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ABSTRACT
Associative classification is a well-known technique for struc-
tured data classification. Most previous works on associative
classification use support based pruning for rule extraction,
and usually set the threshold value to 1%. This threshold
allows rule extraction to be tractable and on the average
yields a good accuracy. We believe that this threshold may
be not accurate in some cases, since the class distribution in
the dataset is not taken into account. In this paper we in-
vestigate the effect of support threshold on classification ac-
curacy. Lower support thresholds are often unfeasible with
current extraction algorithms, or may cause the generation
of a huge rule set. To observe the effect of varying the sup-
port threshold, we first propose a compact form to encode a
complete rule set. We then develop a new classifier, named
L3
G, based on the compact form. Taking advantage of the

compact form, the classifier can be built also with rather
low support rules. We ran a variety of experiments with
different support thresholds on datasets from the UCI ma-
chine learning database repository. The experiments showed
that the optimal accuracy is obtained for variable threshold
values, sometime lower than 1%.

1. INTRODUCTION
Association rules [1] describe the co-occurrence among

data items in a large amount of collected data. Recently,
association rules have been also profitably exploited to per-
form classification. Classification rule mining is the discov-
ery of a rule set in the training database to form a model of
the data, the classifier. The classifier is then used to classify
appropriately new data for which the class label is unknown
[18]. Differently from decision trees, association rules con-
sider the simultaneous correspondence of values of different
attributes, hence allowing to achieve better accuracy.

Different approaches have been proposed for associative
classification such as CAEP [10], CMAR [12], CBA [13]
and ADT [19]. Unfortunately, in large or highly correlated
datasets, the rule extraction algorithms have to deal with
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the combinatorial explosion of the solution set. This makes
(i) frequently unfeasible (or at least time consuming) the
rule extraction process, (ii) difficult to optimally exploit the
generated rules, and (iii) extremely complex for a human to
analyze the rules.

To tackle this problem, various techniques have been pro-
posed to prune the rule base obtained by association min-
ing. These techniques discard either rules that are redun-
dant from a functional point of view, or that achieve less
accuracy in classification according to parameters such as
support, confidence, and chi-square test [12, 13, 19]. On the
other hand, recently a novel classification algorithm named
L3 (Live and Let Live) [2] has been proposed. L3 is based
on the idea that most pruning techniques may discard also
useful knowledge together with low quality rules. Hence, L3

performs lazy pruning, i.e., a very reduced amount of prun-
ing, by eliminating only “harmful” rules (rules that only
produce wrong classification results in the training data).

In this paper we address the issue of “use and abuse” of
pruning techniques by considering pruning based on support
constraints. A common position in previous approaches in
the area of associative classification is pruning rules with
support below 1%. This threshold represents a sort of trade
off which allows achieving good accuracy in many datasets,
coupled with limiting the complexity of the rule extraction
process and avoiding the generation of a huge number of
rules. In this paper we ran experiments with variable sup-
port thresholds. These experiments showed that the 1%
support threshold may sometime be far from optimal.

Some works [14] already pointed out that this reference
threshold may be not enough accurate in some cases, since
the class distribution in the dataset is not taken into ac-
count. Hence, rules for classes with low frequency are pruned,
even when the confidence of these rules is very high. As an
alternative, it has been proposed to use multiple support
thresholds [14] in order to limit the number of extracted
rules for frequent classes, but at the same time not to hide
infrequent classes.

We believe that, in the context of classification rules, a di-
rection not yet well investigated to cope with this problem
is the representation of rules in a compact form. Differently
from associative classification, for association rule mining
several methods have been proposed to tackle with the gen-
eration of a huge number of itemsets. Some methods mine
maximal frequent itemsets [4], but many approaches have
been proposed to mine frequent closed itemsets [3, 15, 17,
21]. Closed itemsets allow the generation of all the frequent
itemsets with their frequency. As an alternative to closed
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itemsets, δ-free itemsets [6] and disjunctive rules [8] have
been proposed as a condensed representation of the item-
sets in a dataset. In [16, 20], closed itemsets have been used
to compute a set of association rules from which all asso-
ciation rules can be generated. In associative classification,
a form to encode the relevant knowledge in a classification
rule set is proposed in [11]. The idea of using δ-free sets for
classification purposes has been introduced in [9].

