
The Parameterized Complexity of Regular Subgraph Problems and
Generalizations

Luke Mathieson1 Stefan Szeider1

1Department of Computer Science
University of Durham

South Road
Durham

DH1 3LE, UK
Email: {luke.mathieson,stefan.szeider}@durham.ac.uk

Abstract

We study variants and generalizations of the problem
of finding an r-regular subgraph (where r ≥ 3) in a
given graph by deleting at most k vertices. Moser
and Thilikos (2006) have shown that the problem
is fixed-parameter tractable (FPT) if parameterized
by (k, r). They asked whether the problem remains
fixed-parameter tractable if parameterized by k alone.
We answer this question negatively: we show that if
parameterized by k alone the problem is W [1]-hard
and therefore very unlikely fixed-parameter tractable.
We also give W [1]-hardness results for variants of the
problem where the parameter is the number of vertex
and edge deletions allowed, and for a new generalized
form of the problem where the obtained subgraph is
not necessarily regular but its vertices have certain
prescribed degrees. Following this we demonstrate
fixed-parameter tractability for the considered prob-
lems if the parameter includes the regularity r or an
upper bound on the prescribed degrees in the gener-
alized form of the problem. These FPT results are
obtained via kernelization, so also provide a practical
approach to the problems presented.

Keywords: Parameterized Complexity, Regular Sub-
graphs

1 Introduction

The problem of deciding whether a graph contains
a non-trivial (i.e., degree at least three) regular sub-
graph has a long history in the field of complexity the-
ory. Chvátal et al. (1979) give an NP-completeness
result for the Cubic Subgraph problem (i.e., the
problem of deciding whether a given graph has a 3-
regular subgraph). Plesńık (1984) shows that the Cu-
bic Subgraph problem remains NP-complete even
when restricted to a planar bipartite graph with max-
imum degree 4, and that the r-Regular Subgraph
problem with r ≥ 3 is NP-complete even for bipartite
graphs of degree at most r + 1. Cheah and Corneil
(1990) extend this and show that the same result
holds for general graphs. Stewart (1994, 1996, 1997)
gives a series of results for further constraints.

From a parameterized complexity perspective (see
Section 4 for a basic introduction) there are a few
natural parameterizations, by either the size of the
subgraph, by the number of vertices or edges to re-
move to obtain a regular subgraph, or by the regu-

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Computing: The Australasian The-
ory Symposium (CATS 2008), University of Wollongong, New
South Wales, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 77, James Harland
and Prabhu Manyem, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

larity desired. Moser and Thilikos (2006) show that
the problem of finding an r-regular induced subgraph
on k vertices, parameterized by k is W [1]-hard. They
also show that the Vertex Deletion to Regu-
lar Subgraph problem (which they call k-Almost
r-Regular Graph) where the goal is to delete at
most k vertices leaving an r-regular graph, is fixed-
parameter tractable when parameterized by (k, r),
with a problem kernel with O(kr(r + k)2) vertices.
Stewart (2007) points out how the fixed-parameter
tractability of Vertex Deletion to Regular
Subgraph parameterized by (k, r) can be established
by means of general logical methods. They also state
that the complexity of Vertex Deletion to Reg-
ular Subgraph parameterized by k alone is an open
problem.

In this paper we answer Moser and Thilikos’s ques-
tion, showing that Vertex Deletion to Regular
Subgraph is W [1]-hard. We also explore several
other variations of the problem, resulting in further
hardness and tractability results.

The problems that we cover in this paper come
in a few basic forms, centred around two general
themes, whether the problem is parameterized by the
number of deletion operations (deletion operations
are explained in Section 2.2), k, or the number of
deletion operations and the regularity of the graph,
(k, r). This results in the following basic definition:

Deletion to Regular Subgraph
Instance: A graph G = (V,E), two nonnegative
integers k and r.
Question: Is there an r-regular subgraph of G
obtainable by at most k deletions?

It is interesting to alter what deletion operations
are available. If we restrict the operations to vertex
deletion only, then we have Vertex Deletion to
Regular Subgraph.

We can also further impose that we require exactly
k operations be performed, giving Exact Deletion
to Regular Subgraph.

It is also of interest to generalize both the desired
degree and the cost of a deletion. To this end instead
of aiming to have each remaining vertex be of degree
r we introduce a degree function δ. The contribution
of each edge to this total, and the cost of deleting an
edge or vertex is described by a weight function ρ.
This results in the following generalization:

Weighted Deletion to Chosen Degree Sub-
graph
Instance: A graph G = (V,E), nonnegative integers
k and r, a weight function ρ : V ∪ E → N+ and a
degree function δ : V → {0, . . . , r}.
Question: Is there a subgraph H of G obtainable
by deletions of total cost at most k where for each

vertex v in V (H),
∑

e∈E(v) ρ(e) = δ(v)?

Of course we may also demand here that the cost
be exact as well.

In this paper we show that in all examined cases
parameterization by k alone gives W [1]-hardness,
but parameterization by (k, r) gives fixed-parameter
tractability. In fact if r = 0 the problem is equiva-
lent to Vertex Cover, and is thus fixed-parameter
tractable. We also give several hardness results for
other problems that prove useful in completion of
the result. Hardness is shown by reduction from
Multi-Coloured Clique, a very useful problem,
introduced by Fellows et al. (2007). Fixed param-
eter tractability is shown via kernelization. This is
a particularly useful technique as it provides a poly-
nomial time preprocessing algorithm (in the form of
polynomial time reduction rules). This leaves a prob-
lem kernel which may then be solved by any chosen
means, whether that be an exact method, approxi-
mation algorithm, or heuristic such as a genetic algo-
rithm or simulated annealing. For a fuller treatment
of kernelization in the context of parameterized com-
plexity and preprocessing see the survey of Guo and
Niedermeier (2007).

