
Proceedings of the 7th Australasian Database
Conference, Melbourne, Australia, January 29-
January 30 1996.

Unknown Value Lists and Their Use for Semantic Analysis in IDA - the
Integrated Deductive Approach to Natural Language Interface Design

Werner Winiwarter

Institute of Applied Computer Science & Information Systems
Dept. of Information Engineering, University of Vienna

Liebiggasse 4/3, A-1010 Wien, Austria

ww@ifs.univie.ac.at

Abstract

The framework of our research originates from
natural language processing and deductive database
technology. Deductive databases possess superior
functionality relevant to the efficient solution of many
problems in practical applications, yet there still
exists no broad acquaintance. As main obstacle we
identified the absence of any user-friendly interface.
Natural language interfaces have been proposed as
optimal candidate, however, in spite of the vast
number of ambitious attempts to build natural
language front ends, the achieved results were rather
disappointing. In our opinion the main reason for this
is missing integration, responsible for insufficient
performance and wrong interpretation. In our
Integrated Deductive Approach (IDA) the interface
constitutes an integral part of the database system
itself which guarantees the consistent mapping from
the user query to the appropriate semantic application
model. This paper focuses on the semantic analysis for
which we introduce unknown value list (UVL)
analysis, a technique that operates directly on the
evaluation of database values and deep forms of
functional words, that is, syntactic analysis is only
applied if necessary for disambiguation. We prove the
feasibility of the IDA approach by use of a case study,
the design and implementation of a production
planning and control system.

Keywords Natural language interfaces, deductive
databases, semantics, information extraction, logic
programming.

1 Introduction

Deductive database technology emerged during the
past decade, it combines the strengths of both logic
programming and relational database algebra [30].
The extended functionality led the way to solutions to
practical problems which could not be handled

efficiently before. In spite of the superiority in
comparison with relational database systems, there
still exists no broad acquaintance and acceptance with
regard to practical applications [18]. Since we
identified the user interface as the main obstacle for a
specific user to become familiar with a new database
paradigm, our objective was to supplement deductive
databases with a user-friendly front end.

Starting from the first days of research on natural
language processing, the use of unrestricted language
has been regarded as optimal choice to the
communication of casual users with sophisticated
database applications. Intensive work was done during
the last decades and a huge number of prototypes were
developed but somehow they suffered the same fate as
deductive databases: they are still far away from
widespread practical use [6]. The reason for this are
the many limitations that still exist and which are
caused mainly by the factor of missing integration.
We deal with this problem by introducing a new type
of architecture, the Integrated Deductive Approach
(IDA) which brings together the two 'fellow sufferers'
natural language interfaces and deductive databases in
that the interface constitutes an integral part of the
database system itself. This signifies that the complete
natural language analysis is performed by the
powerful logic language supplied by deductive
databases which guarantees for the first time a
homogenous mapping of the semantic representation
of user input to the underlying database application
[35].

This paper focuses on the component of semantic
analysis. We propose unknown value list (UVL)
analysis as new technique which makes optimal use of
the information supplied by the semantic application
model of the underlying database application and uses
syntactic analysis only for disambiguation of several
interpretations. The rest of the paper is structured as
follows. After a discussion of related work we give a
brief overview of the system architecture before
dealing with the UVL-analysis in detail. Finally, we
give an insight into implementation details and prove

the feasibility of our approach by applying it to a case
study, that is, the design and implementation of a
production planning and control system for the
reference language German.

2 Related work

Most existent natural language database interfaces
deal with the access to relational database systems: the
early systems RENDEZVOUS [5] and PLANES [34]
as well as more recent systems like TEAM [12] or
System X [20]. Also for German language some
promising prototypes have been developed, e.g.
HAM-ANS [15] or Datenbank-DIALOG [29].

