ON A CLUSTER CATEGORY OF INFINITE DYNKIN TYPE,
AND THE RELATION TO TRIANGULATIONS OF THE
INFINITY-GON

THORSTEN HOLM AND PETER JORGENSEN

0. INTRODUCTION

Let k£ be a field and let D be a k-linear algebraic triangulated category with split
idempotents. Let > be the suspension functor of D and let s be a 2-spherical object
of D, that is, the morphism space D(s, Xs) is k for 7 = 0 and ¢ = 2 and vanishes
otherwise. Assume that s classically generates D, that is, each object of D can be
built from s using (de)suspensions, direct sums, direct summands, and distinguished
triangles.

It was proved in [15, thm. 2.1] that D is uniquely determined by these properties.
As we will explain, D is a good candidate for a cluster category of Dynkin type
As. For instance, we show that there is a bijection between the cluster tilting
subcategories of D and certain triangulations of the oco-gon.

We use this to give an example of a subcategory o/ which is weak cluster til-
ting, that is, satisfies & = (X "1&)+ = +(X.&), but fails to be functorially finite.
Perpendicular subcategories are defined by

B+ ={zeD|D(b,z)=0for cach b€ B},
+% = {x€D|D(z,b) =0 for each b € A }.

The subcategory &7 is functorially finite if each object x € D has an .o/-precover
and an o/-preenvelope. An .o/-precover of z is a morphism a — z with a € o/
such that any morphism ¢’ — x with o/ € & can be factored ' — a = z. An
o7 -preenvelope is defined dually.

We also show that the cluster tilting subcategories of D form a cluster structure in
the sense of [3, sec. I1.1].

Our results for the category D complement those for the cluster category C of type
A,. Both categories are 2-Calabi-Yau and their cluster tilting subcategories form
cluster structures. The Auslander-Reiten (AR) quiver of D is ZA,, while the AR
quiver of C is a quotient of ZA,,. And finally, in D, the cluster tilting subcategories
can be classified in terms of triangulations of the oo-gon, while in C they can be
classified in terms of triangulations of the (n + 3)-gon. See [3], [4], [6], [11], and
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[15]. For background on AR theory, see for instance [11, sec. 1 and 2] and [18, sec.
I[.1 and 1.2].

The definition of D makes it clear that it is a very canonical object, but it is also
ubiquitous. There are many ways to realise D. If k is perfect, then by using the
methods of [13], one can show that D is the orbit category Df(mod T')/S¥72. Here
I' is a quiver of type A, with zigzag orientation and S and ¥ are the Serre and
suspension functors of the finite derived category Df(modI'). This way of obtaining
D is completely analogous to the definition of the cluster category of type A,.

However, using that D is unique, one can see that D is also the compact derived
category D(A) of the Differential Graded cochain algebra A = C*(S?; k) where S*
is the 2-sphere, and this is how it was studied in [11]. Finally, D is the finite derived
category DI(k[T]) where k[T] is viewed as a Differential Graded (DG) algebra with
T placed in homological degree 1 and zero differential, and this is the construction
of D we will use here because it is well suited for concrete computations. For
background on DG homological algebra, see [2, chp. 10].

Let us now explain our results in greater detail. Our first main result is the following.

Theorem A. There is a bijection between weak cluster tilting subcategories of D
and triangulations of the oo-gon.

By a triangulation of the co-gon, we mean a maximal set of non-crossing arcs
connecting non-neighbouring integers: We adopt the philosophy that the integers
can be viewed as the vertices of the oco-gon, and that the arcs can be viewed as
diagonals. There are two obvious ways to achieve such maximal sets; they are
shown in the following two sketches where the arcs must be continued ad infinitum
according to the indicated pattern. First a ‘leapfrog’ configuration which is locally
finite in the sense that only finitely many arcs end in each integer.

(1)

Then a ‘fountain’ where infinitely many arcs going to either side end in a single

integer.
LTINS .

Weak cluster tilting subcategories are particularly important if they are functorially
finite. Then they are called cluster tilting subcategories and the corresponding
quotient categories are abelian by [14, sec. 2] and [16, thm. 3.3]. Our second main
result is the following.

Theorem B. A weak cluster tilting subcategory of D is functorially finite if and only
if the corresponding triangulation of the co-gon is locally finite or has a fountain.
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The point is that there are triangulations of the co-gon like the following, which
have a ‘right-fountain’ and a ‘left-fountain’ but do not satisfy the conditions of
Theorem B.

This gives an example of a weak cluster tilting subcategory of D which is not
functorially finite; see Example 4.5.

