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Abstract

It is well known that excessive computational demands of public key cryptography have made its use limited

especially when constrained devices are of concern. To reduce the costs of generating public key signatures one

viable method is to employ a third party; the server. In open networks, getting help from a verifiable-server

has an advantage over proxy-based solutions since as opposed to proxy-server, verifiable-server�s cheating can be

proven.

Verifiable-server assisted signatures were proposed in the past but they could not totally eliminate public key oper-

ations for the signer. In this paper, we propose a new alternative called SAOTS (server assisted one-time signatures)

where just like proxy signatures generating a public key signature is possible without performing any public key oper-

ations at all. This feature results in both computational efficiency and implementation simplicity (e.g. a reduction in the

code size) of the proposed protocol. In addition, SAOTS is a more promising approach since the signature is indistin-

guishable from a standard signature, no storage is necessary for the signer to prove the server�s cheating and the pro-

tocol works in less number of rounds (two instead of three). On the other hand, the drawback of SAOTS is the

increased bandwidth requirement between the sender and server.
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1. Introduction

Rapidly becoming ubiquitous in many spheres

of computing, digital signatures are among the

most fundamental and valuable building blocks

of modern cryptography. There are three security

services a digital signature provides:
ed.
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• Authentication—assurance of the identity of the

signer.

• Data integrity—assurance that the data is not

altered after it is signed.

• Nonrepudiation—blocking a sender�s false
denial that he or she signed a particular data,

thus enabling the receiver to easily prove that

the sender actually did sign the data.

While there are othermeans like message authen-

tication codes (MACs) to ensure data integrity and

authentication, digital signatures are better in one

important respect. They can be used to solve the
nonrepudiation problem. Moreover, the MAC ap-

proach is inadequate in a multicast setting because

it is based on a shared secret among participants.

In recent years, one other major trend in com-

puting has been towards an environment where

computer applications will be hosted on a wide

range of platforms, including many that are small,

mobile and regarded today as devices having only
limited computational capabilities. This pervasive

computing vision could bring a great deal of con-

venience but also great deal of security risks. For

instance think about the possible consequences

when the integrity of the data collected from a re-

mote health monitoring sensor is not protected.

Most current techniques for generating digital

signatures are based on public key cryptography
(based on complex mathematical problems such as

factoring or discrete logarithms e.g., RSA [1] or

DSS [2]). These traditional methods are simply

untenable from a performance perspective when

constrained devices are of concern. For instance

on a Pentium I—200MHz machine, 2 using 1024-

bit keys, RSA takes around 59ms to sign and

14ms to verify. Moreover, some mobile devices
may have 8-bit or 16-bit microcontrollers running

at very lowCPU speeds, so public key cryptography

at any kind may not be even an option for them. 3
2 Today�s high-end PDA�s and palmtops have a processor

speed of 200MHz.
3 For instance 1024-bit RSA signature generation takes

around 17.45s using Motorola�s 16-bit processor MC68328

DragonBall [3]. We have calculated this performance figure by

multiplying the given �Time consumption for 128-bit multiply

result� and �Number of 128-bit operations required for signing�.
One way to reduce the computation cost on mo-

bile/constrained devices is to employ a verifiable

and a powerful server. Getting help from a verifia-

ble-server has an advantage over proxy-based

solutions (using a fully trusted server) in open net-
works since as opposed to proxy-server, verifiable-

server�s cheating can be proven.

Asokan et al. [5] proposed an efficient verifiable

server assisted signature protocol called SAS but it

does not totally eliminate public key operations

for the signer (the signer does not need to generate

but instead verify a public key signature). In this

paper, we propose a new alternative called SAOTS
(server assisted one-time signatures) protocol 4

where just like proxy signatures generating a pub-

lic key signature is possible without performing

any public key operations at all. Eliminating pub-

lic key operations has a number of attractive ben-

efits including

• Computational efficiency: We have already seen
that public key signatures are computation-

ally infeasible to generate. In terms of delay

for key generation, public key cryptography

is even more problematic. For instance, gener-

ating a 1024-bit RSA key on a Palm with a

DragonBall processor takes 15min on average

[4].

• Implementation simplicity: Because algorithms
are too inefficient to sign long messages, to save

time, digital signatures are usually implemented

with hash functions, which convert the long

message into a fixed length smaller output. This

hash value not the message itself is signed

and verified. So traditionally to implement a

signature algorithm one needs to implement a

hash function and a public key signature algo-
rithm. SAOTS would enable the user to gener-

ate a public key signature by implementing

only a hash function. This feature would lead

a much simpler implementation i.e. small code

size.
4 Actually, we will show that SAOTS protocol has three

variants: transparent SAOTS [6], SAOTS with server�s state-

ment [7], and SAOTS with hash chains [8].
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• Advantage for certain export restrictions:

Because of the fact that the signature algorithm

cannot be used as an encryption algorithm.

Besides these benefits, while we are designing
our new protocol, we take into account the storage

constraints of pervasive devices as well i.e. no sig-

nature storing is required for the signer to prove

the server�s cheating.
Additionally, in SAOTS since the signature is

indistinguishable from a standard signature,

receivers can transparently verify the signature.

The last but not the least, executing in less number
of rounds (two instead of three), SAOTS is a more

round-efficient protocol than SAS. On the other

hand, the drawback of SAOTS is the increased

bandwidth requirement between the sender and

server.