The present paper proposes an approach to encode a com-
plete rule set. The proposed compact form relies on the no-
tion of closed itemset for rule set compression, and is based
on the concept of essential rule presented in [11]. The repre-
sentation proposed in this paper avoids information loss and
allows regenerating the complete rule set. Experiments show
that the size of the compact form is significantly smaller than
the complete rule set.

We then propose the novel classifier L3
G, which is based on

the compact representation of the rule set. L3
G incorporates

the idea of lazy pruning presented in [2], and extends it
by providing a wider selection of rules obtained by allowing
lower support thresholds. By means of the compact rule
set representation, L3

G allows us to analyze the effect of the
support threshold on the achieved accuracy.

The paper is organized as follows. Section 2 introduces
the basic definitions and notations in associative classifica-
tion. Section 3 characterizes the compact representation.
Section 4 presents L3

G describing how the compact form is
used to build the classifier. Section 5 presents a set of exper-
iments to evaluate the effect of varying support thresholds
on the accuracy of L3

G and to validate the compression effec-
tiveness of the proposed representation. Finally, Section 6
draws conclusions.

2. PROBLEM STATEMENT
The datasetD is represented as a relationR, whose schema

is given by k distinct attributes A1 . . . Ak and a class at-
tribute C. Each tuple in R can be described as a collection
of pairs (attribute, integer value), plus a class label (a value
belonging to the domain of class attribute C). Each pair
(attribute, integer value) will be called item in the remain-
der of the paper. The domain of items will be denoted as
I in the following. A training case is a tuple in relation R,
where the class label is known, while a test case is a tuple
in R where the class label is unknown.

The attributes may have either a categorical or a contin-
uous domain. For categorical attributes, all values in the
domain are mapped to consecutive positive integers. In the
case of continuous attributes, the value range is discretized
into intervals, and the intervals are also mapped into consec-
utive positive integers. In this way, all attributes are treated
uniformly.

A classifier is a function from A1, . . . , An to C, that al-
lows the assignment of a class label to a test case. Given
a collection of training cases, the classification task is the
generation of a classifier able to predict the class label for
test cases with high accuracy.

Association rules [1] are rules in the form X → Y . When
using them for classification purposes, X is a set of items,
while Y is a class label. A case d is said to match a collection
of items X when X ⊆ d. The quality of an association rule
is measured by two parameters, its support, given by the
number of cases matching X ∪ Y over the number of cases
in the database, and its confidence given by the the number

of cases matching X ∪Y over the number of cases matching
X. Hence, the classification task can be reduced to the
generation of the most appropriate set of association rules
for the classifier.

In the following we will denote as R an arbitrary rule set
extracted, with a given support threshold, from a dataset
D.

3. COMPACT RULE SET REPRESENTATION
In [11] a compact form to encode all the classification

knowledge available in a given rule set is proposed. This
form was based on the concept of essential rule. However,
from this compact form it was not possible to derive the
original rule set, which is needed to adopt the lazy prun-
ing approach of L3. In this paper, we extend the concepts
presented in [11] to develop a compact form which encodes
both the classification knowledge available in a given rule
set, and all the rules in it. The following definition states
when a rule is essential.

Definition 1. (Essential Rule). Let ri : X → ci be an
arbitrary rule in R. ri is essential if 6 ∃rj ∈ R, rj : Y → cj,
such that (i) ci = cj, (ii) Y ⊂ X, (ii) sup(ri) = sup(rj),
and (iii) conf(ri) = conf(rj).

Intuitively, an essential rule is the most general rule among
rules with equal support and confidence. A rule which is not
essential is said to be a specialization of an essential rule.

Essential rules have been characterized [11] by means of
the theory of closed itemsets. In the following we briefly
summarize the main concepts on closed itemsets. More de-
tails can be found in [11]. A closed itemset [15, 21] is the
maximal set of items common to a set of transactions. It
is a compact representation of all the itemsets which are
i) included in it and ii) included in its same transactions.
A dataset can be encoded by means of the whole set of its
closed itemsets.

