovine@imag.fr. http://www.imag.fr/ VERIMAG /PEOPLE /Sergio.Yovine

{Currently visiting California PATH, University of California at Berkeley, Richmond Field
Station Bldg. 452, 1301 S. 46th St, Richmond CA 94804.

0 t

Figure 1: A clock (x) is a piece-wise continuous function of time (t).

continuous phase. Transitions are associated with a guard which is a predicate
over the clocks. The guard determines when a transition can be taken. The
behavior of a clock as a function of time is illustrated in Figure 1. Timed
automata are formally presented in Section 2.

1.2 Algorithmic verification

The constraints imposed on the clocks model the timing constraints the real-time
system is subject to. Analyzing the behavior of the timed automaton consists
in verifying whether it satisfies the timing properties it is supposed to ensure.
Such properties are generically called requirements. Assuming that we have a
formal way of expressing the requirements, we can state the verification problem
as follows. Given a timed automaton A, a requirement R and a satisfaction
relation =, does A |= R hold?

Researchers focused their work on the development of algorithmic methods
for solving this problem, mainly along the lines of the so-called model check-
ing approach. This approach consists in providing an algorithm that answers
yes or no for every instance of a class of verification questions. Such a class
of problems 1s obtained by fixing the formalism to express the requirements
and the satisfaction relation. Some examples of classes of verification problems
are the following: requirements are also expressed as timed automata and the
satisfaction relation corresponds to bisimulation equivalence [17, 34, 41, 43], or
requirements are expressed as formulas of a logic and the satisfaction relation

is “being a model of” [5, 3, 30, 12]. !

1 As a matter of fact, it was this last class of problems that gave the name to the approach.
Today, however, the term “model checking” is used as a synonym for “algorithmic verification”,
in contrast to “theorem proving” which is used to mean “deductive verification”. [42]

y I B .

4 7/

//

7/

// Ve
2 - -
1 - -
0 1 2 3 X

Figure 2: Partition of the space of clock valuations into regions.

1.3 Reachability

Many different instances of the verification question have been studied in the
literature. In this paper we survey the different algorithms and data-structures
that have been proposed in the seek for efficiency. For the sake of simplicity, we
focus our attention on algorithms for solving the so-called reachability problem.
This problem is stated as follows. Given two states of the system, i1s there an
execution starting at one of them that reaches the other?

The first reason for studying such algorithms is that they allow us to check
for safety properties, which are expressed as the non-reachability of a set of
states where the system is consider to show an incorrect or unsafe functioning.
Second, the algorithms developed for analyzing other classes of properties are
essentially based on the same techniques and data-structures.

1.4 Algorithms

Verification algorithms can be viewed as algorithms that search for particular
states among all the possible states of the system. States are related by a
transition relation that specifies how to move from one state to another. That
18, the state-space of a system is structured as a graph. Conceptually, the search
can be performed in either of two ways: forwards or backwards. Forward search
consists in traversing the state-space by moving from one state to its successors.
The backward search analyzes the graph by exploring the predecessors of a state.

The state-space of a timed automaton is clearly infinite since clocks are vari-
ables that range over the set of real numbers. A very important observation
in [4] is that the space of clock valuations, which is indeed dense, can be par-
titioned into a finite set of classes which are given the name of clock regions.
The important property of the partition is that the verification question has the

same answer for all the clock valuations in a region. ? This technique is studied
in Section 3.

Algorithms directly based on the explicit construction of such a partition are
however unlikely to perform efficiently in practice. The main reason for this is
that the size of the partition, that is, the number of regions, 1s an exponential
function of the number of clocks and of the constants against which the clocks
are compared to. 3 Thus, different techniques have been proposed in order to
overcome this problem.

Another approach consists in discretizing the space of clock valuations and
the flow of time in such a way that at least one representative of every clock
region belongs to the discretized space. Though this approach could suffer of
the same exponential blow-up of the number of representatives, which 1s at
least as large as the number of regions, its main advantage is the possibility of
using well-known data-structures and algorithms that have been developed for
the analysis of purely discrete systems. This approach is briefly discussed in
Section 4.

An important corollary that follows from the results in [4] is that sets of
regions can be characterized as conjunctions and disjunctions of linear inequal-
ities over the clocks. Thus, a question that naturally arises is the following. Is
it possible to analyze a timed automaton without explicitly and a-priori con-
structing the partition into regions, but rather by symbolically manipulating
the inequalities? This problem has been explored in [30] in a more general ver-
ification problem than reachability, namely the verification of properties stated
in the temporal logic called TCTL. Section 5 discusses the application of the
techniques developed in [30] to solve the reachability problem. The verification
question for TCTL is described in Appendix A.

The fourth and last approach over-viewed in this paper consists in finding
a partition of the state-space that has two properties. First, it is coarser, and
hence it has fewer classes, than the partition into regions. Second, for all the
states in the same class, the verification question has the same answer. This
approach is explained in Section 6.

1.5 Data structures and tools

A consequence of the results in [3, 30] is that convex sets of regions can be rep-
resented as conjunctions of inequalities involving only one clock or the difference

?In [4] this partition is constructed to solve the so-called emptiness problem. Given an
initial state, is there at least one infinite execution starting from this state? Indeed, later
developments showed that the partitioning of the space into regions is a fundamental property
of timed automata: all the proofs of decidability and complexity of the verification problems
considered in the literature rely on the construction of such a partition. One such proof for
instance is the one provided in [3] concerning the question whether a timed automaton satisfies
a specification given as a formula of the temporal logic TCTL.

3This complexity is an intrinsic problem of equipping automata with clocks, and it has to
be added to the well-known problem of the combinatorial explosion regarding the analysis of
automata.

between two of them. This observation lead to the study of a data-structure
called Difference Bound Matrices (DBM) [22].*

The key idea behind the use of DBM’s as a data-structure for encoding the
space of clock valuations is to have a compact representation of sets of adjacent
regions. However, a set containing regions that are apart from each other cannot
be efficiently represented. Instead, a different approach consists in representing
each region by one or more representative clock valuations. In this case, the
partition is viewed as a finite set of points whose characteristic function can be
encoded using Binary Decision Diagrams (BDD) [15]. Such an encoding leads
to a compact representation of a sparse sets of regions.

These two data-structures and the tools that used them are discussed in
Section 7.

2 Timed automata

2.1 Clocks

Let A be a finite set of variables called clocks. A clock valuation is a function
that assigns a non-negative real-value to every clock. The set of valuations of

X, denoted Vy, is the set [X X R*] of total mappings from X to R¥.

Let v € Vy and § € RT. We denote by v + J the clock valuation that maps
each clock # € X to the value v(x) + 6.

Let X* be the set X' U {0}. An assignment is a function that maps every

clock into another clock or 0. The set of assignments over X', denoted 7 y, is the
set [X “x 1.

Let v € Vy and v € 7 y. We denote by v[y] the clock valuation such that
for all x € X,

oly)(2) = { v(y(e)) if y(z) € 4,

10 otherwise.

2.2 Clock constraints

The set W y of clock constraints over the set of clocks A" is defined by the following
grammar:

Vv o= z<c|lr—x <c|vAY |

where ¢, 2’ € X, <€ {<,<} and ¢ € Z.
For ¢ € Uy we write clk(¢) to denote the set of clocks that appear in ¢.

4As a matter of fact, DBM’s were already used for the analysis of Timed Petri Nets
in [37], though their use for analyzing timed automata required the development of new
algorithms [45, 38, 1].

clk(v) is inductively defined as follows:

clk(z < ¢) = {a«}

ck(z —2' <¢) = {x,2'}

clk(y A) = clk(y) Uclk(y')
k(=) = k()

Clock constraints are evaluated over clock valuations. A valuation v € Vy is
said to satisfy the clock constraint ¢ € ¥y, denoted v |= ¢, if

vEz<e iff v(z)<ec
vEr—2 <c iff v(x)—v(@)<c
vEYAY iff vl=+¢ and vpEY
iy T

We denote by [¢] the set of valuations that satisfy ¢, that is,

[0]={veVy v}

We denote by 1, [x/2'] the clock constraint obtained by replacing each occur-
rence of x by z’ in 1.

2.8 Timed automata

A timed automaton A is a tuple (S, X, X, &, LTI, P) where:

1. 8 is a finite set of locations. We distinguish a special location s;,,;; which
1s refer to as the initial location of A.

2. X is a finite set of clocks.
3. X is a finite set of labels.
4. £ is a finite set of edges. Each edge e is a tuple (s,0,1,7,s") where

(a) s € S is the source,

(b) s" € S is the target,

(c) o € X is the label,

(d) ¢ € Wy is the enabling condition, and
(€) v €7 x is the assignment.

5. 1€[S™ Wy]. We refer to I(s) as the invariant of s.

6. II is a finite set of atomic propositions.

7. Pe[S 2T, We refer to P(s) as the set of atomic propositions of s.

Figure 3: Timed automaton of a FDDI’s sender station.