The crucial weak point from what all these systems
suffer is the mapping from the final semantic
representation of the input sentence to the actual
database query which incorporates a discontinuity of
homogeneity as concerns the different semantic
models (e.g. mapping of relations or attributes, see
[25] for a detailed discussion). The second great
difficulty that database interfaces differently from
other natural language applications must cope with is
the processing of database values as part of the user
query. As especially systems that claim to be
domain-independent do not access the knowledge
contained in the database for use in natural language
analysis, the usual approach is to assume that
undefined words represent database values (see [21]).
Therefore, if one considers the possibility of
misspelled values, those systems are not able to
distinguish between new database values for insertion
or update and misspelled existent data.

The very first database interface LUNAR [38] as
well as the first commercially available natural
language interface INTELLECT [13] tried to
overcome this situation by retrieving the concerned
values from the database. However, due to the huge
search spaces and the limitations of relational
database technology, this method severely affects the
efficiency of the application. A different approach to
the resolution of unknown values is to restrict the
complexity of input resulting in some kind of
pseudo-natural language, examples of such systems
are LADDER [14], TQA [7], ENLI [16] or HAVANE
[2]. Some implementations even delimit the use of
natural language to a menu-based system, e.g. NL-
MENU [28]. This decrease of complexity guarantees
an efficient analysis but also leads to a significant
reduction of habitability which questions the main
reason for using natural language instead of formal
query languages [23].

Although deductive databases incorporate the
power to solve all those shortcomings, there is no
existent work that makes full use of this power. The
only known prototype of a natural language interface
to a deductive database was designed by Gal/Minker
who focused their research on the generation of

natural language answers to user queries [11].
However, also this prototype uses only a loosely
coupled interface resulting again in the above
mentioned inaccuracies for the treatment of unknown
words.

With regard to the interaction of semantic and
syntactic analysis it has turned out to be advantageous
not to follow the strictly sequential process model but
to overlap the two steps of analysis. This is justified by
the reduction of problem space for the parser by
eliminating meaningless or contradictory
interpretations already at an early point of processing
[3]. We chose the semantically driven analysis [19] as
most favourable solution for the development of
database systems with well-defined semantic
application models within the IDA architecture. This
decision is strongly motivated by laying more stress
upon the information extraction paradigm rather than
upon text understanding [1].

Whereas the information extraction approach is
well established for information filtering systems
[17], much work on natural language interfaces still
contributes to the text understanding paradigm.
Therefore, such prototypes suffer from serious
overhead of analysis (for a critique of such systems
see [26]). Only few work exists that derives benefit
from the underlying database model for semantic
analysis, e.g. [33, 25]. The main reason for this can be
seen in the fact that so far for interfaces to relational
databases no adequate semantic model existed or
caused by loosely-coupled architectures no access was
possible. Only the complete integration of the
linguistic analysis within the database architecture
makes it possible to merge the two representation
schemes in a natural and consistent way. Thus, the
computation effort is minimised by providing at the
same time a maximum of quality of analysis.

3 System architecture

The complex task of natural language analysis is
subdivided into several components as shown in
Figure 1. Our system architecture differs from the
standard process model [8] in several aspects which
will be explained in the following in detail.

In accordance with our intention of integrating the
complete natural language analysis into the deductive
database system, we adapted the lexical approach by
storing only canonical forms in the dictionary and
assigning to them all the morphological features,
including also prefixes and compound words [37].

Figure 2 shows a simple example of the
assignment of morphological features to a verb. In
addition to information about the conjugation of the
verb, a set of possible prefixes can be declared which
constitutes derived verbs. Finally, a set of suffixes
together with sets of required prefix sequences can be
defined for deriving nouns or adjectives.

User input

Morphological and lexical analysis

Semantic and syntactic analysis

UVL analysis

Pragmatic analysis

Spelli ng error correction

Database commandError message

Unique
interpretation

Figure 1: System architecture of IDA.

The dictionary entry shown in Figure 2 therefore
covers all together 47 different surface forms (see
Figure 3) including also irregular verb forms,
compound verbs, and declensions of the derived nouns
and of the adjectival use of both participles.