Closed itemsets have been characterized by means of the
Galois connection and the Galois closure operator [15, 21].
Denoting with γ the Galois closure operator, the closure
of an itemset X is the itemset γ(X). X and γ(X) are in
the same transactions and thus have equal support. X is a
closed itemset if γ(X) = X. The generator [16] of a closed
itemset X is an itemset G such that γ(G) = X, and there
is not an itemset G′ such that G′ ⊂ G and γ(G′) = X. A
closed itemset can have more generators.

As shown in [11], the Galois closure operator γ, which was
formerly introduced for datasets of unlabeled transactions,
can be applied also to the labeled transaction dataset D.
The knowledge of the closed itemset generators allows the
characterization of essential rules.

The following theorem states some properties of classifica-
tion rules based on the Galois closure operator. The theorem
states that the rules have equal value of support, confidence,
and chi-square (χ2). χ2 pruning is a statistical test widely
used to analyze the dependence between two variables. The
use of χ2 as a quality index for association rules is proposed
for the first time in [7] and is also used in [12] for pruning
purposes.

Theorem 1. Let ri : X → c and rj : Y → c be two
arbitrary rules in D. If γ(X) = γ(Y ), then (i) sup(ri) =
sup(rj), (ii) conf(ri) = conf(rj), (iii) χ2(ri) = χ2(rj), and
(iv) ri and rj cover the same training data.
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Note that Theorem 1 states a sufficient but not necessary
condition. Based on Theorem 1, the next theorem states
when a rule is essential.

Theorem 2. Let r : X → c be an arbitrary rule in R. r
is an essential rule iff X is a generator itemset.

Based on the two theorems above, we developed the com-
pact form presented in this paper. In the compact form,
essential rules are explicitly represented, while specialistic
rules are summarized by means of an appropriate encoding.
The compact form consists of a set of elements named com-
pact rules. Each compact rule includes an essential rule and
the encoding of the rules that are specializations of it, which
will be denoted as tail of the compact rule in the following.

Definition 2. (Compact rule) Let r : G→ c be an arbi-
trary essential rule in R. Let T ⊆ I be an arbitrary itemset
such that T ⊆ (γ(G) − G). Then, rc : {G,T} → c is a
compact rule in R.

A compact rule rc : {G,T} → c encodes an essential rule

plus 2|T |− 1 specialistic rules. An arbitrary rule r : X → c
encoded by rc has the following characteristics: (i) r is la-
beled with the same class as rc and (ii) X includes all items
in G and a subset of zero (i.e., r is an essential rule), or
more items in T (i.e., r is a specialistic rule). Based on Defi-
nition 2, given two arbitrary rules ri : X → c and rj : Y → c
in rc, it is γ(X) = γ(Y ). Hence, ri and rj satisfy the proper-
ties in Theorem 1. The set of all compact rules satisfying a
given support threshold represents the complete set of classi-
fication rules satisfying the same support threshold without
information loss. Furthermore, the definition of the compact
rule tail (Definition 2) allows to avoid redundancy.

4. ASSOCIATIVE CLASSIFICATION
The compact rule representation described in the former

section allows an effective representation of a large number
of classification rules. We exploit this representation to en-
hance the ability of the classification algorithm L3 (Live and
Let Live) [2] to generate a classifier containing a large num-
ber of rules. L3 first introduced the concept of lazy pruning,
which was based on the observation that most previous ap-
proaches [10, 12, 13, 19] when performing pruning may go
too far and discard also useful knowledge. Lazy pruning
discards from the classifier exclusively the rules that only
classify wrongly the training cases. L3 covers the training
cases to detect these rules by means of a database coverage
technique.

Lazy pruning separates unpruned rules in two groups:

• Level I, providing a high level model of each class,
which includes rules that have already correctly clas-
sified at least one training case.

• Level II, allowing to increase the accuracy of the classi-
fier by capturing “special” cases which are not covered
by Level I. This level includes all rules that have not
been used during the training phase, but may become
useful later.

Classification of a new test case is performed by means of
a two steps classification algorithm. Initially, rules in Level
I are considered. If no rule in Level I matches the case, then
rules in Level II are considered.

This section focuses on the description of the new classifi-
cation algorithm L3

G, which uses the compact rule represen-
tation described in Section 3. In particular, in Section 4.1
we describe how a compact rule set is exploited to generate
the L3

G classifier, while in Section 4.2 we describe how L3
G

predicts the class label for new test cases.

