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Abstract 
 

Predicting protein solubility has gained lots of 
intention in the recent years and several descriptors 

have been defined to describe proteins in these works. 
Therefore, different feature selection methods have 

been used for selecting the most important attributes. 
An empirical study, that aims to explain the 

relationship between the number of samples and 

stability of seven different feature selection techniques 

for protein datasets, is presented. 
 

 
1. Introduction 
 

Understanding protein structure and its behaviour is 
important research area in the bioinformatics field. 
Therefore, classifying proteins has gained lots of 
attention in recent years. Researchers try to analyse 
protein primary structure (sequence of different amino 
acids) and find answers on questions such as: 
prediction of structural and functional classes of 
proteins [1-5], prediction of secondary structure of 
proteins [6], protein-protein interactions prediction [7-
10], subcellular location prediction [11-14] and protein 
solubility prediction [15-20]. Several solutions with 
use of machine learning techniques [21] have emerged 
to solve these problems: k-nearest neighbour method 
[22], neural network [23], decision trees [24], support 
vector machines [15, 16] and ensemble methods [15].  

 
Different sequence-derived structural and 

physicochemical descriptors have frequently been used 
as the input for these methods. They range from simple 
descriptors, such as sequence length and molecular 
weight of protein, to more complex ones, such as 
amino acid distribution and Geary autocorrelation [27]. 

Number of these descriptors can be very high and they 
can contain redundant information. Therefore, different 
feature selection techniques are often applied to select 
the most important descriptors. Stability of these 
methods is very important and removing or adding 
learning instances should not influence the feature 
subset selection. Therefore, the aim of this paper is to 
analyse and present results for stability of different 
popular feature selection methods in protein sequence 
descriptors space.  

 
We will focus on protein solubility prediction 

problem since it presents an important part of research 
area [15-20] and gathering soluble proteins is often a 
difficult but an important challenge in biophysical 
studies. Many proteins are insoluble when over-
expressed in bacteria, therefore, targeting soluble 
protein is often a trial and error process with low 
success rate [25]. Researchers can use an alternative 
way to target soluble proteins. With use of machine 
learning algorithms they can predict which proteins 
have higher chance to be soluble. 

 
Several methods have been developed to cope with 

protein solubility prediction problem in recent years. 
The first simple method was introduced by Wilkinson 
and Harrison in 1991 [18] and it was improved in 1999 
[20]. In 2004 Goh et al. [26] used random forest 
algorithm and in 2006 Idicula-Thomas et al. [16] used 
support vector machines to predict the protein 
solubility. The latter was improved in 2007 when a 
secondary classifier which based on Naive Bayes 
algorithm was added [17].  All mentioned methods try 
to optimize the classification performance of the 
protein solubility problem based on features mainly 
derived from protein sequences. On the other hand, we 
try to evaluate different feature selection methods to 
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demonstrate the difference between ranking of protein 
descriptors based on chosen feature selection method. 
 

In the next section we will describe the dataset of 
soluble and insoluble proteins that we used. We will 
also present the features that describe those proteins. In 
Section 3 we will explain the feature selection and 
evaluation methods which we used. In Section 4 we 
will present the results which will be discussed in the 
final section. 
 
2. Dataset description 
 

Dividing proteins into soluble and insoluble is a 
hard task since there is no publicly available dataset 
which would unambiguously describe protein 
solubility property. Most of the databases, that provide 
the information on the solubility of proteins, often do 
not offer detailed information about the experimental 
details under which solubility was assessed. Moreover, 
researchers usually deal with redundant and 
unbalanced data when gathering soluble proteins. 
Therefore, several research groups tried different 
approaches to gather reliable protein datasets which 
would divide proteins into soluble and insoluble 
groups. 

