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Abstract

We propose a novel tracking framework called visual

tracker sampler that tracks a target robustly by searching

for the appropriate trackers in each frame. Since the real-

world tracking environment varies severely over time, the

trackers should be adapted or newly constructed depending

on the current situation. To do this, our method obtains sev-

eral samples of not only the states of the target but also the

trackers themselves during the sampling process. The track-

ers are efficiently sampled using the Markov Chain Monte

Carlo method from the predefined tracker space by propos-

ing new appearance models, motion models, state repre-

sentation types, and observation types, which are the basic

important components of visual trackers. Then, the sam-

pled trackers run in parallel and interact with each other

while covering various target variations efficiently. The ex-

periment demonstrates that our method tracks targets accu-

rately and robustly in the real-world tracking environments

and outperforms the state-of-the-art tracking methods.

1. Introduction

It is a challenging problem to track a target in the real-

world tracking environment where different types of vari-

ations such as illumination, shape, occlusion, or motion

changes occur at the same time [23]. Recently, sev-

eral tracking methods solved the problem and successfully

tracked targets in the real-world environment [2, 6, 8, 10,

11, 12, 14, 17, 18, 21]. Among them, one of promising

methods is the visual tracking decomposition (VTD), which

utilizes a set of multiple trackers and runs them simulta-

neously and interactively [11]. The method assumes that,

given a fixed number of trackers, at least one tracker can

deal with target variations at each time. However, this as-

sumption is insufficient to cope with the complicated real-

world tracking environment. Since generally the tracking

environment severely varies from frame to frame, trackers

should not be fixed but should be generated dynamically

depending on the current tracking environment. This paper

focuses on how to construct appropriate trackers automati-
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Figure 1. Visual tracker sampler (a) The figure describes our

four-dimensional tracker space, in which the axes are the appear-

ance model, motion model, state representation type, and obser-

vation type. A tracker is determined by sampling a point in the

tracker space, where each circle represents a different tracker. (b)

Our visual tracker sampler tracks the target robustly in the chal-

lenging matrix sequence by choosing appropriate trackers adap-

tively during the tracking process.

cally and how to integrate the constructed trackers to track

the target successfully under challenging real scenarios.

The philosophy of our method is that trackers can be

constructed probabilistically. With a sampling method, the

trackers themselves are sampled, as well as the states of the

targets. In our framework, a sample includes information

about not only a proposed state but also a proposed tracker.

During the sampling process, our method obtains several

trackers and states as the samples, and decides whether they

are accepted or not. By choosing an accepted sample that

gives the highest value on the Conditioned Maximum a Pos-

teriori (CMAP) estimate, the method simultaneously finds

a highly possible tracker and a highly possible state. The

highly possible tracker indicates the best tracker that tracks

the target robustly with high probability, while the highly

possible state denotes the best state where the target might

be. We exploit the complementary relationship between the

states and the trackers, in which good states help construct

more robust trackers. On the other hand, the robust track-

ers produce more accurate states. Fig.1 shows our visual

tracker sampler (VTS).



Our method is superior to the conventional tracking

methods in the following three aspects. The first is related

to the novel tracking framework. Our method can change

the number of trackers adaptively over time. If there are se-

vere appearance or motion changes, the method increases

the number of trackers and spends more resources to track

the target. If not, the method decreases them and saves re-

sources. This can be done since a tracker itself may be

added or deleted by our VTS. By doing this, our method

enhances the sampling efficiency compared with the con-

ventional methods, which always utilize a fixed number

of trackers or samples. The second is that our tracker is

designed in a more sophisticated manner to describe the

real-world environment completely. To design trackers, we

fully consider four important ingredients of the Bayesian

tracking approach, which are the appearance model, mo-

tion model, state representation type, and observation type.