The rest of this paper is organized as follows. In

the next section, related work on efficient digital

signature constructions is given. We propose our
new signature protocol called SAOTS in Section

3. Section 4 is reserved for the security analysis

of the proposed protocol. In Section 5, we give

the results of our performance evaluation study.

In Section 6 we introduce a variant of SAOTS

where the length of messages exchanged are short-

ened. In Section 7, we discuss the other important

issue in server assisted signatures, the issue of rev-
ocation of public key certificates. In Section 8 we

end by summing up our work and discussing fu-

ture possibilities for research.
5 SHS and MD5 were originally designed as hash functions

but they can easily be used as one-way functions when the input

message length is set to be equal to the length of output.
2. Related work

2.1. Efficient public key signatures without server

One possible way to construct efficient signa-

tures would be to relax the security requirements.

If a certain amount of risk is acceptable, then
one could use less-studied signature algorithms.

This method might provide efficiency but if the

underlying cryptographic assumptions later turn

out to be invalid, these signatures become com-

pletely open to compromise.

A more secure solution to speed up the opera-

tion of public key signatures is to do the most of
the computations on background as precomputa-

tions. The second (on-line) phase is performed

once the message to be signed is known and is sup-

posed to be very fast so that the response time of

signing using a mobile device would be in accepta-
ble range. While some signature schemes can be

naturally partitioned into these two phases e.g.

DSS [2], on-line/off-line signature schemes were

introduced by Even et al. [9] to convert any signa-

ture scheme into the aforementioned two phases.

While in the original proposal [9], the length of

signatures are longer since one-time signatures

(will be explained in the next subsection) are used,
the authors in [10] introduce an alternative scheme

where the signature size does not increase that

much with a trade of heavier on-line computation

requirement.

Due to constraints of devices used in signature

generation, we might want to minimize or elimi-

nate the amount of public key operations no

matter it is off-line or not. If this is the case on-
line/off-line signatures are not the solution we are

looking for.

2.2. One-time signatures

One-time signatures (OTS) provide an attrac-

tive alternative to public key based signatures. Un-

like signatures based on public key cryptography,
OTS is based on nothing more than a one-way

function (OWF). Examples of conjectured OWFs

are SHS [11] and MD5 [12]. 5 OTSs are computa-

tionally more efficient since no complex arithmetic

is involved. Additionally, since OTS is based only

on OWF whereas public-key signatures are based

on complex mathematical problem as well as

OWF, using OTSs allows us to eliminate one more
point of vulnerability.

The OTS concept is very easy to grasp [13].

Broadly speaking, a message sender prepares for

a digital signature by generating a random number

r, which is retained as the private value. He then

securely distributes the hash of r, h(r), where h

is a one-way function; this represents the public
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value and is used by receivers as the signature cer-

tificate to verify the signature. The signature is sent

by distributing the value r itself. Receivers verify

that this message could only be sent by the sender

by applying h to r to get h(r). If this matches the
value for h(r) in the signature certificate, then

the OTS is considered to be verified, since only

the sender can know r. This, in effect, allows the

signing of a predictable 1-bit value. In order to

sign any 1-bit value, two random numbers (r1, r2)

are needed; this way, both h(r1) and h(r2) are pre-

distributed but at most one of (r1, r2) is revealed as

a signature. In the original proposal [13], 80 ran-
dom numbers out of 160 are revealed as the signa-

ture of 80-bit hash value of any given message.

Despite the performance advantages provided

by OTSs, they have not gain much attention in

security world. Other than nontechnical reasons,

we believe two disadvantages of OTSs were in

effect.

First of all, one-time signatures since they are
longer than traditional signatures results in more

serious storage and bandwidth constraints. Recent

studies succeeded in decreasing the length of one-

time signatures in some extent. The authors in

[14] realized that p out of n random numbers are

sufficient to sign a b-bit length message if the fol-

lowing inequality holds for a given n and p. This

is because for any n, we can obtain a valid message
mapping by drawing from all subsets containing

p < n random numbers:

2b 6 Cðn; pÞ ¼ n!
p!� ðn� pÞ! : ð1Þ

To sign an arbitrary length message by OTS,
just like the public-key based signatures, we can re-

duce the length of the message m by computing the

hash value of the message, h(m) and then sign

h(m). This means for instance for b = 80, n must

be at least 84 with subsets of size 39 (p = 39).

We think the second disadvantage of one-time

signatures is a more serious one; they can be used

to sign only one message per one public key in its
simple form. Since the public key requires to be

distributed in a secure fashion which is done most

typically using a public key signature, the benefit

of using quick and efficient hash function is appar-

ently lost.
There is also a bunch of clever approaches to

overcome this limitation. One of which we have al-

ready mentioned is on-line/off-line signatures

where the public key of one-time signatures is

signed by using public key techniques off-line be-
fore the message is known. When the message to

be signed is in hand, there will not be any necessity

to perform public key operation so that the re-

sponse time (real-time efficiency) is improved.

Due to constraints of the mobile device, we

might want to minimize the number of public

key operations no matter it is off-line or not. Then

Merkle�s proposal [15] can be preferred where
one-time signatures can be embedded in a tree

structure, allowing the cost of a single public key

signature to be amortized over a multitude of

OTS. The problem in this formulation is the longer

lengths of signatures. Now we face a more severe

storage and bandwidth requirement than one-time

signatures in its simple form since the length of sig-

natures increases as the number of signatures gen-
erated using the tree structure increase.

