
Reinforcement Learning: Architectures andAlgorithmsMieczyslaw M. Kokar and Spiridon A. ReveliotisNortheastern University360 Huntington AvenueBoston, Massachusetts 02115kokar@northeastern.eduspyros@nueng.coe.northeastern.edu
1 IntroductionConstructing an intelligent agent, i.e., a computer system able to perform tasks that arenormally attributed to humans, has been an objective for researchers in several disciplines{ arti�cial intelligence, intelligent control, robotics { to mention just a few. The approachto building such an agent is to equip a computer system with sensors and actuators, andlet it execute an in�nite sense-reason-act loop (the main paradigm of intelligent control1).This approach distinguishes two primary entities: the agent and its environment, calledthe world. Typically, the world is a dynamical system whose behavior is a function of itsprevious state, actions exerted upon it by the agent, and time. We presume that the agentattempts to satisfy an externally de�ned goal through appropriate selection of actions.Actions are generated based upon agent's sensory inputs, goals, and its internal state(knowledge). The performance of an agent can be measured in terms of a performanceindex , which includes the quality of goal satisfaction and possibly the cost of the actions.1

The intelligence of such an agent is incorporated in the software of its knowledgebase and sense-reason-act decision procedures. These procedures associate actions withsensory inputs based on the internal knowledge of the agent. The two principal means ofproviding these procedures and internal knowledge to the agent are through programmingand through learning. In this paper we are interested in agents with learning capabilities.In a very general sense, learning means creating knowledge structures. In this context,therefore, learning is the capability of the agent to modify its knowledge and/or decisionprocedures based on past experience, so that its future performance is improved.Learning has been studied in many research communities, among them, cognitivescience, control, arti�cial intelligence, each with its own foci. Learning agents can beclassi�ed according to the form of feedback they receive from the world in response totheir previous actions.Learning from examples (learning with a teacher). The learning algorithm is trainedon a series of instances classi�ed by the teacher as either positive examples, i.e.,belonging to the concept to be learned, or negative examples, which do not belongto the concept. The goal of the learner is to generate a concept description thatcorrectly classi�es the seen instances and generalizes e�ectively as to future unseeninstances. The feedback received by the learner can be interpreted as an errorassociated with the learner's internal representation of the learned concept; we callit instructive feedback.Reinforcement learning (RL) (learning with a critic). The learner receives as feed-back a scalar signal, called reinforcement, which provides evaluation of its perfor-mance with respect to the preset goals. The reinforcement feedback does not giveany direct error information on the learner's internal representations; we call itevaluative feedback.Learning by observation (unsupervised learning, learning by discovery). This type2

of learning program does not have any direct input on what it should focus itsattention, which observations are positive/negative instances, or which direction tofollow in search of better descriptions. The learner collects observations and derivesgeneralized concepts according to its own internal rules.The �rst method, learning from examples, requires the most external guidance. Thetraining of intelligent agents requires an extremely well informed teacher, a requirementthat is very di�cult to meet. Learning by discovery, on the other hand, does not requireany feedback; but the result of this is that the learner does not receive any external guid-ance and thus, is ine�cient. This seems to be the reason that more researchers, interestedin learning capabilities of intelligent agents, have recently turned to the reinforcementlearning paradigm.Our objective in this paper is to show the evolution of the reinforcement learningmethods and some of the contributions of AI to this paradigm. The starting point of ouranalysis is the thesis that more structure is needed to make learning more e�cient. Webelieve that this need for structure was the driving force behind the AI-based researchon reinforcement learning. Therefore, this paper will focus on structural solutions toreinforcement learning developed in the AI machine learning community.In the following section, we introduce the main ideas behind reinforcement learning.To illustrate the primary concepts of the RL paradigm we use a simple example of themaze world. We also briey discuss the foundations of the �eld. In section 3, we give aformal speci�cation of the RL paradigm. We also present a general architecture of a RLagent and its primary components. In section 4, a number of developed algorithms arediscussed in the context of this architecture. The intent is to identify the motivation fordeveloping those algorithms and to show their principal features. This includes enhance-ments to the basic reinforcement learning architecture, which are shown to improve thee�ciency of the learner. Section 5 is devoted to architectural aspects of active percep-3

tion. Finally, in section 6, we discuss possible directions and constraints for applicationsof reinforcement learning techniques in modern technological areas.2 Learning Through ReinforcementThe term reinforcement learning has been borrowed from the area of behavioral psychol-ogy, where it has been used to describe some models of behavior-learning in humans andanimals. The primary feature of those models is that they describe the behavior-learningprocess as a sequence of trial and error steps resulting in the formation of an action map,which de�nes an appropriate action for each speci�c situation in which the agent �ndsitself.The need for reinforcement learning occurs naturally in situations where agents, sim-ilarly to humans, must derive actions (decisions) while their knowledge is incompleteand uncertain. This might be due to limited (a priori) knowledge of the agent's world,the increased complexity of the world and/or the agent which does not allow detailedanalytical study of their behavior, or the extensive variation of the world and/or agentdynamics with time. As a result, the agent does not have (and it cannot synthesize) anyerror feedback on its internal knowledge. However, in many cases an evaluative feedbackis available and thus can be utilized to improve the agent's future performance.One of the consequences of the evaluative feedback is that the reinforcement learningalgorithm is never certain of the correctness of any of its learned behaviors. Having ahigh evaluation for a behavior at a particular situation does not mean that there doesnot exist a better one, which has not yet been discovered. As a result, a RL algorithmmust always include a search in the space of possible behaviors, in which the tradeo�between the best known behavior and the need to explore the unknown behaviors takesplace. The design and analysis of algorithms to organize this experimentation e�cientlyand in an incremental (on-line) mode, is one of the major topic of reinforcement learning.4