This makes the trackers robust against a wider range of

variations including severe noise and motion blur. Addi-

tionally, our trackers evolve toward reflecting the charac-

teristic of the target over time. The ingredients and pa-

rameters that consist of the trackers adaptively change dur-

ing the tracking process by learning multiple cues in the

video. So, our method greatly improves tracking accuracy

in the real-world tracking environment. The last is a rigor-

ous derivation of why utilizing multiple trackers provides a

better tracking performance. We prove that, compared with

any single tracker, it provides better average predictive abil-

ity, as measured by a logarithmic scoring rule, to construct

multiple trackers and run them interactively.

2. Related Works

Among many approaches for the real-world tracking

problem, Ross et al. [17] showed robustness to large

changes in pose, scale, and illumination by proposing the

incremental principal component analysis. Babenko et al.

[2] solved appearance ambiguity occurred by illumination

and occlusion using multiple instance learning and showed

very good tracking results. Kwon et al. [11] tracked the tar-

get successfully via visual tracking decomposition (VTD)

when several types of appearance and motion changes oc-

cur. Note that our foremost contribution is the novel con-

cept of ”SAMPLING the best TRACKERS adaptively from

a TRACKER SPACE”. To the best of our knowledge, this

work is the first trial to define the tracker space and sample

trackers directly in this space. Although VTD employs mul-

tiple trackers, the number and types of trackers are prede-

fined by a user. On the other hand, our method can replace

current trackers by new sampled trackers during the track-

ing process and change the total number of trackers, which

run in parallel, by adding good trackers and removing bad

or redundant ones. This cannot be accomplished by VTD.

In sampling-based tracking approaches, the particle filter

developed by Isard et al. [7] showed good performance in

tracking targets by solving the non-Gaussianity and multi-

modality of the tracking problem. Markov Chain Monte

Carlo (MCMC) based methods were proposed by Khan et

al. [9] and Zhao et al. [25] to reduce the computational

cost especially in a high-dimensional state space. However,

conventional sampling methods only considered the uncer-

tainty of the target state given a fixed tracker. Our method is

an intuitively attractive solution to the problem of account-

ing for the uncertainty of the tracker.

Multiple cues were used for tracking. Collins et al. [3]

used multiple features and selected robust ones through an

on-line feature-ranking mechanism to deal with changing

appearances. Stenger et al. [19] used multiple observation

models and fused them to track targets accurately. However,

the methods only considered information related to the tar-

get appearance to improve the tracking performance. Com-

pared with these methods, our method exploits useful infor-

mation on the target motion and the target representation as

well.

3. Our Bayesian Tracking Approach

3.1. Basic Ingredients of Bayesian Tracker

The visual tracking problem is efficiently formulated as

Bayesian filtering. Given the state at time t and the obser-

vation up to time t, the Bayesian filter updates the posteriori

probability, p(Xt∣Y1:t) with the following formula:

p(Xt∣Y1:t) ∝ p(Yt∣Xt)
∫

p(Xt∣Xt−1)p(Xt−1∣Y1:t−1)dXt−1,
(1)

where it consists of four important basic ingredients.

∙ Appearance model (A): p(Yt∣Xt) describes the appear-

ance of a target while measuring how much the target and

observation at the proposed state coincide.

∙ Motion model (M): p(Xt∣Xt−1) models the character-

istic of the target motion by predicting the next state, Xt

based on the previous state, Xt−1.

∙ State representation type (S): Xt designs the configu-

ration of the target called the state.

∙ Observation type (O): Yt denotes visual cues in the

video.

In our framework, each basic ingredient forms the set:

At = {Ai
t∣i = 1, . . . , ∣At∣}, Mt = {Mi

t∣i = 1, . . . , ∣Mt∣},

St = {Si
t∣i = 1, . . . , ∣St∣}, and Ot = {Oi

t∣i = 1, . . . , ∣Ot∣}
whereAt, Mt, St, andOt indicate the set of the appearance

models, motion models, state representation types, and ob-

servation types at time t, respectively, and ∣ ⋅ ∣ indicates car-

dinality of the set. Then, the i-th tracker at time t, Ti
t is con-

structed by choosing a specific appearance model Ai
t, mo-

tion model Mi
t, state representation type Si

t, and observation

type Oi
t from the sets, At, Mt, St, and Ot, respectively:



Ti
t = (Ai

t,M
i
t, S

i
t,O

i
t). In a similar manner, our method fi-

nally makes the ∣Tt∣ number of trackers at time t, Tt =
{Ti

t∣i = 1, . . . , ∣Tt∣} by fully associating the four basic in-

gredients in the sets, where ∣Tt∣ = ∣At∣×∣Mt∣×∣St∣×∣Ot∣.