2.3. Signatures employing a server

The third and the last approach to use one-time

signatures more than once by using a single predis-

tributed public key is the SAOTS protocol we pro-

pose in this paper which is based on a third party
(server). But before introducing it, in a more gen-

eral view we would like to summarize the work

on employing a powerful server to decrease the

computation requirements for a digital signature.

Server assisted signatures can be explained in

three subgroups with respect to the trust relation-

ship between the user and the server. More specif-

ically the server employed may be

• fully trusted (proxy),

• untrusted,

• verifiable.

In the first category, after receiving an authenti-

cated message from a user (a MAC algorithm

which can be implemented very efficiently may be
used for authentication), a more powerful proxy

server on behalf of the user generates a public

key digital signature for the message [16]. Notice
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that the user himself does not need to perform any

public key operation, he just computes a MAC

using secret key cryptography. The drawback here

is that this simple design is only applicable when

the user fully trusts the proxy server i.e. the server
can generate forged signatures and that cheating

cannot be proven.

In the literature, this method is sometimes

called �proxy protocol with full delegation�. Proxy
signatures have other variations mostly designed

for the purpose of restricting the server�s signing

rights. These variations are less-efficient than tra-

ditional public key signatures hence are not of
interest in our discussion [17].

As the opposite to proxy servers, a totally un-

trusted server might be utilized i.e. the server only

executes computations for the user. Now the goal

of securely reducing computational costs on the

sender�s machine becomes more difficult to accom-

plish and in fact most of the schemes proposed so

far have been found not to be secure. For instance
the protocol proposed by Bequin and Quisquater

[18] was later broken by Nguyen and Stern [19].

Up to our knowledge, for RSA signatures, design-

ing a secure server-assisted protocol that utilizes

an untrusted server is still an open problem. But

the situation for DSA is not the same. A secure

(unbroken) example for DSA is the interesting ap-

proach of Jakobson and Wetzel [20]. However, we
see that in their approach public key operations

although in reduced amount are still needed to

be performed on the constrained device.

2.4. Verifiable-server assisted signatures

The last alternative is to employ a verifiable ser-

ver (VS). A VS is the one whose cheating can be
proven. This approach can be considered in some-

where between the other two since the server in

this case can cheat but subsequently the user

would have the ability to prove this situation to

other parties (e.g. an arbiter). We see that in some

papers, the verifiable server is also named as semi-

trusted server.

In traditional methods of digital signature gen-
eration, the signer usually obtains a public key cer-

tificate from a certification authority (CA). In

order to trust the legitimacy of signatures, the re-
ceiver must trust the CA�s certificate-issuance pro-
cedures. For instance, the CA can issue a fake

certificate for a particular user and then imperson-

ate the user by generating a forged signature.

However, if some kind of contract was signed in
the certification process, in dispute the signer can

prove the CA�s cheating by asking this contract

from the CA. Notice the similarities between the

trust relationship between the signer and CA in

traditional methods and the signer and the server

in verifiable-server assisted signature protocols.

The first work that aims to reduce the computa-

tional costs to generate digital signatures for low-
end devices by employing a powerful VS is SAS

protocol [5]. In [21], the authors extend this work

by providing implementation results as well as

other details of the scheme. The scheme in [22] also

utilizes a semi-trusted server to generate signatures

but their goal is not to minimize the computation

cost on low-end machines but to provide fast rev-

ocation without losing transparency for those who
verify signatures. This work also has the advantage

of supporting revocation not just for signatures

but for (public-key) encryption as well. We will ex-

plore the issue of revocation in Section 7.

We now would like to provide a brief summary

of SAS protocol (for a comprehensive treatment,

refer to the original papers [5,21]).

There is an initialization phase in SAS where
each user gets a certificate from an offline certifica-

tion authority for Kn (the last element of a hash

chain of length n) where

Kn ¼ hnðsÞ ¼ hðKn�1Þ: ð2Þ
In Eq. (2), h(Æ) is a one-way function like SHS

[11] and hn(s) means we apply hash function h(Æ)
n times to an initial input s to generate a hash chain

of length n. In addition, each user should register

to a VS (which has the traditional public-key based

signing capability) before operation. Then the SAS
protocol works in three rounds as illustrated in

Fig. 1:

1. The originator (O) sends m and Ki to VS where

• m is the message,

• Ki is the ith element of the hash chain. The

counter i is initially set to n � 1 and decre-

mented after each run.
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Fig. 1. Asokan et al.�s SAS protocol operating in three rounds.

356 K. Bicakci, N. Baykal / Computer Networks 47 (2005) 351–366
2. Having received O�s request, VS checks the
followings:

• Whether O�s certificate is revoked or not.

• Whether hn�i(Ki) = Kn or in a more efficient

way h(Ki) = Ki+1 since Ki+1 has already been

received.

If these checks are OK, VS signs m concate-

nated with Ki and sends it back to O.

3. After receiving the signed message from VS, O
verifies the VS�s signature, attaches Ki�1 to this

message and sends it to the receiver R.

Upon receipt of the signed message, the receiver

verifies VS�s signature and checks whether

h(Ki�1) = Ki.