If o/ is a cluster tilting subcategory of D, then we will call the collection A of
indecomposable objects of o7 a cluster. Since &/ = add A, the subcategory and the
corresponding cluster contain the same information. Our third main result is the
following.

Theorem C. The clusters form a cluster structure in D.

The notion of a cluster structure was introduced in [3] and we have reproduced it
in Section 5. Some of the salient features are that if A is a cluster and a is an
indecomposable object in A, then a can be replaced with a unique other indecom-
posable object a* of D such that a new cluster A* results, and that passing from
the quiver of add A to the quiver of add A* is given by Fomin-Zelevinsky mutation
at a in the sense of [7, sec. §].

There are several viewpoints on the results of this paper.

(1) As mentioned, they complement what is known about the cluster category of
type A,.

(2) Theorems A and B show that D can be viewed as a categorification of triangu-
lations of the co-gon. Such triangulations have not, to our knowledge, been studied
elsewhere, but they seem to be interesting combinatorial objects.

(3) Theorem C shows that D provides a cluster tilting theory for the abelian ca-
tegories of the form D/o/ where <7 is a cluster tilting subcategory of D. Namely,
we have D/o/ ~ mod <7 by [14, sec. 2] and [16, cor. 4.4], and Theorem C says
that the quivers of &/ = add A and &/* = add A* are related by Fomin-Zelevinsky
mutation at a, so passing from D/./ ~ mod &7 to D/&7* ~ mod &7* can be viewed
as ‘cluster tilting at a’. Some of the categories mod .o/ are hereditary categories of
the form rep I' where I is an infinite quiver; see Example 5.4. Such categories were
investigated by Reiten and Van den Bergh in [18] and form an important branch in
the taxonomy of hereditary categories.

Other aspects of the category D have been studied in the literature. It is equivalent
to the category € which appeared in [14, sec. 2.1] where a cluster tilting sub-
category was also shown. The Hall algebra of D was computed in [15], and some
relations with algebraic topology were investigated in [11] and [17].

The paper is organised as follows. Section 1 gives basic information on the category
D. Section 2 investigates the morphisms of D. Section 3 gives the information we
need on triangulations of the oo-gon. Section 4 proves Theorems A and B, and
Section 5 proves Theorem C.
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Section 6 presents some questions; for instance, are there analogous results for
cluster categories of type A when A is another infinite Dynkin quiver than A..?

Notation 0.1. We will join a common abuse of terminology by using ‘indecompos-
able object’ synonymously with ‘isomorphism class of indecomposable objects’, and
by viewing two subcategories of D as equal if they have the same essential closure.

1. BASIC PROPERTIES OF THE CATEGORY D

This section defines the category D and recalls a few basic properties.

Setup 1.1. Throughout, k is a field and R = k[T is the polynomial algebra. We
view R as a DG algebra with zero differential and 7" placed in homological degree
1.

Our main object of study is
D = D'(R),

the derived category of DG R-modules with finite dimensional homology over k.
The suspension, Serre functor, and AR quiver of D will be denoted by ¥, S, and Q.

The next three remarks sum up some results on D from [11, section 8 in particular|.

Remark 1.2 (Elementary properties). The category D has finite dimensional Hom
spaces over k and split idempotents, so it is Krull-Schmidt. It is a 2-Calabi-Yau
triangulated category, that is, its Serre functor is S = X2. Accordingly, the AR
translation is 7 = SY 71 = X,

Remark 1.3 (Indecomposable objects). For each integer r > 0, we have a DG
R-module

X, = R/(T™)
which is concentrated in homological degrees from 0 to r. The indecomposable
objects of D are ¥/ X, for j, r integers, r > 0.

There is an obvious short exact sequence of DG modules 0 — Y™ "'R — R — X, —
0 which induces a distinguished triangle

MR- R— X, - YR (4)

in D. Hence the DG module X, is quasi-isomorphic to the mapping cone C, of
YR — R.

Denote by (—)" the operation of forgetting the differential. Then R" is a graded
algebra, C? is a graded R*-module, and the construction of the mapping cone gives

Ch= RP@ YR

Denoting the generators of the two copies of R by ey and e,49, the differential of
C, is given by
8(60) = 0, @<€r+2> = TT+160.

It is easy to see that C). is a minimal semi-free resolution of X,.
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Remark 1.4 (Auslander-Reiten quiver). The AR quiver @ of D is ZA., and the
indecomposable objects are arranged in the quiver as follows.