3.2. Decomposed Posterior Probability

The posterior probability in (1) can be efficiently esti-

mated by the weighted linear combination of the decom-

posed posterior probabilities as in [11]:

p(Xt∣Y1:t) ≈

∣Tt∣
∑

i=1

p(Ti
t∣Y1:t)p(Xt∣T

i
t,Y1:t), (2)

where p(Xt∣T
i
t,Y1:t) represents the i-th decomposed pos-

teriori probability and p(Ti
t∣Y1:t) indicates its weight.

Compared with direct estimation of the posterior proba-

bility, the decomposition strategy in (2) produces better per-

formance under the logarithmic scoring criterion as follows.

Theorem 1. Averaging the decomposed posterior proba-

bilities is optimal under the logarithmic scoring criterion in

[5]:

E

⎡

⎣log

⎧

⎨

⎩

∣Tt∣
∑

i=1

p(Ti
t∣Y1:t)p(Xt∣T

i
t,Y1:t)

⎫

⎬

⎭

⎤

⎦

≥ E [log p(Xt∣Y1:t)] ,

(3)

for any distribution p(Xt∣Y1:t) where the expectation is

with respect to
∑∣Tt∣

i=1 p(T
i
t∣Y1:t)p(Xt∣T

i
t,Y1:t).

Proof. Inequality follows from the non-negative property

of the Kullback-Leibler information divergence 1.

To decompose the posterior probability efficiently while

reflecting the various changes in visual tracking, each de-

composed posterior probability, p(Xt∣T
i
t,Y1:t) should be

conditioned on the tracker, Ti
t, which runs robustly in the

current tracking environment. The next section explains

how to obtain the set of trackers and find the best state of

the target using them.

3.3. Conditioned Maximum a Posteriori Estimate

Our method finds the best state of the target, X̂t, at time

t using the Conditioned Maximum a Posteriori (CMAP) es-

timate:

X̂t ≡ arg
Xt

max p(Xt∣Tt,Y1:t). (4)

Since the posterior probability in (4) is conditioned on the

set of trackers, Tt, we should search all possible trackers

and states of the targets to obtain the CMAP estimate. How-

ever, it is unfeasible because the search space is drastically

large and high dimensional.

1The decomposition strategy of the posterior probability is directly re-

lated to the Bayesian Model Averaging approach in [16].
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Figure 2. Entire procedure of VTS The sampler constructs the

trackers by sampling them, runs the sampled trackers in parallel

and interactively, and obtains samples of the target state utilizing

the trackers.

Our method solves the aforementioned problem by ap-

proximately estimating the posterior probability in (4) with

the samples of trackers and states. To do this, the method

first obtains the samples of trackers and then, given the sam-

pled trackers, it gets the samples for states. And, among the

sampled states, the method chooses the best one, X̂t, which

gives the highest value on (4). Now the remaining task is

how to obtain theses samples of trackers and states simulta-

neously in our visual tracker sampler framework.

4. Visual Tracker Sampler

VTS utilizes multiple Markov Chains. After each

Markov Chain is modeled by each sampled tracker, Ti
t, the

Markov Chains run in parallel and produce samples of the

states, Xt, to estimate each decomposed posteriori prob-

ability, p(Xt∣T
i
t,Y1:t) in (2) via the Metropolis Hastings

algorithm. When the Chains are in the interacting mode,

they communicate with the others and leap to better states

of the target. In this mode, our method adjusts the contribu-

tion of each tracker by assessing the weights of the trackers

implicitly utilizing (19). During the sampling process, the

number of Markov Chains changes by either increasing or

decreasing the number of trackers.