We will elucidate the previous discussion through the following example. Althoughthis example is based on an agent operating in an arti�cial \maze world" and thus cannotbe representative of the real world, we believe that it is easier to interpret than theexamples coming from the psychological literature, due to the explicitness of knowledgepossessed by arti�cial agents. Rats, the most typical subject of reinforcement learningin psychology, may have some knowledge that they use in their learning process, theamount of which and the kind are not known to us, and thus, it is di�cult to analyzeand evaluate their learning behavior.Consider a mobile robot learning to navigate through the two-dimensional world2 ofFigure 1. The robot can be in any of the unmarked locations of the grid, de�ning theworld. The position of the robot de�nes the world state. The robot is able to perceivethe state of the world, and change it by performing actions (steps). The allowed actionsare UP;DOWN;RIGHT , and LEFT and take the robot to corresponding contiguouslocations. Locations marked by an `X' are inaccessible; they act as barriers or obstacles.If the robot selects an action which would lead into a barrier or outside of the world thestate does not change. One of the locations, marked with a `D' in Figure 1, is called thedestination. The state of the world in which the robot has reached the destination is thegoal state; whenever this happens, the robot is relocated to an arbitrary new state.@@��@@����@@@@��@@��@@����@@ DC BAFigure 1: A world exampleThe learning task is to �nd the steps that can take the robot from any location inthe world to destination using the shortest possible path. In this learning, the robot is5

guided by the reinforcement, which is either received as a special scalar input directlyfrom the world, or is synthesized from the state input by a robot's reinforcement cal-culation procedure. The robot knows that it is supposed to maximize the cumulativereinforcement received over the time of its operation. There are two basic schemes forreceiving the reinforcement: immediate reinforcement and delayed reinforcement. In theformer case, the robot receives a reinforcement signal (say 0 or 1) depending on whetheror not the step is a part of the shortest path from the robot's location to the destination.The robot then associates the returned reinforcement value with the state-action pair. Inthe latter case, the reinforcement signal of 1 is received by the robot whenever it entersthe destination location. In all other situations the reinforcement is 0. This means thatthe robot is not provided with any discriminative feedback until it transitions to the des-tination location. This reinforcement scheme makes the task of learning much harder. Inthe following we show a possible strategy for learning an optimal path under the delayedreinforcement scheme.Initially, the robot does not have any values associated with steps that it could takeat particular locations. It does not even know the range of possible values of the rein-forcement. It simply performs a random walk in the world. Eventually, it reaches thedestination and receives a reinforcement of 1. At this moment, the robot knows thatwhenever it is at `A' it can go to `D' in one step to receive reinforcement of 1. Supposethat it has an algorithm which divides the received reinforcement by 2 (discounting) andassociates it with the previous state-action pair. We refer to this procedure as backing-up of the reinforcement. According to this procedure, the robot associates the value of1/2 with the pair < `A0; RIGHT >. Suppose that during the two consecutive trials therobot �rst reaches `A' from `C' and then `C' from `B'. The robot associates the discountedvalues of 1/4 with < `C 0;DOWN > and 1/8 with < `B 0; LEFT >. If the robot werealways taking the best known path (greedy policy), it would never be able to �nd that6

there exists a better path. However, by using exploratory search, it will eventually �ndout that there is a better path B-D, since the discounted value 1/2 of the backed-upreinforcement after taking this path is greater than the best known (i.e., 1/8) before thisexploration. It stores this information about the best step to be taken at location `B'(i.e., go to `C') and the new value of 1/2 in its internal data structure. Through thismechanism, the information about the best steps is propagated back to the states thatare more distant from the goal state and eventually the robot learns shortest paths tothe destination from all locations.The formal mathematical foundations of reinforcement learning can be traced backto statistics, the theory of learning automata, and dynamic programming. The \BanditProblem" was an attempt to cope with reinforcement learning initiated in the �eld ofstatistics; the \Tsetlin Automaton" was a similar attempt to solve the problem throughthe theory of learning automata3 . Narendra and Thathachar4 give an extended reviewof the work done in the �eld of learning automata until the mid-seventies. The closerelationship between reinforcement learning techniques and dynamic programming (DP)has recently been established5, with interesting theoretical rami�cations for the �eld.Genetic algorithms provide a di�erent approach to the problem of reinforcement learning.They use the mechanisms of mutation and crossing-over, inspired by biological models,to generate the set of the \�ttest" production rules that de�ne the function that mapsexternal inputs to actions.3 Modeling the Reinforcement Learning Problem3.1 A Reinforcement Learning FrameworkThe two primary entities of the reinforcement learning framework (Figure 2) are thelearning agent and the world. The world is modeled by a dynamic system whose transi-7

tions among di�erent states are caused by the agent's actions. The agent consists of threefunctional parts: the behavior B, the input function I, and the reinforcement functionR. The input function translates the world's outputs, which represent world states, intoagent's inputs. The reinforcement function assigns a value to every state of the world.The behavior function updates the agent's knowledge and generates agent's actions. Theabove description is formalized as follows3. ��

