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ABSTRACT
Existing work on the capacity of wireless networks predom-
inantly considers homogeneous random networks with ran-
dom work load. The most relevant bounds on the network
capacity, e.g., take into account only the number of nodes
and the area of the network. However, these bounds can sig-
nificantly overestimate the achievable capacity in real world
situations where network topology or traffic patterns often
deviate from these simplistic assumptions. To provide ana-
lytically tractable yet asymptotically tight approximations
of network capacity we propose a novel space-based approach.
At the heart of our methodology lie simple functions which
indicate the presence of active transmissions near any given
location in the network and which constitute a tool well
suited to untangle the interactions of simultaneous trans-
missions. We are able to provide capacity bounds which are
tighter than the traditional ones and which involve topol-
ogy and traffic patterns explicitly, e.g., through the length
of Euclidean Minimum Spanning Tree, or through traffic
demands between clusters of nodes. As an additional nov-
elty our results cover unicast, multicast and broadcast and
are asymptotically tight. Notably, our capacity bounds are
simple enough to require only knowledge of node location,
and there is no need for solving or optimizing multi-variable
equations in our approach.

Categories and Subject Descriptors
Computer Systems Organization [Computer- Communi-
cation Network]: Network Architecture and Design Wire-
less communication; Data [Coding and Information The-
ory]: Formal models of communication

General Terms
Design, Performance, Theory
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1. INTRODUCTION
There has been a growing interest to understand the fun-

damental capacity limits of wireless networks [11, 1, 6, 8, 18,
23, 17, 22, 24, 13]. Results on network capacity are not only
important from a theoretical point of view but also provide
guidelines for protocol design in wireless networks. Hith-
erto, most research on network capacity has focused on the
capacity of random homogeneous networks with connections
between randomly selected nodes [11, 6, 15, 23].

In this paper, we study static wireless networks with the
goal of assessing the impact of topology and traffic pattern
on capacity. Our methodology takes an approach based
in the very space of the network thereby avoiding graph-
theoretical arguments and computations. At the heart of
our method lies the concept of an transmission arena, a do-
main defined for each transmission which at the same time
is simple yet represents sufficiently faithfully the part of the
space which is affected by the transmission. To give the
story in a nutshell, for well chosen arenas the underlying
channel model imposes restrictions on simultaneous trans-
missions in terms of an arena-bound. These restrictions are
then exploited in several ways to provide novel capacity-
related bounds.

As the first contribution of this paper, we introduce the
novel concept of arenas and demonstrate how to compute the
arena-bound for three well known wireless channel models
(Protocol Model, Physical Model and Generalized Physical
Model [11, 1]).

As our second set of contributions, we study the transport
capacity CT of arbitrary wireless networks as introduced by
Gupta and Kumar [11]. We compute a novel upper bound
for CT in terms of a simple topological quantity, the length
of Euclidean Minimum Spanning Tree (EMST) of the net-
work. This is achieved by averaging the arena-bound over
appropriate curves. Applying well known bounds on the
length of EMST, one recovers the traditional bounds on the
transport capacity [11, 10] as a special case of our results.
Interestingly, we are also able to establish the tightness of
the upper bound based on the EMST. Furthermore, for the
popular cluster topology, we obtain an upper bound on CT

in terms of the number of clusters and the clusters radius
using the EMST.

As our third contribution, we address the throughput of
simultaneous flows by averaging the arena-bound over time.
We demonstrate the effectiveness of the method be solving
concrete problems: we find an upper bound for the capacity
region of the rates of single path flows, as well as an upper



bound for the maximum flow rate between two parts of the
network.

As our fourth contribution, we derive capacity bounds for
more general applications such as multicast. This is achieved
by averaging the arena-bound appropriately over space and
time.

The paper is organized as follows. In Section 2 we sum-
marize existing works on the network capacity. We intro-
duce a wireless network and channel models in Section 3.
In Section 4 we introduce the concept of transmission are-
nas and demonstrate the relevant properties under the three
mentioned channel models. In Section 5 we compute novel
topology-based bounds for the transport capacity. In Sec-
tion 6 we bound the throughput of certain flows. In Section 7
we address multicast applications. Finally, we conclude the
paper in Section 8. All proofs are placed in the Appendix.

2. RELATED WORK
Gupta and Kumar [11] study the network capacity for

unicast connections in static wireless networks consisting
of n nodes distributed in a circle of area A with wireless
channel capacity W . They define the “transport capac-
ity” of a wireless network with units of bit-meters per sec-
ond as the maximum rate of the packets times the distance
they travel between the source and the destination. Their
main result says that the aggregate transport capacity of
unicast connections is O(W

√
An) in an arbitrary and it is

Θ(W
√
An/log(n)) in a random network where the nodes are

placed uniformly. As a result, if the capacity is shared be-
tween random sources and destinations in the network, per
node capacity decreases as O(W

√
1/n) (in random networks

Θ(W
√

1/n log(n))) when n grows. The same authors also
prove that if the nodes are distributed in a sphere with vol-
ume V then the aggregate transport capacity is O(W

3
√
V n2)

[10]. Later, these results were generalized for a more accu-
rate channel model in [1].

Since the seminal work of Gupta and Kumar, the net-
work capacity problem has been studied using different ap-
proaches. For example [6] introduces unicast schemes for
random source and destination nodes in large random ho-
mogeneous network which achieve Θ(W

√
1/n) per node ca-

pacity by applying percolation theory results. Other work
computes the capacity of networks with multiple channels
[16] and with ultra bandwidth channel [18].

For wireless mobile networks, Grossglauser and Tse [8]
show that per node capacity can be increased to Θ(W ) if
packet delay is left unbounded. They propose a mobility-
based routing method in which the number of retransmis-
sions of the unicast packets between source and destination
is reduced to two. Many other efforts demonstrate that there
is a trade-off between the capacity and the delay in wireless
mobile networks, for different mobility patterns and con-
straints on delay (see [21] for references).