VTS consists of two different sampling processes:

tracker sampling and state sampling. In the former, the sam-

pler proposes new trackers and determines whether they can

be accepted or not (section 4.1). Given the trackers, new

states of the target are obtained by the state sampling pro-

cess (section 4.2). Fig.2 describes the entire procedure of

our VTS.

4.1. Tracker Sampling

Since the aforementioned four ingredients characterize

trackers, sampling a tracker can be viewed as sampling its

basic ingredients. While sampling them, the basic ingredi-

ents should be considered together because they are inter-

related to each other. Note, however, that this is intractable
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Figure 3. Ingredients of the visual tracker We design an appear-

ance model, motion model, state representation type, and observa-

tion type utilizing SPCA, KHM, VPE, and GFB, respectively, to

construct a specific tracker.

problem. So, in our work, we use the Gibbs sampling strat-

egy instead. With this strategy, we decide one of them at a

time, while the others are fixed to the best ones. To decide

each basic ingredient properly, following aspects should be

considered. The sampler should choose only the required

models or types by accepting the ones that help track the

target under the current environment, while avoiding un-

necessarily complex ones by the acceptance ratio. By doing

this, the sampler maintains the number of models or types

as small as possible and shows good performance in terms

of scalability. Additionally, to find good models or types ef-

ficiently in the drastically vast tracker space and reduce the

convergence time, the sampler should utilize the proposal

that sufficiently exploits underlying cues in the video. The

next section describes how to design the acceptance ratio

and proposal for each ingredient to achieve these goals.

4.1.1 State Representation Type

A state representation type should be designed to preserve

the spatial information of the target while also covering

the geometric variations of the target to some degree. To

do this, our sampler represents the target as a combination

of multiple fragments by adopting the philosophy of [1].

Then, the i-th state representation type is defined by:

Si
t ≡ Xt = {xt, yt, st,V

i
t}, (5)

where xt, yt, and st indicates the x, y center posi-

tion, and scale of the bounding box of the target, respec-

tively, and V
i
t = {vj ∣j = 1, . . . , ∣Vi

t∣} denotes the set

of vertical sub-indexes of the bounding box. Our sam-

pler produces the ∣Fi
t∣ number of image fragments, Fi

t =
{fj ∣j = 1, . . . , ∣Vi

t∣+ 1}, by dividing the bounding box

horizontally at each vertical sub-index, vj . The vertical sub-

index, vj , is efficiently achieved by the vertical projection

of edge (VPE) [22] as shown in Fig.3. Then, the type Si
t is

added into St by the proposal function, QS(S
∗
t ;St), which

proposes the new set of state representation types, S∗
t :

S
∗
t ∼ QS(S

∗
t ;St) = St

∪

Si
t. (6)

Given the proposed set of state representation types, S∗
t ,

our sampler decides whether it is accepted or not with the

acceptance ratio. The acceptance ratio is designed so that

the state representation types in S
∗
t reduces variations of the

target appearance for the most recent five frames:

aS = min

[

1,
p(S∗

t ∣Xt,Y1:t)Q(St;S
∗
t )

p(St∣Xt,Y1:t)Q(S∗
t ;St)

]

where − log p(S∗
t ∣Xt,Y1:t) ∝

∣S∗
t ∣

∑

i=1

∣Fi
t∣

∑

j=1

V AR(fj) + �S log ∣S∗
t ∣.

(7)

In (7), V AR(fj) returns variance of the j-th image fragment,

fj for the most recent five frames, log ∣S∗
t ∣ prevents the set

S
∗
t from having large numbers of state representation types,

and �S is the weighting parameter.