Example 1. Figure 3 shows a timed automaton with three locations labeled
Idle;, STy and ATy, and two clocks, namely A1 and ry. This timed automaton
models the behavior of a FDDI’s sender station [31]. Idle; is the initial location
of the timed automaton. By definition, the initial value of a clock is 0. In
location Idle;, the station is waiting for the token. The arrival of the token is
model by the transition labeled TT;. Clock 7y counts the time elapsed since the
last reception of the token. FEach time the token is received, ry is reset to 0 and
hy is assigned the value of r1. All the assignments are executed in parallel, that
18, the order in which the list of assignments is given is meaningless. In location
ST, the station is sending high-priority messages. This phase can last at most 2
time units. This timing constraint is modeled by the invariant condition 7, < 2.
The station terminates the transmission either because 2 time units have elapsed
or because it has no more high-priority messages to send. If more than 100 time
units have elapsed since the previous reception of the token, the station goes
back to location Idle;, otherwise, it goes to location AT; where it can send
low-priority messages while the value of the clock A is less than 100. When the
station has no more low-priority messages to send, it releases the token. a

2.4 States and transitions

The meaning of A is an infinite transition system (Q, — , P*), where Q is the
set of states, — 1s the transition relation, and P~ is the extension of P to
states. A state of A 1s given by a location and a valuation of the clocks. At
any state, A can move along one of the outgoing edges or it can remain in the
location while time passes. In the first case, the transition results in a new state
whose location is the target location of the edge and the valuation is modified
according to the assignment. Such a transition is called a discrete transition,
and may only happen when the valuation satisfies the enabling condition of
the edge. Idling in a location during some time results in the values of the

clocks to be updated by the amount of time elapsed. Such transitions are called
timed transitions. While remaining in a given location, A must respect the
corresponding invariant condition.

Formally, (Q, — , P*) is defined as follows:

1. @ = {(s,v) € S xVx | v E I(s)}. The initial state gn;+ is the pair
(Sinit, Vinit) Where vinit(2) = 0 for all # € X. We denote by ¢ + 6 the state
(s,v+46), and by ¢[v] the state (s, v[y]).

2. P*(s,v) = P(s).

3. The transition relation — C Q x (X UR™) x Q is defined by the following
rules:

e=(s,0,¢,7,sYeE viEY vhH]EIS)
(s,v) 5 (s',v[v])

(1)

JeRT V5/6R+.6’§5:>(5,v—|—5/)|:I(5) ©)
(s,v) i) (s,v+9)

2.5 Executions

An execution or run r of A is an infinite sequence of states and transitions:

¢ ¢
ro= g g

We denote by R the set of runs of A and by R(q) the set of runs starting at
the state ¢ € Q.

A position p of r is a pair (¢,d) € N x RT such that § = 0if {; € &, otherwise
d = £;. We denote by P, the set of positions of . For a given ¢ > 0, the set of
positions of the form (i, d) characterizes the set of states through which the run
r passes while time flows from state ¢; to state ¢;11. We define E(s;,v;) to be
the state (s;,v; +). We define a total order < on P, as follows:

(1,0) < (j,0') iff i<jv(i=jAé<d).

We define A(¢) to be the time elapsed from state ¢q to state ¢;. A(¢) is induc-
tively defined as follows:

A(0) = 0

. _ 0 ifeex,
Ali+1) = { {; otherwise.

We define A(i,d) to be A(i) + 6.

A run r is said to be time-divergent if lim; o A(7) = c0. We denote by R
the set of time-divergent runs of A and by R (q) the set of runs starting at
the state ¢ € Q.

A state ¢’ is reachable from state ¢ if it belongs to some run starting at ¢.
We define Reach(q) to be the set of states reachable from ¢. That is,

Reach(q) = {=(p)|3Ir € R(q).p €P,}.

We define Reach®(g¢) to be the set of states reachable from ¢ along some time-
divergent run. That is,

Reach®(q) = {E(p)|3Ir€R>(¢).p €Pr}.

A is said to be Non-Zeno or well-timed if for all states ¢, Reach®(q) # (. That
is, every state can let time progress without bound.

Property 1. If A is Non-Zeno, ¢' € Reach™(q) iff ¢’ € Reach(q).

3 Analysis using the region graph

Given an initial state, we are interested in computing the set of states that are
reachable from that state, that is, all the states that belong to some execution r
starting at the initial state. In this section we show how to do so by partitioning
the space of clock valuations.

3.1 Region equivalence

Let ¥ C Wy be a set of clock constraints over X. For all # € X, let C, be the
biggest constant ¢ € N such that either # < ¢ or — y < ¢ is a sub-formula of a
clock constraint in W. We define ~5C Vx x Vx to be the largest reflexive and
symmetric relation such that v ~g v’ iff for all z,y € X, the following three
conditions hold:

1. v(z) > Cy implies v'(z) > C4,
2. if v(z) < Cy then
(a) [o(2)] = [v/(2)], and
(b) ¥(v(z)) = 0 implies ¥(v'(x)) = 0,

where [-] : Rt — N and 9(-) : Rt — [0,1), such that for § € RT, |§] is
the integer part of §, and ¥(d) its fractional part.

3. for all clock constraints of the form x —y < ¢ with ¢ € N and ¢ < C},
viEz—y<cimpliesv Eax—y <ec.

Property 2. It is not difficult to prove that ~ is an equivalence relation with
a finite number of classes.

o~ is called the region equivalence for the set of clock constraints . We denote
by [v] the equivalence class (or region) of v.

y I // \,/ | // //
c -
A
2 7 -
2o
b ®
1 l - -
|
|
a
0 1 2 3 X

Figure 4: Properties of the region equivalence.

Example 2. Figure 2 illustrates the region equivalence for two clocks z and y

with C; = 3 and Cy = 2. a
The region equivalence has the following properties.
Property 3. Every region can be characterized by a clock constraint. a

Property4. The number of regions is of the order of n!2"11,cyC,, where n is
the number of clocks. a

Property 5. Let v ~4 v'. For every ¢ € U, v E o iff v = . O

Property 6. Let U be the set of all clock constraints appearing in A, and let

v g v

1. For all y € 7x, v[y] >4 v'[7].

2. For all § € R, there exists 6’ € R, such that v 4+ ~4 v/ + '
|

Property 7. Let p be a region such that for all v such that [v] = p, v(z) > Cy
for all z € X. Clearly, [v+ 6] = p for all § € RT. Such a region is said to be
unbounded because the values of the clocks may grow without bound. a

Example 3. Figure 4 illustrates those properties. Consider the region defined
by the clock constraint 2 < 2 < 3A1 <y <2Ax—y < 1. Let v be any clock
valuation in this region.

a. Consider the assignment y := 0. The clock valuation v[y := 0] belongs to
the region 2 < z <3 Ay =0.

10

b. Consider the assignment # := y. The clock valuation v[z := y] belongs to
the region 1 <z < 2A1l<y<2Az=y.

c. Each time successor of v belongs to some of the regions crossed by a straight
line drawn in the direction of the arrow.
O

3.2 Region graph

Let (@, —) be the transition system of A. We extend the region equivalence
~; to the states of @ as follows. Two states ¢ = (s,v) and ¢’ = (s',v') are
region-equivalent, denoted ¢ ~ ¢, iff s = s and v ~4 v'. We denote by [¢]
the equivalence class of ¢.

The region equivalence over states has the following properties.

Property 8. Let \i!A be the set of all clock constraints appearing in A | and let
91 =g q2.

1. For all ¢ € ¥, whenever ¢q; = ¢ for some ¢}, there exists ¢} such that
g2 = ¢y and g2 ~ gb.
2. For all 6 € RT, whenever ¢; RN q; for some ¢}, there exists ¢4 and §’ € R
6’
such that ¢; — ¢4 and g2 >~y ¢5.
|

Therefore, if some state ¢} is reachable from ¢, a region-equivalent state ¢4 is
reachable from ¢s. R
Let ¥ C ¥y be a set of clock constraints, W 4 be the set of clock constraints

of A, and ~ be the region equivalence defined over ¥ U W 4 .
The region graph RG(A, \i!) is the transition system (Q~, —), where:

1O~ ={ld[qeQ}
2. p 5 p iff there exists ¢,¢’ € Q such that p = [¢], o/ = [¢'], and ¢ > ¢'.
3. p 5 iff

(a) p = p’ is an unbounded region, or

(b) p # p' and there exists ¢ € Q and § € RT such that q RN q’, and

p=1q], ¢ = [¢g+ 6], and ¢ RN ¢, and for all ' € Rt if 6’ < 6 then
[¢ + ¢] is either p or p'.

Notice that only unbounded regions have self-loops labeled by . Thus, these
loops represent the divergence of time at a location.
We define Reach (p) to be the set of regions reachable from the region p:

Reach(p) = {p'|p =" ¢}

11

where —* is the reflexive and transitive closure of —.

We denote by (¢) any clock constraint ¢» € ¥ such that ¢ = ¢, and for
all ' € ¥, if ¢ | ¢ then ¢ implies ¢'. That is, {¢q) is the tightest (modulo
equivalence) clock constraint that characterizes the values of the clocks in q.
Now, the question whether the state ¢’ is reachable from the state ¢ can be
answered as follows.