Note that all the mentioned papers consider a grid type
network topology (in random networks, the nodes are dis-
tributed homogeneously) with symmetric traffic pattern (the
traffic is distributed among the node uniformly) for proving
the achievability of the computed upper bounds of [11, 1].
However, for a different network topology or traffic pattern
the network capacity could become significantly less than
these upper bounds. Indeed, in the analysis of [11, 1] the ef-
fect of topology and traffic pattern are ignored and the com-

puted upper bounds are only in terms of number of nodes
and the area of the network.

Introducing a new direction in network capacity research,
this paper goes well beyond this existing work, taking net-
work topology and traffic pattern into account.

It should also be mentioned that there exists work on the
capacity of wireless networks for multicast and broadcast
applications. Some asymptotic capacity bounds computed
in random networks with symmetric traffic in [23, 22, 24].
More recently, [13, 14] computes the broadcast capacity in
arbitrary wireless networks. Interestingly, the framework of
this paper can be generalized and applied for computing the
capacity of arbitrary networks for multicasting and broad-
casting. In fact, our results cover the traditional bounds on
unicast, multicast and broadcast capacity.

Note that all the above mentioned papers as well as this
paper assume only point-to-point coding at the receivers. If
the nodes are allowed to use sophisticated multi-user cod-
ing then a per-node capacity of a higher order than that
described above can be achieved [12, 7, 9, 19]. A full discus-
sion of these results is beyond the scope of this paper.

3. WIRELESS CHANNEL MODELS AND
BASIC NOTIONS

In this section, we describe the models and notions
used in this paper. We consider a wireless network con-
sisting of n wireless nodes in d-dimensional space (Rd).
We denote the set of transmitter-receiver pairs of simul-
taneous direct transmissions active at time τ by SD :=
{(S1, D1), (S2, D2), . . . , (Sm, Dm)}. Also, we denote the set
of transmitters by S := {S1, . . . , Sm}. Note that these sets
vary over time; if not otherwise indicated, however, we will
consider one fixed but arbitrary time instant. For simplicity
in notation, the node symbols are used also to represent their
locations. For example, |Si−Di| is the distance between the
nodes Si and Di in Rd.

3.1 Wireless Channel Models
This paper covers all of the common channel models found

in the literature on wireless network capacity, namely the
following three groups of models. First, the Protocol Model
models a successful transmission based on the distance with
the closest interfering transmitter [11, 10, 15, 2]. This model
is the simplest of the three and easiest to analyze. Second,
the Physical Model sets a threshold on the Signal to In-
terference plus Noise Ratio (SINR) of the received signal,
declaring the transmission to be successful if the SINR is
larger than the threshold [11, 10, 1]. Third, the Generalized
Physical Model determines the transmission rate in terms of
the SINR [1, 6, 22] by using Shannon’s capacity formula for
a wireless channel with additive Gaussian white noise [4].

3.1.1 Protocol and Physical Model
In both, the Protocol and the Physical Model the assigned

transmission rate from node Si ∈ S to node Di is modelled
as

Wi =

{
W if successful
0 if unsuccessful or inactive.

(1)

where W , is the channel capacity.
What distinguishes the models are the conditions for a

transmission to be modelled as successful. In the literature
[11, 2, 10] one finds the following three different versions



under the term “Protocol Model”. Given the interference
parameter ∆ > 0 a transmission is modelled as successful if:

• (Protocol Model 1):
|Sk −Di| ≥ (1 + ∆)|Sk −Dk| for all Sk ∈ S\{Si}.

• (Protocol Model 2):
|Sk −Di| ≥ (1 + ∆)|Si −Di| for all Sk ∈ S\{Si}.

• (Protocol Model 3):
|Sk − Di| ≥ (1 + ∆)r for all Sk ∈ S\{Si}, and
|Si − Di| ≤ r where the transmission range r is an
additional parameter.

Under the Physical Model a transmission is modelled as
successful if

SINR =
PiGii

N +
∑

k 6=i,k∈S PkGki
≥ β (2)

Here, β is the SINR-threshold, N represents the ambient
noise, and Gki denotes the signal loss, meaning that PkGki

is the receiving power at node Di from transmitter Sk. We
assume a low power decay for the signal loss of the form
Gki = |Sk −Di|−α, where α > 0 is the signal loss exponent.
Throughout the paper we assume only α > 0, except for
Theorem 3, where α > d.

3.1.2 Generalized Physical Model
In this model all node pairs are able to communicate by

direct transmission, however with a rate Wi that depends
on SINR as

Wi = B log2

(
1 +

PiGii

BN0 +
∑

k 6=i,k∈S PkGki

)
(3)

Here, B is the bandwidth of the wireless channel and N0/2 is
the noise spectral density. While this model assigns a more
realistic transmission rate at large distance than the other
two channel models, it also results in a singularity under
the signal loss model Gii = |Si − Di|−α: according to (3)
the receiving power and the rate are amplified to unrealistic
levels if transmitter and receiver are placed very closely to
each other. The singularity can be easily addressed by up-
per bounding the received power at each node. Some papers
have pointed out this [5, 3] and suggest a “bounded propa-
gation model” for the rate. We do not study this version of
the model in this paper, since its analysis can be performed
in a straightforward way by using similar methods as put
forward here for the two Physical Models.

3.2 Transport Capacity
The transport capacity is useful to study the transmissions

for a given set of unicast source-destination pairs UV :=
{(U1, V1), ..., (Um, Vm)}. It can be defined as [11]:

CT (UV) := max
multi-hop paths

∑
k

|Uk − Vk|Rk (4)

where Rk is the average rate of unicast connection between
of Uk and Vk over a given multi-hop path. The maximum
is taken over all possible multi-hop routes establishing the
required connections between the sources and destinations.
A simple upper bound which actually does not depend on
the set UV is found by noting that for the simultaneous
routes achieving CT there must be a time instance where

the simultaneous direct hop-forwarding transmission reach
at least CT [11]:

CT (UV) ≤ max
SD

∑
(Si,Di)∈SD

|Si −Di|Wi (5)

where the maximum is over all possible sets of simultaneous,
direct transmissions SD.