4.1.2 Observation Type

Biological evidence shows that the human visual system

uses the response of multiple filters called the filter bank to

observe visual information. Similarly, more robust observa-

tion types can be achieved by using the Gaussian filter bank

(GFB) [20]. The i-th observation type is constructed by the

convolution between the image It and the Gaussian distri-

bution with mean {xt, yt} and variance Σ2
i for all {xt, yt}

of Xt.

Oi
t ≡ Yt = It ∗G({xt, yt},Σ

2
i ), ∀{xt, yt}, (8)

where Σi is selected randomly from the uniform distribu-

tion, U [0, 10], in component-wise manner for xt and yt.

The new model Oi
t is inserted into Ot by the proposal func-

tion, QO(O
∗
t ;Ot), which proposes the new set of observa-

tion types, O∗
t :

Ot
∗ ∼ QO(O

∗
t ;Ot) = Ot

∪

Oi
t. (9)

The acceptance ratio is designed so that the response of

the observation types in Ot
∗ become more similar among

foreground images, but more different between foreground

and background images for the most recent five frames. The

foreground and background images are obtained by crop-

ping the images within and around the bounding box of the

target, respectively. Then, the acceptance ratio is defined

by:

aO = min

[

1,
p(O∗

t ∣Xt,Y1:t)Q(Ot;O
∗
t )

p(Ot∣Xt,Y1:t)Q(O∗
t ;Ot)

]

where − log p(O∗
t ∣Xt,Y1:t) ∝

∑∣O∗
t ∣

i=1

∑t−1
j,k=t−5DD(�ij , �

i
k)

∑∣O∗
t ∣

i=1

∑t−1
j,k=t−5DD(�ij ,  

i
k)

+ �O log ∣O∗
t ∣,

(10)



where �O is the weighting parameter, and �ij and  i
k rep-

resent the foreground and background image of the i-th ob-

servation type at time j and k, respectively. In (10), the

DD(�ij ,  
i
k) function [13] returns the diffusion distance

between �ij and  i
k.

4.1.3 Appearance Model

An appearance model should cover most appearance

changes of the target. Such model can be efficiently ob-

tained by sparse principal component analysis (SPCA) de-

scribed in [11]. SPCA finds several sparse principal com-

ponents, in which each component is composed of a mixture

of templates that describe the target appearance as shown in

Fig.3. By choosing a principal component, �it, with higher

eigenvalue, the i-th appearance model is constructed as:

Ai
t ≡ p(Yt∣Xt) = exp−
DD(Yt(Xt),�

i
t), (11)

where 
 denotes the weighting parameter, and Yt(Xt) in-

dicates the observation at the state Xt. Note that the state

representation type Xt and observation type Yt are fixed to

the best ones during sampling the appearance models such

like the Gibbs sampling strategy, as explained in section

4.1. Then, the proposal function,QA(A
∗
t ;At) adds the new

model, Ai
t into At and proposes the new set of appearance

models, A∗
t :

A
∗
t ∼ QA(A

∗
t ;At) = At

∪

Ai
t. (12)

Our sampler accepts the proposed set of appearance

models, A∗
t with high probability if the appearance models

in A
∗
t produce higher likelihood scores than those in At at

the MAP state, X̂t for the most recent five frames, in which

the MAP state at time t found by (4) indicates the best state

of the target at time t:

aA = min

[

1,
p(A∗

t ∣X̂t,Y1:t)Q(At;A
∗
t )

p(At∣X̂t,Y1:t)Q(A∗
t ;At)

]

where − log p(A∗
t ∣X̂t,Y1:t) ∝

∣A∗
t ∣

∑

i=1

t−1
∑

j=t−5

DD(Yj(X̂j), �
i
t) + �A log ∣A∗

t ∣.

(13)

In (13), Yj(X̂j) indicates the observation at the MAP state,

X̂j at time j, and �A is the weighting parameter.