NN SN SN SN S
YOX, YNlX,  Y72X, %
\ SN SN SN S

N O S

¥iX, ¥0X, Y, Y2X, Y3X, Y 1X,
SN SN SN SN NN
E Xl EoXl E 1X1 E_zXl 2_3X1 e

\ N N N S N SN S

22X0 ! Xo EOXO EilX() EiQXO EiSXO

We will use the following standard coordinate system on Q).

NN N SN SN
(5,00 (=4,1)  (=3,2) (-2,3) (~1,4) -
JON N N N NS

(=5,-1) (—=4,0) (=3,1) (-2,2) (-1,3)
NN N N N SN
(—4,-1) (-3,0) (—2,1) (—1,2) (

NN SN N AN NS

(—4,-2) (=3,-1) (-2,00 (-1,1) (0,2 (1,3)

Accordingly, coordinate pairs and indecomposable objects will be related by
(m,n) =3"Xp_m—a.
Note that in terms of coordinates, the actions of ¥ = 7 and S = X2 on objects are
YX(m,n)=m—-1,n-1), S(m,n)=(m—2,n—2).

2. MORPHISMS IN THE CATEGORY D

This technical section provides detailed information on the morphisms of the cate-
gory D.

Definition 2.1. Let z = (7,7) be a vertex of the AR quiver @ of D. We define
(unbounded) subsets H~(x) and H*(z) of vertices of @ which can be sketched as

follows.

N /
N /
N /

N H(x) H*(x) y

(i-1,j-1)  (4,5) (i+1,54+1)

LN

- = (i—1,i41) G-1j+0) —————— — — —
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The subsets include the edges. In a more rigorous vein, we have
H (z)={(mn)m<i—1,i+1<n<j—1}
H(z)={(m,n)|[i+1<m<j—1, j+1<n}.

We write H(x) = H (x) U H (x).

The following proposition says that an indecomposable object x has non-zero mor-
phisms to the indecomposable objects y in two regions like the ones in figure (5),
with x at the leftmost vertex of the right hand region.

Proposition 2.2. Let x and y be indecomposable objects of D. Then

|k forye H(Xx),
D(z,y) = { 0 otherwise.

Proof. Using a power of X, we can shift  and y horizontally on the quiver without
loss of generality, and so we can assume

r=(—r—20)=X,.
We will write
y=(m,n)=X""X,_ o
Taking Hom of the distinguished triangle (4) into the object ¥7"X,,_,, 2 gives a
long exact sequence containing
DR, Y7 X, m2) = DX, 27" X, na)
— D(R, X "Xy o) = DR, YT X, o)
which is
Hpr2(Xnom—2) = D(2,y) = Ho(Xoom—2) — Hupr1 (Xnm2)- (6)

Consider the sketch of the AR quiver below. It is cumbersome, but elementary, to
verify from (6) that D(x,y) is k when y is in the region (2) (which includes the edges

and is equal to H*(3xz)). Also, D(x,y) is 0 when y is in region (1) (which does not
include the diagonal edge) or region (3) (which includes the dotted edge, but not
the other one).

Yr Yz w

Serre duality says D(a,b) = D(b, ¥%a)V. By applying this to the previous results,
we get that D(z,y) is k when y is in the region @ (which includes the edges and
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is equal to H~(3z)). Also, D(z,y) is 0 when y is in region (/) (which does not

include the diagonal edge) or region @ (which includes the dotted edge but not
the other one).

To complete the proof, we must show that D(x,y) is 0 when y is on the wavy line
through Xz. The vertices on this line have the form (—r — 3, —r —1+1t) for t > 0,
that is, they are the objects "1 ~*X, for t > 0, and we must show that a morphism
X, — YH1=X, in D is 0. Such a morphism is a homotopy class of morphisms of
DG modules

v Cp— XX

where C, is the minimal semi-free resolution of X, from Remark 1.3.

Recall that C, has generators ey and e, 5 in homological degrees 0 and r + 2. The
DG module X7t X, is concentrated in homological degrees from r+1—t to r -+ 1.

If r+1—¢ >0, then X"*'7'X, is 0 in each degree where C, has a generator, so
v =0 is clear.

If r+1—t <0, then X"~ X, is 0 in degree r+2, but it is & in degree 0. Potentially,
v(eo) could be non-zero. However,

T4y (e0) = AT e0) = 1D(ersa) = D(ersa) & 9(0) =0
where (a) is because X"t X; is 0 in degree r + 2. This implies y(eg) = 0 because
Y17t X, is equal to k in degree r + 1, and hence v = 0. O

Corollary 2.3. Let x and y be indecomposable objects of D. The following are
equivalent.