2.5. SAS protocol weaknesses

We have observed that SAS protocol has sev-

eral drawbacks. These are

1. Verifying VS�s signature: In step 3 of the SAS

protocol, before sending the signed message to

R, O should verify the VS�s signature otherwise
an attack can be performed as follows:

An attacker modifies the message that O

sends to VS and if VS signs this new message in-

stead, O�s revealing of Ki�1 without verifying

VS�s signature results in a forged signature for

the message the attacker has generated.

Remember that for some pervasive devices

restricted with CPU or other constraints, public

key cryptography is simply untenable no matter
it is used for signing or verifying.

For more powerful devices if the VS uses

RSA [1] signature scheme, where verification
is much more efficient compared to signing, this

might be affordable. However there are other

popular digital signature schemes like DSS [2]

where verification is at least as costly as signing

so a protocol which offers lightweight signing
without any restriction in the digital signature

scheme used would be much more flexible and

attractive.

2. Incompatible verification: As stated in [21],

unlike the proxy signatures explained in Section

2.3, SAS signatures are not compatible with

other primary signature types. Therefore, the

receiver must utilize the custom-built verifica-
tion method of SAS protocol.

3. Network overhead: One of the delay factors of

the SAS protocol is the round-trip delay

between O and VS. To decrease the network

delay, one can try to decrease the number of

rounds in SAS, however if O attaches the hash

element Ki�1 to the first message he has sent

to VS, an attacker can forge a signed message
easily by modifying the message while in transit.

As a result SAS protocol cannot be a two-

round protocol like the SAOTS protocol that

will be introduced in the next section this is

basically because the signature is not binded

with the message itself in a two-round case.

4. Storing VS�s signatures: In SAS protocol, the

signer is required to store VS�s signatures to
prove its cheating [5]. For some pervasive

devices which has a limited storage capacity,

this also might put a burden on the operation.
3. The proposed SAOTS protocol

In this section, we propose the server assisted

one-time signature protocol (SAOTS) which oper-

ates in two rounds as opposed to three. SAOTS is

the first VS based approach where the user does

not need to perform any public key operation at

all. SAOTS might be completely transparent to

verifiers (the signatures are indistinguishable from
standard signatures). Moreover, in our proposed

protocol unlike other alternatives the server not

the user is required to save the signatures for dis-

pute resolution. Thus SAOTS eliminates all the

four aforementioned drawbacks of SAS protocol.
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(SAOTS) protocol.
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3.1. The basic idea

Our protocol is built on top of one-time signa-

ture idea. Similar to proxy signatures where an effi-

cient MAC algorithm is employed to establish an
authentic channel between the user and the server,

in SAOTS the user sends the message to the server

after he signs it with a one-time signature. The pro-

tocol uses the reliable delivery service provided by

the transport layer underneath.

In another view, the server serves as the signa-

ture translator where it translates the one-time sig-

nature of the user to a standard public key
signature. However this basic idea of signature

translation needs to be enhanced otherwise we face

again with the inherent problem of OTS, signing

only one message per one public key. We will ex-

plain how we have solved this problem in subse-

quent paragraphs. One other solution for this

problem that gets benefit of the idea of hash chains

is summarized in Section 6.

3.2. Setup

As a setup, each user generates a one-time pri-

vate key (random numbers) and a one-time public

key (hash value of these random numbers) and in a

secure fashion he distributes the public key to the

server. This can be accomplished by a public key
signature if he has already a capability of tradi-

tional signing or he can directly get a certificate

from a certification authority (CA) for the one-

time public key he has. Similarly, the server ob-

tains a certificate from a CA for its public key.

In addition, just like the SAS protocol, each

user should register to a VS before operation. In

this registration, if �transparent SAOTS� (will be
explained in the next subsection) is the preferred

mode of operation then the server generates a pri-

vate key on behalf of each registered user and ob-

tains a certificate from a CA for the corresponding

public key (in the certification process the user

confirms that the public key belongs to himself).

3.3. Operation

The protocol works in two rounds as illustrated

in Fig. 2:
1. The user precomputes a second one-time pri-

vate key–public key pair. When the message

to be signed is ready, he concatenates the mes-

sage with the new public key and signs this by

his previous one-time private key. He then

sends the message and the new public key as
well as the one-time signature to the server.

2. Having already received securely the one-time

public key of the user�s signature on the mes-

sage, the server verifies the one-time signature.

He stores the new public key the user has signed

for the verification of next message. It will then

sign the message with traditional public key

techniques. There are two modes of operation
for this signing:

(a) Transparent SAOTS: If the user�s certificate
is not revoked, the server signs the message

with the user�s private key. Since the signa-

ture is indistinguishable from a standard

signature, receivers can transparently verify

the signature by using the user�s public key.
(b) SAOTS with Server�s Statement: In some

applications the server�s public key can be

initially embedded in the verification soft-

ware and the receiver himself can not obtain

securely the public key of all possible sign-

ers. Then it is better to have the server to

sign the message with his own public key

(if the sender�s certificate is not revoked)

after appending a statement on the message
saying that it has received it from the user.

Another advantage of this method is that

the server avoids to obtain a new certificate

for each registered user.
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One can easily prove that this protocol provides

all the three security services asked from a digital

signature but only if the server does not cheat i.e.
it does not sign any message on behalf of the user

without user�s approval. We will show in the next

section how the server can prove that it is not

cheating. If it can prove, the other parties conclude

that the user is the one who actually sends the

message.

