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Abstract

Halos have been employed as a compelling illustrative hint in many applications to promote depth perception
and to emphasize occlusion effects among projected objects. We generalize the application of halo methods from
the widely-used domain of 2D projections of 3D objects to the domain of 3D projections of 4D objects. Since
4D imaging involves a projection from 4D geometry (such as a surface with 4D vertices) to a 3D image, such
projection typically produces intersecting surfaces, and thus occlusion phenomena result in apparent curves in
3D space. Adding volumetric halos to the surfaces then gives useful information about the spatial relations of
intersecting surfaces, and allows a more accurate perception of the geometry. A typical application is knotted
spheres embedded in 4D, and the volumetric halos perform the same function as traditional knot diagrams do in
2D drawings of 3D knotted curves. In addition, we design a series of GPU-based algorithms to achieve real-time
updating of the halo-enhanced image when the geometry is interactively rotated in 4D.

Categories and Subject Descriptors (according to ACM CCS): [I.3.8]: Computer Graphics—Applications; [I.3.6]:
Computer Graphics—Interaction techniques

1. Introduction

Occlusion is an important depth cue, providing informa-
tion about relative depth, proximity, and spatial arrange-
ments of the objects in a given view. A refinement of oc-
clusion is the crossing diagram of a set of curves embedded
in 3D space, an illustrative technique that adds schematic
emphasis to the 2D image by cutting away small neigh-
borhoods of each occluded segment; viewer perception of
the 3D features in the 2D image is often significantly en-
hanced by this method. In this paper, we explore the gen-
eralization of 3D crossing diagrams to produce schemat-
ically emphasized occlusion diagrams for surfaces in 4D
space projected to a 3D image. There are many methods
to produce occlusion diagrams of 3D curves as well as 4D
surfaces. We confine our attention here to the halo meth-
ods [ARS79]. Just as ordinary knots are a common useful
domain for crossing diagrams in 2D images of 3D objects,
knotted spheres [HC93,CH94,CFHH09,Ino13] are a classic
example of a 4D visualization problem that profits from the
exploitation of crossing diagrams.

Illustrative rendering techniques such as halos and im-

Figure 1: Surface patches with different 4D depth values
in w projected to a 3D image: (a) oblique 4D view pro-
jected along direction (x,y,z,w) = (1,0,0,1), which shows
the physical separation in w; (b) 4D view along (0,0,0,1),
producing 3D intersections, without halo; (c) 4D view as (b)
enhanced by our depth-dependent volumetric halos.

age sharpening can significantly improve the perception of
depth and occlusion. Typical halo methods [ARS79, IG98]
render halos around lines or object silhouettes, emphasizing
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the occlusions among projected objects on the image screen.
Similarly, we can employ any available depth information
to sharpen and emphasize the properties of an object in its
rendered image [LCD06], and to locally enhance the image
color and contrast around object silhouettes. Thus we can
both emphasize foreground objects to make them more rec-
ognizable, and reveal the spatial relations among projected
objects. These rendering techniques are also commonly used
by artists to strengthen object perception in their drawings,
especially for illustrative figures in a technical context.

Following the spirit of [ARS79, BG07, EBRI09], we de-
sign halo-based methods to annotate the rendering of 4D
geometry after projecting them from 4D to 3D. Figure 1
presents an elementary example of the desired results for
five 4D colored surface patches whose 3D projections inter-
sect the white patch, but that have different 4D depth values
relative to the white patch. In addition to explaining how to
generate and render the volumetric halos, we also show how
this potentially slow and difficult rendering process can be
made interactive by exploiting GPU-based methods, thus fa-
cilitating intuitive user exploration of the fourth dimension.

Contributions of This Work.

∙ We present a comprehensive volume-rendering-based ap-
proach to the creation of halo structures for surfaces em-
bedded in 4D and projected to a 3D image.
∙ We extend the fast GPU-based method of Chu et

al. [CFHH09] to include volumetric halos to support in-
teractive exploration of 4D haloed occlusion and depth.
∙ We develop novel algorithms to resolve the problem of

tetrahedron mismatch during the creation of auxiliary halo
3-manifolds needed to implement our approach.