2 Preliminaries

2.1 Graph Theory and Notation

Throughout this paper we will refer only to simple,
undirected graphs. Given a graph G the vertex (edge)
set of G will be denoted V (G) (E(G)) except where
specific labels are given. The edge between two ver-
tices u and v will be denoted uv (or equivalently vu).
The degree of a vertex u will be denoted d(u).

As this paper focuses on graph modification prob-
lems, we also define the following operation for a
graph G and a set S of vertices: G−S = G[V (G)\S],
where G[X] is the subgraph of G induced by vertex
set X.

2.2 Graph Modification

There are two basic operations to modify a graph to
obtain a subgraph, vertex deletion and edge deletion.
These operations alter a graph G = (V,E) into a new
graph G′ = (V ′, E′). Deleting an edge uv simply
removes that edge from the graph (i.e., E′ = E \
{uv}). Deleting a vertex u removes that vertex, and
any incident edges (i.e., V ′ = V \ {u}, E′ = E \
{uv | v ∈ V }).

In this paper we also use weighted versions of these
operations, which are defined in the natural fashion.
Given a weighted edge or vertex, the cost of deletion
is simply that weight. Note particularly that when
a vertex is deleted the cost is simply the weight of
the vertex alone, not the weight of the vertex plus
the weights of the incident edges, even though they
are also removed (this is completely equivalent to the
normal definition for unweighted graphs, where the
cost of deleting a vertex is one operation, regardless
of any incident edges).

2.3 Some Parameterized Complexity Theory

Here we will briefly introduce some relevant, key
concepts of parameterized complexity. For a more
in-depth introduction and study see the books of
Downey & Fellows (1997), Flum & Grohe (2006) and
Niedermeier (2006). For the sake of clarity any prob-
lem is understood to be a decision problem unless ex-
plicitly stated otherwise (and the parameterized com-

plexity classes that are referenced are defined for de-
cision problems).

Traditionally problems have been analyzed in one
dimension, that of the size n of the input. The dif-
ficulty of solution of a problem with respect to this
measure forms the fundamental basis of traditional
complexity theory, and in particular the classes P and
NP. Parameterized complexity adds a second mea-
sure, that of a parameter k, which is given as a spe-
cial part of the input. Then, analogously to the def-
initions of P and NP, a series of complexity classes
are defined with respect to their apparent difficulty
of solution with respect to this two-dimensional mea-
sure. If a problem has an algorithm that runs in time
O(f(k)p(n)), where p is a polynomial and f is any
computable function of k, then the problem is fixed-
parameter tractable, or in the class FPT. Naturally
there are problems that are suspected not to be in
FPT. These problems are members of various param-
eterized complexity classes, most commonly W [t] for
some fixed t ≥ 1. Hardness (or completeness) in re-
gards to such a class gives an analogous intuition to
a problem being NP-hard in the classical structure.
That is, it is not likely to be in FPT (i.e., not likely
to have an algorithm that runs in time O(f(k)p(n))
as above).

Supporting this theory are many techniques for
proof either of membership of FPT or of W [t]-
hardness. Here we give a brief introduction to those
techniques salient to this paper.

FPT Reductions

An FPT reduction is the parameterized complexity
equivalent of a P-time many-one reduction in classi-
cal complexity theory. It is the primary method of
demonstrating that two problems are of equivalent
complexity, and that a particular problem is W [t]-
hard. Given two parameterized problems Π1 and Π2,
an FPT reduction Π1 ≤FPT Π2 is a mapping from
Π1 to Π2 that maps an instance (I, k) of Π1 to an
instance (I ′, k′) of Π2 such that

1. k′ = h(k) for some computable function h,

2. (I, k) is a Yes-instance of Π1 if and only if (I ′, k′)
is a Yes-instance of Π2 and

3. the mapping can be computed in time
O(f(k)p(|I|)), where f is some computable
function of the parameter k alone and p is a
polynomial.

Then if Π2 is in FPT, Π1 is also in FPT and if Π1 is
W [t]-hard, Π2 is also W [t]-hard. If two such mappings
exist, one from Π1 to Π2 and another from Π2 to Π1,
then the two problems are equivalent (with respect to
FPT reductions) .

The classes W [t], t = 1, 2, . . ., are defined as equiv-
alence classes of certain parameterized problems un-
der FPT reductions. The classes form the chain FPT
⊆ W [1] ⊆ W [2] ⊆ . . ., where all inclusions are be-
lieved to be strict.

Reduction Rules and Kernelization

One of the key techniques of parameterized complex-
ity is that of reduction to problem kernel (kerneliza-
tion). A problem is kernelizable if and only if given
an instance (I, k) of the problem, where I is the (clas-
sical) input and k is the parameter, it is possible to
produce in polynomial time an instance (I ′, k′) where
|I ′| ≤ g(k′) and k′ = h(k) for computable functions
g and h, and (I, k) is a Yes-instance if and only if
(I ′, k′) is a Yes-instance. It can be shown that if a

2

problem is kernelizable in this sense, then it is fixed-
parameter tractable (and vice versa). Kernelization
is normally accomplished by the application of reduc-
tion rules to the instance. Estivill-Castro et al. (2005)
give a recent example of the application of kerneliza-
tion, along with more explanation of the theory.