4.1.4 Motion Model

A motion model has to describe representative characteris-

tics of the target motion over time. It is efficiently found

by the K-Harmonic Means (KHM) method, which clusters

data and finds centers of the clusters as shown in Fig.3,

where KHM is known to be insensitive to the initialization

of the centers [24]. The data, Dt, for KHM is acquired by

gathering velocity vectors between accepted neighbor states

for the most recent five frames. By choosing a cluster cen-

ter, �i = [�x
i , �

y
i , �

s
i , �

s
i ]

T of Dt with a higher confidence

value, the i-th motion model is constructed as:

Mi
t ≡ p(X∗

t ∣Xt) = G(Xt, �
2
i ), (14)

where G denotes the Gaussian function with mean Xt and

variance �2
i . Note that the state representation type Xt is

fixed to the best one during sampling the motion models

following the Gibbs sampling strategy, as explained in sec-

tion 4.1. Then, the proposal function, QM (M∗
t ;Mt) adds

the new model, Mi
t into Mt and proposes the new set of

motion models, M∗
t :

M
∗
t ∼ QM (M∗

t ;Mt) = Mt

∪

Mi
t. (15)

Our sampler accepts M∗
t with high probability if the mo-

tion models in M
∗
t have more accurate cluster centers, �i

than those in Mt:

aM = min

[

1,
p(M∗

t ∣Xt,Y1:t)Q(Mt;M
∗
t )

p(Mt∣Xt,Y1:t)Q(M∗
t ;Mt)

]

where − log p(M∗
t ∣Xt,Y1:t) ∝

∣M∗
t ∣

∑

i=1

V AR(Dt, �i) + �M log ∣M∗
t ∣.

(16)

In (16), V AR(Dt, �i) returns the variance of data, Dt, that

belongs to the cluster centered on �i, and �M is the weight-

ing parameter.

For removing models or types from the current set, the

sampler randomly selects a model or type, proposes a new

set that does not contain it, and accepts the proposal with

the corresponding acceptance ratio in (7)(10)(13)(16).

4.2. State Sampling

Each sampled tracker in section 4.1 produces the pre-

defined number of states. For example, using the tracker

constructed by the i-th appearance model, the j-th motion

model, the k-th state representation type, and the l-th obser-

vation type, our sampler proposes a new state, X
j∗

t :

X
j∗

t ∼ Qj(X
j∗

t ∣Xj
t ) = G(Xj

t , �
2
j ), (17)

and determines whether the proposed state is accepted or

not with the following acceptance ratio:

aP = min

[

1,
p(Yt∣A

i
t, S

k
t ,O

l
t,X

j∗

t )Qj(X
j
t ;X

j∗

t )

p(Yt∣A
i
t, S

k
t ,O

l
t,X

j
t )Qj(X

j∗

t ;Xj
t )

]

where p(Yt∣A
i
t, S

k
t ,O

l
t,X

j∗

t ) =

∣Fk
t ∣

∏

m=1

exp
−


DD(Yl
t(fm),�it)

∣Fk
t
∣ .

(18)



MC IVT MIL VTD VTS* VTD* #N

soccer 53 116 41 23 17 21 408

skating1 172 213 85 8 8 7 304

animal 26 21 30 22 10 11 696

shaking 98 150 38 20 5 5 616

Table 1. Comparison of tracking accuracy. The numbers denote

the center location errors in pixels, where red is the best result and

blue is the second-best result. The green numbers indicate the total

number of samples utilized to track the target.

In (18), p(Yt∣A
i
t, S

k
t ,O

l
t,X

j∗

t ) is the modified appearance

model of (11), which further considers the k-th state repre-

sentation type, and the l-th observation type, where Yl
t(fm)

indicates the l-th observation at the m-th image fragment.

When the sampler is in the interacting mode, the track-

ers communicate with each others and leap to better states

of the target. A tracker accepts the state of another tracker

constructed by the i-th appearance model, the j-th motion

model, the k-th state representation type, and the l-th obser-

vation type as its own state with the following probability:

aI =
p(Yt∣A

i
t, S

k
t ,O

l
t,X

j∗

t )
∑∣At∣

i=1

∑∣Mt∣
j=1

∑∣St∣
k=1

∑∣Ot∣
l=1 p(Yt∣A

i
t, S

k
t ,O

l
t,X

j∗

t )
.