4. ARENAS: A SPATIAL FRAMEWORK
The problem of finding the optimal configuration for si-

multaneous transmissions and therefore the capacity of a
network soon leads to forbiddingly complex and involved
computations (NP hard, see [20]), especially when attempt-
ing an analytical solution.

To untangle the mutual interference of simultaneous
transmissions and to achieve analytically tractable yet
asymptotically tight approximations we move from the nat-
ural graph-based methodology to a space-based approach. In
other words, rather than studying mutual restrictions and
interference on the graph of nodes, we focus on restrictions
regarding the proximity of ongoing transmissions as seen at
any location X of the space occupied by the network.

4.1 Packing Simultaneous Transmissions
Consider a set of simultaneous successful transmissions

under Protocol Model 3 in a planar network. It follows im-
mediately from the definitions and the triangular inequality
that the senders need to be at least at distance ∆r from
each other. Observing such restrictions between senders
or receivers build natural ingredients of graph-theoretic ap-
proaches.

For our space-based approach consider an arbitrary point
X in the plane, not necessarily a sender or receiver. Consider
the senders in distance r from X; as noted the discs of radius
∆/2 around these senders must be disjoint, yet they are
contained in the disc of radius (1 + ∆/2) around X. Thus,
there can be at the most M := (1+2/∆)2 successful senders
which include X in their radio range.

Intuitively, this tells us that under the Protocol Model
3 the rate of information which can be transmitted in the
vicinity of any arbitrary point X is bounded by the given
constant M ·W . In other words, the “local capacity” of the
network or “packing density” of senders is bounded every-
where.

4.2 Unicast Transmission Arena
The above reasoning leads us to a new concept: A trans-

mission arena, or arena for short, is any set Ai associated
with a transmission of rate Wi (see Section 3) between
sender Si and receiver Di satisfying the following two condi-
tions. First, Ai is determined by Si and Di alone. Second,
under the underlying channel model we have for any fixed
time instance and any point X ∈ Rd∑

i∈SD

Wi · IAi(X) ≤ M ·Wo (6)

Here the so-called arena-bound M is allowed to depend only
on the parameters of the channel model and the number of
nodes, but not on node location or on the traffic patterns.
Also,

Wo :=

{
W Protocol and Physical Models,
B Generalized Physical Model.

(7)



Figure 1: The disturbance area AS of a transmitter
and the protection area AD of a receiver form arenas
for most channel models (see Lamma 1).

From the motivating example of Section 4.1 we find that un-
der the Protocol Model 3 the radio ranges around senders
constitute arenas with arena-bound M = (1 + 2/∆)2. No-
tably, this example reveals also that an arena-bound may
be a simple consequence of the relative position of senders
and/or destinations. Indeed, the potential of arenas lies less
in capturing the relation between senders and rather in pro-
viding a spatial framework which compactly captures the
interactions between simultaneous direct transmissions via
(6) and their impact on any location X. Moreover, arenas
are free of detailed information on topology or traffic pat-
terns, and, most importantly, allow the use of integration
and other analytical tools.

It is convenient to introduce the arena-rate function1

φi(X) := Wi · IAi(X) (8)

Again, the arena-rate function does not approximate the sig-
nal strength at X but rather provides a weighted indication
of the presence of transmissions nearby X.

4.3 Arenas for the Classical Channel Models
An arena can be thought of as representing to a fair degree

the interference caused at the sender, respectively the low
noise level required at the receiver. Natural choices are:

disturbance area AS
i := {X : |X − Si| ≤ li} (9)

protection area AD
i := {X : |X −Di| ≤ li} (10)

where li = |Si −Di| (see Figure 1). Extending the motivat-
ing argumentation 4.1 above, we are able to show that both
form arenas with the same arena-bound under all models of
Section 3 except Protocol Model 2, resp. Protocol Model 1.

Lemma 1. The following sets form a transmission arena
under the indicated channel models:

Ai =

{
AS

i Protocol Model 1,3, Physical Model
AD

i Protocol Model 2,3, Physical Model.
(11)

The corresponding arena-bounds can be chosen as

M =


1 for ∆ > 2, any Protocol Model,

d (4+2∆)d

∆2d − 1e for ∆ ≤ 2, Protocol Models 1, 2,

d (2+∆)d

∆d − 1e for ∆ ≤ 2, Protocol Model 3,⌈
3αPmax
βPmin

⌉
for Physical Model.

(12)
Here, Pmax and Pmin are the maximum and minimum trans-
mission power of the nodes.

1 More generally we could define an arena-rate function to
be any non-negative function φi such that

∑
i∈SD φi(X) ≤

M ·Wo for any set of transmissions SD and any X ∈ Rd.

Note that the above arena-bounds (12) depend only on
parameters of the channel model. For the Physical Model
one needs to assume that the transmission power Pk ∈
[Pmin, Pmax] where Pmin > 0.

Lemma 2. Under the Generalized Physical Model, for
both AS

i and AD
i we may chose the arena-bound

M =

(
maxi(Wi)

B
+

3αPmax log2(2 ·#SD)

Pmin

)
. (13)

Note that the arena-bound M of (13) is O(maxi(Wi)/B+
log(n)). If we have li ≥ nγ for some constant γ < 0 then
maxi(Wi) = O(B log(n)) and M = O(log(n)). Such γ exists
in networks with mesh or random homogeneous topology
[15]. Also, If we apply “bounded propagation model” then
maxi(Wi) = O(B) and M = O(log(n)).

5. BOUNDS BASED ON TOPOLOGY
In this section, we compute novel transport capacity

bounds which are sensitive to network topology and hold
for arbitrary traffic patterns.

While most existing work deals with the geometry of the
network only on a very coarse level such as the node den-
sity in a homogeneous arrangement, using the concept of
transmission arenas we are able to understand and quan-
tify the impact of more detailed spatial information such as
clustering of nodes on wireless network capacity.