.WIR B air The agent
s The world

Figure 2: A reinforcement learning frameworkThe world is modeled as a tripleW =< S;A;W >;where S is the set of possible states, A is the set of possible actions, and W is the statetransition function of the world, W : S �A! S:The agent is modeled as a 4-tupleA =< I; I; R;B >;8

where I is the set of possible inputs to the agent, I is a mappingI : S ! Ithat corresponds world states to agent's inputs, R is the reinforcement function of theagent that maps states into real numbers,R : S ! <;and B is the behavior of the agent mapping strings of inputs into actions,B : I� �R! A�:Typically, worlds are modeled by automata, either deterministic or stochastic. De-signing agents that are able to deal with stochastic worlds make it possible to applyreinforcement learning methods to worlds with apparent inconsistency, i.e., cases wherealthough the agent generates the same action in response to the same world's state, theresulting transitions and/or reinforcement values di�er. There are a number of reasonsthat the world might be perceived as apparently inconsistent: stochastic behavior is anintrinsic characteristic of the world; the correspondence of world states to inputs for theagent is not one-to-one, and thus, the same input may be assigned to more than oneworld state; the agent's interface with the world does not function properly, resulting inmisleading e�ects. In its most general formulation, the problem of reinforcement learningin a stochastic world is too complex to be solved. Most of the algorithms discussed inthis paper work under the assumption that the world is globally consistent, which meansthat the expected value of the reinforcement given input i and action a remains constantover time.The problem of learning how to reach the goal state(s) with a minimum numberof actions, can be restated within this framework as the problem of adjustment of theagent's behavior so that the reinforcement it receives over a prespeci�ed time period is9

maximized. In the case of autonomous agents acting over a long time in an unsupervisedmode, this time period can be considered in�nite. To satisfy the learning goal, the agentkeeps updating its behavior towards the world, based on the received reinforcement.Ideally, the result of the updating is an optimized action map, i.e., a function (in thegeneral case this is a relation) which assigns actions to incoming input strings in such away that cumulative reinforcement is maximized.3.2 The Learning BehaviorThe general mechanism according to which the agent adapts its behavior to the incom-ing information from the world, i.e., to reinforcement values and (possibly) world-staterelevant information, is called a learning behavior. Its general scheme is presented inFigure 3. The behavior consists of three parts: the internal state x, the update functionu, and the evaluation function e. The internal state x expresses (summarizes) the levelof knowledge that the agent possesses about the world; it does not relate explicitly to theworld states. At every cycle, the evaluation function e determines the agent's response ato the received input i, based on the internal state x,e : X � I ! A:-- ------ir u x e aFigure 3: The learning behavior schemeThe selected action brings the world to a new state, which results in a new input i010

and a reinforcement value r. The agent's internal state x is then updated by the updatefunction u : I �X �A�R! Xso that it better approximates the agent's knowledge about the world.4 Implementations of the Learning Behavior:Variations and ExtensionsHaving described a general mechanism of reinforcement learning behaviors, we can con-sider speci�c implementations of this mechanism in a number of algorithms known inthe literature. The algorithms have been selected as representatives of some broaderclasses of algorithms in the �eld. Each of them is the result of a di�erent implementationof, and/or extension to, the general scheme. In the presentation of the algorithms, theemphasis will be on the way in which they implement the various parts (x, u, e) of thegeneral mechanism, on the way they address the learning e�ciency problems througharchitectural variations, and on their extented applicability.4.1 Probability-Vector AlgorithmsThese algorithms have been developed by the learning automata community4. The maincharacteristic of these algorithms with respect to the general framework discussed inthe previous section, is that in their evaluation and update functions, they do not useinformation about the state of the world; the only input to these algorithms from theworld is the reinforcement.At every step, the agent selects an action according to a probability distribution. Thisdistribution is stored as a probability vector p, which associates with every action aj theprobability value pj that this action will be selected. In terms of the learning behavior11