Property9. Let A be a timed automaton, ¢,¢’ € @, and let RG(A, {{¢), (¢} })
be the corresponding region graph.

q' € Reach(q) iff [q'] € Reach([q]).

Notice that the constraints {(¢) and (¢’) characterize exactly the equivalence
classes [¢] and [¢'], respectively. O

Property 9 says that the reachability problem for ¢ and ¢’ has the same answer
for all the states which are region-equivalent to them.

Property 10. Because of Property 1, if A is Non-Zeno, Property 9 also holds
for reachability along time-divergent executions.

3.3 Region-graph based algorithms

The last property says that verifying whether ¢’ is reachable from ¢ is decidable.
Indeed, it is possible to find the answer to such question by traversing the region
graph. There are basically two ways of doing so.

Forward traversal. This method consists in starting from [¢] and visiting
the set of its successors and the successors of those and so on, until all the
reachable regions have been visited. In other words, it consists in constructing
the sequence of sets of regions Fy C Fy C .- -, such that

Fo = [q]
Ny = KU SUC(FZ')
where Suc(F;) ={p | 3pi € F5. ps — p}.
Property11. [¢'] € Reach([q]) iff [¢'] € ;5o F5- O
Backward traversal. This method consists in starting from [¢'] and visiting

the set of its predecessors and the predecessors of those and so on, until all the
regions from which is possible to reach [¢'] have been visited. Tt consists then

in constructing the sequence of sets of regions By C B; C - - -, such that
By = [q]
Biyw = By U Pre(Bi)

where Pre(B;) ={p |3pi € Bi. p = pi }.
Property 12. [¢'] € Reach([q]) iff [¢] € ;s Bi- O

12

4 Analysis using representatives

Let X = {a1,---,2,}. Each region of the region graph can be represented
by associating with every clock @ € X, either a constant ¢ € {0,--- Cy},
an interval (¢ — 1,¢) with ¢ € {1,---,C;}, or the interval (C,,), and an

ordering a;, #;, - - - #4, 2, with # € {<, <, =}, that encodes the ordering of
the fractional parts.

Another approach consists in representing a region by one or more represen-
tatives. This method is equivalent to discretizing the space of clock valuations
and the flow of time in such a way that at least one representative of every clock
region belongs to the discretized space.

4.1 Properties

Discretizing the state space consists in taking a rational constant d, cutting the
space into a d-grid, and providing a transition relation between the points of the
grid. The discretization and the transition relation must satisfy the following
conditions.

1. If a region p has a transition to a region p’, then all the points of the grid
that belong to p have a transition to some point that belongs to p'.

2. If a point of the grid has a transition to another point, then the region to
which the former belongs has a transition to the region in which the latter
resides.

These conditions ensure that the transition relation over the discretized state-
space has the same properties than the region graph.

We denote by rep(p) the set of representatives of region p, and by (D, —)
the discretized graph, and by d the elements of D. We define Reach(d) to be
the set {d' | d =* d'}.

Property 13. p' € Reach(p) iff rep(p’) N Reach(rep(p)) # 0.

4.2 Algorithms

The algorithms for computing Reach(d) are basically the same used before to
compute Reach(p).

Forward traversal. This method consists in computing the sequence of sets
of representatives Fy C F; C - -, such that

Fo = rep([q])
iy = FZ'USUC(FZ')

where Suc(F;) ={d | 3d; € F;. d; — d}.

13

yC

1

a

4

0 1 X 0 1 x 0 1 X

(a)e =1/2n (b)e=1/(n+1) (c)e=1/n

Figure 5: Discretizations of the space of clock valuations.

Backward traversal. This method consists in computing the sequence of sets

of representatives By C By C -- -, such that
By = rep([q])
Biyw = By U Pre(Bi)

where Pre(B;) = {d |3d; € B;. d = d;}.

4.3 Discretization schemes

In [26] two discretization schemes have been proposed with e = 1/(n + 1) and
¢ = (1/2n). Figures b(a) and 5(b) illustrate these two discretizations. Notice
that for (D, —) to satisfy the properties stated before, some “adjustments”
need to be done to the computation of the time-successors. For instance, the
time-successor of point a in Figures 5(a) and 5(b), is not point ¢ as we could
imagine, but point b. This is because when moving from a to ¢ we miss the
region represented by c.

In [8, 14] a simpler discretization has been proposed based on the following
observation. The special class of timed automata where all the clock conditions
are of the form z > cor < ¢, admits a slightly simpler and coarser region graph
[29]. For these automata, a discretization with € = 1/n, where the passage of
time is simply the addition of € to all the clocks, is sufficient (see Figure 5(c)).

5 Analysis using clock constraints

Let F' be the set of regions | J,~, £3 computed by the forward traversal algorithm
explained in Section 3. Then F can be characterized as a disjoint union of the
form L'!'Jses Fy, where F; is the clock constraint that characterizes the set of
regions that belong to F' whose location is equal to s. The same observation
holds for B. Indeed, such characterization can be computed without a-priori
constructing the region graph.

14

y IR .

/// ¢ 7

5 ‘ -

P1 Ps

5 Pp .

1 £3 :_
a

0 1 2 3 X

Figure 6: Representation of sets of regions as clock constraints.

Example 4. Consider the example illustrated in Figure 6. Let ¢ be the clock
constraint 1 < y<2A2<zAz—y<2. 1 represents the union of 5 regions.

a. Consider the assignment y := 0. The set of regions obtained by setting to 0
the value of y in all the clock valuations v € [¢] is characterized by the
clock constraint 2 < z Ay = 0.

b. Consider the assignment z := y. The set of regions obtained by assigning to
x the value of y in all the clock valuations v € [[¢] is characterized by the
clock constraint 1 < <2A1<y<2Az=y.

c. The set of regions corresponding to the clock valuations reachable from the
clock valuations in [¢] by letting time pass is characterized by the clock
constraint l <yAez—y<2Ay—z<0.

This example suggests that we can actually compute the set of successor regions
by symbolically manipulating the clock constraints. The same argument holds
for predecessor regions. a

5.1 Forward computation of clock constraints

Let s € S, s € Uy and e = (s,¢,0,7,5") € £ We denote by Suc, (15) the
predicate over X’ that characterizes the set of clock valuations that are reachable
from the clock valuations in % when the timed automaton executes the discrete
transition corresponding to the edge e. That is,

v Suce(¢s) iff T € Q. v =2 [y] AV | (s AY).

Property 14. Suc.(v;) € Uy. a

15

Example 5. Consider again the example illustrated in Figure 6. Recall that ¢
is the clock constraint 1 < y < 2A2< Az —y<?2.

a. The result of executing the transition resetting x to 0 is computed as follows.

Suc,(¢s) =
= 'y e/ y/YIAy=0Ax =2
= 'y . 1<y <2A2< A’ —y <2Ay=0Ax =2
= . 1<y <2A2<zhz—y <2Ay=0
= 2<zxAhae<dAhy=0

Since the upper bound of 4 is greater than the constant C, = 3, we can
eliminate the clock constraint # < 4 and obtain: Suc,(¢s) =2 < zAy = 0.

b. Now, consider the assignment = := y.

Sucy(¢5) =

= 3y e/ y/YI Ny =y Ne =y
o'y 1<y <2a2<2'na’ —y <2hy=y Ane=1y
' l<y<2A2<2'nNd’ —y<2hz=y
l<y<2A0<yrhz=y
= Il<y<2hz=y

a

In other words, to compute Suc. (¢;) is equivalent to visit all the regions that
are e-successors of the regions in v, but without having to explicitly represent
each one of them.

Let s € S and ¢, € Uy. We denote by Suc.(¢s) the predicate over X
that characterizes the set of clock valuations that are reachable from the clock
valuations in ¥; when the timed automaton lets time pass at s. That is,

v Suc. (¢s) iff IERT. v—30 v, AV ERT. & < =v—4FEIs).
Property 15. Suc. (v);) € Uy. a

Example 6. Consider again the example illustrated in Figure 6. Case ¢ corre-
sponds to letting time pass at the location. For simplicity, we assume here that
the invariant condition is true.

Suc. (¢5) =
= B eRt Yfx/x—3,y/y—J]
= PVeERT. I<y—-36<2A2<z—-dA(z—d)—(y—6) <2
= PERT. 1<y—0<2A2<e—86Ne—y<2A
= l<yn2<ehy—z<0Ahz—y<?2

16

Notice that Suc. (15) characterizes the set of the regions that contains the re-
gions characterized by ¥s and the regions reachable from them by taking only
e-transitions.

Now, we can solve the reachability problem by computing the sequence of

sets of clock constraints Fy, Fy,--- as follows:
Fo = {q)
Fiy1 = L—_i-J (Suca(Fiys) o] L—_i-J Suce(Fiys))
SES e€f

Notice that F; ; implies Fjy; , forall+ > 0 and s € S.