5.1 Bounds on the Transport Capacity
As a main contribution of this paper and novelty in the

field we provide bounds for the transport capacity of an
arbitrary wireless network in terms of the length of its Eu-
clidean Minimum Spanning Tree (EMST). An EMST is a
tree formed by the network nodes where the weights of the
edges are the Euclidean distances of the nodes such that the
total weight of the tree is minimum. We establish a useful,
simple property first.

Lemma 3. Consider a continuous curve Γ that connects
Si to Di. Then, for both, Ai = AS

i and Ai = AD
i , we have

liWi ≤
∫

Γ

φi(X)dX (14)

The claim follows easily from the fact that the portion of Γ
located inside AS

i has a length of at least li. Similar for AD
i .

Theorem 1. Let M be the arena-bound of the underlying
channel model. Then, the transport capacity of an arbitrary
wireless network is bounded as

CT ≤M ·Wo · LEMST (15)

where LEMST is the length of the EMST of the network.

Recall that (12) and (13) give the arena-bound under the
three channel models of Section 3. The well-known bounds
of [11, 10, 1] are simple special cases of Theorem 1 which ap-
plies to a much wider range of networks and to any channel
model with an arena-bound such that (14) holds.

Corollary 1. Let M be the arena-bound of the under-
lying channel model. Assume that the network nodes are
located in a d-dimensional cube with volume V . Then, the
transport capacity is bounded as

CT ≤M ·Wo ·Kd
d
√
V nd−1 (16)

where Kd is a constant that only depends on d.



In order to compute the upper bound in Theorem 1 we
do not need to find the EMST of the network. In fact, the
length of any curve passing through all nodes can be used
instead of LEMST. As a practical application we compute
an upper bound for the transport capacity of networks con-
sisting of clusters of nodes.

Theorem 2. Let M be the arena-bound of the underlying
channel model. Assume that the nodes are distributed in nc

clusters which are all of diameter at most lc. Then, the
transport capacity of the network is bounded as

CT ≤M ·Wo · [Lc +Kdlc
d
√
ncnd−1] (17)

where Lc is the length of the EMST over the centers of the
clusters. Moreover, if the clusters are located in the cube V ,

CT ≤M ·Wo ·Kd[
d

√
V nd−1

c + lc
d
√
ncnd−1] (18)

5.2 Tightness of Spanning Tree Bound
As we establish next, the length of the EMST is indeed

a key quantity since the bound of Theorem 1 differs typ-
ically from the maximum achievable transport capacity of
the network by at most a factor of O(log(n)).

Theorem 3. The following holds under all channel mod-
els of Section 3 except Protocol Model 3, and under assump-
tion that for the Physical models α > d (see (2) and (3)).
Assume a well-connected2 wireless network with EMST size
LEMST is given. Then, there exists a traffic pattern and a
time scheduling with transport capacity CT

CT ≥ K1 ·Wo · LEMST/K2 (19)

where K1 is a constant number, also K2 = 1 if d = 1 and
K2 = log(n) if d ≥ 2.

Note that the bound of Theorem 3 cannot be improved
more than a constant if the length of EMST is the only topol-
ogy information of the network. Figure 2 depicts a network
for which CT = O(LEMST/ log(n)) under any channel model.
As for the constant factor, we note that alternative arena
functions which capture more minute information about the
network topology and channel model could provide tighter
bounds.

We complete our discussion of tightness with the following
result. Recall that the Maximum Independent Set, denoted
by MIS(l), is a set with maximum size that no two nodes
are within distance l from each other.

Theorem 4. Assume Protocol Model 3. Then the trans-
port capacity of the network (CT ) is bounded as

CT ≤ #MIS(∆ · r)W · r (20)

Moreover, if the network is connected and large enough so
that it is not covered by a single transmission, then there ex-
ists a constant c > 0, a traffic pattern and a time scheduling
with transport capacity CT

CT ≥ c ·#MIS(∆ · r)W · r (21)

where c = ∆d

2(8+3∆)d .

2To avoid pathologies we call a network well-connected, if
there exists constants 0 < ε, ε < 1 such that for every arbi-
trary two nodes in the network there are a path, and a time
scheduling for transporting data at rate εWo along the path
with transmission power εPmax.

Figure 2: An example for network topology with
CT = O(LEMST/ log(n)). If q ∈ N is chosen large
enough, a parent node and its children or grand
children cannot receive simultaneously successfully
from different transmitters. Then, we can show that
the transport capacity is bounded by c·LEMST/ logq(n)
where c is a constant.

6. BOUNDS BASED ON TOPOLOGY AND
TRAFFIC PATTERN

In this section, we move from simultaneous direct trans-
missions to simultaneous multihop flows.

We present a method for computing novel capacity bounds
based on both network topology and flow patterns. While
the method developed here lends itself to tackle much more
general problems, we address two particular cases for illus-
tration purposes: (1) bounding the capacity region of the
rates of simultaneous single-path flows (2) bounding the
maximum aggregate data rate carried between two parts
of the network.

6.1 Bounding Average Rates via Arenas
Let N denote the set of nodes which are used as senders

at certain times along the routes of the a number of flows.
For each such sender Si ∈ N let Ti denote the set of time
instants during which it is successfully sending. Finally, let
M denote the arena-bound under the channel model put in
place. Then, the defining inequality of M (6) implies for any
fixed time instant τ :∑

Si∈N

WiIAi(X) · ITi(τ) ≤M ·Wo (22)

Fixing the location X and averaging over the time interval
[0, T ] we find ∑

Si∈N

< Wi > IAi(X) ≤M ·Wo, (23)

where < Wi >:= 1
T

∫ T

0
Wi · ITi(τ) is the average rate at

which the sender Si transmits data.
In this section we exploit this bound by considering loca-

tions X where we expect the most restrictive conditions in
the network, i.e., where a large number of arenas overlap, in
order to get effective upper bounds on the capacity region.



Figure 3: Computing arena-rate functions at par-
ticular points provides an upper bound region for
the capacity region in a network with simultaneous
single path flows.