2.4 A Useful Construction: The Fixing Gad-
get

Throughout the paper it will be useful to have a gad-
get that allows us to regularize any given graph. The
following construction produces an almost r-regular
graph, where all vertices have degree r except two
with degree r − 1. The first part of the construction
consists of a vertex c, a set L = {l1, . . . , lr} of vertices,
r edges cli, r further vertices M = {m1, . . . ,mr}, and
edges such that each vertex mi ∈ M has an edge to
each vertex lj ∈ L except when i = j. Then c has
degree r, as does each vertex in L. Each vertex in
M has degree r − 1. Let C be the graph constructed
so far, we then make a copy C ′, and add an edge be-
tween each vertex in M ⊆ V (C) to its corresponding
vertex in M ′ ⊆ V (C ′), except between for mr and
m′

r. Thus each vertex now has degree r, except mr
and m′

r, which have degree r − 1, and will be used
as attachment points. We will refer to an instance of
this construction as a fixing gadget. See Figure 1 for
an example.

Note that it is also possible to use the following as
an alternative in some cases: Take the complete graph
Kr+1 on r + 1 vertices (so all vertices have degree r),
then compute a matching (of size at most (r + 1)/2).
Each edge of the matching can then be broken as
needed to provide two edges to join the clique to the
rest of the graph. This second construction cannot be
used in the hardness proofs however, as it introduces
(non-trivial) cliques into the graph.

Figure 1: Fixing gadget for r = 3.

3 Hardness Results

The reduction for our hardness results will be
from the Strongly Regular Multi-Coloured
Clique problem, a variant of the Multi-Coloured
Clique problem which was shown to be W [1]-hard
by Fellows et al. (2007). The problem is defined as
follows:

Multi-Coloured Clique
Instance: A graph G = (V,E), vertex-coloured with
k colours.
Parameter: k.
Question: Does G contain a properly coloured
k-clique?

This problem may be alternately defined with the
original graph being properly vertex-coloured, with-
out changing its complexity. The Strongly Reg-
ular Multi-Coloured Clique problem is defined
similarly, but with each vertex in the input graph hav-
ing degree d to each colour class (so each vertex has
degree kd), where d is an arbitrary integer.

Recall that the Clique problem asks if a given
graph has a k-clique. Clique is W [1]-complete when
parameterized by k. We then define the following
special case of Clique:

Regular Clique
Instance: A regular graph G = (V,E), an integer k.
Parameter: k.
Question: Does G contain a k-clique?

Before we proceed to the main result, we need first
to prove some preliminary lemmas.

Lemma 3.1. Regular Clique is W [1]-complete.

Proof. Membership in W [1] follows immediately as
the problem is a special case of Clique. To prove
hardness we reduce from Clique. Let (G, k) be an
instance of Clique. We construct an instance (G′, k)
of Regular Clique by first taking G and modify-
ing it. Let ∆ be the maximum degree of G, then
choose r to be ∆ if ∆ is even, or ∆+1 otherwise (i.e.,
r = ∆ + (∆ mod 2)). We will now demonstrate how
to make the graph r-regular. We can now use the
fixing gadget construction presented in Section 2.4
to increase the degree of each vertex as necessary by
attaching as many fixing gadgets as necessary by the
two attachment vertices. This attachment is made be-
tween a vertex v and an instance of the fixing gadget
by adding the edges between each attachment vertex
and v (or perhaps only one of these edges, as below).
If the degree of the vertex is initially even, then this
is an integral number of fixing gadgets. In the case
where the degree of the vertex is initially odd, the
vertex will reach degree r− 1 by this method, and we
will have to take another degree r − 1 vertex and at-
tach one fixing gadget attachment vertex to the first,
and the other attachment vertex to the second. Note
that there is an even number of vertices of odd de-
gree in G (and G′ initially, an immediate corollary
of the basic theorem

∑
v∈V d(v) = 2|E|), and thus

there is an even number of vertices requiring an odd
increase of degree (i.e., where r − d(v) is odd), as we
have chosen r to be even. Thus there is always some
pairing of such vertices as necessary. Let G′ denote
the constructed graph.

Now if there were a k-clique in G, there will cer-
tainly be a clique in G′ on k vertices, since G is an
induced subgraph of G′. Further note that the fix-
ing gadgets added to create G′ contain no cliques,
and can introduce no non-trivial cliques (as the two
attachment vertices in a fixing gadget are not adja-
cent), thus if there is a clique on k′ vertices in G′,
it must be contained within the vertices that corre-
spond to the vertices of G, thus G has a k-clique.
Clearly the construction of the new instance can be
done in polynomial time (and thus is a polynomial-
time reduction, and subsequently an FPT reduction).
�

Lemma 3.2. Strongly Regular Multi-
Coloured Clique is W [1]-complete.

Proof. Again W [1] membership follows as the prob-
lem is a special case of Clique.

It is useful to sketch the reduction from Clique
to Multi-Coloured Cliqueas given by Fellows et
al. (2007). Given an instance (G, k) of Clique,
construct an instance of Multi-Coloured Clique
(G′, k′) by taking k vertex disjoint copies G1, . . . , Gk
of G, assigning each Gi a different colour. Then for
every pair of vertices u, v in G, if uv is an edge, add
the edges uivj , for all i, j, where ai is the vertex in
Gi corresponding to vertex a in G. Let k′ = k. Then
if there were a k-clique in the original instance, there

3

will be a properly coloured clique in the new instance,
and vice versa.

We may use the same construction to reduce
Regular Clique to Strongly Regular Multi-
Coloured Clique. The result follows immediately.
�

Theorem 3.3. Vertex Deletion to Regular
Subgraph and Deletion to Regular Subgraph
are W [1]-hard for parameter k.