By supporting a hierarchically structured
dictionary, we supplied the flexible insertion of
syntactic and semantic features at the appropriate
level in the hierarchy and employed inheritance
mechanisms for the analysis process. All properties
are inherited from the ancestors unless more specific
properties defined at a lower level overwrite more
general attributes. Therefore, an efficient and natural

representation is obtained, also taking into account
divergent specific meanings of derived words.

For syntactic analysis we selected Categorial
Unification Grammar [31] as optimal basis because of
two reasons. First, its requirement of assigning all
grammar rules to the lexical entries which fits very
well with our powerful hierarchical dictionary.
Second, because its bottom-up parsing strategy is in
conformity with deductive database semantics and
satisfies perfectly our claim to analyse also
incomplete and ungrammatical sentences in an easy
and natural way. In order to deal with the free word
order of German in a clear and concise way, we
extended CUG by six new important concepts [36].

 VERB(
mess, stem of to measure

...
11, conjugation class

2, past participle class

{ ab} , prefix ab yielding to survey

{ (er,{ [durch]}), suffix er in combination with prefix durch yielding the noun diameter

 (ung,{[]})} suffix ung yielding the noun measurement

).

Figure 2: Example of morphological features.

 messen, messe, miß, mißt, meßt, maß, maßest, maßen, maßet, messend, messender, messendem,
 messenden, messende, messendes, gemessen, gemessener, gemessenem, gemessenen, gemessene,
 gemessenes, abmessen, messe ab, miß ab, mißt ab, meßt ab, maß ab, maßest ab, maßen ab,
 maßet ab, abmessend, abmessender, abmessendem, abmessenden, abmessende, abmessendes,
 abgemessen, abgemessener, abgemessenem, abgemessenen, abgemessene, abgemessenes,
 durchmesser, durchmessern, durchmessers, messung, messungen

Figure 3: Example of coverage of surface forms.

With regard to semantic analysis we applied the
UVL-analysis method (see Section 4), that is, we did
not produce complete grammatical structures of input
sentences but based the semantic analysis directly on
the deep form list produced by morphological analysis
using syntactic knowledge only if necessary for
disambiguation. This choice was made possible due to
the well-defined semantic application model,
therefore making the semantic analysis a rather
straight-forward and natural task.

Since manipulation or retrieval of data is seldom
performed by use of a single command but rather takes
the form of a dialogue between user and computer, a
great deal of research was done in pragmatic analysis
aiming at extending the scope of analysis to the
complete user session (for a good survey see [10]). We
applied a simple but efficient technique which

abstracts from specific manifestations at the surface
level (ellipsis, anaphora) by using the entity and entity
type of the preceding analysis to keep track of the
actual focus.

Finally, we deal with spelling error correction, one
of the most important features as concerns user
acceptance by preventing the user of the tedious task
of retyping erroneous input. In this context, IDA
performs an optimal basis for the correction of
misspelled database values because of the complete
integration of the application data within the natural
language interface. This makes it possible to verify
efficiently the erroneous input word with the existent
entries in order to retrieve a candidate for substitution.

SUBSTSUFFIX(
 ung,

 ...
 action
).

SUBSTSUFFIX(
 er,
 ...
 subject
).

VERBPREFIX(
 durch,

 ..
. across

).
VERB(
 mess,

 measure,

 {(er,{([durch], diameter)}),
 (ung, {([], ' ')})}
).

resulting inmessung = measurement
 [measure, action]

resulting inmesser = measurer
 [measure, subject]

resulting indurchmessen = measure in all directions
 [measure, across]

resulting indurchmesser = diameter

overwrites the general semantic interpretation
 [diameter]

SEM. FEATURES

 [measure, subject, across]
 ...

Figure 4: Example of semantic features.