 
We decided to use the SOLP [15] dataset which was 

collected in one of the recent protein solubility 
prediction studies and copes well with the above 
problems. SOLP contains 17 408 of non redundant 
proteins expressed in E.coli. Its proteins were collected 
from three different databases: the PDB (Protein Data 
Bank), the SwissProt and the TargetDB database. 
Additionally, these proteins were merged with the 
proteins used in study made by Idicula-Thomas and 
Balaji [28].  Furthermore, the sequence redundancy 

was removed with a rigorous threshold, which was 
25% sequence similarity. The level of 25% is 
considered to be necessary to sufficiently reduce the 
bias introduced by homologue protein sequences [29]. 
The SOLP database is balanced and it contains equal 
number of soluble and insoluble proteins.  
 

We used several sequence-derived structural and 
physicochemical descriptors to characterize our 
sequences (instances). In particular, we used the 
Protein Feature Server (PROFEAT) tool [30] to obtain 
several descriptors that have been previously often 
used in protein functional and structural prediction 
studies. PROFEAT has a web interface which allows 
calculation of 1497 different physicochemical values 
for up to 1000 proteins at once. Due to the space 
limitations, a short overview of the features grouped 
into seven groups can be seen in Table 1.They are 
described in details 
all these features are numerical values.  

 
3. Methods 
 

Our experimental study consisted of several steps 
which can be seen in Figure 1 and will be described in 
Section 3.2. First, we will make an overview of the 
feature selection methods that were used in the feature 
selection step and followed by supervised classification 
of proteins into soluble vs. insoluble group using 10-
fold cross-validation. 
 
3.1. F eature selection methods 
 

Seven widely used feature selection methods that 
are implemented in the WEKA [31] machine learning 
environment were used in this study: 

 
Table 1: An overview of the features used in the experiment. 

Feature G roup F eature No. of Descriptors No. of Descriptor Values 
!"#$%&'(#)*&)#+,+-#),&
(%"+%.#-#%$&/012&

Amino acid composition 1 20 
Dipeptide composition 1 400 

!3-%(%44,5'-#%$&1&/062&
 

Normalized Moreau-Broto 
autocorrelation 

8 240 

!3-%(%44,5'-#%$&6&/072&
 

Moran autocorrelation 8 240 

!3-%(%44,5'-#%$&7&/082&
 

Geary autocorrelation 8 240 

9%"+%.#-#%$*&-4'$.#-#%$&'$)&
)#.-4#:3-#%$&/0;2&
 

Composition 7 21 
Transition 7 21 
Distribution 7 105 

Sequence order 1 (G6) Sequence-order-coupling number 2 60 
Quasi-sequence-order descriptors 2 100 

Sequence order 2 (G7) Pseudo amino acid descriptors 1 50 (sequence length (SL) >= 30)  
20 + SL  1 (SL < 30) 
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Information Gain (IG), ReliefF (RF), Support 
Vector Machines Recursive Feature Elimination 
(SvmRfe), Gain Ratio (GR), Chi Squared (CS), One 
attribute rule (OR) and Symmetrical Uncertainty (SU). 

 
The IG technique is based on measuring the 

decrease in entropy when a feature is selected or absent 
from the dataset. 

 
The RF technique ranks the features based on their 

ability to distinguish between instances that are near to 
each other. The basic idea of Relief-F is to draw 
instances at random, compute their nearest neighbors, 
and adjust a feature weighting vector to give more 
weight to features that discriminate the instance from 
neighbors of different classes. 
 

SvmRfe uses a linear Support Vector Machines 
(SVM) algorithm as the learning algorithm in the 
recursive selection of nested subsets of features. In the 
final step of each recursive cycle, all feature variables 
are ranked and a pre-selected number of the lowest 
ranked features are eliminated. In our experiments, 
50% of the remaining features are removed in each 
cycle, since previous research has shown that feature 
selection performance with 50% was much faster with 
no significant classification performance loss. 