The user can sign any further messages easily by

repeating the step 1. The server can always verify
the one-time signature since it has securely re-

ceived the public key in the previous run of the

protocol. The server should store all the previous

messages for the secure operation but the user does

not need to store anything to prove the server�s
cheating. 6 This becomes clearer after the security

analysis given in the next section.

We would like to point that the chaining tech-

nique we use that attaches the public key for the

next message to the current message is first sug-

gested by Gennaro and Rohatgi [23] for signing

infinite length digital streams.
4. Security analysis

In this subsection, we show

1. Underlying components (signature algorithms)

of SAOTS are secure.

2. How a dispute can be resolved in SAOTS

protocol.

At the end we say a few words on another issue
in security; the strength of SAOTS to the denial of

service attacks.

4.1. Security of underlying components

For secure operation, we need to prove the

security of signatures of both the sender and the

server. Since the server�s signature is a traditional
6 The server is liable if it has lost some of the signatures. This

liability is again similar to CA�s liability where CA should not

lose certification contracts.
one, we conclude that if the traditional signature

algorithm used is a secure one, then the server�s
signature is also secure.

Secondly, we note that the security of the chain-

ing technique used in the sender�s signature has
been studied previously. For the security proofs

we defer interested readers to [23].

4.2. Dispute resolution

Provided that the underlying signatures build-

ing the protocol are secure, we now want to show

how a dispute can be resolved. In case of a dispute,
the receiver can submit the message and its signa-

ture received from the server to an arbiter. The

arbiter will verify the followings:

• the signature is valid,

• the public key is certified by the CA,

• the message contains a statement saying that it

is originated from the claimed sender (if
�SAOTS with server�s statement� is used).

If these checks are successful, then the sender is

allowed to take the opportunity to repudiate the

message. There will be two checks to decide

whether the sender�s claim is true or not:

• CA will be asked to prove that the sender�s one-
time public key was registered by himself.

• The server will be asked to prove that the mes-

sage was signed by the sender himself.

As a proof, the server shows all the signed mes-

sages received from the sender starts from the first

one and continues until the message in question is

reached. The arbiter verifies all these one-time
signatures.

If both CA and server successfully shows that

they did not cheat, the arbiter concludes that the

sender is dishonest and claims falsely that he has

not sent the message.

4.3. Denial of service attacks

In previous server assisted signature protocols,

unlike traditional signature schemes, denial of

service (DoS) attacks aiming to deny the server�s



Table 1

Computational comparison of SAS and SAOTS protocols

SAS SAOTS

Originator 1H + 1V 1H + 1M

Server 2H + 1S (p + 2)H + 1M + 1S

Receiver 1V + 2H 1V + 1H

H: hash computation, S: traditional signing by a public key, V:

verification of public key signature, M: mapping computation

(costs less than one hash), p: number of hash computations to

verify OTS.
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service to the users are of concern. The basic idea

behind these attacks is as follows:

By sending legitimate (well-formed) requests, an

adversary can force the server to perform alot of

signing tasks so that it cannot response timely to
the real request coming from users [21].

However if our proposal is preferred, an adver-

sary can not force the server to perform signing.

The server can detect illegitimate requests by

checking the one-time signature (performing at

most p hash computations).

In SAOTS, an adversary can not deny the ser-

ver�s service but the server itself might choose
not to give service to a sender. Moreover unlike

SAS protocol, in SAOTS the sender can not be

aware of the fact that the message was not signed

because the protocol is running in two-rounds.

Fortunately, we can avoid this cheating by a sim-

ple trick. The trick works as follows: The sender

sends his message not only to the server but also

to the receiver (multicasting might be used). If
the receiver does not get the signature of the mes-

sage from the server, it notifies the sender so that

the sender can realize that there is something

wrong with the server.
Table 2

Communication comparison of SAS and SAOTS protocols

SAS SAOTS

Number of rounds 3 2

Message length in round 1 m + h m + (n + 1)h

Message length in round 2 m + h + s m + l + s

Message length in round 3 m + 2h + s –

m: length of message, h: length of random numbers and hash

values, l: length of server�s statement (if it is employed), s: length

of signature, n: number of random numbers used in the OTS.
5. Performance evaluation

5.1. Computation and communication comparisons

of SAS and SAOTS protocols

Rule #5: You can buy more bandwidth but not
lower delays [27, p. 564].

Table 1 shows the comparison of SAOTS and

SAS protocols with respect to on-line computa-

tional requirements on the participating entities

(off-line precomputations are not included).

Note that, in [14], the authors presented an effi-

cient method which costs less than one hash oper-

ation for encoding a message for one-time
signature. Encoding a message does refer to com-

putation of which subset of random numbers

(p out of n) should be revealed as the OTS of the

message.

In SAOTS protocol, the server needs to perform

one hash to get the hash of the message and p hash

operations to verify the OTS if all of n hash values
constitute the public key. By a simple trick and

with a cost of additional hash operation for the

server we can reduce the length of public key to

a single hash value (thus the server performs

p + 2 hash computations in total). The idea is sim-

ple: as the public key, calculate the hash of concat-

enation of all the n hashes. Now to be able to

verify the OTS the sender should send the chosen
p random numbers and the other n � p random

number�s hash value. In each run of the protocol

the user should send one signature and one public

key so if the length of random number is equal to

the length of hash value, in overall the signer

should send a block of a length of n + 1 hashes

to the server.