Property 16. Let F' = J,5, Fi, ¢ = (s,v), and ¢ = (s',%’). [¢'] € Reach([q])
iff (¢’) implies Fj. - O

5.2 Backward computation of clock constraints

Let s € S, s € Uy and e = (s, ¢,0,7,5) € £. We denote by Pre.(15) the
predicate over X that characterizes the set of clock valuations that can reach a
clock valuation in ¢; when the timed automaton executes the discrete transition
corresponding to the edge e. That is,

v Prec(v) it v AV E
Property 17. Pre.(v;) € Uy. O

Example 7. Consider the example illustrated in Figure 7. Let 1, be the clock
constraint 0 <y < 2A1 <z <2

a. Suppose that the edge we are considering has a guard 1 given by the con-
straint y > x 4+ 1. The predecessors of 1, with respect to the transition
that resets y to 0 are computed as follows.

Prea(1/)s) = 1/)5[3//0]/\1/)
0<0<2ANlI<e<2Ahy>ac+1
= l<z<2hNy>z+1

b. Now, consider the assignment := y and suppose that the edge has a guard
1 given by the constraint « > y 4+ 1.

Preb(1/)s) s [a:/y] N
0<y<2Al<y<2hze>y+1
= I<y<2phz>y+1

17

Again, to compute Pre(¢;) is equivalent to visit all the regions that are e-
predecessors of the regions in 1, but without having to explicitly represent
each one of them.

Let s € § and ¢; € ¥y. We denote by Pre.(¢5) the predicate over X that
characterizes the set of clock valuations that can reach a clock valuation in
when the timed automaton lets time elapse at location s.

v Pre. () iff IERT. v+d v AV ERT.I <= v+ = I(s).
Property 18. Pre.(v;) € Uy. O

Example 8. Consider again the example illustrated in Figure 7. Case ¢ corre-
sponds to letting time pass at the location.

Prea(1/)s) = 36€R+.1/)5[x/x+6,y/y—|—5]
= BERT 0<y+d<2Al<r+6<?2
= 0<y<2ni<e<2Ay—ze<lAhe—y<?2

a

That is, Pre. (¢5) characterizes the set of regions that contains the regions char-
acterized by 1 and all the regions that can reach one of them by taking only
e-transitions of the region graph.

Now, we can solve the reachability problem by computing the sequence of

sets of clock constraints By, By, --- as follows:
Bo = (¢
Biy1 = L—_i-J (Prea(Biys) o] L—_i-J Pree(Biys))
SES e€f

Notice that B; ; implies B;11, forall¢ > 0and s € S.

Property19. Let B = J,5, Bi, ¢ = (5,v), and ¢’ = (s',v'). [¢'] € Reach([q])
iff (¢) implies B;. - O

6 Analysis using bisimulation equivalences

Recall that the region graph is the quotient of the transition system of a timed
automaton with respect to the region equivalence. Another way of trying to cope
with the complexity of building the region graph consists in building a graph
which is the quotient with respect to an equivalence such that it is smaller than
the region graph but it satisfies the same properties than the region graph, and
therefore it can be used instead of the latter for verification purposes. In this
section we define one such equivalence and explain how to construct the quotient
graph.

18

y | // ‘// | /’ //
4 a //
21 -
b v,
. 4
C
0 1 2 3 X

Figure 7: Computing predecessors.

6.1 Time-abstracting equivalence

A time-abstracting bisimulation is a symmetric binary relation B C @ x Q
between states such that for all ¢1,¢2 € Q, (q1,¢2) € B, if

1. For all ¢ € ¥, whenever ¢q; = ¢ for some ¢}, there exists ¢} such that
g2 =+ ¢4 and (g2,¢) € B.

2. For all 6 € RT, whenever ¢; RN q} for some ¢}, there exists ¢4 and §' € RT
6’
such that ¢2 — ¢4 and (g2, ¢%) € B.

The time-abstracting equivalence, denoted =, is the the largest time-abstracting
bisimulation. Notice that the region equivalence is a time-abstracting bisimula-
tion. However, it is not necessarily the largest such bisimulation.

The largest time-abstracting bisimulation is an equivalence relation. Thus,
computing such a bisimulation consists in constructing a partition of the state-
space. Let B and C' two sets of regions. We define the following operators:

Pre,[BI(C) = {peB|3p eC p3)}
Pre.[BJ(C) = A{po|3pn € Cin>1. pg S S AV0<i<n. p € B}
Let € be a partition of @ such that every B € 2 is a set of regions. The quotient

of (@, —) with respect to § is transition system (2, —), such that for all
B,CeQ, and forall £ € L =X UA{e},

B5C iff PreB](C) # 0.
We write B — C if B 5 C for some £. B is stable with respect to C if for all
£ € L, Prey[B](C) is either B or empty. B isstable with respect to € if it is stable

with respect to all C' € Q2. Q is stable if all B € € are stable with respect to €.
We define Sucq(B) = {C' € Q| B— C} and Preq(B) ={C € Q| C — B}.

19

Q = Qp;
Acc:={BeQ|BnInit#0};
Sta :=
while 3B € Ace\ Sta
Cp = Split(B, Q)
if (Cp = {B)
then
Sta := Sta U {B};
Ace := Ace U Sucq (B);
else
Acc := Ace \ {B};
Q:=(Q\{B}HuCg;
Sta := Sta \ Preq(B);
if BN Init £ 0
then
Ace = AecU{C € Cp | C' N Init #0};

= T T e e e e e e e e =,
S U WK = O W= Ok Wi~ O
N N N e N e e e e e e e e e

P —

end

Figure 8: Algorithm for computing the coarsest partition.

Property 20. Let Q4 be the partition induced by =. Clearly, 15 is stable.

The quotient of (Q, —) with respect to the time-abstracting equivalence is
the quotient of (Q, —) with respect to the coarsest partition £ which is stable.

6.2 Computing the coarsest partition

Several algorithms have been proposed in the literature to compute the coarsest
partition which is stable with respect to a transition relation [35, 11]. Here we
adapt the generic algorithm developed in [11] in order to construct the partition
Q. The algorithm is illustrated in Figure 8.

The algorithm constructs the coarsest stable partition containing only classes
that are reachable from a given set In:t of initial regions. €2 is the current
partition. Acc is the set of reachable classes, that is, those classes containing
at least one reachable region. Sta C Ace is the set of stable reachable classes.
Split (B, £2) refines the class B by choosing a class C' with respect to which B is
potentially unstable, and then computing Cp = { By, B2} with By = Prey[B](C)
and Bs = B\ Pre,[B](C) for some £ € L. If indeed B; # 0, for i = 1,2, B is
effectively split (11-12), its predecessors become unstable (13), and the elements
of Cp that contain an initial region are added to Acc (14-15). If Cp = {B}, B
is both stable (7) and reachable, so its successor classes in €2 are added to the
set of reachable classes (8). °

5This algorithm constructs the minimal finite transition system which is equivalent to

20

For better understanding how the algorithm works, we have explained it
as 1f the region-graph had been constructed before. However, in order for the
algorithm to be useful, it should be implemented without a-priori constructing
the region-graph. This can be done following a clock-constrained based ap-
proach [41]. The operator Pre,[B](C') can be defined as we defined the operator
Preq(C) in Section 5. As a matter of fact, Pre,[B](C) is defined in Appendix A

since 1t 1s needed for verification of TcTL.

7 Data-structures

In this section we present two data-structures used by the implementations of
the algorithms presented in the previous sections.

7.1 Difference Bound Matrices

Let X = {1, -+ ,2,}, and let A C ¥y be the set of clock constraints over X
defined by conjunctions of constraints of the form z; < cand z; —z; < ¢. Let xg
be a clock whose value is always 0, that is, its value does not increase with time
as the values of the other clocks. Then, the constraints in A can be uniformly
represented as bounds on the difference between two clock values, where for
x; € X, x; < cis expressed as x; — xg < ¢, and ¢ < x; as xg — x¥; < —c.

Such constraints can be then encoded as a (n + 1) x (n 4+ 1) square matrix
D whose indices range over the interval [0, .- n] and whose elements belong
to Z x {<,<}. The first column of D encodes the upper bounds of the clocks.
That is, if #; — ¢ < ¢ appears in the constraint, then D;q is the pair (e, <),
otherwise it is (00, <) which says that the value of clock #; is unbounded. The
first row of D encodes the lower bounds of the clocks. If g —x; < —c¢ appears in
the constraint, Dy, is (—¢, <), otherwise it is (0, <) because clocks can only take
positive values. The element D;; for ¢,j > 0, is the pair (¢, <) which encodes
the constraint z; — x; < c. If a constraint on the difference between z; and z;
does not appear in the conjunction, the element D;; is set to (o0, <).

Example 9. Let A be the clock constraint 1 < y < 2Al < zAz—y < 2.
Figure 9a shows its matrix representation. a

As a matter of fact, many different DBM’s represent the same clock region.
This is because some of the bounds may not be tight enough.

Example 10. Consider again the clock constraint depicted in Figure 9. The
matrix b i1s an equivalent encoding of the clock constraint obtained by setting
the upper bound of #; to be (3, <) and the difference £3 — 21 to be (1, <). Notice
that this two constraints are implied by the others.

the region-graph upto time-abstracting bisimulation. Another different approach consists in
minimizing the timed automaton itself, rather than its model, in order to obtain an equivalent
timed automaton which is minimal upto a stronger notion of bisimulation. This subject has
been explored in [39]. A more practical point of view is adopted in [21], also explained in
Appendix B.