2. Related Work

Illustrative Visualization. While non-photorealistic render-
ing techniques [GGSC98] depict data in an expressive way,
illustrative visualization [DMNV12] focuses also on the use
of visual emphasis to highlight relevant features of inter-
est in the visualization. This is particularly useful when ex-
ploring massive or complicated data. Apart from halos, sev-
eral illustrative visualization methods have been proposed.
Diepstraten et al. [DWE03] explored different approaches
to generate cutaway illustrations at interactive speed with a
small set of rules. Li et al. [LRA∗07] further considered a
geometry-aware approach supporting interactive authoring
in cutaway illustrations of complex 3D models. Karpenko
et al. [KLMA10] recently illustrated shape and internal
structures in complicated mathematical surfaces using ex-
ploded view diagrams by partitioning the surfaces into par-
allel slices. Meanwhile, Hummel et al. [HGH∗10] examined
various illustrative techniques on integral surfaces to convey
both shape and directional information.

Enhancing Visualization with Halos. The utilization of
halo methods in computer graphics (other than knot dia-
grams) goes back at least to the late 1970’s when Appel et

al. [ARS79] proposed using halos to emphasize the occlu-
sions between lines and surfaces in various geometries. After
that, Interrante and Grosch [IG98] introduced several novel
halo-based techniques to illustrate 3D flow using volume
line integral convolution to convey directional information.
Schussman et al. [SMSE00] proposed various perceptually-
effective techniques to visualize magnetic field data from
the DIII-D Tokamak, while Ebert and Rheingans [ER00]
combined the strengths of direct volume rendering with the
expressive power of non-photorealistic rendering to create
volume-based feature halos. Later, Luft et al. [LCD06] de-
veloped a halo-like approach to enhance the perceptual qual-
ity of images by using depth information, and Bruckner and
Gröller [BG07] proposed a wide variety of GPU-based halo
effectsto enhance the depiction of volumetric data. More re-
cently, Everts et al. [EBRI09] suggested depth-dependent
halos for effective illustrations of dense line data.

Four-dimensional Visualization. Using computer graphics
and visualization methods, we can interactively explore ge-
ometry in four (or more) dimensions [HCV52], even though
such geometry cannot be directly constructed or observed
in our physical world. The early work of Noll [Nol67] in
the late 1960’s stimulated awareness of the issues and possi-
ble methods for representing high-dimensional objects using
computer graphics. Basic graphics methods for representing
4D objects, initially as wire frames, were then developed for
geometric objects of interest and converted into images and
animated projections by numerous authors [Ban90, Hol91].
Moreover, Hoffmann and Zhou [HZ91] developed tools to
visualize 2D surfaces embedded in 4D space. Hanson and
Heng [HH92] studied the illumination effects for volumes
as well as thickened curves and surfaces. Banks [Ban92] ex-
plored ways to visualize 4D depth information with methods
like ribboning, transparency, lighting, and texturing.

3. Overview of Our Approach

Figure 2 outlines the volumetric halo process. We start with
two surfaces that are separated in 4D space but appear to in-
tersect each other after the 4D to 3D projection (Figure 2(a)).
To determine the halo regions, we first apply a thickening
process to the projected surfaces to extend them into a 3D
volume (Figure 2(b)). Note that our thickening process is
very different from that of Hanson and Heng [HH92], de-
signed to support 4D lighting. Our thickening is done in
3D screen space rather than in 4D space, which is view-
dependent, and more efficient for haloing, though it supports
only a heuristic variant of rigorous 4D lighting. Hence, we
need to perform the thickening in real-time for each change
in viewpoint or projection. After the thickening, we can con-
struct tetrahedra to populate the space occupied by the halos,
and fill the depth buffer with 4D depth values during the ras-
terization process (Figure 2(c)). Finally, we can render the
projected surfaces in the 3D screen space with a proper oc-
clusion test against the depth buffer, thereby producing vol-
umetric halos in the visualization (Figure 2(d)).
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Figure 2: Halo illustrations for surfaces in 4D: (a) projection from 4D space to 3D screen space resulting in intersecting
surfaces; (b) view-oriented thickening; (c) rasterizing the thickened volumes by multi-slicing; (d) the final halo illustrations.