Table 2 again makes a comparison between the
two protocols but now in terms of communication

efficiency. As seen from this table, SAOTS pro-

vides more efficiency with respect to number of

rounds but with an increase in the length of the

messages exchanged. It will be shown in next sub-

sections that a decrease in the number of rounds of

the protocol is generally much more important

than an increase in the bandwidth usage as far as
communication delay is concerned.



360 K. Bicakci, N. Baykal / Computer Networks 47 (2005) 351–366
5.2. How to choose parameters for SAOTS

Before implementing SAOTS, we should decide

on the value of various parameters of SAOTS.

More specifically we should determine

• the key length of public key signature,

• the length of random numbers and hash values

of OTS,

• the value of n and p.

The key length of the public key signature and

the underlying components should be selected con-
sistent with the desired symmetric security level for

an application. Several security levels have been

identified in [24]. For 80-bit security 7 RSA key

length should be at least 1024bits.

Assuming that the hash function used is a se-

cure one, in OTS generation 80-bit length random

numbers and hash outputs are good enough for

80-bit security [23].
The value of n and p depends on b, the length of

the hash output applied to the message to be

signed.

Just like the length of hash outputs in OTS, is it

enough to choose the length of hash output ap-

plied to the message as 80-bit? In standard public

key signatures the length of the hash output is cho-

sen to be 160-bit (e.g. DSA [2] with SHA-1 [11]) to
have a security level of 80-bits to �birthday at-

tacks�. This attack uses the �paradox� that says that
finding two values, x1 and x2 which gives the same

hash output y on the average requires 280 trials

when y has a length of 160-bits.

Therefore the answer to the question really de-

pends on whether birthday attacks are of our con-

cern or not. We think that although it is
theoretically interesting, this attack has no practi-

cal impact on the security because it is fairly easy

to defeat it by simple tricks (e.g. concatenating

the �signing time� to the message before signing

it). As a result we can say that b can be chosen

as 80 to have a security level of 80-bits. We calcu-

late the smallest n and corresponding p as n = 84
7 This level might be considered as the minimum today for

strong security since an 80-bit key search would take about

seven years using a $10 million machine [25].
and p = 39 using Eq. (1). We refer the interesting

readers to [26] for the details of birthday paradox

and the related attacks.

5.3. Implementation and experiments

To have a more concrete performance compar-

ison of SAS and SAOTS, we have implemented

both of them using MIRACL library [28]. A PC

running Windows 2000 with an 800MHz Pentium

III and a 128MB memory was chosen as the VS

and a PC running Windows 95 with a 200MHz

Pentium I and a 32MB memory was chosen as
the clients� machine. Note that today�s high-end

PDA�s and palmtops have a processor speed of

200MHz. The compiler was Microsoft Visual

C++ Version 6.0.

We have conducted two experiments. The first

experiment was conducted using a wireless

802.11b LAN (having a bandwidth of 11Mbps).

Fig. 3 illustrates the experimental setup we have
used. The second experiment was over the WAN

(Internet) with a very long distance between ma-

chines. We have seen that the network delay meas-

urements in the WAN case is not consistent and

has a big variance so we decided not to include

our results in WAN environment to Table 4 in-

stead we provide a theoretical analysis in the next

subsection. Also, see our final note in the end of
this section.

To have a reliable communication, TCP was

used as the transport protocol. We have chosen a

typical message length of 1KB. The parameters

of SAOTS were chosen as described in previous

subsection. In addition, the public key e of RSA

was chosen to be 65537 since choosing e = 3 might

cause some security vulnerabilities.
Remember that SAS is a three-round and

SAOTS is a two-round protocol. This is why the

total delay (the network delay until the signed mes-

sage is received by the receiver) is smaller in

SAOTS in spite of greater bandwidth utilization.

Table 3 gives the performance measurements of

cryptography primitives on two platforms used

and Table 4 summarizes our findings in the
experiments.

These experimental results show that SAOTS

offers a substantial computational advantage over
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Fig. 3. The experimental setup used for performance comparison of SAS and SAOTS protocols.

Table 3

Performance measurements of cryptography primitives (ms)

Pentium III 800MHz Pentium I 200MHz

SHS 0.028 0.156

RSA (verifying) 2.220 13.893

RSA (signing) 9.454 59.162

Mapping 0.02 0.1

Table 4

Experimental comparison of SAS and SAOTS protocols (ms)

SAS SAOTS

Originator�s computation 14.049 0.256

Server�s computation 9.482 10.633

Receiver�s computation 14.205 14.049

Network delay (wireless LAN) 8.91 6.16
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SAS with respect to originator�s computation.

Moreover, the total time required to send a signed
message to the receiver(s) in SAS protocol is at

least twice the time in SAOTS (using a wireless

LAN).

It is straightforward to see that the gain we ob-

tain using SAOTS will increase if

1. If the protocol is operating in an environment

with greater network delays (see the next
subsection).

2. A public-key algorithm with a longer key (e.g.

2048-bit RSA) is to be used since as the verifica-

tion time of public-key signature will increase,
only SAS protocol�s performance (with respect

to computation on originator�s machine) will

get worse.

3. A public key algorithm (e.g. DSS [2]) where ver-

ification of the signature is not more efficient

than generating the signature is used.
4. The computational power ratio of the server to

a client gets larger i.e. A more powerful server

and/or a less powerful client is used.