 
CS is based on the chi-square test procedure which 

tabulates a variable into categories and computes a chi-
square statistic. This goodness-of-fit test compares the 
observed and expected frequencies in each category to 
test that all categories contain the same proportion of 
values or test that each category contains a user-
specified proportion of values 

 
OR is an algorithm for finding association rules and 

it uses a simple accuracy measure. It has been shown 
that very simple association rules, involving just one 
attribute in the condition part, often work well in 
practice with real-world data. The idea of the OR 
algorithm is to find the one attribute to use to classify a 
novel data point that makes fewest prediction errors. 

 
The SU algorithm evaluates a single attribute with 

measuring its symmetric uncertainty with respect to the 
class attribute. SU measures the correlation between 
features. Symmetrical uncertainty is defined as: 

 

 

Where )|( ji XXIG  is the information gain between 
features Xi and Xj, H(Xi) and H(Xj) denote the 
entropies of Xi and Xj respectively. 

3.2. Stability evaluation 
 

Because of the computational complexity of our 
classification scheme we randomly selected 100 
insoluble and 100 soluble proteins from the SOLP 
database and merged them into the SOLPmini database 
which contained 200 proteins. In the next step, we 
randomly split SOLPmini proteins into two halves 
SOLPminiG1 and SOLPminiG2 and on each of the 
group we performed each of the seven feature selection 
methods. For every feature selection method, we 
selected 25 to 1475 features in steps of 25 and in the 
last step we ranked all the 1497 features. In each step 
we calculated overlap of selected features from 
SOLPminiG1 and SOLPminiG2.  

 

 
F igure 1: The experimental setup 

Overlap is one of the simplest measures of 
similarity, where the similarity of the two lists ( ) 
of features is not based on the ranking of the features. 
The degree of similarity is calculated by simple 
counting of the features that are present in both the lists 
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and dividing them by the number of features in each 
list. The top-k features overlap can be defined as: 

 

     
 

Where: 

 

 
The step of splitting SOLPmini and calculating 

overlap of selected genes was repeated 100 times using 
randomized shuffling of samples. In the final step we 
also ranked all 1497 features with all the feature 
selection methods. 
 
4. Results 

 
In all experiments we calculated average overlap 

and accuracy of classification using SVM which was 
also used in similar protein classification studies [1-3]. 
These studies demonstrated the superiority of SVM 
over competitive classification methods. The 
classification results from our study do not differ from 
the above studies, therefore classification accuracy 
results are not included in this paper.  

 
Figure 2 represents the overlap results for all seven 

feature selection methods. The vertical axis shows the 
overlap result with range from 0.0 to 1.0 and the 
horizontal axis shows the number of selected features. 

 
First, we can notice that the feature selection 

methods form two distinctive groups. In the first group 
(FG1) we can find methods OR, SvmRfe and RF, 
while the second group (FG2) consist of CS, GR, IG 
and SU. Members of FG2 are representatives of 
univariate feature selection methods that evaluate 
features one by one. The first group of methods 
(multivariate) considers information from multiple 
features used in the selection process simultaneously.  

 
Second, we can notice that overlap results grow 

with number of selected features which was expected. 
Members of FG1 have almost linear growth from the 
lowest overlap 0.05 (OR). These methods showed to be 
unstable when we choose low numbers of features. 
Methods in FG2 reach stable feature overlap evaluation 
earlier, with low selected attributes (average overlap 
0.8 with 100 selected attributes). 

 

 
F igure 2: Average overlap for seven different feature 

selection methods. 

Table 2 shows 10 best ranked features when 
performing feature selection on all 1497 features with 
two members of FG1 and FG2 with best average 
overlap score. In G1 that was the RF method, which 
has lowest overlap score of 0.12 and average score of 
0.58. Differences between average overlaps of methods 
in FG2 were not so obvious and all the methods had 
average overlap of 0.94. However, IG had the highest 
minimum overlap, so we chose this method as FG2 
representative. 

 
The prefix Gi, where 0 < i < 8, defines the group of 

features (defined in Table 1) that a single feature 
belongs to. We notice that 10 most important features 
ranked by both methods belong to G6 and G5.  

 
Table 2: Top 10 ranked genes for R F and I G . 