(19)

5. Experimental Results

Using the 7 datasets which are publicly available and 4

datasets made by us, our method (VTS) 2 was compared

with five different tracking methods: standard MCMC

(MC) based on [9][15], Mean Shift (MS) [4] based on

the implemented function in OpenCV, Incremental Visual

Tracking (IVT) in [17], Multiple Instance Learning (MIL)

in [2], and Visual Tracking Decomposition (VTD) in [11].

Same initializations were set to all methods for fair com-

parison and the parameters of the methods were adjusted to

show the best performance. To obtain the tracking results

of IVT, MIL, and VTD, we used the software provided by

authors.

In all experiments, we set �S ,�O ,�A, and �M in

(7),(10),(13), and (16) to 0.05 and 
 in (11)(18) to 5, which

hardly affects on the tracking results. We used hue, satura-

tion, intensity, and edge templates as the features of VTS.

5.1. Quantitative results

5.1.1 Performance of Tracker Sampling Process

To evaluate the performance of tracker sampling process

of VTS, we compared conventional methods with VTS*,

where VTS* indicates our VTS that constructs trackers by

changing the appearance model and motion model only. If

2The description of the entire algorithm, result videos and datasets can

be found at http://cv.snu.ac.kr/.
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Figure 4. Number of trackers at each frame in skating1 se-

quence.

we test VTS directly, it is not fair comparison with VTD in

[11], because VTS considers the additional tracker elements

such as the state representation type and observation type.

Table 1 summarizes location errors on publicly available

video sequences for different tracking algorithms. Since

VTS* automatically utilizes different numbers of trackers

according to the tracking environment, we adjusted the to-

tal number of samples to that of VTS* to compare the

sampling-based methods, which are MC, IVT, and VTD.

With a small number of samples, VTS* produced simi-

lar and even better tracking results compared with VTD*,

which is the visual tracking decomposition method utiliz-

ing more samples, 800. Moreover, VTS* showed the best

tracking accuracy when the same number of samples were

utilized for all tracking methods. The better performance of

VTS* comes from the tracker sampling process, in which

VTS* changes the number of trackers and maintains only

the required trackers by adaptively selecting appropriate

ones depending on the current tracking environment.

As illustrated in Fig.4, the tracker sampling process of

VTS* adaptively changed the number of trackers accord-

ing to the tracking environment over time. For example, it

decreased the number of trackers and saved the resource at

frame #128, because the frame included almost no move-

ments and appearance changes of the target. At frame

#356, VTS* increased the number of trackers to capture

the appearance variations due to the severe illumination

changes. On the other hand, VTD wasted the resource by

always using 8 trackers, so inaccurately track the target with

a small number of samples. IVT and MIL failed to adapt the

tracker and finally missed the target, although they showed

real-time performance.

5.1.2 Performance of Overall Process

We compared conventional methods with VTS by evalu-

ating tracking accuracy. For this, we constructed highly

challenging video sequences as follows. We manually

added noise and motion blur into the soccer and skating1

sequences, and made new sequences, soccer* and skat-

ing1*. Then, the sequences include severe illumination,

viewpoint changes, occlusions, noise, and motion blur at

the same time. Moreover, we obtained new tracking se-



MS MC IVT MIL VTD VTS #N

soccer* 192 72 225 147 34 24 1224

skating1* 211 126 291 87 16 8 976

iron 98 78 104 122 30 15 1188

matrix 130 123 50 57 80 12 1036

tiger1 93 32 83 15 23 12 642

david 88 41 5 23 43 7 576

occlface 45 19 20 27 9 8 408

Table 2. Comparison of tracking accuracy. For the fair compar-

ison with [2, 11], we run our algorithm five times and averaging

the results.