4 UVL-analysis

As pre-requisite of semantic analysis we assigned
semantic features to the dictionary entries at the
appropriate level of abstraction by making use of
inheritance. For similar approaches which also use
hierarchically structured dictionaries for the efficient
processing of semantic features see [9, 27, 32]. Figure
4 displays an example of the attachment of semantic
features, also illustrating how divergent specific
meanings of derived words can overwrite more
general combined ones.

The morphological analysis computes for each
word its deep form, so that the output of the
morphological component takes the form of a deep
form list (DFL) which gives for the individual input
words a set of possible interpretations, each entry
indicating the word stem, the word category, and the
semantic deep form, e.g.:

Die neue Mindestbestellmenge von St 50 H ist 25 Stück
(=The new minimal order quantity of St 50 H is 25
pieces)

DFL:

[{(die, artikel, [die]), (die, relativpronomen, [die])},
 {(neu, adjektiv, [neu])},
 {(menge, substantiv, [menge, bestell, mindest])},
 {(von, praeposition, [von])},
 {('St', unknown, string)},
 {('50', unknown, integer)},
 {('H', unknown, string)},
 {(sein, verb, [sein])},
 {('25', unknown, integer)},
 {(stueck, substantiv, [stueck])}]

An important difference of natural language interfaces
in comparison to other fields of application for natural
language processing techniques is the fact that
unknown values possess a particular significance for
the meaning of the sentence. Also in this context, only
the IDA architecture makes it possible to distinguish
between existent database values and new database
values for insertion or update. If one considers also the
misspelling of database values, the situation becomes
even more complex. Furthermore, existent database
values can serve as identifiers to entities and entity
types within the database application. Again, valuable
information can be obtained which reduces the
number of possible interpretations and increases the
efficiency of the natural language analysis.

Therefore, we propose as preliminary step for
semantic analysis unknown value list (UVL) analysis.
Its task is to transform the DFL produced by the
morphological component to the following list
presentations (see Figure 5 for the transformation of
the previous example sentence):

: unknown structure list (USL): contains all
unknown values as sub-lists, that is, compound values
are split up to several list entries
: unknown value list (UVL): compound values

are joined together, strings which represent numbers
are converted
: unknown type list (UTL): compound and string

values are looked up in the dictionary, if they represent
identifiers of existent entities, the corresponding entity
type is indicated, otherwise the value 'unknown' is
inserted

USL

Die neue Mindestbestellmenge von St 50 H ist 25 Stück

UVL

UTL

[[('St', [string]), ('50', [integer]), ('H', [string])], [('25', [integer])]]

[('St 50 H', [string, integer, string]), (25, [integer])]

[raw_material, unknown]

Figure 5: Example of UVL-analysis.

 wort(Wort, (Eintr, ableitSubst, SemG)) <- classifies word as derived substantive
resulting in: stem, word category, deep form

verb(Eintr,Sem,_, ... ,_, Suffixe), retrieval of verbs
affixe(Wort, Eintr, Pr, Suffix), sub-string test of verb stems

if satisfied, it returns the separated affixes
suffixtest(Suffix, Suffixe, checks suffix with dictionary yielding

Praefixe, SemSuf), prefixes and general semantic feature
praefixtest(Pr, Praefixe, SemPrSeq, checks prefix with valid prefix sequences

SpezSem), yielding specific or general semantic feature
if(SpezSem ~= ' ' if specific semantic feature exists,
then SemG = [SpezSem] then it is assigned to deep form
else SemG = else deep form is constructed from the

[Sem | [SemSuf | SemPrSeq]] semantic features of verb, suffix, and
). prefixes

Figure 6: Example of LDL code for generation of deep form.