Proof. (i), (ii), and (iii) are equivalent by Proposition 2.2. Using Serre duality, (i)
is equivalent to D(y, ¥%z) # 0. Using (iii), this is equivalent to Y%z € H(Xy), that
is x € H(X'y), and this is (iv). O

Remark 2.4 (Forward morphisms). Proposition 2.2 and Corollary 2.3 show that
there are two distinct types of non-zero morphisms going from x to indecomposable
objects of D: Those going to objects in H*(Xx) will be called forward morphisms,
and those going to objects in H~(Xx) will be called backward morphisms. The
backward morphisms cannot be seen in the AR quiver; they are in the infinite
radical of D.

The forward morphisms have an easy model: Up to multiplication by a non-zero
scalar, they are induced by certain canonical morphisms of DG modules. Namely,
consider again the case + = (—r — 2,0) = X,. Then x is a DG module which is
concentrated in homological degrees from 0 to r. Let y = (m,n) = X7"X,,_,,_2
be in the region H*(Xz) whence —r —2 < m < —2 and n > 0. Then y is a DG
module which is concentrated in homological degrees from —n to —m — 2, and we
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have —n < 0 and 0 < —m — 2 < r. We can sketch the non-zero parts of the DG
modules = X, and y = X" X,,_,,_» as follows, where the numbers at the top are
homological degrees, decreasing from left to right, and where each horizontal line
indicates the degrees where a module has non-zero components.

r —m — 2 () —-n

X,

|

X—m—2

[

-n
2 n—m-—2

We have included the DG module X_,,,_5 in the sketch, and it is clear that there is
a surjective and an injective morphism of DG modules as indicated. Their compo-
sition is a canonical morphism of DG modules which induces a forward morphism
xr — y in D.

Lemma 2.5. Let x, y, and z be indecomposable objects of D such that y,z €
H*(3z) and z € HT(Xy), for instance as in the following sketch.

(i) The composition of non-zero morphisms © — y and y — z is non-zero.

(i) Lety L, 2 be a non-zero morphism. Then each morphism x — z factors as

f
T — Y= Z.

Proof. (i). Since we have y € H*(Xz) and z € H*(Xy), the non-zero morphisms
x — y and y — z in D are forward morphisms. By Remark 2.4, up to multiplication
by non-zero scalars which can be ignored, they are induced by canonical morphisms
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of DG modules which we can indicate as follows.

N=<—C=<— 8

It is clear that these compose to a canonical morphism z — z which induces a
(non-zero) forward morphism x — z in D as desired.

(ii). We must show that D(zx, f) : D(x,y) — D(z, 2) is surjective. Since each non-
zero Hom set is isomorphic to k, it is enough to see that D(z, f) is non-zero, and

this follows from part (i) because it sends z — y to the composition x — y Lo

Lemma 2.6. Let x and y be indecomposable objects of D.

(i) y € H"(Xz) & Sz € H (Xy).

(i) y € H (Xx) & Sz € HT(Xy).
Proof. (i) Suppose y € H(Xx); then there is a non-zero morphism x — g in D
by Corollary 2.3. The Serre duality isomorphism D(z,y) = D(y, Sz)¥ implies that

there is a non-zero morphism y — Sz so we have Sz € H(Xy). To establish the
implication =, it remains to see that Sx is in H~(Xy), not HT(3y).

However, if x = (4, j) then the shape of the region H™(3z) implies y = (i+p,j +q)
for some p,q > 0. This again means that the points of HT(Xy) have the form
(it+p+p,j+q+¢) for some p/, ¢ >0, but Sx = (i —2,j — 2) is not of this form
so we must have Sz in H~ (3y).

The implication < is proved by a similar argument.
(ii) We have

ye H (Xr) < SS'lye H (Sz) & x € HY (DS 1y) & Sz € H (Sy)
where the second biimplication is by part (i). O

Lemma 2.7. Let x, y, and z be indecomposable objects of D such that y,z €
H=(Xx) and z € H"(Xy), for instance as in the following sketch.

AN ~ 7
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Let y L, 2 be a non-zero morphism. Then each morphism © — z factors as v —

f
Y= z.

Proof. We must show that D(z, f) : D(z,y) — D(z, z) is surjective. Using Serre
duality, it is the same to show that D(f, Sz) : D(z,Sz) — D(y, Sz) is injective.