4.1 Pruning and Generation of the Classifier
Before pruning, a global order is imposed on the com-

pact rules. The compact rules are first sorted on descending
confidence, next on descending support, then on decreasing
length (number of items in the body) of the longest rule en-
coded in each compact rule, and finally lexicographically on
items. As already observed in [2], this approach is slightly
different from previous approaches [12, 13], in which rules
are ordered by increasing length, and gives a higher rank in
the ordering to more specific rules (rules with a larger num-
ber of items in the body) over generic rules. This choice
allows us to prevent misclassification by shorter rules. The
same global order will be used to order rules in the two
levels.

We have introduced in L3
G rule pruning based on the chi-

square test (χ2). We performed a large number of experi-
ments, which have shown that rules which do not match the
χ2 threshold are usually useless for classification purposes.
Since the use of χ2 test heavily reduces the size of the rule
set, it may significantly increase the efficiency of the fol-
lowing steps without deteriorating the informative content
(quality) of the rule set after pruning. We perform χ2 prun-
ing during the rule extraction step. Recall that by Theo-
rem 1 all rules included in a compact rule have the same χ2

value. Hence, pruning of a compact rule rc is equivalent to
pruning all its instances.
L3
G performs lazy pruning of the classification rule set by

using the database coverage approach. However, database
coverage should take into account the compact rule repre-
sentation used in L3

G. In particular, pruning of the compact
rule set does not require to extract all rules encoded in it.
For each compact rule rc, it is sufficient to consider the
longest rule encoded in it.

Consider an arbitrary compact rule rc : {G,T} → c.
Assume to extract the rules encoded in rc and let Rc =
{r1, ..., rn} be the resulting rule set. Based on Definition 2
and Theorem 1, the rules in Rc have same support and con-
fidence, and cover the same training cases. Rules in Rc are
now sorted on decreasing length. Let ri be the longest rule
in rc. Then the body of ri includes both items in G and T .
The following three cases are given:

1. ri correctly classifies at least one training case. In this
case, ri is included in Level I and all cases covered by
it are deleted from the training set. By Theorem 1, the
rules in Rc cover the same training cases. Hence, the
remaining rules inRc will no longer match any training
case. According to the lazy pruning approach, these
rules belong to Level II. To exploit the compact form,
we include in Level II rule rc.

2. ri does not match any training case. Recall that by
Theorem 1 the rules in Rc cover exactly the same
training cases. Thus, also all other rules in Rc will
not match any training case1. Hence, rc is included in
Level II.

1This applies also for rules which are shorter than ri.
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3. ri classifies only wrongly. In this case ri is pruned.
Again by Theorem 1 all other rules in rc will classify
only the same cases and assign an incorrect class label.
In this case rc is pruned.

With this approach, Level I is the same2 in L3
G and L3.

Note that Level I of L3
G does not contain any compact rule.

Level II of L3
G, instead, only contains compact rules. It

includes almost the same rules as L3. The slight difference
between L3

G and L3 is due to a more conservative pruning
approach in L3

G. In particular, in case 3, L3
G prunes all the

rules encoded in rc. However, in L3 some of these rules may
be included in Level II, because they end up not matching
any case, due to the interleaving with other longer rules with
same support and confidence, but not belonging to Rc. We
have performed several experiments, which have shown that
these rules do not affect the accuracy of the classifier.

4.2 Performing Classification
Classification of a new test case d is performed in two

steps. First Level I is considered. The algorithm selects the
first rule (i.e., the rule with highest rank) matching case d
and assigns to d the class label of the selected rule.

If no rule in Level I matches the test case, then rules in
Level II are considered. Recall that Level II only contains
compact rules. However, the matching process does not re-
quire to extract all rules from a compact rule. A compact
rule rc : {G,T} → c matches a case d if G ⊆ d. Let rc be
the compact rule with highest rank and matching the new
case d. The algorithm now builds a set of candidate com-
pact rules R including rc and all compact rules matching
d and having the same value of support and confidence as
rc. The longest rule generated from a compact rule in set
R and matching case d classifies d. For a given compact
rule rc, the longest rule in it matching d is the rule includ-
ing in the body G and the largest subset T ′ of T such that
(G ∪ T ′) ⊆ d.