21

9 : /s | // L a D to L1 12

// L ‘//) Zo (ng) (_17<)(_17<)

/// 1 (00,<) (0,<) (1,<)

) T e 299 (0.9
b D! Tg T P

1 vo (0,<) (=1,<)(-1,<)

L1 (37<) (07§) (17<)

<
0 1 2 3 1 T2 (2,<) (17<) (07_)

Figure 9: Representation of convex sets of regions by DBM’s.

However, given a clock constraint in A, there exists a canonical representa-
tive. Such a representative exists because pairs (¢, <), called bounds, can be
ordered. This induces a natural ordering of the matrices. Bounds are ordered
as follows. We take < to be strictly less than <, and then (¢, <) < (¢/, <’) iff
c<core=c and <<<'. Now, D < D"iff for all 0 <i,5 <n, Dy < Dj;.

Example 11. Consider the two matrices in Figure 9. Notice that D’ < D.

For every clock constraint in A, there exists a matrix C' that encodes the
constraint, and for every other matrix D that also encodes the constraint, we
have that C' < D. Given D, we denote by cf(D) the matrix C.° We say that
D is in canonical form or is a canonical representative if D = cf(D). Having
a canonical representative gives us a simple method for checking whether two
matrices represent the same constraint: D and D’ encode the same constraint

iff f (D) = f (D).
Example 12. In Figure 9, D' = <f(D).

Encoding convex timing constraints by DBM’s requires then @(n?) memory
space, where n is the number of clocks. Several algorithms have been proposed
to reduce the memory space needed [21, 32]. The algorithm proposed in [21] is
explained in Appendix B.

The verification algorithms require basically six operations to be imple-
mented over matrices: conjunction, time successors, reset successors, time pre-
decessors, reset predecessors and disjunction. These operations are implemented
as follows.

Conjunction. Given D and D', D A D’ is such that for all 0 < 7,5 < n,
(D A D/)i,j = min(Dij, D;])

6¢cf(D) can be computed using the Floyd-Warshall algorithm.

22

Time successors. As time elapses, clock differences remain the same, since
all clocks increase at the same rate. Lower bounds do not change either since
there are no decreasing clocks. Upper bounds have to be pushed to infinity,
since an arbitrary period of time may pass. Thus, for a canonical representative
D, Suc. (D) is such that:

(9 =0,
Suce (D)ij = { D;j otherwise.

Reset successors. First notice that resetting a clock to 0 is the same as
setting its value to the value of g, that is, y(2;) = 0 is the same as y(z;) = .
Now, when we set the value of z; to the value of z;, z; and x; become equal and
all the constraints on x; become also constraints on z;. Having this in mind,
the matrix characterizing the set of reset-predecessors of D by reset v consists
in just copying some rows and columns. That is, the matrix D' = Sucy (D)
is such that for all 0 < i,j < n, if y(z;) = «; then row;(D’) = row;(D) and
col; (D) = col; (D).

Time predecessors. To compute the time predecessors we just need to push
the lower bounds to 0, provided that the matrix is in canonical form. Thus, for
a canonical representative D, Pre. (D) is such that:

[(0,g) ifi=0,

Pre. (D)s _{ D;; otherwise.

Reset predecessors. Recall that the constraint characterizing the set of pre-
decessors is obtained by substituting each clock z; by y(z;). Now suppose
that we have two constraints x; — x; < ¢x; and z, — x; < ¢y and we sub-
stitute z; and z, by =z;, and x; and z, by z;. Then, we obtain the con-
straints z; — x; < ¢ and z; — x; < ¢ which are in conjunction, and so
x; — x; < min(cg, ¢ps). Thus, the matrix D' = Prey (D) is such that for all
0<i<mn, Dl =min{Dy | y(xg) = zi Ay(21) = 25}

Disjunction. Clearly, the disjunction of two DBM’s is not necessarily a DBM.
That is, A is not closed under disjunction. Usually, the disjunction of D and D’
is represented as the set {D, D'}. Thus, a lot of computational work is needed
in order to determine whether two sets of DBM’s represent the same constraint.

It may turn out, for example, that a set of DBM’s can replaced by a single
DBM. The tool KrRONOS, for instance, use some heuristics to check whether the
union of two DBM’s represent is indeed a DBM. Such heuristics are applied when
the number of DBM’s stored in memory becomes greater than some threshold.
However, checking whether a set of more than two DBM’s can be represented
as a DBM is computationally expensive.

23

7.2 Symbolic Graphs

One solution adopted in some of the verification tools to overcome the problem
of the non-convexity of the union of DBM’s, consists in structuring the set of
reachable states as a graph rather than as a union of DBM’s. The main difference
between this graph and the region graph is that its nodes are pairs (s, D), where
D € A, instead of regions. This graph is called forward-simulation graph or
backward-simulation graph, according to which method is used to construct it.

Let ¢ and ¢’ be two states. To verify whether ¢’ € Reach(q), the forward-
simulation graph is the pair (N, F) constructed as follows:

1. Suc. ({¢)) € N.

2. For every (s,D) € N, and for every e = (s,0,¢,v,8') € & if D' =
Suc, (Suc (D)) # 0, then (', D') € N and e € F.

The backward-simulation graph is the pair (N, F) constructed as follows:

1. Pre.({¢’)) € N.

2. For every (s,D) € N, and for every e = (s',0,¢,v,5) € & if D' =
Pre. (Pre. (D)) # @, then (s/, D') € N and ¢ € F.

These graphs can be constructed using a depth-first or a breadth-first techniques
indistinctly. For instance, the algorithm for constructing the forward-simulation
graph using a breadth-first technique is illustrated in Figure 10.

These algorithms only store matrices in canonical form and only one copy of
each matrix is stored, making the test whether a node already exists very simple
indeed. The major drawback of these algorithms is that they can introduce a lot
of redundancy, in the sense that the same region can belong to many nodes of
the graph. The number of nodes of the graph can be reduced by testing whether
the matrix of the newly constructed node is included in, instead of equal to, an
already existing node.

Besides, they do not need to be entirely constructed, that is, their construc-
tion can be stopped as soon as a node is found to intersect (¢, in the case of
the forward-simulation graph, or {(¢) in the other case.

7.3 Decision Diagrams

Other data-structures that have been proposed are based on the so-called Binary
Decision Diagrams. BDD’s, first introduced in [15], are efficient canonical rep-
resentations of a formulas of propositional logic. BDD’s have been successfully
used in verification, especially in the analysis of digital circuits [16, 36].

The first idea consists in encoding the regions and the transition relation
defined by the region graph using BDD’s, based on the fact that the region
graph is just a finite graph. This approach is followed in [7].

BDD’s are also used by the algorithms based on the discretization of the
state-space. For instance, when ¢ = 1/n, such algorithms can be efficiently im-
plemented using the so-called Numeric Decision Diagrams [8]. The idea behind

24

S
N = {;
while M # § do
let M = (s,D) - M’;
N :=NU{(s,D)};
M= M’
for all e = (s5,0,¢,7,5) € £do
if (D' =Suc.(Suce (D)) £ W) & (s, D')g NUM
then M =M - (s, D)
end
end

Figure 10: Forward-simulation graph using a breadth-first technique.

NDD’s is very simple. Suppose that each clock can take values in the range
[0, %), and consider a discretization of time such that the possible clock values
are K ={0,...,k— 1}. Fach clock can be treated as a bounded integer vari-
able and any of its possible values can be encoded in binary using log k& bits.
Consequently, any subset of K" can be viewed as a subset of {0,1}"!°8%* and
represented by a BDD over nlogk boolean variables. Given a fixed variable or-
dering, this representation is canonical. All the operations described for DBM’s
can be simply implemented as operations on BDD’s.

7.4 Tools

A lot of tools have been developed based on the algorithms and data-structures
described in this paper. It is not the purpose of this paper to review each of
them in detail. The reader is referred to the bibliography and to the web pages
(whenever available) for a more detailed information about the tools.

e CosPAN [27] has been extended in several different ways to deal with
timing [19, 7, 6].

e EpsiLon [18]7 and REAL TiME EXPLORER [43] are two tools based on the
notions of bisimulation and refinement.

¢ KronNos® implements the model-checking algorithm for TcTL described
in Appendix A, the backward and forward reachability algorithms using
DBM’s [20, 13] and NDD’s [14], and the algorithm for computing the
coarsest partition modulo the timed-abstracting bisimulation [41]. This

"http:/ /www.cs.auc.dk/general /F'S /epsilon-dir /folder.html
8http://www.imag.fr/VERIMAG /PEOPLE/Sergio.Yovine

25

last algorithm allows using the tool ALDEBARAN [25] ¥ to check for differ-
ent kinds of bisimulation equivalences.

e Rr-SPIN [40] extends the on-the-fly, depth-first, forward verification algo-
rithm of SPIN'Y using DBM’s for encoding timing constraints.

e UprpaaL'! implements forward and backward reachability algorithms based
on DBM’s [33, 10, 28] that allow checking for safety properties.

e VERITI [44, 23] implement a reachability algorithm that uses data-structures
that combine both BDD’s and DBM’s to check for safety properties. The
tool also implements an algorithm that computes the coarsest partition
modulo the timed-abstracting equivalence [2, 1].