described in the previous section, the internal state x of the agent is the probabilityvector p, and the evaluation function e is based solely on these probabilities. The updatefunction adjusts these probabilities based on the actions performed on the world and onthe returned reinforcement. The resulting agent is a stochastic learning automaton.As a characteristic example, consider the Linear Reward-Penalty (LRP) algorithm4.To update the probabilities in response to an action aj and positive reinforcement, thisalgorithm �rst decreases the probability values of all the other actions by an amountwhich is proportional to their current values, and then it updates the probability pjassociated with action aj so that the sum of all probability values adds up to unity.When the reinforcement is negative, the respective probabilities are increased instead ofdecreased.In a variation of the LRP algorithm, known as Linear Reward-Inaction (LRI) algo-rithm, probability values are updated only when the agent receives positive reinforcementafter taking an action. Although this algorithm exhibits a signi�cant structural similarityto LRP , the two algorithms have signi�cantly di�erent behaviors in terms of convergenceand overall performance. Many other versions of these algorithms have been obtained byusing di�erent nonlinear updating policies. They have been proposed to improve learningperformance in particular applications.Another algorithm that can be classi�ed in this category, since it uses only reinforce-ment information received from the world, is the Interval Estimation (IE) algorithm,developed by Kaelbling3. This algorithm's internal state consists of the upper boundsof the con�dence intervals of positive reinforcement received in response to actions aj.The algorithm utilizes statistical methods to update these bounds. More speci�cally,for every action in the agent's action set, the returned reinforcement is monitored, andfrom the collected data, the upper bound of a con�dence interval of the probability ofreceiving positive reinforcement in response to this action, is estimated. In the evalu-12

ation function, the action with the highest upper bound is selected. The upper boundof the con�dence interval for a particular action may be high either because this actionhas a high probability of receiving positive reinforcement or because the collected datais insu�cient for an accurate evaluation. In this way, the trade-o� between followingthe greedy policy and performing further exploration is done automatically. The levelof con�dence for which the intervals are estimated is prede�ned; it constitutes a tuningparameter of the algorithm. This algorithm is conceptually simple, yet it has been shownto outperform many other algorithms from the same class3.The main problem with the probability-vector algorithms is that they are designed tosearch for the globally best action based upon received reinforcement, and are thus theynot able to associate a locally optimal action with each state of the world. Consequently,these algorithms either continuously change their internal state, i.e., are unstable in termsof convergence to optimal behavior, or when they are designed to enforce convergence,they may get stuck in nonoptimal states (absorbing states).4.2 Associative AlgorithmsIn contrast to the previous class, associative algorithms take into consideration not onlythe reinforcement returned by the world, but also information about its internal stateperceived through the input function I. They associate action-probability vectors withthe states. A trivial way to solve this problem would be to use a separate stochasticlearning automaton for each state. However, such a representation would not allow theassociation of one action-probability distribution with a set of states. In other words, sucha representation would not allow for generalization. This problem was solved6 by usingparameterized classes of distribution functions to represent action-probabilities. Underthis representation, learning the optimal behavior is equivalent to learning an optimalset of parameters for the distribution functions.13

Associative RL algorithms are most typically implemented in a neural net architec-ture. A neural net consists of layers of processing units, including an input layer, anoutput layer and possibly a number of hidden layers. The input vector i is passed to the�rst layer for processing; the output from each layer is passed to the consecutive layer forfurther processing. Each unit within a layer, multiplies its input vector by the weightingvector associated with this unit and �lters this result through a decision making functionto produce an output for the next layer. The outputs from the network are interpretedas parameters of single-parameter action-probability distribution functions. The evalu-ation function of an associative RL agent uses these distributions to generate actions.The probabilistic interpretation of the evaluation function provides the exploration inthe search for better behaviors of the associative RL algorithms.The internal state s of the agent consists of the network's weights. The updatefunction updates the weights based on the received input vector i and reinforcement.The updating process can be interpreted as stochastic hill-climbing , i.e., an incrementalmovement in the weight space from the current point towards the steepest increase ofthe expected value of the returned reinforcementx.Since the focus of this paper is on the structural aspects of the reinforcement learningalgorithms rather than their hardware implementations, we present a rather simple, butquite representative associative reinforcement learning algorithm developed by Sutton8.It is called Linear-Associator Reinforcement-Comparison algorithm (LARC). A distin-guishing feature of LARC is that in addition to the returned value r of the reinforcement,it also uses a predicted value p, and that the updating mechanism uses the di�erencer� p to determine the direction and degree of change for the values of the weights. Thiskind of algorithms are called Reinforcement-Comparison algorithms.The implementation of LARC consists of two networks. Both of them receive thesame input vector i, consisting of external signals describing the world state. The �rst14

network computes the predicted value p of the reinforcement as the inner product of theinput vector i and its weight vector v. The second network implements the evaluationfunction. It computes the inner product of its weight vector w and the input vector i,adds a random number n to the previous result, and selects one of two possible actions(producing an output of 0 or 1), depending on whether the resulting sum is greater orless than a threshold �. The update function u adjusts the components vj and wj of thetwo weight vectors on the basis of the action taken at the previous step and the di�erencebetween the received reinforcement and the predicted reinforcement r � p.�w = �(r � p)(y � 1=2)i�v = �(r � p)iThe coe�cients � and � in the above formulas are called learning rates. Setting ahigh value for the learning rates may increase the speed of convergence of the learningalgorithm, but it may also increase the probability that the algorithm becomes unstableor gets stuck in a locally optimal solution.By utilizing classi�cation abilities of neural nets, associative algorithms are able toassociate optimal actions with whole classes of the world states, or in other words, theyare able to generalize from their past experience with interactions with the world. Thisability is a very important feature for learning algorithms with respect to time and spacecomplexity. However, like many connectionist algorithms, they converge rather slowlyand are unstable when applied to more complicated learning tasks. Furthermore, thedistributed representation used by these algorithms, although an e�ective generalizationmechanism, makes it very di�cult to interpret the learned structure and to prove itsvalidity; the learned concepts are represented by weight vectors, which do not have anydirect meaning. 15