This map sends z S, Sz to the composition y Lo 5 Sa However, we have
z € H™(Xx) so Lemma 2.6(ii) says So € H*(Xz). Hence, if  is non-zero then it is

a forward morphism. So is f since z € H*(Xy), and then y 2, 2 % Sz is non-zero
by Lemma 2.5(i) since we have Sz € H"(Zy); this holds by Lemma 2.6(ii) again
since y € H™ (Xx). O

3. TRIANGULATIONS OF THE 0o-GON

This section studies triangulations of the oco-gon, that is, maximal sets of non-
crossing arcs connecting non-neighbouring integers, and their relation with the ca-
tegory D.

Definition 3.1. An arc is a pair (m,n) of integers with m < n — 2.
The arc (m,n) is said to end in each of the integers m and n.
Two arcs (m,n) and (p,q) are said to cross if we have either m < p < n < q or

p<m<qg<n.

The definition is intended to capture our geometric intuition in which an arc is
drawn as a curve between two integers on the number line as follows.

Two arcs can be drawn as non-crossing curves precisely if they do not cross in the
sense of the definition, with the proviso that curves which only meet at their end
points are not viewed as crossing.

In an informal sense, it is reasonable to view the integers as being the vertices of an
oo-gon and to view arcs as being diagonals between vertices. Hence a maximal set
of non-crossing arcs can be viewed as a triangulation of the oo-gon. Some typical
ways of achieving such maximal sets are shown in sketches (1), (2), and (3) in the
introduction. The sketches inspire the following definition.

Definition 3.2. Let 2 be a set of arcs. If for each integer n there are only finitely
many arcs in 2 which end in n, then 2 is called locally finite.

If n is an integer such that 2 contains infinitely many arcs of the form (m,n), then
n is called a left-fountain of 2.

If n is an integer such that 2 contains infinitely many arcs of the form (n,p), then
n is called a right-fountain of 2.

If n is both a left- and a right-fountain of 2, then it is called a fountain.
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It turns out that if a maximal set of non-crossing arcs has a right-fountain then it
also has a left-fountain and vice versa; we owe this fact to Collin Bleak. However,
all we need here is the following more modest result.

Lemma 3.3. Let A be a mazximal set of non-crossing arcs. Then A has alt most
one right-fountain and at most one left-fountain.

Proof. Without loss of generality we can let m be a right-fountain of 2l and must
show that it is the only one, so let p # m be an integer. If p > m then we can pick
n > p such that (m,n) is in A. An arc (p, q) will cross (m,n) as soon as g > n.

So 2l contains only finitely many arcs of the form (p, ¢) and p is not a right-fountain.

If p < m then an arc (p, ¢) can only be in 2 if ¢ < m, for if ¢ > m then it is possible
to pick an arc (m,n) in 2 with n > ¢, and then (m,n) and (p, q) cross.

N

Again 2 contains only finitely many arcs of the form (p,¢) and p is not a right-
fountain. 0

Remark 3.4. An ordered pair of integers (m,n) with m < n — 2 can be viewed
as an arc. Using the coordinate system of Remark 1.4, it can also be viewed as a
vertex of the AR quiver @) of D, that is, an indecomposable object of D.

So there is a bijection between arcs and indecomposable objects of D.

This induces a bijection between sets of arcs and sets of indecomposable objects
of D. But such sets correspond bijectively to subcategories of D which are closed
under direct sums and direct summands, the bijection being given by A — add A.

So there is a bijection between sets of arcs and subcategories of D which are closed
under direct sums and direct summands.
It is easy to check that this plays together with the regions H(z) as follows.

Lemma 3.5. Let x and y be indecomposable objects of D. The following conditions
are equivalent.

(i) x € H(y).
(i) y € H(x).
(iii) The arcs corresponding to x and y cross.

The following is an immediate consequence.

Lemma 3.6. Let x and y be indecomposable objects of D. Then
D(z,y) # 0 < the arcs corresponding to x and X'y cross.
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Proof. By Corollary 2.3, we have D(x,y) # 0 if and only if z € H(X'y), and
by Lemma 3.5, this is the same as for the arcs corresponding to z and X!y to
CrOSS. U

4. CLUSTER TILTING SUBCATEGORIES OF D

This section proves Theorems A and B from the introduction; see Theorems 4.3
and 4.4.

Cluster tilting subcategories were introduced by Iyama, see [4], [8], [9], [10], and
[14].

Definition 4.1. A subcategory &7 of D is called weak cluster tilting if it satisfies
o = (X71)t and o = +(Z7). (In fact, either equality implies the other because
D is a 2-Calabi-Yau category.)

A subcategory &7 of D is called cluster tilting if it is weak cluster tilting and func-
torially finite.