As a final note, we have also observed that there

is a threshold for the extra network delay where

signing in a traditional way and sending the signed

message directly to the receiver becomes more effi-
cient in terms of total delay of signature genera-

tion. The value of this threshold for the network

delay is around 45ms for SAS and around 59ms

for SAOTS. But SAS and especially SAOTS are

still preferable in applications where performance

of client�s computation is a bigger issue or a server

is already a built-in element in the application e.g.

e-mail, chat over a server, etc.

5.4. Theoretical comparison of network delays

In order to compare the performance of

SAOTS and SAS, we have implemented both

schemes and measured the time delays in real-time

as discussed in previous subsection. Since the

implementation (in WAN environment) did not
give us a consistent result, it is worth trying to

evaluate their delay performance theoretically as

much as possible. First of all, we have seen that
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the network delay is composed of several delay ele-

ments so it can be expressed as a sum of these:

Delaynetwork ¼ Dn ¼ Dt þ Dp þ Di þ Dq; ð3Þ
where the elements on the right side are transmis-

sion, propagation, interface, and queuing delays
respectively. The interface delay is the delay on

the end hosts i.e. operating system and protocol

overhead. Assume that the bandwidth is constant,

and the length of the server�s statement is equal to

length of hash value, then we can rewrite our for-

mula for SAS and SAOTS as follows:

SAS :
3mþ 4hþ 2s

BW
þ 3Dp þ 3Di þ Dq3;

SAOTS :
2mþ ðnþ 2Þhþ s

BW
þ 2Dp þ 2Di þ Dq2:

Note that in the above formulas, BW denotes
the bandwidth of the network and, propagation

and interface delays are functions of number of

rounds but queuing delay is not. As a matter of

fact, one might expect an increase in queuing delay

when the packet size increases, but the dependency

relation is probabilistic and highly dependant on

the underlying network architecture. If we perform

a subtraction on these two formulas, we get the
following inequality:

Dp þ Di þ Dq3 >
ðn� 2Þh� s� m

BW
þ Dq2:

If this inequality holds, then the network delay is

smaller in SAOTS otherwise it is bigger. On the

top of the first term on the right side, the extra
amount of bits transmitted in SAOTS is given

which results in an extra transmission delay (only

when the message length is less than 5.5Kbits).

The experiences have shown that in most situa-

tions, transmission delay is not the dominant fac-

tor of the network delay [27]. (Section 6.6 of [27]

is a valuable guideline on performance issues in

computer networks in general and most of the
arguments there are in favor of SAOTS.)
5.5. How about power efficiency?

Our experiment shows that SAOTS has an

advantage over SAS especially with respect to
computational requirements on originator�s ma-

chine. In addition to computational incapabilities,

most pervasive devices have another constraint:

limited battery life (power).

With respect to power efficiency, we see that in-
creased length of the message to be transmitted

(even when we utilize the size reduction technique

introduced in the next section) makes SAOTS

more problematic. More truly put into words, nei-

ther SAOTS nor SAS is more power efficient than

traditional public key signing. This is because in

wireless networks, transmission consumes much

more energy than computation [3]. Therefore
SAOTS and SAS are not recommended in settings

where battery life is a critical issue (e.g. sensor net-

works where recharging is not possible or

practical).
6. A size reduction technique: SAOTS with hash

chains

In SAOTS protocol we have proposed, in the

first round the signer sends to the server the mes-

sage and a one-time signature as well as the public

key for the next signature. Is it possible to reduce

the size of this bulk?

Yes, it is possible not to send the public key of

one-time signature if we utilize the idea of hash
chaining. But as we will see, it does not come free.

Now in the initialization phase of SAOTS sim-

ilar to SAS each user gets a certificate from an off-

line certification authority for the hash array of

length n

Kk
0;K

k
1;K

k
2; . . . ;K

k
n�1; ð4Þ

where n is chosen to be large enough to map the

hashed message (e.g. n = 84 for 80-bit hash). Each

element of the array is the last element of a hash
chain of length k where

Kk
j ¼ hkðsjÞ ¼ hðKk�1

j Þ ðfor j ¼ 0 to n� 1Þ: ð5Þ

In this equation, hk(s) is a hash chain of length k

and means we apply hash function h(Æ) k times to

an initial input s.

Then the modified version of SAOTS (SAOTS

with hash chains) works in two rounds again but
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now the originator should receive, verify and store

the signature coming from the server:

1. The originator (O) sends m and Si to VS where

• m is the message.
• Si ¼ ðKi

a1
;Ki

a2
;Ki

a3
; . . . ;Ki

ap
Þ denotes the sub-

set of the array of length p that maps the

message to an OTS (composed of ith ele-

ments of hash chains). The counter i is ini-

tially set to k � 1 and decremented after

each run.

2. Having received O�s request, VS performs the

followings:
• Whether O�s certificate is revoked or not.

• Computes the mapping of h(m) or in other

words finds out which subset Si would corre-

spond to the OTS of the message.

• Checks whether for (q = 1 to p)

hn�iðKi
aq
Þ ¼ Kn

aq
or in a more efficient way

(q = 1 to p) hðKi
aq
Þ ¼ Kiþ1

aq
if Kiþ1

aq
has already

been received (it depends on the previous
message mapping).