4.3 Learning with Delayed ReinforcementAll of the algorithms described above work under the assumption that the world returns areinforcement value in response to every single action taken by the agent. However, thereare a number of application tasks in which the agent receives evaluation of its behaviorfollowing an entire sequence of steps (for example, the problem shown in Figure 1). Thiskind of reinforcement scheme is called delayed reinforcement. In this section we discusshow the problem of learning with delayed reinforcement can be solved using variationsof dynamic programming.Dynamic programming (DP) techniques compute the optimal action map, given acomplete state transition model of the world and the credit (in our case, reinforcement)associated with each transition. In their computation they use the notion of state values.The value e(s) of state s is associated with an action map � and de�ned as the cumulativereinforcement collected by the agent provided it starts from state s and follows the actionmap � thereafter. Since the actual value of cumulative reinforcement is not known, itis estimated as the sum of the immediate reinforcement received after executing a singleaction, plus the current value of the state resulting from this action. The optimal actionmap maximizes the value of every state. DP techniques compute the optimal valuefor each state s by iteratively comparing the estimated cumulative reinforcement for allpossible actions at state s and replacing the state value e(s) with the maximum. Wesay that the state values are backed up during these iterations. The optimal action mapassigns to every state the action that was used in the backing-up of the optimal statevalue.A variation of the previous backing-up algorithm, proposed byWatkinsx keeps a valueQsa for every state-action pair, in addition to the state value e(s). For a state-action pair< s; a > and an action map �, Qsa is de�ned as the cumulative reinforcement collectedby performing action a while in state s, and following the action map � thereafter. In16

this approach, the value of a state s, e(s), is de�ned as the maximal Qsa value over theset of possible actions for this state. Watkins has proven that if, in lack of knowledge ofa complete world model, the Qsa values are updated according to the formulaQk+1sa = (1 � �ksa)Qksa + �ksa[r + ke(succ(s; a))]they will converge to the optimal ones, provided that each transition is tried an in�nitenumber of times, and �k ! 0, when k ! 1. In this formula, e(succ(s; a)) is the valueof the state resulting from action a, �k is the learning rate of the algorithm, k is thediscounting factor of the future reinforcement, and r is the immediate reinforcement.Since this result allows for updating only the Qsa value of the current action, the updatescan be done in real time. The resulting algorithm is known as Q-Learning.In this section we describe an extension of the Q-Learning algorithm, developed bySutton3, which is known as Dyna-Q+. Dyna-Q+ introduces two major extensions to theQ-Learning algorithm. The �rst one is an enhancement of the exploration component ofthe algorithm. Speci�cally, the value assigned to a state-action pair is not based onlyupon the expected cumulative value of the reinforcement received after taking this action(transition), but also includes a term which expresses the uncertainty related to this Qsa-value. Sutton calls this term exploration bonus, and de�nes it to be a very small fractionof the square root of the elapsed time steps nsa since action a was tried in world-state i.The introduction of this term in the credit estimation renders the algorithm sensitive topossible structural changes taking place in the world.The second extension is of greater architectural interest, as it demonstrates an inte-gration of world modeling with reactive reinforcement learning techniques. The learnedmodel of the world is used for more systematic planning of future actions. This resultsin an increased speed of convergence of the Q-Learning algorithm. The Dyna-Q+ ar-chitecture is presented in Figure 5. The major di�erence between this architecture andthe general scheme presented in Figure 1 is the introduction of a world model. In this17

6-??- -............. - --............. - -�
�

�

...................�Mu
Ws

RI ri Qn x e aFigure 4: The Dyna-Q+ architectureimplementation the model is a look-up table indexed by the state-action pairs. It pro-vides the next state and reinforcement values, given an action and the current state.This table is �lled incrementally every time a new transition (state-action pair) is exe-cuted. The information in the model is used for learning purposes between every twosuccessive interactions with the world. State-action pairs and associated reinforcementvalues, which have been previously experienced and stored in the model, are randomlyselected and passed as input to the learning algorithm. The net e�ect of this techniqueis a faster convergence of the Qsa-values, because the reinforcement information recentlyexperienced by the agent through its interaction with the world is safely propagated tothe rest of state-action pairs during those \dummy" iterations. Sutton also suggests2that the modeling technique can be extented to cover stochastic behavior of the world,and that in the case of nontrivial world structures, special strategies for selecting thestate-action pairs could be used in the learning steps (search control).18