6.2 Capacity Region of Single-Path Flows
We consider a set of k simultaneous single-path flows and

concentrate on bounds obtained via the disturbance areas
AS

i of the transmitters Si. Lemmas 1 and 2 indicate the ap-
plicable channel models as well as the arena-bounds. Similar
results will hold when using the protection area of the re-
ceivers.

Each location X imposes via (23) a restriction in form
of an upper bound on a linear combination of some rates.
Thus, the set of all inequalities together provide a convex
region in the space of the rates (if there are k flows, the
region is a convex set in Rk) which must contain the capacity
region of the achievable flow rates in the same space (Rk).

For the sake of concreteness, consider the three single path
flows shown in Figure 3. Note that some flows share common
nodes like flow 2 and flow 3, or share common space such
as at the intersection of flow 1 and flow 2. Now, consider a
point X in the intersection of all flows (a point at intersec-
tion of two red circles and one green and blue circle) then it
gives us this inequality for the R1+2R2+R3 ≤MWo. Here,
Rj denotes the flow-rate of the flow j, i.e., Rj =< Wi > for
any of the senders Si along the route of flow j. Note that R2

appears with coefficient 2 in the inequality, since the point
X is located in the disturbance areas of the transmitters of
flows 2 twice.

How tight the upper bound is which we obtain using (23)
with some fixed location for the capacity region of the rates
with this methodology depends on the topology, traffic pat-
tern and even the channel model. Note that without further
assumptions the upper bound which is computed by this
method can be arbitrarily larger than the actual capacity
region of the rates. Indeed, Figure 4 shows a topology and
traffic pattern such that

∑
Ri is bounded (the size of the

circles is a geometric series), however the upper bound com-
puted by (23) can be arbitrarily large for this setting.

6.3 Maximum Flow Rate between Two Parts
Here, we study the maximum data flow rate between two

parts in a network in a special case, namely for the flow rate
of one side of a rectangular area to the other as shown in
Figure 5. Denoting the length and width of rectangle by lx
and ly we find that the maximum flow rate from left to right
side of the rectangle is bounded by MWo · dly/2lxe.

Figure 4: An example of a network topology and
a traffic pattern where the upper bounds resulting
from (23) are arbitrary larger than the actual ca-
pacity region of the rates.

Figure 5: Computing the maximum flow that goes
from left to right side of a rectangle area lx ∗ ly.

For the proof, consider points X1, X2, . . . , Xk close to the
left side of rectangle area in distance 2lx from each other.
The number of such points is k = dly/2lxe. Any transmis-
sion from the left to the right side of the rectangle contains
at least one of these points Xj in its disturbance area. Sum-
ming (23) over allXk, the sum of transmission rates becomes
bounded by k ·MWo.

7. MULTICAST ARENAS AND CAPACITY
So far, we dealt with unicast. In this section, we gener-

alize the concept of transmission arena-rate functions and
establish novel capacity bounds for multicast applications.

7.1 One-to-Many Arena-rate Function
Consider a transmitter Si and a set of receivers

D
(1)
i , D

(2)
i , . . . , D

(m)
i . In analogy to (8) we define the one-

to-many arena-rate function of this transmission to be

φi(X) = max
k=1...m

φ
(k)
i (X) (24)

where φ
(k)
i (X) is an arena-rate function of transmission Si

to D
(k)
i . It is essential but straightforward to note that these

multicast arena-rate function possess an arena-bound M in
the sense of (6) where M can be chosen as in the unicast
case (see Lemmas 1 and 2).

Lemma 4. The multicast arena-rate function satisfies (6)

with the same arena-bound M as the φ
(k)
i (X).

For a proof, note that the multicast arena-rate function
φi(X) at point X equals the arena-rate function of one of

the receivers D
(k)
i , D

(2)
i , . . . , D

(m)
i . This leads us to the same

arena-bound.
In order to tackle the capacity of multicast applications

we require a quantity analogous to the curve integral (14).



While the curve integral is tailored to the one-dimensional
transport of information inherent to unicast applications,
this new quantity should be tailored to the spatial distri-
bution of information inherent to multicast transmissions.
Thus motivated we consider the space integral

σΩ
b =

1

Wo

∑
i∈Hb

∫
Ω

φi(X)dX (25)

where Hb is the set of transmissions (whether one-to-one or
one-to-many) which transport a given particular bit b of the
multicast application and Ω ⊂ Rd is an arbitrary Borel set.

We may think of σb as the volume which is “filled” or
“spanned” per second for transporting a particular bit.
It depends on the locations of the transmissions (routing
paths) and the shape of Ω.

7.2 Network Capacity Bounds for Multicast
Note that we sum over successive hops along a path Hb in

(25), as opposed to a set of simultaneous transmission as in
(6). Thus, we need to average over time in order to obtain
bounds via (6):

Lemma 5. Assume that data bits {b1, b2, . . .} have been
generated and transported to their destinations in time in-
terval [0, T ]. Then,

1

T

∑
bk

σΩ
bk
≤MWo ·

∫
Ω

dX (26)

Now, we consider an application app in the network for
which we have at our disposal a lower bound sapp on the
long term average σΩ

bk
; again, bk denote the bits transported

by the application app.

Theorem 5. Assume that sapp ≤ (
∑

bk
σΩ

bk
)/(

∑
bk

1) as

T →∞ where {bk}k are the transported bits under applica-
tion app. Then the rate of generation of successfully trans-
ported bits of the application (λapp) is bounded as

λapp ≤MWo ·
∫

Ω

dX/sapp (27)

A particularly simple case in which Theorem 5 applies is
found for multicast applications in which every bit is trans-
ported along the same path H. Indeed, one may then set
sapp = σΩ

b and the bound (27) becomes essentially governed
by the ratio of the volume of the entire network space to the
weighted volumes of the arenas involved. This leads to:

Corollary 2. Consider a wireless network with n nodes
which are distributed as a grid in a square area A. Assume
the application app is to multicast from a random node to
nm randomly selected nodes in the network. Then,

λapp = O(WoM

√
n

nm
) a.s. (28)

as n→∞.