If these are all OK, VS signs the message and

sends it back to both R and O. For the VS�s signa-
ture, there are two possibilities:

• VS can sign with a traditional public key

signature.
• If in the initialization phase VS gets a certificate

for the hash chain array (it should prepare a sep-

arate hash chain array for each registered user),

VS can also sign using one-time signatures

thereby alleviate the verification for those who

can not perform public key operations.

After receiving the signed message from VS,
both O and R verifies VS�s signature. For secure

operation, O should sign the next message only

after this (off-line) verification. Otherwise, the fol-

lowing attacks can be performed:

• An attacker can generate the (ith) hash elements

required to forge the signature on a different

message by applying a hash operation on the
(i � 1)th hashes. He then inserts this new signa-

ture instead of the O�s signature. However the

attacker cannot generate a valid signature for
any message he wants. This depends on the pre-

vious messages signed and the mapping

algorithm.

• If VS gets the previous signed message but does

not send the signature on this message before he
gets the next signed message from O, an

attacker cannot forge a signature but now VS

can generate a forged signature and that cheat-

ing cannot be proven. For O, the signed mes-

sage will be the only proof for VS�s cheating.

Off-line verification and storing of VS�s signa-

ture before signing another message will be suffi-
cient to avoid these attacks. Since VS has signed

the O�s signature with the ith hash elements, if an

attacker sends a forged signature using the ith

hash elements to VS, VS rejects this request (look

at the step 2 of the SAOTS protocol above) and

the attack is not successful. The VS cannot even

generate a forged signature because it has signed

the genuine message previously.
Finally, we can say that with a trade of heavier

computation requirement and an extra storage

requirement in the new version of SAOTS proto-

col that uses hash chains, the signature length is

p · h = 3.12Kbits (for n = 84, p = 39 and h = 80)

and we have a total length save of (n + 1�p =

3.68Kbits) in round 1 of the protocol.
7. Revocation of public key certificates

Increased use of digital signatures emphasizes

the importance of effective and efficient revocation

methods so that if a user does something that war-

rants revocation of his security privileges i.e. he

might be fired or may suspect that his private
key has been compromised, he should not generate

valid digital signatures on any further messages

(however, signatures generated prior to revocation

may need to remain valid).

In online certificate status protocol (OCSP) [29]

(today�s state-of-the-art approach to solve the rev-

ocation problem) to provide timely revocation

information, upon verifier�s query a validation ser-
ver sends back a signed response showing the sen-

der�s certificate�s current status. The drawback

here is that it is impossible to ask a validation
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server whether a certificate was valid at the time of

signing.

Immediate revocation (the user cannot sign

immediately after the revocation takes place) is

possible if an online VS is employed. In order to
revoke a user�s public key, it is sufficient to notify

the server. The server maintains a list of revoked

users and it rejects signing on behalf of the user

if his public key is in the list.

We now want to show a deficiency in the revo-

cation capability of SAS protocol [21]. SAS proto-

col works in three rounds as explained in Section

2.4. Think of a situation where the user gets the
public key signature from the VS in round 2 and

postpones the execution of round 3. He then noti-

fies the server to revoke his public key (e.g. claims

that his private key has been stolen). Afterwards,

he can cheat by executing round 3 and generating

a valid signature although his public key has al-

ready been revoked.

In our proposal, this deficiency is eliminated
since SAOTS protocol works in two steps in op-

posed to three in SAS.
8. Conclusion and future work

In this paper, we have presented a new efficient

verifiable server assisted signature protocol called
SAOTS. Server assisted one-time signatures

(SAOTS) use a chaining technique where the pub-

lic key of one-time signature for the next message

is attached to the current message before it is sent

to the server which then signs it using traditional

public key cryptography. It is shown that by this

technique, just like proxy signatures generating a

public key signature using the signer�s (con-
strained) device is possible without performing

any public key operations.

To generate signatures, getting help from a ver-

ifiable-server has an advantage over proxy-based

solutions since as opposed to proxy-server, verifia-

ble-server�s cheating can be proven. Verifiable-

server assisted signatures were proposed in the

past but they could not eliminate public key oper-
ations for the signer. SAOTS protocol implies that

for generating a public key signature fully trusted

proxy servers are no longer the only option for
pervasive devices which cannot perform public

key operations by themselves.

Verification transparency is another big advan-

tage of SAOTS over previous verifiable-server ap-

proaches. No necessity to store past signatures to
prove server�s cheating and reduced number of

rounds are other benefits of SAOTS. The only

drawback of the proposed protocol is the in-

creased length of the message transmitted from

the signer to the server�s machine.

In recent years researchers come up with other

signature schemes which do not base on public-

key operations. One of them was the BIBA scheme
proposed by Perrig [30]. BIBA�s advantages are

smaller signature lengths and faster verifying

times. Designing and evaluating the performance

of a server assisted BIBA signature is a promising

future work.

Extending the experimental performance evalu-

ation to other platforms (such as 8-bit microcon-

trollers) might also be very useful. As another
future work, we also plan to compare the energy

performance of SAOTS and SAS protocols (as

well as traditional signing).

Designing a power-efficient digital signature

protocol remains an important open problem. Pre-

vious protocols are either computationally heavy

as in public key signatures or require long or mul-

tiple messages to be transferred as in SAOTS and
SAS. The only choice currently available seems to

be the proxy signature which has the obvious trust

problem.
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