5. EXPERIMENTAL RESULTS
We performed a variety of experiments, whose aim was

twofold. On the one hand, we wanted to analyze the ef-
fect of the support threshold on the classification accuracy.
The extraction of classification rules in a compact form al-
lows us to reach rather low support threshold, that were not
always feasible with former extraction techniques. On the
other hand, we performed an evaluation of the compression
achievable by means of the proposed compact representa-
tion.

The experiments have been performed using 26 datasets
downloaded from UCI Machine Learning Repository [5]. To
run the experiments, a 10 fold cross validation test has been
used to compute the accuracy of the classifier. To discretize
continuous attributes we have adopted the technique used in
[13]. All the experiments have been performed on a 1000Mhz
Pentium III PC with 1.5G main memory, running RedHat
Linux 7.2.

By using L3
G we ran a number of experiments with differ-

ent support thresholds, and we report in Table 1 the highest
accuracy and the value of the threshold used to achieve it.
For comparison, in Table 1 we also report the accuracy ob-
tained by using the 1% support threshold, both for L3

G and

2When the χ2 threshold is not enforced in L3
G and a single

support threshold is used for rule pruning.

CMAR [12], and the accuracy obtained by the L3 algorithm
[2], which uses a different support threshold for each class.
For CMAR, we use the standard values for all parameters
suggested in [12]. In both L3

G and CMAR the χ2 test has
been applied with the standard threshold value (i.e., 3.84).
For L3

G, we do not enforce the confidence constraint. Ta-
ble 1 also shows the characteristics of the datasets in terms of
number of attributes, class labels, and transactions (columns
2, 3 and 4 respectively).

Based on Table 1, we observe that the selection of an ap-
propriate support threshold allows L3

G to improve the accu-
racy in 13 cases out of 26 with respect to using the standard
threshold 1%. The appropriate support value varies depend-
ing on the data distribution that characterizes the dataset,
and is sometime lower than 1% and sometime higher. For
some datasets (e.g., Anneal) the highest accuracy is achieved
for absolute support 1. This value seems not to cause over-
fitting.

To further explore the effect of support on accuracy, we
plotted the accuracy for different thresholds in four datasets.
Figures 1(a) and 1(b) show that for Anneal and Hypo the ac-
curacy increases for support values lower than 1%. Instead,
in Auto (Figure 1(c)) the accuracy shows a singular peak for
a very specific support value (2.2%). Finally, Sonar (Fig-
ure 1(d)) shows a rather steady accuracy for minsup ≥ 1%.

This analysis clearly shows that accuracy can heavily de-
pend on the selection of an appropriate support threshold
value. Previous approaches in associative classification used
a uniform value 1%, which usually allowed rule extraction to
be tractable and on average yielded a good accuracy. Lower
support thresholds have not been explored because of both
the untractability of the rule extraction step, and the huge
size of the generated rule set. In this case, the compact
form exploited by L3

G may allow a more thorough analysis
of the appropriate support threshold value, by enabling the
extraction of rules with very low support thresholds.

Comparing the results on Table 1, we also observe that
L3
G improves the accuracy with respect to using multiple

support thresholds with L3 in 13 cases (in 9 cases L3
G uses

a support threshold different from 1%), and with respect to
CMAR in 16 cases (in 9 cases L3

G uses a support threshold
different from 1%).

Tables 2 analyzes the compression rate of the compact
representation. We characterize the compact rule sets gen-
erated by using the support thresholds which allow L3

G to
achieve the highest accuracy. Tables 2 reports the number
of compact rules, the size of the file storing them, the to-
tal number of rules encoded in the compact representation,
and the compression factor, computed as (#compact rules)/
(#rules). A low value of the compression factor shows that
the compact rule set is significantly smaller than the com-
plete rule set. The compression factor is significant in the
majority of the examples. For some datasets, such as Auto,
Hypo, Iono, Sick, and Sonar, the number of rules encoded
by the compact representation is very large, up to 1010. Ex-
traction of such very large rule sets may become untractable
with existing approaches. Lower support thresholds may
be unfeasible also for L3

G. The compression factor is usu-
ally not high in small or not dense datasets (e.g., Diabetes,
Led7, Tic-Tac, and Waveform), where most of the rules are
essential.