Corollary 2 generalizes existing results on unicast and
broadcast capacity [11] and [13] which are obtained by set-
ting nm = 1, respectively nm = n.

8. CONCLUSION AND FUTURE WORK
We introduced the novel concept of transmission arenas

which allows to study the effect of topology and traffic pat-
terns on the capacity of wireless networks in much more
detail than existing work.

The key property behind all results is the existence of
an arena-bound which imposes limitations on simultaneous
transmissions in a compact, analytically tractable way. The
simplicity and effectiveness of our methodology comes from
the fact that we take a spatial approach where arena-rate
functions indicate the impact at every location in the net-
work space caused by simultaneous transmissions.

The arena-bound imposed at every location and time is
used in three ways: Fixing a location and averaging over
time we find capacity bounds on simultaneous flows which
are more accurate or computationally less demanding than
standard methods. Fixing time and averaging along appro-
priate curves we provide novel bounds on the transport ca-
pacity which involve the topology of the network via the Eu-
clidean Minimum Spanning Tree or via clustering informa-
tion and are therefore more accurate than existing bounds.
Finally, averaging over time and space we find bounds on
multicast applications which have not existed until now.

Our work applies to the three classical channel models, the
Protocol, the Physical and the Generalized Physical Models.
Many of our results apply actually to any channel model for
which an arena-bound can be established.
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Appendix
Proof of Lemma 1: Consider an arbitrary pointX ∈ Rd at
time τ and assume that φi1(X), . . . , φim(X) > 0. If m = 1
the upper bound is trivial. So, assume that m > 1 and
li1 ≤ li2 ≤ . . . ≤ lim (see Figure 6). We find the arena-
bound M for the models separately as follows:

Protocol Model (1): First we obtain an inequality through
double application of triangular inequality. Consider two
transmitters Sij and Sik , then

|Sij − Sik | ≥
1

2
(|Sij −Dik | − |Sik −Dik |

+ |Sik −Dij | − |Sij −Dij |)

≥ 1

2
((1 + ∆)(lij + lik )− lij − lik ) =

∆

2
(lij + lik )

The inequality shows that the balls with radiuses ∆lij/2

around the transmitters Sij are disjoint in Rd for j =
{1, 2, . . . ,m}. Now, we consider a bigger ball with radius
(1 + ∆/2)lim around point X, it covers the balls around
Si1 , . . . , Sim . So, we have

m∑
j=1

πd(∆lij/2)d < πd(1 + ∆/2)dldim
. (29)

where πd is the volume of unit sphere in Rd.
On the other hand, we assumed that Di1 receives suc-

cessfully, (i.e. φi1(X) > 0). From the channel model we
have

(1+∆)lim < |Sim −X|+ |X−Si1 |+ |Si1 −Di1 | ≤ lim +2li1 .

Figure 6: Point X is in the intersection of the dis-
turbance areas of some simultaneous transmission.

From above it follows that

lim ≤ 2

∆
li1 . (30)

Clearly, if ∆ > 2 then (30) is a contradiction which shows
that m = 1 and we set M = 1 for this case. If ∆ ≤ 2, (29)

and (30) imply that m(∆li1/2)d < ( 2(1+∆/2)
∆

li1)
d, hence

m < (4+2∆)d

∆2d . Therefore, we set M = d (4+2∆)d

∆2d − 1e.
Protocol Model (2): Here, the problem formulation be-

comes the same as for Model (1), using AD
i instead of AS

i .
So, we obtain the same M .

Protocol Model (3): We prove a stronger result here. Con-
sider ψi(X) = Wi · I|X−Si|≤r. Clearly, φi(X) ≤ ψi(X)

when φi(X) is defined in terms of arena AS
i . Now, we show

that
∑

i ψi(X) ≤ M · Wo. Similar to the proof of Model
1, we show if ∆ > 2 then M = 1. If ∆ ≤ 2, we con-
sider the balls with radius ∆r/2 around the transmitters
Sij . These balls are disjoint and contained in the bigger
ball with radius (1 + ∆/2)r around point X. It follows that

m < πd(1 + ∆/2)drd/(πd∆r/2)d = (2+∆)d

∆d . Therefore, we

can setM = d (2+∆)d

∆d −1e. Note that the sameM is obtained

if we use this method for arena AD
i .

Physical Model: Here, we bound the SINR of receiver Dim

as the following

|Sik −Dim | ≤ |Sik −X|+ |X − Sim |+ |Sim −Dim | ≤ 3lim

So,

SINRim <
Pim l

−α
im∑m−1

k=1 Pik |Sik −Dim |−α

≤ Pmax

Pmin

l−α
im∑m−1

k=1 (3lim)−α
=

3αPmax

(m− 1)Pmin

Since, SINRim ≥ β, it follows that β < 3αPmax
(m−1)Pmin

, hence

m < 3αPmax
βPmin

+ 1. Therefore, we can set M = d 3αPmax
βPmin

e.

Proof of Lemma 2: Similar to the proof of Lemma 1,
consider li1 ≤ li2 ≤ . . . ≤ lim . If m = 1 the upper bound
is trivial, so let us consider the case m > 1. We bound the
SINR of receiver Dij for a 1 < j ≤ m in the following way

|Sik −Dij | ≤ |Sik −X|+ |X − Sij |+ |Sij −Dij | ≤ 3lij



for all k < j. It follows that

SINRij <
Pij l

−α
ij∑j−1

k=1 Pik |Sik −Dij |−α

≤ Pmax

Pmin

l−α
ij∑j−1

k=1(3lij )
−α

=
3αPmax

(j − 1)Pmin

So,

Wij ≤ B log2(1 + SINRij ) ≤ B
3αPmax

(j − 1)Pmin
log2(e) (31)

Therefore,∑
φi(X) ≤ Wi1 +

m∑
j=2

B
3αPmax

(j − 1)Pmin
log2(e)

≤ max
i

(Wi) +B
3αPmax

(j − 1)Pmin
log2(e)