8 Conclusions

In this paper we have over-viewed four different techniques for analyzing prop-
erties of real-time systems specified as timed automata. For the sake of simplic-
ity, we have only discussed how these techniques are used to solve the so-called
reachability problem. Other verification problems can also be solved by adapt-
ing these four basic procedures. As an example, we discuss in Appendix A how
the region-graph and clock-constraint based algorithms can be used to solve the
model-checking problem for TCTL.

The algorithms we have studied always terminate with a yes or no answer
for the reachability problem. As we have already mentioned in the introduction,
the complexity of this problem is exponential on the number of clocks and in
the encoding of the constants'?. Even though these algorithms and the data-
structures they used have been designed to try to avoid that complexity in
practice, the state-space to be explored for a given system could anyway exceed
the memory capabilities.

To overcome this problem, some of the algorithms described in this paper
have been modified in such a way that they do no longer analyze the exact set
of reachable states but an over- or under-approximated one. These algorithms
rely on the fact that even if the state-space 1s larger, its representation is more
compact, that is, it requires less memory space.

One such algorithm is the one described in [9] where the state-space is over-
approximated by replacing the disjunction operator of clock constraints by the
convex hull of them, that is, by the smallest convex clock constraint that contains
the disjunction of them. This technique, combined with a BDD-based encoding
of the state-space, permit a very compact representation of the set of reachable
states. This method allows us to partially solve the verification question for
safety properties. That is, the property is satisfied if the algorithm does not

“http://www.imag.fr/VERIMAG /DIST SYS/aldebaran-english.html
10http://netlib.bell-labs.com /netlib/spin/whatispin.html
http://www.docs.uu.se/docs/rtmv /uppaal /index.shtml
121t is indeed PSPACE-complete [4].

26

find an unsafe state in the larger space, however, if such a state is indeed found,
we cannot immediately conclude that the system does not satisfy the property
because that particular state may not belong to the exact set of reachable states.

This problem is solved in [23]. There, both under- and over-approximations
of the set of reachable states are maintained. Basically, the algorithm iterates
and repeatedly changes from one approximating set to the other according to the
results obtained in the previous iteration. At each iteration, the approximations
are made more accurate, and therefore, eventually become equal to the set of
reachable states. This algorithm gives an exact answer to the problem, and
it takes advantage of the compact representation of the approximated state-
spaces. However, it might end up by constructing the exact state-space before
being able to verify the property, in which case, it will perform worst than the
exact algorithms.

References

[1] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An
implementation of three algorithms for timing verification based on au-
tomata emptiness. In Proc. 13th IEEE Real-Time Systems Symposium.
IEEE Computer Society Press; 1992.

[2] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Min-
imization of timed transition systems. In W.R. Cleaveland, editor, CON-
CUR 92: Theories of Concurrency, pages 340-354. Lecture Notes in Com-
puter Science 630, Springer-Verlag, 1992.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proc. 5th Symp. on Logics in Computer Science, pages 414-425.
IEEE Computer Society Press, 1990. See also “Model checking in dense
real time”, Information and Computation, 104(1):2-34, 1993.

[4] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc.
17th ICALP, pages 322-335. Lecture Notes in Computer Science 443,
Springer-Verlag, 1990. See also “A theory of timed automata”, Theoretical
Computer Science, 126:183-235, 1994.

[6] R. Alur and T. Henzinger. Logics and models of real-time: a survey. In
Proc. REX Workshop “Real-Tume: Theory in Practice”, the Netherlands,
June 1991. Lecture Notes in Computer Science 600, Springer-Verlag.

[6] R. Alur, A. Ttai, R. Kurshan, and M. Yannakakis. Timing verification
by successive approximation. In Proc. 4th Workshop on Computer-Aided
Verification. Lecture Notes in Computer Science 663, Springer-Verlag, 1992.
Also in Information and Computation, 118(1):142-157, 1995.

[7] R. Alur and R.P. Kurshan. Timing analysis in cospaN. In T.A. Henzinger
R. Alur and E. Sontag, editors, Hybrid Systems Il pages 220-231. LNCS
1066, Springer-Verlag, 1996.

27

(8]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-
structures for the verification of timed automata. In O. Maler, editor, Proc.

HART’97, pages 346-360. LNCS 1201, Springer-Verlag, 1997.

F. Balarin. Approximate reachability analysis of timed automata. In Proc.
1996 IEEE Real-Time Systems Symposium, RTSS’96, Washington, DC,
USA, December 1996. IEEE Computer Society Press.

J. Bengtsson, W. Griffioen, K. Kristorffersen, K. Larsen, F. Larsson, P. Pet-
tersson, and Wang Yi. Verification of an audio protocol with bus using Up-
paal. In Proc. §th Conference Computer-Aided Verification, CAV’96, pages
244-256, Rutgers, NJ, July 1996. Lecture Notes in Computer Science 1102,
Springer-Verlag.

A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-
tel. Minimal state graph generation. Science of Computer Programming,

18:247-269, 1992.

A. Bouajjani, Y. Lakhnech, and S. Yovine. Model checking for extended
timed temporal logics. In Proc. 4th Intl. Symp. Formal Techniques in Real-
Tvme and Fault-Tolerant Systems, FTRTFT’96, Uppsala, Sweden, Septem-
ber 1996.

A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model-
checking for real-time systems. In Proc. 18th IEEE Real-Time Systems
Symposium, RTSS’97, San Francisco, USA, December 1997. IEEE Com-
puter Society Press.

M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the sym-
bolic verification of timed automata. In Proc. 1997 Computer-Aided Veri-
fication, CAV’97, Israel, June 1997. to appear in LNCS, Springer-Verlag.

R.E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677-692, 1986.

J.B. Burch, E.M. Clarke, D.Dill, L.J. Hwang, and K.L. McMillan. Symbolic
model checking: 10%° states and beyond. In Proc. 5th Symp. on Logics in
Computer Science, pages 428-439. IEEE Computer Society Press, 1990.

K. Cerans. Decidability of bisimulation equivalences for parallel timer pro-
cesses. In Proc. jth Workshop on Computer-Aided Verification. Lecture
Notes in Computer Science 663, Springer-Verlag, 1992.

K. Cerans, J. C. Godskesen, and K. G. Larsen. Timed modal specifications
- theory and tools. In C. Courcoubetis, editor, Proc. 5th Computer-Aided
Verification, pages 253-267. LNCS 697, Springer-Verlag, June 1993.

C. Courcoubetis, D. Dill, M. Chatzaki, and P. Tsounakis. Verification with
real-time COSPAN. In Proc. 4th Workshop on Computer-Aided Verifica-
tion. Lecture Notes in Computer Science 663, Springer-Verlag, 1992.

28

[20]

[21]

[22]

[23]

[24]

[25]

[31]

C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KRONOS. In Proc. 1995 IEEFE Real-Time Systems Sympo-
stum, RTS55°95, Pisa, Italy, December 1995. IEEE Computer Society Press.

C. Daws and S. Yovine. Reducing the number of clock variables of timed
automata. In Proc. 1996 IEEE Real-Time Systems Symposium, RTSS 96,
Washington, DC, USA | December 1996. IEEE Computer Society Press.

D. Dill. Timing assumptions and verification of finite-state concurrent sys-
tems. In J. Sifakis, editor, Proc. 1st Workshop on Computer-Aided Veri-
fication, France, 1989. Lecture Notes in Computer Science 407, Springer-
Verlag.

D. L. Dill and H. Wong-Toi. Verification of real-time systems by succes-
sive over and under approximation. In Pierre Wolper, editor, Proceedings
of the Seventh Conference on Computer-Aided Verification, CAV’95, Lec-
ture Notes in Computer Science 939, pages 409-422, Liege, Belgium, 1995.
Springer-Verlag.

E.A. Emerson and E. Clarke. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Proc. Workshop on Logic of
Programs. Lecture Notes in Computer Science 131, Springer-Verlag, 1981.

J.C. Fernandez and L. Mounier. On the fly verification of behavioural
equivalences and preorders. In Proc. CAV’91. LNCS 757, Springer-Verlag,
1991.

A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In

Proc. 33rd CDC, 1994.

Z. Har’El and R. Kurshan. Automatic verification of coordinating systems.
In J. Sifakis, editor, Proc. 1st Workshop on Computer-Aided Verification.
Lecture Notes in Computer Science 407, Springer-Verlag, 1989.

K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modelling
and analysis of an audio/video protocol: an industrial case study using
uppaal. In Proc. 18th IEEE Real-Time Systems Symposium, RTS5’95, San
Francisco, California, USA,| December 1997. IEEE Computer Society Press.

T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proc. REX Workshop “Real-Time: Theory in Practice”, New York, 1992.
Springer-Verlag.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-
checking for real-time systems. In Proc. 7th Symp. on Logics in Computer
Science, pages 394-406. IEEE Computer Society Press, 1992. Also in In-
formation and Computation, 111(2):193-244, 1994.