Remark 4.2. Let & be a subcategory of D which is closed under direct sums and
direct summands. The inclusion

o C (et (7)

holds precisely if the presence of an indecomposable object a in .o/ forbids an inde-
composable object z from being in &7 when there is a non-zero morphism ¥ ~ta — z.

Hence it follows from Corollary 2.3 that the inclusion (7) is equivalent to the follow-
ing condition: If @ is in &7 then the indecomposable objects in H(XXta) = H(a)
are forbidden from being in 7.

We therefore sometimes refer to the H(a) as forbidden regions. Note that, in par-
ticular, a weak cluster tilting subcategory of D satisfies (7).

Theorem 4.3. Let &7 be a subcategory of D which is closed under direct sums and
direct summands. Let 2 be the corresponding set of arcs under the bijection of
Remark 3.4.

Then of is a weak cluster tilting subcategory of D if and only if A is a mazximal set
of mon-crossing arcs.

Proof. By Remark 4.2, the inclusion (7) is equivalent to the condition that if a is
in o/ then the objects in H(a) are forbidden from 7.

An indecomposable object a corresponds to an arc a, and by Lemma 3.5 the inde-
composable objects in H(a) correspond precisely to arcs crossing a. So the subca-
tegory o7 satisfies (7) if and only if it corresponds to a set of non-crossing arcs.

It follows that subcategories &7 maximal among the ones satisfying (7) correspond
to maximal sets of non-crossing arcs. But it is easy to check that such maximal
subcategories are precisely the ones with & = (X71.&)*, and these are the weak
cluster tilting subcategories of D. O
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Theorem 4.4. Let o/ be a weak cluster tilting subcategory of D. Let A be the
corresponding maximal set of non-crossing arcs under the bijection of Remark 3.4.

Then <f is functorially finite (that is, &7 is a cluster tilting subcategory of D) if and
only if A is (1) locally finite, or (ii) has a fountain.

Proof. We remind the reader of Corollary 2.3 on the relation between existence of
non-zero morphisms in D and membership of the regions H™ and H~. This will be
used repeatedly in the proof.

We must show that &7 is functorially finite if and only if 2 satisfies condition (i) or
(ii) in the theorem. By [16, lem. 3.2.3] and its dual, it is enough to show that < is
precovering or preenveloping if and only if 2 satisfies (i) or (ii).

Suppose that (i) holds. Then it follows easily from Lemma 3.6 that for each inde-
composable object x of D, only finitely many indecomposable objects of o7 have
non-zero morphisms to x, and this implies that .o/ is precovering.

Suppose that (i) does not hold; that is, 2 has a right- or a left-fountain. Without
loss of generality we can suppose that 2 has a right-fountain which by Lemma 3.3
is the only right-fountain of 2. We will show that .7 is precovering if and only if
the right-fountain is also a left-fountain.

Suppose first that o7 is precovering. The right-fountain of 2 is an integer n for
which there are infinitely many arcs of the form (n,p) in 2. These arcs give a
collection P of indecomposable objects in ./ which sit on a diagonal half line r in
the AR quiver @@ of D. The following sketch of ) shows r along with some of the
indecomposable objects a of P and, in dotted lines, their regions H(Xa).

Note that the regions H~(3a) for a in P share the half line s as a common edge,
while each of the line segments ¢; is an edge of a region H*(3a) with a in P.

We are aiming to show that n is also a left-fountain, that is, there are infinitely
many arcs in 2 of the form (m,n). This is the same as showing that there are
infinitely many indecomposable objects of .« which are on the half line s.

Let x be an indecomposable object in the region bounded by the diagonal half lines
s and s’ and let b — x be an &/-precover. We can assume that the morphism b — =
is non-zero on each direct summand of b; in particular, each direct summand of b
belongs to H(X 1x).
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It is easy to see that x is in H~ (Xa) for infinitely many a in P, so there are infinitely
many a in P with a non-zero morphism a — z. Each of these morphisms factors
through b — =z, so there is an indecomposable direct summand ¢ of b such that
infinitely many a in P have non-zero morphisms to c¢. Hence ¢ is certainly in H(Xa)
for some a in P. Moreover, since ¢ is in .o/, Remark 4.2 says that ¢ must be outside
the forbidden region H(a) for each a in P. The following sketch shows the regions
H(Xa) (ordinary lines) and H(a) (wavy lines) for an indecomposable object a.

N4

Combining this with the previous sketch shows that there are only three possible
places for c¢: It is either on one of the line segments ¢;, or on the half line r, or on
the half line s.