Noise

Abrupt
motion

Pose
variation

Occlusion

0.23, 1.71, 3.12

Pose
variation Noise

Abrupt
motion

Figure 5. Number of each basic ingredient at each frame in soc-

cer* sequence.

quences captured from real movies, which are iron and ma-

trix sequences in which challenging appearance and motion

changes exist. In these sequences, VTS most accurately

tracked the targets as shown in Table 2. VTS robustly dealt

with noise and motion blur since it newly constructed the

robust trackers that can cope with the current tracking envi-

ronment and further considered the state representation and

observation types to construct trackers as comparison with

VTD. During the tracking process, it found the appropriate

observation types by determining the variances of the Gaus-

sian filter toward making the observation robust to noise,

and the appropriate state representation type by separating

the target into several fragments, of which combination is

robust to motion blur. Note that VTS also produced most

accurate tracking results in the conventional tiger1, david,

and occlface sequences.

To demonstrate how VTS produces the accurate track-

ing results with the understanding of its mechanisms, we

provide intermediary results of the four ingredients in VTS.

As shown in Fig.5, VTS increased the number of each in-

gredient appropriately when there were specific changes in

appearance or motion. For example, VTS constructed three

motion models, of which proposal variances are 0.23, 1.71,

and 3.12, and successfully tracked the complex motions.

To overcome severe noise in the sequence, VTS automat-

ically employed four observation types, in which the degree

of gaussian blur is different. When there were pose varia-

tions, VTS made appearance of the target insensitive to the

variations as passible by utilizing three state representation

types. With four appearance models, VTS described both

occluded and non-occluded target and robustly tracked it.

5.2. Qualitative results

Fig.6(a) shows the qualitative tracking performance with

a small number of samples. In the sequences, VTS success-

fully tracked the targets by searching the state space effi-

ciently. Our algorithm is robust to the drift problems since it

utilizes multiple trackers. Although some sampled trackers

may fail to track the target due to drift, the others success-

fully track it with different models. It is also proven math-

ematically in section 3.2 by showing that multiple trackers

produce more accurate posterior probability. On the other

hand, the results of VTD and MIL drifted into a background

with a small number of samples when there were abrupt

motions as in the frame #62 of the animal sequence, and

severe illumination changes as in the frame #304 of the

shaking sequence.

Fig.6(b) illustrates the tracking results in the highly chal-

lenging sequences, which include severe noise and mo-

tion blur as well. VTS tracked the targets accurately and

robustly although severe types of appearance changes oc-

curred at the same time. Note that VTD successfully tracked

the targets if only noise or motion blur existed, but failed

to track it, when these changes occurred with illumination

changes as in the frame #377 of the skating1* sequence,

and with occlusions as in the frame #279 of the soccer*

sequence.

Fig.6(c) presents the tracking results under the real-

world tracking environment utilizing the iron and matrix

sequences. As shown in the figure, VTS covered most vari-

ations occurring in the sequences and robustly tracked the

target. However, MIL and VTD failed to track the target ac-

curately due to the drastically severe appearance changes at

the frame #102 in the iron sequence and at the frame #054
in the matrix sequence. Moreover, MIL and VTD tracker

were frequently hijacked by other objects looking similar to

the target at the frame #045 in the matrix sequence.

6. Conclusion

In this paper, we proposed a novel tracking framework

called visual tracker sampler. Visual tracker sampler ef-

ficiently samples multiple good trackers from the tracker

space dynamically, and tracks the target robustly and suc-

cessfully utilizing them in challenging tracking environ-

ments. The experimental results demonstrated that the

proposed method outperformed conventional tracking algo-

rithms in terms of tracking accuracy and efficiency.



(a) Tracking results with a small number of samples in the animal, tiger1, occlface, shaking, and david sequences.

(b) Tracking results when there are severe noise and motion blur in the skating1* and soccer* sequences.

(c) Tracking results in the challenging iron and matrix sequences.

Figure 6. Qualitative tracking results. White, green, and purple rectangles represent tracking results of VTS, VTD, and MIL, respectively.
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