R. Jain. FDDI handbook: high-speed networking using fiber and other me-
dia. Addison-Wesley, 1994.

29

[32]

[41]

K. G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Efficient verification
of real-time systems: compact data structure and state-space reduction. In
Proc. 18th IEEE Real-Tume Systems Symposium, RTSS5°95, San Francisco,
California, USA, December 1997. IEEE Computer Society Press.

K. G. Larsen, P. Petterson, and Wang Yi. Compositional and symbolic
model-checking of real-time systems. In Proc. 1995 IEEE Real-Time Sys-
tems Symposium, RTSS’95, Pisa, Italy, December 1995. IEEE Computer
Society Press.

K. G. Larsen and Y. Wang. Timed abstracted bisimulation: implicit spec-
ification and decidability. In Proc. MFPS’93, 1993.

D. Lee and M. Yannakakis. Online minimization of transition systems. In
ACM Symp. on Theory of Computing. ACM Press, 1992.

K.L. McMillan. Symbolic model-checking: an approach to the state-
explosion problem. Kluwer, 1993.

M. Measche and B. Berthomieu. Time petri-nets for analyzing and verifying
time dependent communication protocols. In H. Rudin and C.H. West,
editors, Protocol Specification, Testing and Verification, I1I. IFIP, North-
Holland, 1983.

A. Olivero. Modélisation et analyse de systémes temporisés et hybrides.
These, Institut National Polytechnique de Grenoble, Grenoble, France,
September 1994.

J.G. Springintveld and F.W. Vaandrager. Minimizable timed automata. In
B. Jonsson and J. Parrow, editors, Proc. FTRTFT’96, Uppsala, Sweden,
1996. LNCS 1135, 130-147, Springer-Verlag.

S. Tripakis and C. Courcoubetis. Extending promela and spin for real time.
In TACAS’96, Passau, Germany, 1996. Lecture Notes in Computer Science
1055, Springer-Verlag.

S. Tripakis and S. Yovine. Analysis of timed systems based on time—
abstracting bisimulations. In Proc. 8th Conference Computer-Aided Veri-
fication, CAV’96, pages 232-243, Rutgers, NJ, July 1996. Lecture Notes in
Computer Science 1102, Springer-Verlag.

VERIMAG. School on Methods and Tools for the Verification of Infinite-
State Systems. http://www.imag.fr/VERIMAG. Grenoble, France, March
1997.

C. Weise and D. Lenzkes. Efficient scaling invariant checking of timed

bisimulation. In STACS’97. Springer-Verlag, 1997.

30

[44] Howard Wong-Toi and David L. Dill. Approximations for verifying timing
properties. In Teo Rus and Charles Rattray, editors, Theories and Ez-
periences for Real-Time System Development (Proceedings First AMAST
Workshop on Real-Time System Development), chapter 7, pages 177-204.
World Scientific Publishing, 1994.

[45] S. Yovine. Méthodes et outils pour la vérification symbolique de systémes
temporisés. These, Institut National Polytechnique de Grenoble, Grenoble,
France, May 1993.

A The logic TCTL

In the previous sections we have studied the so-called reachability problem. In
this section we define the temporal logic TCTL and explain how to check whether
a timed automaton satisfies a formula of the logic. TCTL 1s an extension of the
temporal logic CTL [24].

A.1 Syntax

Let A be a timed automaton with set of clocks A" and set of atomic propositions
II, and let Z be a set of clocks disjoint with X, that is, Z N X = @. The set
¢y z 11 of formulas of TCTL are defined by the following grammar:

o u= Ymlze | e e Vs | pi1TUes | o1 VU,

where ¢y € ¥yyz, 7 €1I, and 2z € Z.
Let ¢ € By z 1. We define free(y) to be the set of free clocks of ¢. free(y)
is inductively defined as follows:

free(4)) = clk(¢)

free(m) = 0

free(z.¢) = free(p) \ {z}
free(—¢p) = free(yp)

free(p1 Vpa) = free(pr) Ufree(p2)
free(p1TUps) = free(pr) Ufree(p2)
free(p1VUps) = free(pr) Ufree(p2)

We say that ¢ is closed if free(p) C X, that is, every occurrence of a clock z € Z
is under the scope of a “z.” operator. Table 1 shows some typical abbreviations
and their intuitive meaning.

Example 13. Consider the FDDI system depicted in Figure 3. Some properties
that we would like the system to satisfy are the following.

1. At any state, each station eventually has time to send low-priority mes-
sages. This property can be expressed in TCTL as follows:

(Idle; A hy = 0Ary =0) = VOVOAT;.

31

Abbrev. Formula Explanation

IO truedlp a state satisfying ¢ is reachable

Ve =30 ¢ holds along all executions

VO trueVldp all executions lead to a state satisfying ¢

d0¢ VO there is an execution along which ¢ holds everywhere

A0<c z.30(p Az <c¢) ¢ is reachable within a time less than or equal to ¢
YO<cp z¥0(p Az <c) all executions lead to ¢ in at most ¢ time units

Table 1: Typical abbreviations and their meaning.

2. After having released the token, the station eventually gets the token in
a time less than or equal to 104:

Idle; = V<>S 104STy.

A.2 Semantics

The formulas of ®x z 7 are interpreted over extended states. An extended state

is a triplet (s,v,() such that (s,v) € Q is a state of A, and ¢ € [2 o Rt] is a

valuation of the clocks in Z. We define v 4 ¢ to be the following valuation:

wram={) 0SS

Let ¢ € &y 2z be a closed formula. An extended state (s,v,() satisfies the
formula ¢, denoted (s,v,() FE ¢, if

(s,v,0) ¢ iff v+CEY

(s,v,) iff 7 e P(s)

(s,v,Q) F 2z it (s,v,([z/0]) F o

(S,U,C) ':_'30 it (S,U,C) I#QD

(s,v,Q) Fp1Vepr i (s,0,¢) F1or(s,v,0) s

(s,v,) E 13Uy iff TFr € R (s,v).Tp € P(r).
(E(p),C+AP) E e2
A
V' <p (EF),CHAP)) E e Ve

=(p
(5,v,0) = p1VUps T Vr € R(s, v) dp € P(r).
(A:(p),C+A(P) E ¢
Vo' < p. (E(P),CHAWR)) Ee1 Vo

A state (s, v) satisfies ¢ if the extended state (s, v, () satisfies ¢ where (is such
that (z) = 0 for all z € Z. The set of states that satisfy the formula ¢, denoted
[¢], is called the characteristic set of ¢. A satisfies ¢, denoted A |= ¢, if all
the states of A satisfy ¢.

32

A.3 Region-graph based algorithm

Given a timed automaton A and a ToTL-formula ¢, we are interested in check-
ing whether A satisfies ¢. Let ¥ be the set of sub-formulas of ¢ that belong to
¥. The region graph RG(A, \i!) can be used to solve the problem.

Let [¢] to be the set of regions defined as follows.

[+] = A{lls,v, QI [v+ v}

[7T (S,U,C)] |7TEP(5)}

[(s,v,Q1 | [(s,v,C[2/0])] € [¢]}
FSD] = Qx\[¢]
[
[

._.
[l

—— ——

—_——_—

o
5
I

e1 V] = [p1]U[ps]
p1Ups] = EU([p1], [p2])
p1VUps] = AU([p1], [p2])

where EU(R1, R2) = ;5 £s such that
Ey = R
Ei+1 = FE,URiN Pre(Ei)
and AU (R, R2) = ;> Ai such that

Ao = R
Ai+1 = FE,URN Pre(Ei) N Pre (Ez)

where Frg(El) = Q. \ Pre(Q. \ E;). That is, a region belongs to Fr;(El) if
all its successors belong to F;. Thus, Pre(FE;) N Fr;(El) characterizes all the
regions that have a successor that belongs to F; and all its successors belong
to E;. This prevents considering regions that do not have any successors. See
Figure 11.

Property 21. Let A be a Non-Zeno timed automaton. A region p belongs to
EU(Ry, Ro) if there is a sequence of regions and transitions starting at p that
reaches a region in Ra such that all the intermediate regions belong to Ry:

EU(Rl,Rz) = {po | E'po — P11 dn e N Pn € Rs /\VZS n.p; ER1UR2}.

That is, EU([¢1], [¢2]) characterizes the set of states of A that satisfy the for-
mula ¢13Ups. Non-Zenoness ensures that the sequence of states and transitions
is indeed a time-divergent execution. a

Property 22. Let A be a Non-Zeno timed automaton. A region p belongs to
AU(R1, Rs) if every sequence of regions and transitions starting at p reaches a
region in Rs and all the intermediate regions belong to Ry:

AU(Rl,Rz) = {po |Vp0 — P11 dn e N Pn € Rs /\Vign.pi ER1UR2}.

That is, AU([¢1], [@2]) characterizes the set of states that satisfy the formula
©1Y¥Ups. This holds because in the region graph there are no self-loops labeled
¢ other than the ones at unbounded regions, and also because Non-Zenoness
ensures that every region has at least one successor.

33

Figure 11: Pre(R) and Frg(R).