4. The Illustrative Visualization Pipeline

4.1. 4D Geometry Generation

We design a vertex program to generate the 4D geometry di-
rectly on the GPU. Similar to the case of mathematical sur-
faces in 3D, we can employ uv-parametrized equations to de-
fine surfaces in 4D. In practice, we program these equations
in the vertex program, thus allowing us to send only a small
number of parameters to the GPU. Furthermore, instead of
uniformly sampling the uv space, we adaptively sample and
construct the underlying surface according to its local curva-
ture and pre-compute two lists of u and v coordinates (with
their connections to form triangles) so that the vertex pro-
gram can help compute the corresponding 4D vertex posi-
tions. For each vertex on the surface, we compute a pair of
4D tangent vectors, say t⃗1 and t⃗2, and project them to the
3D screen space. Finally, all these per-vertex data attributes
are stored using a vertex buffer object (VBO) to reduce the
burden of transferring data between the CPU and the GPU.

4.2. Transformation and Projection

Just as 3D rotations produce different 2D screen images
of a 3D scene, 4D rotations of a 4D scene produce differ-
ent 3D volume images. Note that while 3D rotations have
3 degrees of freedom (e.g., rotations in the planes yz, zx,
and xy), 4D rotations have 6 degrees of freedom (e.g, ro-
tations in the planes wx, wy, wz, yz, zx, and xy). Moreover,
4D projection can be orthographic or perspective just as in
3D. These 4D transformations and projections are per-vertex
operations (Figure 3(a)) implemented with a specific vertex
program that computes the operations and stores the results
along with 4D depth information.

4.3. Thickening Mechanism

Mathematically, we can derive the thickening direction n⃗ by
taking a 3D cross product of the two projected surface tan-
gents t⃗1 and t⃗2 after applying any transformations. There is
no surviving 4D component at this point, resulting in:

n⃗ = t⃗1xyz × t⃗2xyz . (1)

Note that the thickening direction n⃗ is dependent on the 4D
viewing projection because the 3D projections of t⃗1 and t⃗2
change with the 4D rotation during interactive exploration.

During the thickening process, we create two vertex in-
stances (positive and negative) for each vertex on the pro-
jected surface (Figure 3(b)). Hence, we can form two offset
surfaces for each group of vertex instances. After that, we
attach a per-vertex parameter t that takes a value of 1 or 0
for vertex instances on the positive or negative offset sur-
face, respectively. Now, we can also define an interactively-
controllable parameter ρ to adjust the size of the halos:

v⃗new = v⃗orig + (2t − 1) ρ n⃗ , (2)

where v⃗orig and v⃗new are the original and extruded coordi-
nates on the projected and offset surfaces, respectively.

4.4. Modeling Halos with Tetrahedra

After the thickening, we next construct tetrahedra to model
the volumetric space occupied by the halos. We join each
pair of corresponding triangles on the two offset surfaces
into a triangular prism, and then decompose the prism into
three tetrahedra (Figure 3(c)). Altogether, there are eight
possible ways of decomposing the faces of a triangular prism
into triangles, only six of them leading to valid tetrahe-
dra; applying a certain decomposition to all prisms with-
out checking sharing faces will typically produce face mis-
matches similar to the T-join problem in triangular meshes
(Figure 4), which will be discussed in subsection 5.1.

We define a dedicated geometry program in the GPU to
perform the thickening and tetrahedralization. The geome-
try program takes a single triangle with three ordered ver-
tices as input and ultimately outputs the geometry as a list
of three tetrahedra for each input triangle. These tetrahedra
are then stored in another VBO before the next step. Having
another VBO as a temporary buffer can avoid unnecessarily
re-generating the tetrahedra for different planar slices when
rendering the halos, thus improving the overall performance.