The structure of the two levels in L3
G is similar to L3 as

reported in [2].
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Dataset a c r CMAR L3 L3
G L3

G ∆acc

sup=1% sup abs acc L3
G- L3

G- L3
G-

% sup CMAR L3 L3
G(1%)

ANNEAL 38 6 898 97.3 96.1 96.32 0.1 1 97.77 0.5 1.7 1.45
AUSTRAL 14 2 690 86.1 86.2 85.65 1.3 9 86.09 0 -0.1 0.44

AUTO 25 7 205 78.1 77.6 80.97 2.2 4 81.46 3.4 3.9 0.49
BREAST 10 2 699 96.4 96.0 96.28 1.3 9 96.34 -0.1 0.4 0.06
CLEVE 13 2 303 82.2 85.2 81.85 1.0 3 81.85 -0.4 -3.3 0

CRX 15 2 690 84.9 85.8 84.64 2.0 14 85.65 0.8 -0.1 1.01
DIABETES 8 2 768 75.8 78.4 79.17 0.3 2 79.30 3.5 0.9 0.13
GERMAN 20 2 1000 74.9 72.5 74.80 1.0 10 74.80 -0.1 2.3 0

GLASS 9 7 214 70.1 77.6 77.10 1.0 2 77.10 7.0 -0.5 0
HEART 13 2 270 82.2 83.0 84.44 1.0 3 84.44 2.2 1.5 0
HEPATI 19 2 155 80.5 86.5 85.81 1.0 2 85.81 5.3 -0.6 0
HORSE 22 2 368 82.6 83.2 83.69 1.3 5 83.70 1.1 0.5 0.01
HYPO 25 2 3163 98.4 95.2 97.70 0.4 13 98.70 0.3 3.5 1.00
IONO 34 2 351 91.5 92.9 91.73 1.0 4 91.73 0.2 -1.2 0
IRIS 4 3 150 94.0 93.3 93.33 1.0 2 93.33 -0.7 0 0

LABOR 16 2 57 89.7 93.0 91.23 1.0 1 91.23 1.5 -1.8 0
LED7 7 10 3200 72.5 72.0 72.00 0.7 22 72.06 -0.4 0.1 0.06

LYMPH 18 4 148 83.1 84.5 83.78 2.0 3 84.46 1.4 0 0.68
PIMA 8 2 768 75.1 78.0 78.39 1.0 8 78.39 3.3 0.4 0
SICK 29 2 2800 97.5 93.9 94.54 1.0 28 94.54 -3.0 0.7 0

SONAR 60 2 208 79.4 80.8 79.33 1.0 2 79.33 -0.1 -1.4 0
TIC-TAC 9 2 958 99.2 99.5 98.96 0.5 5 99.48 0.3 0 0.52
VEHICLE 18 4 846 68.8 68.6 72.93 1.1 9 73.29 4.5 4.7 0.36

WAVEFORM 21 3 5000 83.2 82.5 82.64 0.8 40 82.96 -0.2 0.4 0.32
WINE 13 3 178 95.0 97.2 97.19 1.0 2 97.19 2.2 0 0
ZOO 16 7 101 97.1 93.1 93.07 1.0 1 93.07 -4.0 0 0

Average 85.22 85.85 86.06 86.31 1.09 0.46 0.25

Table 1: Accuracy of L3
G, L3, and CMAR

6. CONCLUSIONS AND FUTURE WORK
The contribution of this paper is twofold. On the one

hand, we propose a new compact form to encode a classifi-
cation rule set. On the other hand, we propose a new clas-
sification algorithm based on the proposed compact form,
which allows us to thoroughly analyze the effect of the sup-
port threshold on classification accuracy.

Our compact form relies on the notion of the Galois clo-
sure operator and is based on the concept of essential rules
and tail of essential rules to encode all the rules. The com-
pact form avoids information loss and allows regenerating
all the encoded rules. Experiments show that the proposed
form is significantly more compact than the complete rule
set.

We have then presented a new classifier named L3
G, which

exploits the compact representation for classification. Us-
ing L3

G we ran experiments to study the effect of the sup-
port threshold on classification accuracy. By taking advan-
tage of the compact representation, L3

G can reach rather low
threshold values also on dense datasets. Experiments show
that the optimal accuracy is achieved with varying support
threshold values and that the standard support threshold
value 1% is sometime far from optimal.
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