The UVL-analysis forms a sound basis for efficient
semantic analysis which maps the meaning of the user
input to appropriate sentence deep structures. These
deep structures correspond exactly to the semantic
categories of the underlying database application,
therefore they guarantee the correct and efficient
semantic analysis of the input sentence, e.g. for our
example:

[update, raw_material, 'St 50 H', quantity, 25]

5 Implementation

As implementation platform we used the deductive
database language LDL (Logic Data Language) [22].
LDL was implemented at MCC as an efficient and
portable prototype system for UNIX, called SALAD.
An important facility represents the possibility of
defining external predicates and functions in the
procedural language C. SALAD consists of four main
components which are strictly separated into different
types of files:

0 a schema for base predicates
0 a set of facts representing the data
0 a set of rules for deriving new predicates
0 a set of query forms for generating access plans

to stored data

In contrast to traditional logic programming
languages like PROLOG, LDL contains neither
navigational nor procedural semantics in favour of a
purely declarative one, e.g. there exists no
significance as to the order of rules. Therefore, LDL
provides the basis for a 'purer' logic programming
compared with most conventional logic languages [4].
In addition to that it possesses the usual features of
database management systems, i.e. support for
transactions, recovery, schema-based integrity, and
efficient management of secondary storage. Finally,
the most striking advantage is the separation of the
fact base from the logical rules which allows the

dynamic update of facts at run-time without the need
for any recompilation.

Figure 6 shows the LDL code for the generation of
the deep forms of derived substantives whereas the
predicates in Figure 7 perform the first step of UVL-
analysis, that is, the transformation of DFL to USL.

6 Case study

As field of application for our case study we have
chosen a production planning and control system
(PPC) as nucleus for a later extension to a full CIM
system [24]. The PPC performs the mean-term
scheduling of products and involved resources in the
manufacturing processes, that is, material, machines,
and labour. The resulting master production schedule
forms the basis for the co-ordination of related
business services such as engineering, manufacturing,
and finance. The modelled enterprise makes precision
tools using as basic strategies job order production and
serial manufacture. Especially in this branch of
industry there exists the strong need of modelling
complex objects (e.g. the assembly of a part) and
transitive relations such as operation sequences or
sub-part hierarchies. As the efficient realisation of
these demands exceeds the power of relational
database technology, the application presents an
excellent choice for deriving full advantage of the
extended functionality of deductive database systems.
Furthermore, the sophisticated functionality justifies
the effective use of a natural language interface.

In order to obtain a well-defined reference model
for the development of the natural language front end,
we specified exactly 50 manipulations and 50 queries
to the PPC which were implemented by LDL rules.
The semantics of the functional part was formally
represented as deep structures forming the semantic
application model.

 genusl(L, Ergebnis) ← generates USL out of DFL
suchbeg(L, L2), searches for begin of unknown value
if(L2 ~= [] if unknown value exists
then then

zusfg(L2, Rest, Eintrag), creates sub-list for unknown value
genusl(Rest, Eintrag2), recursive call
Ergebnis = [Eintrag Eintrag2] inserts unknown value into USL

else else
Ergebnis = []). empty list is returned

 genusl([], []). exit rule of recursion

 suchbeg([Eintrag Rest], L) ← searches for next unknown value
aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(_, Kat, _), retrieves category of actual entry
if(Kat=unknown if category equals unknown
then then

L=[Eintrag Rest] list of remaining entries is returned
else else

suchbeg(Rest, Rest2), recursive call
L=Rest2).

 suchbeg([], []). exit rule of recursion

 zusfg([Eintrag Rest], Rest2, analysis of unknown value
[(Wort, Typ) Rest3]) ←

aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(Wort, Kat, Typ), retrieves word stem, category, and type
if(ntrkat(Kat) if no separating category
then then

zusfueg(Rest, Rest2, Rest3) joins parts of composed unknown value
else else

Rest2=Rest, remaining categories are returned
Rest3=[]). single unknown value is returned

 zusfueg([Eintrag Rest], Rest2, Ergebnis) ← parts of unknown value are composed
aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(Wort, Kat, Typ), retrieves word stem, category, and type
if(fs(Kat, Typ, Rest) if criteria for continuation are satisfied
then then

zusfueg(Rest, Rest2, Rest3), recursive call
Ergebnis=[(Wort, Typ) Rest3] result is computed

else else
Rest2=[Eintrag Rest], unknown value is added to rest of list
Ergebnis=[]). empty list is returned

 zusfueg([], [], []). exit rule of recursion

Figure 7: LDL code for generation of USL.