Proof. Consider an instance (G, k), with G = (V,E),
of Strongly Regular Multi-Coloured Clique.
Note that G is kd-regular and each vertex has exactly
d neighbours in each colour class. We denote the set
of vertices of colour i by Vi (1 ≤ i ≤ k). Then V =⋃k

i=1 Vi forms a partition of V . Observe also that
each colour class is of the same size, denote this size
as s (i.e., |Vi| = s for all 1 ≤ i ≤ k).

We construct an instance (G′, k′), with G′ =
(V ′, E′), of Deletion to Regular Subgraph by
first defining k sets V ′

i (1 ≤ i ≤ k) such that for each
vertex v ∈ Vi we add a vertex v′ to V ′

i . We add all
possible edges between pairs of vertices in the same
set V ′

i . We will call each of these subgraphs a colour
class gadget or class gadget for short.

For each edge uv in G where u ∈ Vi and v ∈ Vj

with i 6= j, we add to G′ two vertices u′
v′ and v′u′ ,

with the edges u′u′
v′ , u′

v′v′u′ and v′u′v′. For each pair
V ′

i and V ′
j (where i 6= j) of class gadgets, denote

the set of these new vertices and edges as Pij . We
denote by P i

ij the set of all vertices u′
v′ ∈ Pij where

u′ ∈ V ′
i . Furthermore, for each pair of vertices uv and

u′
v′ in the same P i

ij we add the edge uvu′
v′ to P i

ij if u
and u′ belong to the same class gadget and u 6= u′.
We call each such Pij a connection gadget, and each
P i

ij a side of the connection gadget. There are
(
k
2

)
connection gadgets in total. Figure 2 gives a sketch
of the structure of a connection gadget.

Vi P i
i,j P j

i,j Vj

u vuv vu

Figure 2: A sketch of illustrating the arrangement of
the connection gadgets.

At this point we have k gadgets corresponding to
the k colour classes in the original graph, each with s
vertices of degree (s− 1) + d(k − 1), and

(
k
2

)
gadgets

corresponding to the “inter-colour-class” edges, each
with 2sd vertices of degree 2 + (s − 1)d (sd vertices
in each half). Now we choose r for the instance such
that r ≥ max((s − 1) + d(k − 1), 2 + (s − 1)d), and
r ≡ s + 1 modulo 2 (i.e., r is of opposite parity to s).
In particular we may choose the smallest r such that
this is true.

Now we add for each class gadget V ′
i a gadget V ′′

i
that contains r +1− ((s− 1)+d(k− 1)) vertices with
s edges per vertex, such that each vertex in V ′′

i is
adjacent to every vertex in the class gadget V ′

i . We
refer to V ′′

i as a degree gadget. We then add a further
set of fixing gadgets as before to complete the degree
of each vertex in the degree gadget to r + 1. Note

that by choosing r to have opposite parity to s, we
guarantee that this is possible (if s is odd, r will be
even and each vertex will require r + 1− s additional
edges, which is even, and thus achievable; if s is even,
r will be odd, then r+1−s is again even, and we can
complete the construction). Thus each vertex in each
class gadget and degree gadget has degree one too
many, but the fixing gadgets attached to each degree
gadget have the correct degree.

We similarly adjust the connection gadgets by
adding two degree gadgets, each with r+1−2+(s−1)d
vertices, one for each side of the connection gadget.
Every vertex in the degree gadget is connected to ev-
ery vertex in its associated side of the connection gad-
get. Again we complete the degree of vertices in the
degree gadgets to r + 1 by adding fixing gadgets, and
as before, by the choice of r we can guarantee that
this can be done (if s is even, r is odd and r + 1− sd
is even, if s is odd, r is even and r + 1− sd is even).
Thus each vertex in the connection gadgets has de-
gree r + 1, as does each vertex in the degree gadgets.
Each vertex in each fixing gadget has degree r.

Now we set k′ = k + 2
(
k
2

)
.

Claim 3.1. The following statements are equivalent:

1. (G, k) is a Yes-instance of Strongly Regular
Multi-Coloured Clique.

2. (G′, k′) is a Yes-instance of Vertex Deletion
to Regular Subgraph.

3. (G′, k′) is a Yes-instance of Deletion to Reg-
ular Subgraph.

(1 ⇒ 2) Assume that (G, k) is a Yes-instance
of Strongly Regular Multi-Coloured Clique.
Then there exist k vertices v1, . . . , vk, one from each
colour class, that form a properly coloured clique. As-
sume without loss of generality that vi ∈ Vi. Then we
can delete from G′ the corresponding vertices v′i from
V ′

i , and the pairs of vertices (v′i)v′
j

and (v′j)v′
i

from
Pij that correspond to the edges in the clique. Then
each remaining vertex in each class gadget has had
precisely one incident edge removed from it, as have
the vertices in each degree gadget associated with the
class gadget. So the components corresponding to
the colour classes and their immediate extension are
now r-regular. Similarly each vertex in every connec-
tion gadget and their associated connetion gadgets
has had exactly one incident edge removed, either by
the vertex removed from the connection gadget, or
from the parent vertex in the class gadget (but never
both). Now each vertex in these gadgets has degree
precisely r. We have chosen one vertex from each
V ′

i , and two vertices from each Pij , giving a total of
k′ = k + 2

(
k
2

)
vertices, thus (G′, k′) is also a Yes-

instance of Vertex Deletion to Regular Sub-
graph.

(2 ⇒ 3) Assume that (G′, k′) is a Yes-instance of
Vertex Deletion to Regular Subgraph. Then
clearly it is also a Yes-instance of Deletion to
Regular Subgraph.