4.5. Depth-dependent Volumetric Halos

Our volumetric halos adopt the depth-dependent property
from Everts et al. [EBRI09] so that we can vary the gap
size according to the difference of 4D depth values between
the projected surfaces. To produce this depth-dependent ef-
fect with volumetric halos, we need to properly compute
a 4D depth value for every voxel inside the halo volumes.
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Figure 3: Modeling halos from a triangle primitive: (a) the
triangle is transformed and projected into 3D screen space;
(b) thickening the triangle by offsetting it to both positive
and negative sides of n⃗; (c) decomposing the extruded vol-
umes into tetrahedra; (d) voxelizing the tetrahedra by planar
slicing; (e) generating and rendering the halos (gray color).

This is analogous to the case of depth-dependent halos in
3D graphics, where we increase the 3D depth values across
the winged regions around a 1D line on the 2D screen. By
using this depth increment strategy, we can fill the depth val-
ues for regions occupied by the halos, and use these extrap-
olated 4D depth values to eliminate any object fragment that
is shadowed by the halos. We increase the 4D depth value of
each voxel (within the halo volumes) according to its offset
distance from the projected surface. Given a point p with a
4D depth value of dorig on the projected surface, we use the
following formula to compute the new 4D depth value dnew
at any point extruded along n⃗ from p:

dnew = dorig + max(0, ∣2t − 1∣ − δt) δd , (3)

where δd controls the drop-off rate of the depth value, and
δt controls the size of the middle region having the same
constant 4D depth value as the point p.

4.6. Producing the Halo Visualization

We employ a multi-slice approach to generate and render
the halos by composing the 2D slice images from back to
front to produce the overall volume rendering. Figure 3(d)
illustrates the slicing process, which is performed on each
tetrahedron by another geometry program. Given a slicing
plane and a tetrahedron, we first compute the points where
the tetrahedron edges intersect the slicing plane. Since our
slicing planes are all perpendicular to the z-axis in the 3D
screen space, this step can be quickly done by computing the
difference between the slicing plane and the z components of
tetrahedron vertices and checking the signs. After we iden-
tify the intersecting edges (with opposite signs for the two
end points), we can interpolate various per-vertex parameters
along the related edges, including the 4D depth value and the
t value. Then, we can output a triangle strip from the geom-
etry program representing the intersection footprint, which
could either be a quad or a triangle.

Figure 4: Resolving face mismatches between neighboring
triangular prisms: (a) a common type of face mismatch; (b)
fixable by reversing the construction of the red line in the
middle rectangle; (c) another type of face mismatch that is
not fixable by (b); (d) fixable by adding new vertices and
reconstructing the red prism with a new decomposition.

After that, we interpolate the per-vertex attributes over
the footprint triangle in the rasterization, so that each pixel
(voxel) fragment receives its own piece of interpolated data
that is to be further processed by a fragment program. By
then, we can compute Equation (3) and fill the depth buffer
properly with 4D depth values corresponding to the halo vol-
umes on the slice being considered. By checking the inter-
polated t value at the fragment (its proximity to 0.5), we can
then properly render the projected surface with halos, and
generate a slice image with anti-aliasing. At the end, we can
progressively compose the slice images to produce the over-
all volume rendering.

5. Implementation and Results

5.1. Implementation Issues

As mentioned in subsection 4.4, if we randomly decompose
all the triangular prisms, we will likely encounter face mis-
matches between some neighboring prisms; typically, there
are two types of face mismatches (Figure 4(a) and 4(c)). The
challenge here is that each triangular prism may contact as
many as three other prisms constructed between the two off-
set surfaces. Hence, when we try to match the triangle pat-
tern between a certain pair of prisms, we need to keep the
matched triangle patterns for the other four faces. Otherwise,
we may create new mismatches somewhere else when we fix
the face mismatch between the current prism pair.

In the first case (Figure 4(a)), we can fix the face mis-
match by simply changing the way we decompose the red
prism (Figure 4(b)). The outer faces on the red prism are not
changed but the triangle pattern on the sharing face can be
flipped. In the second case (Figure 4(c)), it is more compli-
cated because there is no way of decomposing the red prism
that can allow us to resolve the face mismatch while keeping
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Figure 5: Spun-trefoil knot: (a) traditional rendering; (b) translucent rendering; (c) result from [CFHH09]; (d) our result.