As starting point for the implementation of the natural
language interface, questionnaires were used to get
1000 realistic example sentences (10 for each
command). The first step of implementation was to
construct the dictionary as explained in Section 3.
Table 1 shows the final number of entries for each
category. The small total amount of 431 entries which
were necessary to cover all 1000 input sentences
illustrates the compact storage structure resulting
from the application of the IDA architecture.

The main task of the final evaluation step was to
verify the faultless mapping of the 1000 input
sentences to the 100 commands of the PPC database

system. After extensive testing cycles all natural
language input was correctly analysed.

Besides the faultless operation, the basic
requirement for the feasibility of the practical use of
any database application is its performance. The main
measure that has to be tested in this context is of
course the response time. We performed careful tests
and measuring, the results are shown in Table 2, the
mean response time for each command category is
given in seconds and hundredths of seconds.
Furthermore, the results are divided in the response
time of the interface, the database system, and the
total response time.

Word category

adjective
adjectival suffix
adverb
article
pronoun
conjunction
numeral
preposition
substantive
substantival suffix
verb
verb prefix
verb form

Quantity

32
6
28
12
33
7
14
27
78
9
119
8
58

Table 1: Number of dictionary entries for PPC.

Commands

Insertions

Deletions

Updates

Complex manipulations

Simple queries

Queries with selection

or grouping criterion

Queries for transitive

relations

Complex queries

Interface

5:29

2:14

4:19

2:56

3:01

3:33

3:89

3:47

Database

5:19

5:04

5:44

10:91

0:09

0:12

0:10

6:93

Total

10:48

7:18

9:63

13:47

3:10

3:45

3:99

10:40

Table 2: Response times of PPC.

The overall mean response time for all commands was
7:71 (3:48 for interface and 4:23 for the database
system), as hardware configuration we used a SUN
SPARC 10 station.

7 Conclusion and future work

We have identified in our research the following main
characteristics of natural language database interfaces
in contrast to other fields of natural language
processing: specific application domains with well-
defined semantics, rather small delimited
vocabularies, mappings to simple target
representations, short input sentences without
complex linguistic phenomena but including
misspellings, ungrammatical or incomplete
statements.

The main reason why many previous attempts to
build successful natural language interfaces failed can
be seen in the fact that those characteristics were
neglected. The use of sophisticated techniques that
maybe worked very well for other applications are
simply oversized for database interfaces, therefore
obstructing the way to efficient solutions.
In this context also the popular term 'domain-
independent' must be regarded with critical
reservation. Many authors claim to build domain-

independent interfaces by ignoring the available
application-specific data. As we have pointed out,
only a domain-dependent interface can operate
efficiently by making full use of the information
which can be derived from the underlying database
system. This is not necessarily in contradiction with
portability because also such systems can be designed
and implemented in view of later easy portation to
other application areas.

Even if some previous work came to the same
conclusions, the limitations of relational database
technology represented an obstacle too high to
overcome. Only with the emergence of deductive
database technology there exists for the first time a
computational framework that combines the required
operational power with a purely declarative semantics
leading the way to clear and concise realisations of
natural language interfaces.

Our proposed architecture, the Integrated
Deductive Approach to efficient natural language
interfaces regards the interface in contrast to other
existent work not as loosely coupled filter but as
integral part of the database system itself. By the use
of the powerful logic language provided by deductive
databases we guarantee a homogenous mapping of the
input to the corresponding database commands over
all steps of analysis.

We introduced UVL-analysis as preliminary step
for semantic analysis, a technique that is based on the
evaluation of database values as well as the deep form
of functional words. Therefore, no complete
grammatical sentence structures are computed but
syntactic information is only used if necessary for
disambiguation.