Now, there are infinitely many a in P with non-zero morphisms to ¢; that is, infi-
nitely many a in P which are in H(X7'¢). And it is easy to see from the sketch (8)
that this does not happen if ¢ is on an ¢; or on r, so ¢ must be on s. Moreover, ¢ is a

direct summand of b, so ¢ is in H(X"'z). Combining the sketch (8) with H(X'x),
indicated in wavy lines, gives the following.

u

This shows that the indecomposable object ¢ must be above the line segment t.

For each = we get a ¢ in & which is on s and above the line segment ¢ corresponding
to x. By moving x out along the half line u, we can clearly force infinitely many
distinct ¢’s. It follows that, as desired, there are infinitely many indecomposable
objects of .« which are on s.

Suppose next that the right-fountain of 2 is also a left-fountain. Let z be an
indecomposable object of D; we will construct a o/-precover of x. Consider again the
sketch (8). The arcs going right, respectively left from the fountain of 2 correspond
to indecomposable objects of ./ on the half lines r, respectively s, so each of r
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and s contains infinitely many indecomposable objects of /. The other arcs in 2
correspond to indecomposable objects of &7 away from r and s.

Consider the set of indecomposable objects a of <7 which have non-zero morphisms
to x, and divide it into disjoint subsets R, S, and T according to whether a is on
r, s, or neither. We will construct a morphism a, — z with a, € & such that
each a — z with a € R factors as a — a, — x. We will also construct morphisms
as — x and a; — x with the analogous properties with respect to S and T'; then an
o/ -precover can be obtained as a, ® a, B a; — x.

If aset R, S, or T is finite, then the construction of the corresponding morphism
a, — T, ag — T, or a; — x is trivial.

The set T is always finite: Suppose that a is in T" and let a be the arc corresponding
to a. There is a non-zero morphism a — = so Lemma 3.6 gives that a crosses the
arc ¢ = (4, j) corresponding to X~'z. Hence a ends in an integer m with i < m < j.
Since a is in T, it is in 2/ but not on one of the half lines r and s; this means that
a is an arc which is in 2 but does not end in the fountain of . In particular, m is
not the fountain of 2. We conclude that each of the finitely many possible values
of m is an integer where only finitely many arcs of 2 end, and it follows that there
are only finitely many arcs a as described. That is, T" has finitely many elements.

We are left to deal with the cases of R and S being infinite.

Suppose that R is infinite. So there are infinitely many indecomposable objects a
of &/ on the half line r with non-zero morphisms to z, that is, with z in H(Xa). By
inspecting the sketch (8) it can be seen that x is in the region bounded by the half
lines s and s’. However, there are infinitely many indecomposable objects of < on
the half line s, and so we can chose one, a,, which has x € H*(Xa,) as indicated
here.

Pick a non-zero morphism a, — x. If a is in R then it has a non-zero morphism
a — x, and then we have ©+ € H~(X¥a) as in the sketch. But it is clear that
a, € H™(Xa) and so Lemma 2.7 says that a morphism a — « factors as a — a, — x,
as desired.
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Suppose that S is infinite. So there are infinitely many indecomposable objects a of
</ on the half line s with non-zero morphisms to x, that is, with = in H(Xa). The
following sketch shows some of the indecomposable objects a on s and, in dotted
lines, their regions H(Xa). Since z is in infinitely many of these regions, it can be
seen that it is again in the region bounded by the half lines s and s'.

Let a, be the indecomposable object in S which is closest to the end of s and pick a
non-zero morphism ay — . It is clear that we have z € H*(3a,). If a is in S then
it has a non-zero morphism a — x, and again x € H*(Xa). The following sketch
shows the whole situation.

Qs

But it is clear that as € H*(Xa) and so Lemma 2.5(ii) says that each morphism
a — x factors as a — a;, — x, as desired. 0

Example 4.5. Theorem 4.4 shows that there are weak cluster tilting subcategories
of D which are not cluster tilting; that is, they are not functorially finite.

A concrete example comes from the maximal set of non-crossing arcs in the sketch
(3) in the introduction, which corresponds to the weak cluster tilting subcategory
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</ whose indecomposable objects are marked by bullets here.

NN ININ NN SN SN S
[ ] O O O O (o] (] [ ]
N NN N N N N N
s [ ] O O O (o] ] [ ...
NN N NN NSNS N S
@) [ ] O O O (o] [ (]
NN N N N N N N
s O [ ] O O o [ ] (] ...
NN N NN NSNS NS
@) @) [ ] T @) [ ] (] (o]
In fact, it is not hard to adapt the arguments in the proof of Theorem 4.4 to show
that there is no /-precover of the indecomposable object x.