Rank Relief F 
(F G1) 

Information Gain 
(F G2) 

1 !"#$%&'(%)#$*+',- !"#$%&'(%)#$*+'.-
2 !"#$%&'(%)#$*+'.- !/#'0%1203410&5#6&782019-
3 !"#$%&'(%)#$*+',- !"#$%&'(%)#$*+',-
4 

!/#'0%1203410&5#6&782019-
!/#'0%1203410&5#:9;2&<=
&30)019-

5 
!"#*&)>4?#*+@>,A,BC-

!/#'0%1203410&5#>&2?870D
(;-

6 
!"#*&)>4?#*+@>,A,,C-

!/#'0%1203410&5#6&7820D830
7019-

7 !/#'0%1203410&5#:9;2&<=&
30)019AEC- !"#*&)>4?#*+@>,A,.C-

8 !"#*&)>4?#*+@>,A,"C- !"#*&)>4?#*+@>,A,C-
9 !"#*&)>4?#*+@>,A.FC- !"#*&)>4?#*+@>,A,FC-
10 !"#*&)>4?#*+@>,AGC- !"#$%&'(%)#$*+',-
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G6 consists of quasi-sequence-order descriptors 
which were proposed by K.C.Chou, et.al [10]. They are 
derived from the physicochemical distance matrix 
between each pair of the 20 amino acids. The 
physicochemical properties computed include 
hydrophobicity, polarity, and side-chain volume.  

 
Descriptors from G5 have been developed by 

Dubchak, et.al [4] and used by several research groups. 
Features are computed by the following procedure: the 
protein sequence (amino acids) is transformed into 
sequences of certain structural or physicochemical 
properties/attributes of residues. Twenty amino acids 
are grouped into three groups for each of the seven 
different amino acid attributes representing the main 
clusters of the amino acid indices as described in [32]. 
Therefore, for each attribute, every amino acid is 
replaced by the index 1, 2, or 3 according to one of the 
three groups to which it belongs. The ranges of these 
numerical values and the amino acids belonging to 
each group are shown in [30]. In the next step, three 
descriptors: composition, transition and distribution, 
are computed for a given attribute to describe the 
global percent composition of each of the three groups 
in a protein, the percent frequencies with which the 
attribute changes its index along the entire length of the 
protein, and the distribution pattern of the attribute 
along the sequence, respectively. 

 
5. Conclusion 

 
In the paper we presented a stability assessment of 

popular feature selection methods for protein sequence 
descriptors. Results of seven different methods were 
analyzed based on their overlap scores. The methods 
can be grouped into two different groups: the 
univariate and the multivariate methods. The 
experiment indicated that the univariate methods 
outperformed the multivariate ones in the stability 
context. The only exception is OR which shows 
multivariate behavior. Performances of the methods in 
the univariate group are comparable and there are no 
significant differences in the overlap score between 
them. They reach good stability score with lower 
number of attributes compared to the multivariate 
methods. This indicates that researchers should use the 
univariate methods rather than multivariate ones if they 
want stable and robust feature selection methods when 
selecting low number of protein descriptors in protein 
solubility prediction problem. They reach good 
stability scores at around 100 selected features while 
the multivariate methods need more than 1000 features 
to reach the same stability score. 

 

Moreover, we showed that members of two groups 
from the PROFEAT server contain top ranked features: 
the compesition-transition-distribution group and the 
quasi-sequence-order descriptors group. Further 
research should be done in this area. 

 
Our method experimental study has few limitations. 

The biggest problem is the computational complexity 
of the experiment. The SOLP database contains over 
17 000 protein sequences and due to limitations we had 
to pick only 200 instances. It would be ideal if we used 
all the instances or if we repeated the step, where we 
select the instances, few times. 
 

Another problem is the limited feature space. We 
used the PROFEAT tool to calculate the attributes 
which has limited number of sequence features. In the 
future, other sequence derived features that have been 
proven to be important in previous works should be 
added to the experiment. 
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