#SD−1∑
j=1

1

j

≤ max
i

(Wi) +B · 3α(1 + log2(#SD))Pmax

Pmin

Proof of Theorem 1: Consider an arbitrary
set of transmitter and receiver pairs SD =
{(S1, D1), (S2, D2), . . . , (Sm, Dm)} at a given time τ .
Denote the EMST curve by ΓEMST. This curve connects Si

to Di for i = 1, . . . ,m. From Lemma 3 it follows that∑
i∈SD

liWi ≤
∑

i∈SD

∫
ΓEMST

φi(X)dX =

∫
ΓEMST

∑
i∈SD

φi(X) dX

≤
∫

ΓEMST

MWo dX = MWo · LEMST

Proof of Corollary 1: From Theorem 1, it is enough to
show that LEMST ≤ Kd

d
√
V nd−1. In one dimensional space,

the inequality in obvious, because LEMST is the diameter
of the network. In two and three dimensional space we use
induction for all n > 1. We set Kd = 3d, and prove the
inequality for n = 2, 3. Obviously, the maximum distance
between two nodes is less than the diameter of the cube
(
√
d d
√
V ). So, LEMST ≤ (n − 1)

√
d d
√
V < 3d

d
√
V nd−1 (only

for n = 2, 3).
For n > 3, we assume the inequality for k ≤ n − 1

and we prove for k = n. Consider the balls with radius

1.5 d

√
V
n

around all nodes. At least πd(1.5 d

√
V
n

)d/2d volume

of each ball is located inside V . The sum of the volumes

of these balls inside V is larger than n · πd(1.5 d

√
V
n

)d/2d =

πd3d

4d V > V . Therefore, at least two of these balls are not
disjoint that means there exists a pair of nodes within dis-

tance 2 ∗ 1.5 d

√
V
n

= 3 d

√
V
n

. We eliminate one of these nodes

from the set of the nodes. For the remaining n − 1, we
know the length of the EMST is less than 3d d

√
V (n− 1)d−1.

By adding the eliminated node and connecting it to its
closet neighbor we build an spanning tree with length of

less than 3d d
√
V (n− 1)d−1 + 3 d

√
V
n
< 3d

d
√
V nd−1 (to prove

this inequality, show that d(1 − 1/n)
d−1

d + 1/n < d using

0 < 1/n < 1). Therefore, LEMST ≤ 3d
d
√
V nd−1.

Proof of Theorem 2: For a proof of the first part,
we construct a spanning tree with the length of less than
Lc +Kdlc

d
√
ncnd−1 in two steps. First, we build an EMST

over the centers of the clusters. From the assumptions, its

length is Lc. Second, we build an EMST over the nodes
of each cluster. Denote the number of nodes of the clus-
ters by m1,m2, . . . ,mnc . From the assumptions, the diam-
eter of the cluster is less than lc. This implies that the
nodes of each cluster can be placed in a cube with side size
lc. Then, from Corollary 1 we conclude that the length of
the EMST which connects the nodes of the kth cluster is

less than Kd
d

√
md−1

k ldc . Hence, the sum the lengths of the

EMST’s is less than Kdlc
∑nc

k=1
d

√
md−1

k ≤ Kdlc
d
√
ncnd−1

(for a proof of this bound use Jensen’s inequality with the

concave function
d
√
xd−1):

1

nc

nc∑
k=1

d

√
md−1

k ≤ d

√√√√(
1

nc

nc∑
k=1

mk)d−1 = d

√
(
n

nc
)d−1 (32)

The second part is straightforward from Corollary 1.
Proof of Theorem 3: We construct a time scheduling
and traffic pattern along some edges of the EMST which
achieves the lower bound. We consider d = 1 and d ≥ 2
cases separately.

When d = 1, the EMST is the line segment between
the two most remote nodes. Due to the well-connectivity
assumption, data can be transported between the far-
thest nodes at rate εWo. This gives us a traffic pattern
and time scheduling with a transport capacity larger than
K1WoLEMST where K1 = ε.

When d ≥ 2, we proceed in five steps.
Step 1: We select the edges of the EMST with the length

of at least LEMST/2n. Denote the set of selected edges by
l1 ≤ . . . ≤ lm. We have the following inequality for

∑
li:

m∑
i=1

li ≥ LEMST − (n−m)LEMST/2n > LEMST/2 (33)

Step 2: We partition {l1, ..., lm} into u sets C1, . . . , Cu

where Cj = {li : 2−jLEMST < li ≤ 2−j+1LEMST}. Note
that u = dlog2(2n)e. We divide the time into u equal time
slots. During the jth time slot, the data is transmitted only
along the edges of Cj . Next, we do steps 3 to 5 at time slots
of Cj for all j = 1, 2, . . . , u.

Step 3: We divide the space into cube cells with side size
rj = 2−j+1LEMST such that the coordinates of their centers
are (i1rj , i2rj , . . . , idrj) for i1, . . . , id ∈ Z (see Figure 7).

Such a cellular structure has two properties. (i) If a vertex
of an edge li ∈ Cj is located in a cell, the other vertex of
li in located either in the same cell or in one of the 3d − 1
neighbor cells around it. (ii) The number of edges in set Cj

with at least one of their vertices located in the same cell is
bounded by a constant. For a proof, assume that there are
k1 edges of Cj such that at least one on their vertices is inside
the cell. Since the lengths of the edges are less than rj , the
edges are located inside the cube with side size 3rj formed
by the cell and the areas its neighbor cells. By Corollary 1,
the length of the EMST of the vertices of these edges is less

than Kd
d

√
(2k1)d−13drd

j . This is an upper bound for the

sum of the lengths of the edges, because if we can connect
all the vertices with a spanning tree with smaller length,
then we can reduce the length of the EMST of the network
which is a contradiction. On the other hand, the length of
the edges of Cj is at least rj/2, so the sum of the length of
the edges is larger than k1rj/2. We conclude that k1rj/2 <

3Kdrj
d
√

(2k1)d−1, and k1 < 22d−1(3Kd)d.