(3 ⇒ 1) Assume that (G′, k′) is a Yes-instance
of Deletion to Regular Subgraph. Then there
are k+2

(
k
2

)
deletions that can be made to make G′ r-

regular. Obviously we cannot delete any vertices from
the fixing gadgets in the graph. Further we cannot
delete any vertices from the degree gadgets, as this
would reduce the degree of their attached fixing gad-
gets. Thus the deleted vertices must come from class
and connection gadgets. Again there must be pre-
cisely one vertex from each such component, if there
is less than one in such a component, the degree of
at least some of the vertices in that component will

4

remain r + 1, if there are more than one, the degree
of some vertices in the component will drop below r.
Also note that for each vertex uv deleted from one side
of a connection gadget, the vertex deleted in the other
side must be the vertex vu. If it were not, then at least
one vertex in each side would have degree r−1. Also,
the vertex deleted from each side of each connection
gadget must be attached to the vertex deleted from
the adjacent class gadget, otherwise the vertices at-
tached to vertices deleted from the class gadget will
have degree at most r − 1. Thus we can see that
if (G′, k′) is a Yes-instance, the set of vertices to be
deleted is very precise and restricted. In fact, if we are
to use only the allotted budget of k + 2

(
k
2

)
, we must

choose precisely one vertex from each class gadget,
and two vertices from each connection gadget, where
the vertices from the connection gadget component
are connected to the vertices deleted from the two
class gadgets it is associated with. Similarly, assume
that some edge deletion is used, but then each edge
deletion can only reduce the degree of two vertices,
leaving us with too many edges to delete, or vertices
of degree less than r. So clearly the only operation
that can be used in this case is vertex deletion. Thus
we may more precisely claim that if (G′, k′) is a Yes-
instance for Deletion to Regular Subgraph, it
must be via vertex deletion alone. Thus it is clear
that if (G′, k′) is a Yes-instance for Deletion to
Regular Subgraph, then (G, k) must be a Yes-
instance of Strongly Regular Multi-Coloured
Clique. The solution for (G, k) is the set of vertices
{v1, . . . , vk}, one from each colour class, correspond-
ing to the k vertices chosen from the class gadgets.
The edges of the clique correspond to the 2

(
k
2

)
ver-

tices chosen from the connection gadgets.

We can construct G′ from G in polynomial time, as
we are adding only (4r +3)(2r +2s− s− sd− dk +1)
vertices, where r, s, d ≤ n, thus it is also an FPT
reduction, and we have the desired result. �

We also note that the above proof suffices if we
also include the operation of edge addition, giving
the following:

Corollary 3.4. Edit to Regular Subgraph pa-
rameterized by the number of edit operations k is
W [1]-hard.

We may also consider the similar problem of find-
ing a regular subgraph of an unknown regularity (i.e.,
when r is not given):

Corollary 3.5. Deletion to Some Regular
Subgraph parameterized by the number of edit op-
erations k is W [1]-hard.

Proof. Given an instance (G, k) of Deletion to
Regular Subgraph, we construct an instance
(G′, k) of Deletion to Some Regular Subgraph
as follows:

We simply add one r-regular connected compo-
nent with more than k vertices. This can be done
by taking, for example, k fixing gadgets and con-
necting them in a ring. We clearly cannot alter this
component within the budget, thus the only possi-
ble solution is the same as that for (G, k). Thus
if (G′, k) is a Yes-instance of Deletion to Some
Regular Subgraph, (G, k) must be a yes instance
of Deletion to Regular Subgraph. Naturally if
(G, k) is a Yes-instance of Deletion to Regular
Subgraph, the same solution will result in a regu-
lar graph in (G′, k), so (G′, k) is a Yes-instance of
Deletion to Some Regular Subgraph. �

Of course the same proof again suffices for the edit
version of the problem.

We also obtain the following result.

Corollary 3.6. Weighted Deletion to Chosen
Degree Subgraph parameterized by the number k
of edit operations is W [1]-hard.

Proof. Clearly Deletion to Regular Subgraph,
is a restriction of Weighted Deletion to Chosen
Degree Subgraph, with ρ(e) = 1, ρ(v) = 1 and
δ(v) = r for each edge e and vertex v. �

Once again we may make a similar claim for the
edit version of the problem, Weighted Edit to
Chosen Degree Subgraph.

4 Fixed Parameter Tractability

Moser and Thilikos (2006) give several tractability
results for regular induced subgraph problems, and
in doing so contribute several significant and natural
ideas that are of use in the more general setting of this
paper. Several of the reduction rules that we develop
have direct analogs in their paper, and in particular
we use their notion of a “clean region”. We however
exploit the structure available more fully, using an-
notation. In this case annotation proves a powerful
tool for generalizing, and thus simplifying the prob-
lem. We are thus able to get more general results that
include their results as special cases. In particular we
avoid the complex clean region replacement that they
undertake as the annotation allows a simpler repre-
sentative replacement. Abu-Khzam & Fernau (2006)
give a further examination of annotation with respect
to kernelization.

4.1 Definitions

First we will define various terms that allow a more
elegant treatment of the result.

Given a graph G, a function δ : V → {0, . . . , r}
and a function ρ : V ∪E → N+. We say a vertex v ∈ V
is clean if

∑
e∈E(v) ρ(e) = δ(v). Then a clean region is

a set of clean vertices that form a connected subgraph.
Note that not all edges incident on the vertices of the
clean region need have both endpoints in the clean
region. We can greedily calculate the collection of
maximal clean regions in a graph in polynomial time.
Note that these maximal clean regions are disjoint. In
general when we refer to a clean region, we will mean
a maximal clean region, though strictly the results
are unaffected.