The state x of the learner is implemented in this algorithm by the Qsa-value matrix,the values of the nsa matrix, and the knowledge captured in the world model. Theupdating function is implemented by the Q-Learning algorithm with the maximal-creditestimator, modi�ed to incorporate the exploration-bonus term. The evaluation functionprobabilistically selects the next action according to the Boltzmann distribution.pr(aijs) = eQsai=TPaj2A eQsaj=TAccording to this formula, the action with the highest Qsa value has the highest prob-ability of being selected. The parameter T of the distribution regulates the degree ofexploration in the algorithm. A smaller value of T means a closer following of the greedypolicy.4.4 Model-based AlgorithmsThe algorithms discussed in previous sections are reactive or direct in the sense thatthey learn to relate incoming information concerning the world states directly to actionsexecuted by the agent. Another approach to learning how to act in a world consists ofbuilding internal representations of the world, i.e., models, and then utilizing the learnedmodels to select appropriate actions. In this approach, the goal of learning is to generatesuch models that give the best approximation (best �t) to the description of the behaviorof the world. Since the world is viewed as an automaton, the models should be able tocorrectly predict the transitions of the world for given initial states and applied actions.Similarly as in associative algorithms, input to the learning agent includes worldstates. However, it does not include explicit reinforcement. The value of reinforcementis calculated by the reinforcement function R (Figure 2). Since the selection of an ap-propriate action is strongly dependent on the correctness of the model, the reinforcementvalue is a measure of how well the working model �ts (predicts) the real world behavior.The internal state x of the learning behavior encodes a model of the world.19

Models created by the agent can be of two kinds: parametric or non-parametric.Parametric models describe the world behavior in terms of parametrized procedures(equations) which can be used to calculate the world's transitions given an initial stateand an action. The learning task is the adjustment of the parameter values so thatthe transitions predicted by the model are as consistent as possible with the actualtransitions observed in the world. Non-parametric models, on the other hand, do notutilize analytical equations. Instead, they consist of a number of initial-state/action/�nal-state triples { instances of the world transitions. For worlds with in�nite number of states,the continuity property of the world is utilized for predicting world transitions. In theprediction procedure the methods of interpolation and extrapolation are used. Learningof non-parametric models consists of either adding more transition instances to the model,if its predictive power is not satisfactory, or removing redundant transition instances, ifthey can be interpolated from the remaining points of the model.In the following we present an example of a reinforcement learning system which learnsmultiple non-parametric models in the context of a restructurable control application9(Figure 4). In this kind of application, the goal is to control the value of an outputvariable of a plant which undergoes structural changes in its behavior. Structural changesin the plant's behavior mean that it is described by di�erent models at di�erent times(di�erent sets of variables and relationships). Since the plant's behavior can change in anunpredictable fashion, no assumption can be made about the model equations, and thusnon-parametric representation of models is well suited for this kind of application. Theagent must learn the possible plant behaviors from observational data. Due to the highcomputational cost of learning, when the plant switches to another behavioral patternthe learned model is not discarded, but is stored in the agent's database, so that it canbe used if the plant returns to this behavior at some time in the future. Thus, in additionto learning correct models for the plant behaviors, the agent must also learn to select20

the appropriate model from the model database. The system presented in this section9learns such a selection policy.
- - - --- ---- -- -- --

��
Q CeuR

W
r Qi as

Figure 5: A multiple non-parametric model-based RL architectureThe central data structure implementing the internal state x of the learner is thedatabase of state transitions of the plant, Q. This database consists of a number ofblocks Q = fQ1; : : : ; Qng, with each block being associated with a di�erent qualitativebehavior of the plant (i.e., with one model). More speci�cally, an element q of a block Qiis an instance of the plant's state transition function represented by the previous states0 2 S, the next state s� 2 S, the value of action a 2 A exerted upon the plant duringthe time-interval [0; �], the value of the time interval � , and the parameters of the i-thmodel Pi q =< s0; s� ; �; a; Pi > :In the discussed system, generalization over the state transition instances is imple-mented through two mechanisms: interpolation and the principle of physical similarity.First of all, only some of the transitions are stored; transitions which can be recov-21

ered through interpolation are discarded. The principle of physical similarity allows forgrouping of similar transitions into classes; the whole class can be generated from onerepresentative using this theory.The evaluation function selects the working model from the model database on thebasis of the accuracy with which the existing models predict the observed plant behavior.The update function has a dual role: it must adjust the evaluation function so that itselects the correct model for every state of the plant, and it must also adjust the selected(working) model so that its predictive accuracy is increased. In case that none of theexisting models is judged appropriate for the description of the current plant behavior,the update function may initiate the creation of a new plant model.The main advantage of this kind of algorithm is that the learned models are storedin the database. Thus the e�ort of re-learning the models when the world returns to apreviously learned behavioral pattern is avoided. In such a case, the previously learnedmodel is retrieved. Parametric models represent knowledge in a concise form and there-fore require less memory. One of the disadvantages of such models is the need to searchfor the most appropriate models in a potentially large database. In addition, such algo-rithms should have a function that determines whether a given model should be updatedor another model should be selected.5 Reinforcement Learning Through ActivePerceptionThere is an implicit assumption in the algorithms discussed in the previous sections, thatthe world inputs given to the learning agent include complete information about the stateof the world. Although this looks like a natural requirement from a theoretical point ofview, it is unnecessary or impossible in many practical situations. Humans, for instance,22