5. THE CLUSTER STRUCTURE OF D

This section proves Theorem C from the introduction; see Theorem 5.2.

Definition 5.1. For each cluster tilting subcategory o7 of D we can consider the
set A of indecomposable objects of &7 whence .« = add A. We will refer to the sets
A as clusters.

The clusters are said to form a cluster structure if the following conditions are

satisfied; cf. [3].

(i) If A is a cluster, then each of its indecomposable objects a can be replaced
with a unique other indecomposable object a* of D such that a new cluster
A* results.

(ii) There are distinguished triangles a* — b — a and a — ¥ — a* in D
where the left-hand morphisms are add(A\ {a})-envelopes and the right-
hand morphisms are add(A\{a})-covers.

(iii) If A is a cluster, then the quiver of add A has no loops or 2-cycles.

(iv) Passing from the quiver of add A to the quiver of add A* is given by Fomin-
Zelevinsky mutation at a in the sense of [7, sec. §].

Theorem 5.2. The clusters form a cluster structure on D.

Proof. Remark 1.2 says that D is a 2-Calabi-Yau category and it follows from The-
orem 4.4 that there exist cluster tilting subcategories of D. Hence by [3, thm.
[.1.6] it is enough to show that for each cluster A, the quiver of the cluster tilting
subcategory & = add A has no loops or 2-cycles.

It is clear that there are no loops: If a is in A, then @7 (a,a) = D(a,a) = k by
Corollary 2.3, so each non-zero morphism a — a is an isomorphism and so not
irreducible.

To show that there are no 2-cycles in the quiver of &/ = add A, we will show the
stronger claim that given a and b in A with 27 (a, b) # 0, it follows that <7 (b, a) = 0.
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The following sketch shows the regions H(Xa) (straight lines) and H(a) (wavy
lines).

Ya a

Since D(a,b) = <7 (a,b) # 0, the indecomposable object b is in the region H(Xa)
by Corollary 2.3. Since a and b are both in the cluster tilting subcategory <7, the
object b is outside the region H(a) by Remark 4.2.

It follows that in the sketch, b must be either on the line segment ¢ or on one of

the half lines 4 and v, and in any of these cases it is easy to verify that a is outside
H(%b), that is, &7 (b,a) = D(b,a) = 0. O

Example 5.3. Passing from the cluster A to A* is referred to as cluster mutation
at a. It corresponds to an obvious combinatorial mutation of maximal sets of arcs.

For instance, recall the leapfrog configuration.

- =~ (9)

Under the bijection of Remark 3.4, this corresponds to the following cluster A in
D; the dashed arc corresponds to the object a.

NSNS\ NS
SN
NSNS N o
SN NN
NSNS NN NS
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Removing the dashed arc from (9) creates a ‘quadrangle’, and there is clearly a
unique other arc which bisects it to form a new maximal set of non-crossing arcs.

Under the bijection of Remark 3.4, this corresponds to the following cluster A*; the
dashed arc corresponds to the object a*.

NSNS\
IINSN SN
NSNS\ NS
NSNS NN
NSNS NSNS NS

Example 5.4. If &7 is a cluster tilting subcateory of D, then D/« is an abelian
category by [14, sec. 2] and [16, thm. 3.3], and we have D/« ~ mod & by [14, sec.
2] and [16, cor. 4.4].

In the case of the &7 given by the sketch (10) above, it is easy to check that o is
the path category of its quiver I'.

I'= e ° ° a °

So mod .« is equivalent to rep I, the category of finitely presented representations
of I'. Such hereditary categories were studied in [18].
Likewise, o7 is the path category of its quiver I'*.

I'= e ° ° a* °

So mod &7 is equivalent to repI'*, and cluster mutation at a has changed rep I to
rep ['*.

6. QUESTIONS

Let us end the paper by posing some questions.

(1) Are there analogues of the above results for cluster categories of type A when
A is another infinite Dynkin quiver than A..7?

(2) Section 5 gives the means to do cluster tilting of abelian categories of the form
D/ where & is a cluster tilting subcategory. Which abelian categories have this
form? In particular, which hereditary abelian categories do?
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(3) Can D be viewed as a covering category for the tubular 2-Calabi-Yau categories
studied in [5, sec. 2|7

(4) Do the above results generalize to ‘higher cluster categories of type A,’7 See
[1], [12], [19], and [20] for the type A, case.
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