We have proven the feasibility of our approach by
an extensive case study, the design and
implementation of a production planning and control
system. For the creation of an appropriate test data
collection we did not invent any artificial queries or
manipulations but applied questionnaires in order to
obtain realistic input sentences, therefore
guaranteeing optimal customisation for later practical
use.

Although all concepts in this paper have been
developed for German, they incorporate the capacity
to be applied also to other languages, especially to
inflexional and free word order languages.

Further research in this topic will include
portability studies to other applications and languages
as well as investigations on the adaptive behaviour of
natural language interfaces, e.g. the consideration of
new functional words or changes to the application
model. We believe that the ideas proposed in this work
represent a challenging application of deductive
databases as well as contribute an important step
forward to the development of efficient natural
language interfaces with widespread user acceptance.

References

[1] D.E. Appelt et.al. FASTUS: A Finite-state
Processor for Information Extraction from Real-
world Text. In Proceedings of the International
Joint Conference on Artificial Intelligence, 1993.

[2] P. Bosc, M. Courant and S. Robin. CALIN:
A User Interface Based on a Simple Natural
Language. In Proceedings of the ACM
Conference in Information Retrieval, 1986.

[3] A. Cappelli et.al. A Framework for
Integrating Syntax and Semantics. In
Computational Models of Natural Language
Processing. B.G. Bara and G. Guida (eds.),
North-Holland, Amsterdam, 1984.

[4] D. Chimenti et.al. The LDL System
Prototype. IEEE Transactions on Knowledge and
Data Engineering, Volume 2, Number 1, 1990.

[5] E.F. Codd. Seven Steps to RENDEZVOUS
with the Casual User, IBM Research Report,
J1333, San Jose Research Laboratory, 1974.

[6] A. Copestake and K.S. Sparck-Jones.
Natural Language Interfaces to Databases.
Knowledge Engineering Review, Volume 5,
Number 5, 1990.

[7] F. Damerau. Operating Statistics for the
Transformational Question Answering System.
American Journal on Computational Linguistics,
Volume 7, Number 1, 1981.

[8] T.E. Doszkocs. Natural Language
Processing in Information Retrieval. JASIS,
Volume 37, Number 4, 1986.

[9] D. Flickinger, C. Pollard and T. Wasow.
Structure-sharing in Lexical Representation. In
Proceedings of the Annual Meeting of the ACL,
1985.

[10] R.E. Frederking. Integrated Natural
Language Dialogue. Kluwer, Boston, 1988.

[11] A. Gal and J. Minker. A Natural Language
Database Interface that Provides Cooperative
Answers. In Artificial Intelligence Applications.
C.R. Weisbin (ed.), IEEE Press, Washington,
1985.

[12] B.J. Grosz. Transportable Natural-
Language Interface. Problems and Techniques.
In Proceedings of the Annual Meeting of the ACL,
1982.

[13] L.R. Harris. Natural Front Ends. In The AI
Business. P.H. Winston and K.A. Prendergast
(eds.), MIT Press, Cambridge, MA., 1984.

[14] G.G. Hendrix et.al. Developing a Natural
Language Interface to Complex Data, ACM
Transactions on Database Systems, Volume 3,
Number 2, 1978.

[15] W. Höppner et.al. Beyond Domain
Independence: Experience with the Development
of a German Language Access System to Highly
Diverse Background Systems. In Proceedings of
the International Joint Conference on Artificial
Intelligence, 1983.

[16] Y. Kambayashi. An Overview of a Natural
Language-Assisted Database User Interface:
ENLI. In Proceedings of the IFIP World
Computer Congress, 1986.

[17] D.D. Lewis and R.M. Tong. Text Filtering
in MUC-3 and MUC-4. In Proceedings of the
Message Understanding Conference, 1992.