Figure 7: Parameter k2 is large enough such that the
nodes in different cells with same color can transmit
simultaneously with rate Wo.

Step 4: We assign color C(qi1 , qi2 , . . . , qid) to the cell with
center (i1rj , i2rj , . . . , idrj), where qi = i(mod)k2. For time
scheduling, we divide the time slot of Cj into kd

2 subslots and
we assign one color to each subslot. At every time subslot
only the cells with the corresponding color can be active. A
cell is called active when a vertex inside the cell transmits.

The constant k2 is chosen large enough such that data
can be transmitted along some edges Cj in different cells
simultaneously and with rate Wo. We can set k2 for the
different channel models as follows: for the first and sec-
ond Protocol Models k2 = d3 + ∆e, for the Physical Model

k2 = d1 + ( β
1−εα

∑
J∈Zd

o
|J |−α)1/αe and for the Generalized

Physical Model k2 = d1 + ( 2ε−1
1−εα

∑
J∈Zd

o
|J |−α)1/αe where

Zd
o = {J ∈ Zd : |J | > 0}. Note that here we assume

that α > d to have
∑

J∈Zd
o
|J |−α < ∞. Also, the well-

connectivity assumption restricts the length of the edges of
the EMST and guarantees that k2 is finite. For a proof,
consider two vertices (nodes) of the edge lm (the edge max-
imum size). Any path which connects these two nodes has
an edge with size larger than or equal to lm, otherwise
we can reduce the length of the EMST. So, transmissions
along distance lm with rate εWo must be feasible. It fol-
lows that li ≤ lm ≤ ( εPmax

βN
)1/α in Physical Model, and

li ≤ lm ≤ ( εPmax
(2ε−1)N0

)1/α in Generalized Physical Model.

These inequalities are used for computing k2.
Step 5: Since, we need at most k1 transmission along the

edges of Cj for each cell, we divide the subslot of the cell
into k1 equal subsubslots. In each time subsubslot, data is
transmitted along one of the edges.

For this traffic pattern and time scheduling scheme the
average transmission rate along the edges {l1, ..., lm} equal
to W/(k1k

d
2u). This yields a transport capacity of at least:

CT ≥ Wo/(k1k
d
2u)

m∑
i=1

li > Wo/(k1k
d
2u) · LEMST/2

≥ K1Wo · LEMST/ log(n)

where K1 is a constant number.
Proof of Theorem 4: We showed in the proof of
Lemma 1 that the distance of the transmitters of two suc-
cessful simultaneous is larger than ∆ · r. So, the max-
imum number of successful simultaneous transmissions is
bounded by #MIS(∆ · r). Therefore, CT ≤ max

∑
Wili ≤

max
∑
Wir ≤ #MIS(∆ · r)Wr.

For proving the lower bound, first we show that

#MIS((4 + ∆) · r) ≥ c#MIS(∆ · r) where c = ( ∆
8+3∆

)d. To

this end, consider the balls with radius (4 + ∆) · r around
the nodes of a MIS((4 + ∆) · r) of the network. These balls
cover all nodes (otherwise, if one node is not covered, then
it can be added the MIS which is contradiction). Simi-
lar to the proof of Lemma 1, we can show that the num-
ber of nodes of a MIS(∆ · r) inside each ball is less than
πd((4 + ∆)r + ∆r/2)d/(πd(∆r/2)d) = ( 8+3∆

∆
)d. Next, we

denote the nodes of the MIS((4 + ∆) · r) by {S1, . . . , Sm}.
Since the network is connected, for every Si there exists a
nodeDi in 2-hop distance such that r ≤ |Si−Di| < 2r. Note
that data can be transported from Si toDi in 2-hop simulta-
neously and successfully for all i = 1, . . . ,m. This achieves
a transport capacity larger than 1

2
#MIS((4 + ∆) · r)Wr ≥

c
2
#MIS(∆ · r)Wr.

Proof of Theorem 5: Consider the transported bits in the
time interval [0, T−Td] (T >> Td) where Td is the maximum
delay for transporting a bit under application app. From the
assumption, the number of the generated bits in this interval
is λapp(T − Td). Then, we have

(T − Td)λapp · sapp =

λapp(T−Td)∑
k=1

sapp ≤
λapp(T−Td)∑

k=1

σΩ
bk

=

λapp(T−Td)∑
k=1

∑
i∈Hbk

∫
Ω

Ai(X)dX

≤ T ·max
SD

∑
j∈SD

∫
Ω

φj(X)dX

≤ TMWo ·
∫

Ω

dX

The theorem is proved by letting T →∞.
Proof of Corollary 2: We set Ω = A. Then, we only need
to show that setting sapp = cA

√
nm
n

satisfies the condition
of Theorem 5 almost surely as n grows.

To prove sapp ≤ (
∑

bk
σΩ

bk
)/(

∑
bk

1) a.s., we show that

sapp ≤ σΩ
bk

with high probability as n grows. Consider
nm random destinations of a particular data bit bk. Using
probability theory techniques, we can show that there exists

a constant c1 such that #MIS(2
√

A
nm

) > c1nm with high

probability as nm grows (see Lemma 2 in [14]). We draw cir-

cles with radius
√

A
nm

around the nodes of MIS. Clearly, the

circles are disjoint in the plane. Next, for every transmission,

we color all the grid squares (side size =
√

A
n

) which at least
π
4

of their area is located inside the disturbance area of the
transmission. It is easy to show that if we connect the neigh-
bor colored squares, then a path from the transmitter to the
receiver (receivers in one-to-many transmissions) is created.
This shows that there exists a path of colored squares which
connects MIS to a node outside of the circle corresponding
to it. So, the number of colored squares inside the circle

is at least b
√

A
nm

/
√

A
n
c. Since the circles are disjoint, we

conclude that the number of colored squares is larger than

c1nm ∗ b
√

A
nm

/
√

A
n
c ≥ c2

√
nnm. This shows that the sum

of disturbance areas of the transmissions which transport a
particular bit is larger than c2

√
nnm

π
4

A
n

= cA
√

nm
n

.