act in the world with only partial information about its state. Not only would suchcomplete information be unnecessary for making decisions about actions, but it wouldalso overload the information processing system, both in terms of memory capacity andcomputational time requirements. A possible solution is in selective acquisition of onlyrelevant information about the world.To implement a reinforcement learning system able to deal with the problems of timeand space complexity resulting from the richness of the world state space, Whitehead andBallard10 have proposed an extension of the basic architecture presented in Section 3.The main idea behind this architecture (see Figure 6) is to incorporate an active sensory-motor system able to focus the attention of the learning system on inputs relevant tothe decision making process; the authors call this perceptual scheme active perception.Instead of de�ning the input space, I, of the agent in such a way that it captures everydetailed piece of information about the world, indexical representation registers only suchinformation about the key (indexed) objects that is relevant to the current task. Such anapproach leads to a more compact input space for the agent, but demands the integrationof an active sensory-motor system in the overall reinforcement learning framework.
-

�..? - 66? 6 6
�s e W a ecR P I MBr is aiFigure 6: An active perception RL architecture23

In this particular architecture, the world is modeled in the same way as in the frame-work presented in section 3. However, the agent model is broken down explicitly intothree components: (1) the sensory-motor subsystem, (2) the reward (reinforcement) cen-ter, and (3) the decision subsystem. The novel part is the sensory-motor subsystem,whose distinguishing feature is that it is active, i.e., it is able to change its internalcon�guration, C , of the sensors and actuators. The sensory-motor system consists of aperceptual function, P , mapping world states Se into agent's internal representations Si,according to its internal con�guration C,P : Se � C ! Si;and a motor function M , mapping (transducing) agent's decisions (internal motor com-mands) Ai into external actions Ae,M : Ai �C ! Ae:The sensory-motor system is a dynamic system with the state transition functionI : Ai �C ! C:The reward centerR composes the returned value of the reinforcement r from the percep-tion of the current state of the world se 2 Se in a fashion similar to the one described in thediscussion about learning world models. Finally, the decision subsystemB corresponds tothe learning behavior of the framework of Section 3, with the incoming/outgoing signalsbeing received from/sent to the sensory-motor subsystem.The space of internal representations is considerably reduced by focusing attentiononly on a limited amount of the state information. This gain, however, does not come forfree. Under the indexical representation, the correspondence of world states to internalinputs becomes many-to-many, destroying the global consistency of the world. This iscalled perceptual aliasing10. Since perceptual aliasing introduces local maxima in the24

evaluation function, it thereby renders the reinforcement learning algorithms previouslydescribed inappropriate for application in this architecture. These tend to confuse thelearning behavior in its search for the optimal policy. This problem is solved by intro-ducing an internal cycle in the learning behavior10. This cycle, called perceptual cycle,identi�es the correct (unambiguous) representation for the perceived world state from anentire set of candidate representations.The distinguishing feature of the active perception approach is that, in addition tolearning how to act correctly in the world, the agent also learns to focus its attentionon the objects which are relevant to a speci�c task. Preliminary results of experimentswith this architecture10 are promising. Tasks at which the general algorithms presentedin earlier sections failed have been successfully completed using this approach.6 Applicability of Reinforcement LearningAlthough considerable progress in theoretical work on reinforcement learning algorithmsand architectures has been achieved, there is much to be done in the area of applicationof these methods to real-world problems. The problems with the applications can beattributed mainly to the high complexity of the learning algorithms, both in terms oftime and memory, and to the fact that in the general case, they converge very slowly tothe optimal behavior, especially if the set of possible states of the world is large.Time complexity is a very important factor in the evaluation of reinforcement learningalgorithms since reinforcement learning is an iterative real-time process. A reinforcementlearning algorithm performs the same computation in every loop and, therefore, its timecomplexity issue can be reduced to the time complexity of a single iteration. Thus,in designing an RL algorithm, it is essential that every iteration remains bounded .Accepted values for these bounds vary from application to application. They shouldbe estimated on the basis of the time constraints of a speci�c application. Most of the25

update and evaluation functions of the learning behavior involve processing the entirevolume of information stored in the agent's database. As a result, setting bounds on thespace for storing agent's data is as important as bounding the execution time of eachiteration. In the reinforcement learning literature, an algorithm that keeps bounded itstime, as well as its space needs, is called strictly incremental. It should be made clear,however, that many of the existing algorithms do not obey such a restriction.A great deal of theoretical analysis has been performed on the asymptotic behaviorof the RL algorithms, mostly for stationary worlds. Algorithms have been classi�ed withrespect to how nearly they ultimately achieve the optimal behavior, i.e., the behavior thatmaximizes the returned reinforcement over the considered time horizon3;11. However, forreal-world problems, optimal behavior may not be easily identi�able. This is especiallycrucial in the case of time-varying worlds where the world changes its behavior, sometimesdrastically, so that the assumption of stationarity is not justi�ed. As a consequence, thequality of the transient behavior of these algorithms is critical.In spite of all of the abovementioned problems, the �eld of reinforcement learning hasrecently experienced a resurgence of interest by researchers. There are many di�erent forthis turn. For one, the computational power available through modern computer tech-nology, in terms of both execution rate and storage capacity, has considerably increased.The advent of parallel computation seems very promising for RL algorithms, since manyof them have an inherently parallel structure.A second reason comes from the kind of problems in modern applications. For in-stance, many of them involve the control of large complex physical, technological, oreven socio-economic systems, whose structures are dynamically-varying and intractablein terms of more classical control paradigms. Learning control is the most powerful mod-ern tool for dealing with high levels of uncertainty. Even if the application of RL doesnot result in an optimal behavior of the controlled plant, due to the large-scale nature26