A clean region is independent if there are no edges
from the clean region to any vertex outside the clean
region.

Given a clean region C we call the set of vertices
not in C adjacent to a vertex in C as the boundary of
C.

It is also notationally convenient to define the de-
gree of a vertex v restricted to a set X of vertices as
dX(v). So dX(v) is the number of neighbours of v that
are in the set X, and we extend this notation to sets of
vertices, for example the degree of a boundary B re-
stricted to its clean region C is dC(B) =

∑
b∈B dC(b).

It is also useful to define a weighted degree func-
tion dρ : V → N+ such that for each vertex v,
dρ(v) =

∑
e∈E(v) ρ(e). As above we denote the

weighted degree of a vertex v restricted to a set of
vertices X as dρ

X(v) and extend it as before to sets.

5

4.2 Weighted Deletion to Chosen Degree
Subgraph

In this section we consider the Weighted Dele-
tion to Chosen Degree Subgraph problem as
defined earlier, but parameterized by both the num-
ber of deletions k and the maximum desired degree r.

4.2.1 Reduction Rules

Let (G, (k, r)), with G = (V,E), be an instance of
Weighted Deletion to Chosen Degree Sub-
graph. The following reduction rules produce
from (G, (k, r)) an equivalent instance (G′, (k′, r′)) of
Deletion to Chosen Degree Subgraph. For all
reduction rules r′ = r.

Reduction Rule 1: If there exists a vertex v ∈ V with
dρ(v) < δ(v), then G′ = G− {v}, k′ = k − ρ(v).

Reduction Rule 2: If there exists a vertex v ∈ V with
d(v) > k + r, then G′ = G− {v}, k′ = k − ρ(v).

Reduction Rule 3: If there exists an independent
clean region C ⊆ V , then G′ = G− C, k′ = k.

Reduction Rule 4: If there exists a clean region C
with a vertex b in its boundary where dρ

C(b) > δ(b),
then G′ = G− C, k′ = k −

∑
v∈C ρ(v).

This also gives an algorithmically useful corollary.

Corollary 4.1. If there exists a clean region C with
a vertex b in its boundary such that dρ

C(b) > δ(b) and∑
v∈C ρ(v) > k, then (G, (k, r)) is a No-instance.

Reduction Rule 5: If there exists a clean region C
with boundary B such that

∑
v∈C ρ(v) > k and

for each boundary vertex b we have dρ
C(b) ≤ δ(b),

then for each b ∈ B, set ρ(b) = k + 1 and set
δ(b) = δ(b)− dρ

C(b), and G′ = G− C, k′ = k.

Reduction Rule 6: If there exists a clean region C,
with boundary B such that Reduction Rules 4 and
5 do not apply, (i.e., there are no boundary vertices
with excessive weighted degree into the clean region,
and the weight of the clean region is not larger than
k), then modify the instance as follows:

1. Add a new vertex v such that ρ(v) =
∑

c∈C ρ(c),
and δ(v) = dρ

B(C).

2. For each boundary vertex b ∈ B, add an edge bv
such that ρ(bv) = dρ

C(b).

3. Delete C.

4. Set k′ = k.

Note that the vertex v added in Reduction Rule 6
is a special vertex in that we allow it to have ρ(v) > r.
This does not affect the existence of a solution, and if
desired, a less elegant, alternate reduction rule can be
substituted where the region is replaced by a series of
vertices each with ρ at most r. In the kernelization
this increases the size of X (only) by a factor of at
most k.

Lemma 4.2. Reduction Rules 1–6 are sound. That
is, each reduction rule takes an instance (G, (k, r)) of
Weighted Deletion to Chosen Degree Sub-
graph and produces an instance (G′, (k′, r′)) of
Weighted Deletion to Chosen Degree Sub-
graph such that (G, (k, r)) is a Yes instance if and
only if (G′, (k′, r′)) is a Yes instance.

Proof. Rule 1: Clearly v cannot remain in the final
graph unmodified, but as we cannot add edges, there
is no way of increasing the degree of v. Thus v must
be deleted as part of any solution.

Rule 2: If v were to remain in the final graph, we
must either delete more than k edges or neighbouring
vertices, each with weight at least 1, which we cannot
do. Thus the only possibility is to delete v.

Rule 3: Clearly an independent clean region needs
no changing, thus we can safely ignore it, as it will
play no role in the solution.

Rule 4: If there were such a b, then at least one
of the edges from b into the clean region must be
deleted, but then a vertex v of the clean region would
now have weighted degree less than δ(v), and would
have to be deleted (as per Reduction Rule 1). This
would obviously cascade, resulting in the entire clean
region being deleted. Thus the only possible option
is to delete the clean region.

Rule 5: As with Reduction Rule 4, deletion of
any vertex or edge in the clean region or between the
clean region and the boundary would require the clean
region to be deleted entirely. As the clean region is
of total weight greater than k, it obviously cannot be
deleted within a cost k solution. Thus it suffices to
increase the weight of each vertex in the boundary,
as these cannot be deleted either, and reduce their
degree funtion appropriately.

Rule 6: As C is a clean region, deletion of any
vertex or edge in the clean region or boundary will
result in the entire clean region being deleted, thus
it is sufficient to represent the clean region as one
appropriately weighted clean vertex. �

4.2.2 Kernel Lemma

Lemma 4.3 (Kernel Lemma). If (G = (V,E), (k, r))
is reduced under Reduction Rules 1–6 and |V | >
k + k(k + r) + kr(k + r), then (G, (k, r)) is a No-
instance for Weighted Deletion to Chosen De-
gree Subgraph.