[18] P.C. Lockemann. Object-Oriented
Databases and Deductive Databases: Systems
Without Markets ? Market Without Systems ?. In
Proceedings of the International Conference on
Database and Expert Systems Applications,
1992.

[19] S.L. Lytinen. Dynamically Combining
Syntax and Semantics in Natural Language
Processing. In Proceedings of the Conference of
the AAAI, 1986.

[20] P. McFetridge et.al. System X: A Portable
Natural Language Interface. In Proceedings of
the Biennial Conference of the Canadian Society
for Computational Studies of Intelligence, 1988.

[21] P. McFetridge and C. Groeneboer. Novel
Terms and Coordination in a Natural Language
Interface. In Knowledge Based Computer
Systems. S. Ramani, R. Chandrasekar and K.S.R.
Anjaneyulu (eds.), Springer, Berlin, 1990.

[22] S. Naqvi and S. Tsur. A Logical Language
for Data and Knowledge Bases. Computer
Science Press, Rockville, 1989.

[23] W.C. Ogden and A. Sorknes. What Do
Users Say to their Natural Language Interface ?.
In Proceedings of the Conference on Human-
Computer Interaction, 1987.

[24] A.-W. Scheer. CIM. Der computerge-
steuerte Industriebetrieb (in German). Springer,
Berlin, 1988.

[25] M. Schröder. Evaluating User Utterances in
Natural Language Interfaces to Databases.
Computers and AI, Volume 7, Number 4, 1988.

[26] S.P. Schwartz. Problems with Domain-
Independent Natural Language Database Access
Systems. In Proceedings of the Annual Meeting
of the ACL, 1982.

[27] S.M. Shieber. An Introduction to
Unification-Based Approaches to Grammar.
CSLI Lecture Notes, Number 4, Chicago Univ.
Press, Chicago, 1986.

[28] H.R. Tennant et.al. Menu-Based Natural
Language Understanding. In Proceedings of the
Annual Meeting of the ACL, 1983.

[29] H. Trost and E. Buchberger. Datenbank-
DIALOG: How to Communicate with your
Database in German (and Enjoy it). Interacting
with Computers, Volume 2, Number 3, 1990.

[30] J.D. Ullman and C. Zaniolo. Deductive
Databases: Achievements and Future Directions.
ACM SIGMOD Record, Volume 19, Number 4,
1990.

[31] H. Uszkoreit. Categorial Unification
Grammars. In Proceedings of the International
Conference on Computational Linguistics, 1986.

[32] H. Uszkoreit. Syntaktische und
semantische Generalisierungen im strukturierten
Lexikon (in German). In Proceedings of the
German Workshop on Artificial Intelligence and
Österreichische Artificial-Intelligence-Tagung,
1986.

[33] M. Wallace. Communicating with
Databases in Natural Language. Horwood,
Chichester, 1984.

[34] D.L. Waltz and B.A. Goodman. Writing a
Natural Language Data Base System. In
Proceedings of the International Joint
Conference on Artificial Intelligence, 1977.

[35] W. Winiwarter and A M. Tjoa. Natural
Language Interfaces as Integrated Constituents of
Deductive Databases. In Proceedings of the
Symposium on Next Generation Database
Systems and Their Applications, 1993.

[36] W. Winiwarter. Extended CUG for Free
Word Order Languages and its Efficient
Implementation within an IDA Architecture. In
Proceedings of the Joint Conference of the Asian
Conference on Language, Information and
Computation and the Pacific Asia Conference on
Formal and Computational Linguistics, 1994.

[37] W. Winiwarter. MIDAS - the
Morphological Component of the IDA System
for Efficient Natural Language Interface Design.
In Proceedings of the International Conference
on Database and Expert Systems Applications,
1995.

[38] W.A. Woods, R.M. Kaplan and B. Nash-
Webber. The Lunar Sciences Natural Language
Information System. Bolt Beranek and Newman,
Cambridge, MA., 1972.