Property 23. If A is Non-Zeno, q = ¢ iff [¢] € [¢].

A.4 Clock-constraint based algorithm

Let A be a Non-Zeno timed automaton and ¢ a formula of TcTL. We present
here an algorithm that constructs a disjoint union of clock constraints L'!'Jses s,
denoted ((¢)), that characterizes [¢] without explicitly building a-priori the
region graph.

For formulas ¢ not containing the temporal operators I and VU, ((¢)) is
defined as follows.

= Uses I(s) N9
Hses,mep(s I(S)

) = e () (¢))s[2/0]

) = Uses I(s) A =((#)s

(p1 V) = (1) Ule2))

where ((¢))s is the clock constraint corresponding to s in ((¢)).

Now, let s € § and ¢/, ¢; € Uy. We denote by Pre.[¢](15) the predicate
over X that characterizes the set of clock valuations that can reach a clock
valuation in s when the timed automaton lets time elapse at location s such
that all the clock valuations in between satisfy either ' or v, .

=R
)
€ 5§ ==

v |= Pre. [¢/](vs) iff 36 € RT.
Y
A
V&' eRT. & <d=uv+d EIs)AY.
That is, Pre.[¢'](¢s) characterizes the set of regions that contains the regions

characterized by s and all the regions characterized by ¢’ that can reach them
by taking only e-transitions (Figure 12).

34

0 1 2 3 X

Figure 12: Conditional timed predecessors.

Property 24. Pre.[¢/](¢s) € Uy. O

The algorithm for constructing ((¢13Up2)) is very similar to the one based
on the region graph. That is,

(pr13Ue2)) = EU((¢1)), (#2))
where EU(Ry1, R2) = Uizo E; such that

Ey = R»
Ei+1 = L—|_-J (Prea [Rl,s](Ei,s) W L‘!‘J Pre. (Ei,s))
SES e€f

The algorithm for computing ((¢1 ¥ p2)) is however different to the one based
on the region graph. For the sake of simplicity, we only explain here the algo-
rithm for computing (V0)). The full algorithm is given in [30]. The algorithm
relies on the following observation. The set of states that eventually reach a
state 1n a set of regions, say Ay, can be iteratively approximated by computing
the sequence of sets of regions Ay C Ay C --- where A;4; = VO< A;. Figure 13
illustrates this observation. Now, the characteristic set of YO is

(Vo) = AD((¢))
where AD(R) = ;> 4 such that

Ao == R
Aipr = AW (VO<cAy)
where ¢ € N is any constant such that ¢ > 1.

It remains now to give the algorithm to compute (VO<.A;)). This algorithm
is based on the following property.

35

Ao

Ay =V0<Ao

Figure 13: Computing YO Ag.

Property 25. If A Non-Zeno, Y0<.¢ is equivalent to —z.(—3IUz > ¢). O

That 1s, all executions reach a state satisfying ¢ within a time less than or equal
to ¢ iff no execution continuously satisfy —¢ for a time greater than ¢. Thus,

(VO<ep) = (2 (mpUz > c))).

A.5 Verifying the Non-Zenoness hypothesis

The two algorithms proposed above to verify whether a timed automaton A
satisfies a TcTL-formula ¢ rely on the hypothesis that A is in fact a Non-Zeno
timed automaton. But how do we check if A is indeed Non-Zeno?.

Recall that A is Non-Zeno if every state has a time-divergent execution
starting at it. The following property has been proven in [30].

Property 26. A is Non-Zeno iff for all states ¢ € Q, ¢ |= I0=1true.

In other words, verifying the Non-Zenoness hypothesis amounts to checking
whether all the states of A can let time progress by 1.

Now, if A turns to be a Zeno timed automaton, we can compute the largest
set of Non-Zeno states as NZ = (,5, NZ;, where:

NZy = true
NZiy1 = NZn(30=1N%)
From A, we can construct the Non-Zeno timed automaton A 7 containing all

the Non-Zeno states of A by taking the invariant condition of each location
s € Stobe NZ,.

36

B Reduction of the number of clocks

Recall that the complexity of analyzing timed automata is exponential on the
number of clocks. In this section we present two algorithms that can be used to
reduce the number of clock variables of a timed automaton. These algorithms
have been developed in [21].

B.1 Equivalence

Let A be a timed automaton and (@, —) its transition system.
A timed bisimulation B C @ x Q is a symmetric binary relation between
states such that for all ¢1,¢2 € Q, (g1, ¢2) € B, if for all £ € ¥ U RT,

1. if ¢q 4 q} for some ¢/, there exists ¢4 such that ¢- 4 g5 and (¢, %) € B.

The timed equivalence, denoted ~ is the the largest timed bisimulation.

B.2 Renaming

Given a timed automaton A over a set of clocks A, our aim is to find a set
of clocks Z smaller than A, such that appropriately renaming conditions and
assignments of A with clocks in Z we obtain an equivalent behavior.

Let X and Z be two disjoint sets of clocks, A be a timed automaton over X,
and £ be a family of partial functions R, from X to Z. We denote R(A) the
timed automaton obtained from A by replacing clocks in X by clocks in Z in
all conditions and assignments as follows. For all s € S,

1. R(I(s)) € ¥z is obtained by replacing every x € & by ,(z) in I(s), and

2. for every edge ¢ = (s,0,v,7,s) € &, the corresponding edge %(e) =
(s,o, (), N(y),s") is such that,

(a) R(¢) € Uz is obtained by replacing every # € X by R, (z) in ¢,

(b) R(y) is the assignment 4/ € 7 z such that 4 o Ry = RN, o5, where o
denotes the composition of functions.

For i(A) to be well defined we need to require that for all s € S,
1. Rs(x) is defined for all € clk(I(s)), and
2. forall e = (s,0,9,7,5) € &,
(a) R () is defined for all z € clk(¢), and
(b) Ryr(x) = RNy (y) then R; (v(z)) = Ry (v(y))-

The aim is to find a set of clocks Z with card (Z) < card () and clock renaming
R from X to Z such that R(A) is bisimular to A. This notion of reduction
is global, that is, card(Z) of clocks are globally required to model the same
behavior. However, it may happen that not all the clocks are always necessary.

37

More formally, it may be the case that R, is such that every state (s,v) is
bisimular to (s,v), where v € Vg (1), is such that v(z) = v(x), for 2 = R, (x).
Therefore, only card (3, (X)) of clocks are locally needed at location s to model
the same behavior.

B.3 Activity

The first algorithm is based on the notion of activity of a clock. Intuitively, a
clock is active at some location if its value at the location may influence the
future evolution of the system. This may happen whenever the clock appears
in the invariant condition of the location, it is tested in the condition of some
of the outgoing edges, or an active clock takes its value when moving through
an outgoing edge.

We define the function act that associates with each location s € § the set
act(s) C X of active clocks at s as follows. For all s € S, act(s) = (J;acti(s),
where:

acto(s) = clk(I(s)) U U k()

(s,0,9,7,8")€E

actiy1(s) = acty(s) U U y(act;(s'))
(5,0, ,7,s")EE

where y(X) C X issuch that, y € v(X) iff there exists # € X' such that y(z) = y.

Notice that the definition of act;1(s) says that if a clock # is active in &',
and there is an edge with an assignment v such that y(x) = y, then y is active
in s, since in fact, the value of z in s’ is the value of y In s.

Property27. Let s € § and v, v' € Vy, with v(z) = ¢/(2) for all x € act(s).
Then, (s,v) ~ (s,v).

Property 28. Let & be any renaming such that for all s € §, R, is an injective
function defined for all # € act(s). Then, A ~ R(A).

B.4 Equality

The second algorithm is based on the notion of equality between clocks. Intu-
itively, two clocks =,y € A" are equal in s € § if they have the same value in
that location for every run, that is, if for every reachable state (s,v) we have
that v(2) = v(y). In this case, only one of the clocks is necessary to determine
the behavior of the system at the location.

We define the equality relation such that two clocks are equal in a location
if they are set by the assignment of every incoming edge either both to 0 or to
clocks that are themselves equal in the source location.

Let R C X x X. We denote R* the relation RU {(0,0)}. Let v be an assign-
ment. We denote y(R) the set of pairs (z, y) € X'x X'such that (y(z),y(y)) € R*.

38

Now we formally define the equality relation equ to be the family of relations
such that for all s € S, equ(s) = ;5 equi(s), where:

equp(s) = A x X

equiti(s) = equi(s) N (N lequi(s)
(s',0,7,8)EE

That is, the algorithm starts by assuming that all clocks are equal everywhere.
The definition of equ;y1(s) says that if two clocks # and y are equal in s, and
they both get assigned the values of two clocks ' and 3 that are equal in s’ or
they are both reset to 0 when taking a transition from s’ to s, then they remain
equal. However, if &’ and y' are not equal in s’, or one of them is reset but not
the other, then the pair (z,y) is removed from the relation associated with s.

Property 29. For all s € S, equ(s) is an equivalence relation.
Property 30. Let R be any renaming such that for all s € S, R, is a total

function such that for all z,y € X, R, (x) = R, (y) iff (z,y) € equ(s). Then,
A~ R(A).

39