Proof. Assume that (G = (V,E), (k, r)) is a Yes-
instance for k-Deletion r-Regular Subgraph.
Further assume that the instance is reduced under
Reduction Rules 1–6. Let S be the set of edges and
vertices deleted as part of the solution, |S| ≤ k (more
particularly ρ(S) ≤ k). As any edge in the solution
is adjacent to only two vertices, our worst case oc-
curs when the solution is all vertices, so it suffices to
only consider S. Further let H be the set of vertices
consisting of the endpoints of any edges in S and the
neighbours of any vertices in S, and X = V \{H∪S}.
Note that H is a cut-set seperating S and X. Figure
3 gives an example of this partitioning for an example
graph with r = 3.

We make the following claims:

Claim 4.1. |H| ≤ k(k + r).

No vertex has degree greater than (k + r), other-
wise the graph is not reduced under Reduction Rule 2.
Thus if S were all vertices, they could have at most
(k + r) neighbours each. As H is the entire neigh-
bourhood of S, |H| ≤ |S|(k + r) = k(k + r).

Claim 4.2. |X| ≤ kr(k + r).

X must consist only of clean regions, otherwise S
is not a solution. Each vertex h in H can have at
most r neighours in X, otherwise S is not a solution.
If h were adjacent to a clean region with total weight
greater than k, this region would have been removed
under Reduction Rule 5, thus it can only be adjacent
to small clean regions. As the graph is reduced, each
of these clean regions contains precisely one vertex,

6

S

H

X

Figure 3: Example of the partitioning described in
the Kernel Lemma. r = 3.

by Reduction Rule 6. Thus each h can have at most
r neighbours. As there are k(k + r) such vertices,
|X| ≤ kr(k + r).

Claim 4.3. There are at most k+k(k+r)+kr(k+r)
vertices in G.

|V | = |S| + |H| + |X|. By Claims 4.2 and 4.1,
|H| ≤ k(k + r), and |X| ≤ kr(k + r). There are no
other vertices in the graph, otherwise the graph is
not reduced under Reduction Rules 3 and 4. Thus as
|S| ≤ k, |V | ≤ k + k(k + r) + kr(k + r).

Then by Claim 4.3, if (G = (V,E), (k, r)) is a Yes-
instance for Weighted Deletion to Chosen De-
gree Subgraph, then |V | ≤ k+k(k+r)+kr(k+r).
Thus the Kernel Lemma holds. �

To complete the proof of FPT membership, we
need to demonstrate that the Reduction Rules can
be executed in polynomial time. Clearly Reduction
Rules 1 and 2 can be carried out in linear time, and
each can be applied at most k times. Thus Reduction
Rules 1 and 2 contribute O(kn) to the running time.

We can calculate the clean regions of the graph
greedily in linear time, with the boundary calculated
at that time. Thus an independent clean region can
be identified in linear time, and deleted in linear
time. Similarly any clean region with a vertex b in
its boundary such that dρ

C(b) > δ(b), can be iden-
tified quickly. Similarly regions to which Reduction
Rules 5 and 6 apply can be identified at this point,
and replaced or removed as required. This can be
done at most k times, thus Reduction Rules 3, 4, 5
and 6 contribute O(kn) to the running time.

This leads immediately to the following theorem:

Theorem 4.4. Weighted Deletion to Chosen
Degree Subgraph is fixed-parameter tractable for
parameter (k,r).

In particular an instance (G, (k, r)) of Weighted
Deletion to Chosen Degree Subgraph with n
vertices and m edges can be solved in time O(kn +
f(k, r)), where f(k, r) is the running time of whatever
algorithm or heuristic is applied to the kernel (whose
size is bounded, so the running time is guaranteed
to be a function of (k, r). A simple approach would
be the application of a bounded search tree which
branches on which problem vertex or edge to delete,
which gives a running time of O((k3 + 2k2r + kr2)k).

Note that if we have a graph where initially ρ(v) =
1, ρ(e) = 1 and δ(v) = r for each vertex v and edge
e, then this is precisely the Deletion to Regular
Subgraph problem, thus we also gain the following
result:

Corollary 4.5. Deletion to Regular Subgraph
is fixed-parameter tractable for parameter (k,r).

4.2.3 The Exact Case

The previous proof can be modified easily to demon-
strate fixed-parameter tractability for the Exact
Weighted Deletion to Chosen Degree Sub-
graph problem. In this case we are interested in
deleting elements with a total weight of k. Thus we
may be interested in deleting elements where the dele-
tion does not fix the degree of some vertex, it simply
adds to the total cost. However, the only areas where
we may delete these from that are not already in-
cluded in the kernel are independent clean regions of
‘low’ weight (≤ k).

Of course we need not retain all such indepen-
dent clean regions on the chance that they may be
needed. Obviously any independent clean region of
weight greater than k can still be removed without
consequence, it could never be part of any solution of
cost k. So we need only concern ourselves with in-
dependent clean regions of weight less than or equal
to k. Recall that a clean region is defined as a set
of vertices, thus in particular, the weight of a clean
region is the sum of weights of the vertices, not the
edges.

Notice also that given a sufficient quantity of in-
dependent clean regions of a given weight (say i), we
could never use all of them, and thus need only retain
a small number. Thus if we replace Reduction Rule
3, we can adjust our kernel size appropriately:

Reduction Rule 3a: If there exist more than bk/ic in-
dependent clean regions of weight i ≤ k, delete all
but bk/ic of them, k′ = k.