of these systems and/or the very low error-tolerance allowed for the controlled processesand their results, even small improvements of the system's overall performance can beeconomically signi�cant.As an example of the application of reinforcement learning in an otherwise intractableproblem, consider the high-precision control of a robot manipulator12 . Typically sucha system has strong local nonlinearities which cannot be modeled and compensated bystandard feedback control techniques. These nonlinearities severely a�ect the accuracyof the positioning and/or motion of the end-e�ector. Since in many robotic applicationsthis accuracy is of primary importance, the application of RL control, on top of theconventional (feedback) controller, is highly justi�ed. In this combined scheme, thecontrol generated by a conventional feedback controller is adjusted by the RL controllerin order to compensate for local nonlinearities.Narendra11 discusses application of RL in large-scale systems. These systems quiteoften consist of a large number of semi-autonomous components performing a limitednumber of functions. Typical examples are communication networks, computer net-works, and economic networks. Theoretical analysis and simulation have shown that RLtechniques can be applied for the control of these systems in a distributed fashion. ARL controller can be developed for each node of the network. Each controller is ignorantof the existence of the other controllers and their behaviors. However, the reinforcementvalue returned by the world is based on the overall (net) e�ect they have upon the sys-tem. The analysis of such a scheme falls in the area of game theory. An interesting resultof the study of these systems is that whatever learning behavior is applied, the overallperformance of the system, in terms of returned reinforcement, is improved compared torandom behavior. Economies of scale make any prospect of performance improvementlook signi�cant in this kind of large system.Finally, a very promising step for future development of the �eld, in both theoretical27

results and realistic applications, is the fact that RL researchers have made signi�cantattempts to summarize and organize the work carried out in the �eld during the pastdecades. A more formal, theoretical approach is being developed. This approach allows amore systematic study of a number of interesting aspects of the RL task, like concurrentlearning of policies satisfying multiple goals, cooperation and transfer of knowledge amonga group of learning agents, as well as conditions and schemes for e�ective decompositionof the learning task into a number of simpler tasks. The relationship of RL to otherscienti�c disciplines is being analyzed, and comparative studies between RL algorithmsand algorithms developed in other areas are being carried on. The merits and pitfallsof RL algorithms are becoming clearer, highlighting the applicability and limitations ofthese methods to contemporary control applications. They also set the problems andgoals for future research in the �eld. In this paper, we have given a general frameworkfor theoretical analysis of the developed algorithms, and outlined the major issues offuture research as they emerge from current theoretical studies and applications in RL.AcknowledgementsThis work has been partially funded by the NSF grant IRI-8915057.References[1] H. E. Stephanou, A. Meystel, and J. Y. S. Luh. Intelligent control: From percep-tion to action. In Proceedings of the IEEE International Symposium on IntelligentControl, 1988.[2] R. S. Sutton. Integrated architectures for learning, planning, and reacting basedon approximating dynaming programming. In Proceedings of the 7th InternationalConference on Machine Learning, pages 216{224, 1990.28

[3] L. P. Kaelbling. Learning in embedded systems. Technical Report TR-90-04, TeleosResearch, CA, 1990.[4] K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. IEEETransactions on Systems, Man, and Cybernetics, 4:323{334, 1974.[5] C. J. C. H. Watkins. Learning with Delayed Rewards. PhD thesis, CambridgeUniversity, Psychology Department, 1989.[6] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Transactions on Systems, Man,and Cybernetics, 13:834{846, 1983.[7] R. J. Williams. A class of gradient-estimating algorithms for reinforcement learningin neural networks. In Proceedings of the IEEE First Annual International Confer-ence on Neural Networks, pages 601{608, 1987.[8] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,University of Massachusetts, Amherst, Amherst, MA, 1984.[9] M. M. Kokar and S. A. Reveliotis. Integrating qualitative and quantitative methodsfor model validation and monitoring. In Proceedings of the 1991 IEEE InternationalSymposium on Intelligent Control, pages 286{291, 1991.[10] S. D. Whitehead and D. H. Ballard. Active perception and reinforcement learning.In Proceedings of the 7th International Conference on Machine Learning, pages 179{188, 1990.[11] K. S. Narendra. Large stochastic systems: Learning automata. In Singh M., edi-tor, Systems and Control Encyclopedia: Theory, Technology and Applications, pages2714{2719. Pergammon Press, 1987. 29

[12] J. A. Franklin. Re�nement of robot motor skills through reinforcement learning. InProceedings of the 27th Conference on Decision and Control, pages 1096{1101, 1988.

30