Table 1: Performance of our visualization pipeline (FPS).

Models / Num. Slices 64 128 256 512

Quadratic Fermat 69.97 57.20 43.73 25.64

Spun-trefoil knot 69.16 55.31 42.67 24.30

Twist-spun-trefoil knot 65.45 49.35 35.32 20.98

the triangle patterns on the outer faces. To resolve this prob-
lem, we need to introduce new vertices to subdivide the red
prism into three smaller prisms (Figure 4(d)) so that we can
keep the desired triangle patterns on the outer faces that are
originally on the red prism.

5.2. Performance

To evaluate the performance of our illustrative visualiza-
tion pipeline, we tested it on a desktop PC with Intel(R)
Core(TM) i7 CPU 960 3.20GHz and a Geforce GTX580
graphics card. Table 1 shows the performance results in
frames-per-second (FPS). Num. Slices represents the number
of slicing planes in the multi-slice processing, which is an
important factor affecting both the overall performance and
image quality; we usually need around 256 slicing planes to
achieve reasonable quality for most results presented here. It
is clear from the table that we can achieve real-time perfor-
mance even with a large number of slicing planes.

5.3. Results

∙ Spun-trefoil knot. Figure 5(a) shows the result of render-
ing the spun trefoil without haloed occlusion cutaways;
the translucent effects added in Figure 5(b) do not provide
much help in showing the spatial relations. Figure 5(c) is
an expensive fully 4D-illuminated volume rendering with
4D occlusions but no expansion of the occlusions using
halos. The volumetric halos in Figure 5(d) emphasize the
4D occlusions in the same manner as gaps in a 3D knot-
diagram visualization, carving out holes in surface parts
that are shadowed by other parts in the projection.
∙ Quadratic Fermat. Figure 6(a) shows a 2nd-order Fer-

mat surface given by (z1)
2+(z2)

2 = 1 in CP(2). There are
two pinch points (see the white arrows) at which haloed
cutaways begin, starting with zero 4D depth difference
and monotonically increasing away from the pinch points;

Figure 6: (a) Quadratic Fermat; (b) Calabi-Yau quartic
cross-section.

Figure 7: The degree two CP(2) product polynomial: cross-
eyed stereo.

this is a particularly clear illustration of the value of hav-
ing the 4D depth of the halos increasing with the distance
from the occlusion curve.

∙ Calabi-Yau quartic cross-section. This manifold, the K3
cross-section, is a relatively more complicated 4th-order
manifold in CP(2), with 16 surface patches and numerous
intersections in the projected image. Figure 6(b) shows
our illustrative visualization result with volumetric halos.

∙ Product polynomial. Figure 7 shows the degree two
product polynomial surface in CP(2) described locally
by the complex equation (z1)

2(z2)
2 = 1. The stereoscopic

viewing provides better perception of the spatial relations
among different surface patches in the projected volume
image, and the depth-dependent volumetric halos further
emphasize the occlusions in the projection from the orig-
inal 4D space to 3D.

∙ Twist-spun-trefoil knot. Figure 8 illustrates another
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Figure 8: Twist-spun-trefoil knot: cross-eyed stereo and halo
boundaries highlighted in green.

complicated 4D model, based on adding a twist to the tre-
foil knot used to generate the topological sphere. Even
when transparency is combined with the halo cutaways
to show the internal structure of the geometry, it is still
quite hard to get a clear mental map of the model due
to the complexity of the internal intersections. A cross-
eyed stereo representation with annotated cutaway curves
is shown to assist in extracting the structure.

6. Conclusion

In this paper, we generalize the halo visualization methods
from 3D graphics to 4D graphics. We develop the notion of
illustrative volumetric halos with the goal of more clearly
revealing the 4D occlusions of geometric objects that are
artifacts of the 4D to 3D projection. We design and imple-
ment halo-based occlusion-enhancement methods, and em-
ploy GPU-based techniques enabling real-time performance
to enhance the viewer’s interactive exploration experience.
Stereoscopic viewing is supplied to assist in understanding
the full structure of 3D volume imaging geometry.
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