Then we may modify the Kernel Lemma as follows:

Lemma 4.6 (Exact Kernel Lemma). If (G =
(V,E), (k, r)) is reduced under Reduction Rules 1–6
(with Rule 3a replacing Rule 3) and |V | > k + k(k +
r)+kr(k+r)+k2, then (G, (k, r)) is a No-instance for
Exact Weighted Deletion to Chosen Degree
Subgraph.

Proof. We begin with the following claims:

Claim 4.4. There are no independent clean regions
of size greater than k.

As each vertex has weight at least 1, a clean region
of size greater than k must have weight greater than k,
thus if one remained, the graph would not be reduced
under Reduction Rule 3a.

Claim 4.5. There are at most k2 vertices in indepen-
dent clean regions.

By Reduction Rule 3a, there are at most bk/ic
independent clean regions of weight i. The largest size
of any such region is k (by claim 4.4). Thus the total
size is

∑k
i=1 bk/ic i ≤

∑k
i=1(k/i)i =

∑k
i=1 k = k2.

The proof of the Kernel Lemma now follows as be-
fore, simply with the new claims taken into account.
�

The new reduction rule can clearly be enacted in
polynomial time, we need only greedily keep the first
few independent clean regions we find of each weight,
which can be accomplished at the start of the algo-
rithm in linear time.

Theorem 4.7. Exact Weighted Deletion to
Chosen Degree Subgraph is fixed-parameter
tractable for parameter (k, r).

7

As before, we also gain the following result as a
special case:
Corollary 4.8. Exact Deletion to Regular
Subgraph is fixed-parameter tractable for parameter
(k, r).

5 Conclusion

We have answered Moser and Thilikos’s open ques-
tion, and shown that Vertex Deletion to Reg-
ular Subgraph is W [1]-hard when parameterized
by the number k of vertex deletions. The problem
remains hard when we extend the operations avail-
able to include edge deletion and/or edge addition.
The generalized version of the problem Weighted
Deletion (Edit) to Chosen Degree Subgraph
is also W [1]-hard when parameterized by the number
k of deletions.

If we include r as an additional parameter how-
ever, all the problems examined are fixed-parameter
tractable, most notable being that Weighted Dele-
tion to Chosen Degree Subgraph is fixed-
parameter tractable under such a parameterization
with a problem kernel of at most k+k(k+r)+kr(k+r)
vertices. Deletion to Regular Subgraph is also
fixed-parameter tractable with the same kernel, but
we also demonstrate a method that allows avoidance
of clean region contraction, which may be useful in
practice. Similarly the exact versions of the problems
remain tractable with the same parameterization.

As our FPT results derive from kernelization, this
paper also provides several useful polynomial-time
preprocessing algorithms producing bounded problem
kernels which can then be solved by any method of
choice, such as heuristics or approximations.

References

Abu-Khzam, F. & Fernau, H. (2006), Kernels: Anno-
tated, Proper and Induced, in ‘International Work-
shop on Parameterized and Exact Computation
2006 (IWPEC’06)’, Lecture Notes in Computer Sci-
ence, Springer, pp. 264–275.

Cheah, F. & Corneil, D. G. (1990), The Complexity of
Regular Subgraph Recognition, ‘Discrete Applied
Mathematics’, 27, pp. 59–68.

Chvátal, V., Fleischner, H., Sheehan, J. &
Thomassen, C. (1979), Three-regular Subgraphs of

Four Regular Graphs, ‘Journal of Graph Theory’,
3, pp. 371–386.

Downey, R. & Fellows, M. (1997), Parameterized
Complexity, Springer.

Estivill-Castro, V., Fellows, M., Langston, M. &
Rosamond, F. (2005), FPT is P-Time Extremal
Structure I, in ‘Algorithms and Complexity in
Durham 2005 (ACiD’05)’, Texts in Algorithmics,
College Publications, pp. 1–41.

Flum, J. & Grohe, M. (2006), Parameterized Com-
plexity Theory, Springer.

Guo, J. & Niedermeier, R. (2007), Invitation to Data
Reduction and Problem Kernelization, ‘SIGACT
News’, 38(1), pp. 31–45.

Fellows, M., Hermelin, D. & Rosamond, F. (2007), On
the Fixed-Parameter Intractability and Tractabil-
ity of Multiple-Interval Graph Problems, Unpub-
lished Result.

Moser, H. & Thilikos, D. (2006), Parameterized Com-
plexity of Finding Regular Induced Subgraphs,
in ‘Algorithms and Complexity in Durham 2006
(ACiD’06)’, Texts in Algorithmics, College Publi-
cations, pp. 107–118.

Niedermeier, R. (2006), Invitation to Fixed-
Parameter Algorithms, Oxford University Press.

Plesńık, J. (1984), A Note on the Complexity of
Finding Regular Subgraphs, ‘Discrete Mathemat-
ics’, 49, pp. 161–167.

Stewart, I. A. (1994), Deciding Whether a Planar
Graph has a Cubic Subgraph is NP-Complete, ‘Dis-
crete Mathematics’, 126(1-3), pp. 349-357.

Stewart, I. A. (1996), Finding Regular Subgraphs in
Both Arbitrary and Planar Graph, ‘Discrete Ap-
plied Mathematics’, 68(3), pp. 223-235.

Stewart, I. A. (1997), On Locating Cubic Subgraphs
in Bounded-degree Connected Bipartite Graphs,
‘Discrete Mathematics’, 163(1-3), pp. 319-324.

Stewart, I. A. (2007), On the Fixed-Parameter
Tractability of Parameterized Model-Checking
Problems, ‘Information Processing Letters’, to ap-
pear.

8

