Reinforcement Learning: Architectures and

Algorithms

Mieczyslaw M. Kokar and Spiridon A. Reveliotis
Northeastern University
360 Huntington Avenue
Boston, Massachusetts 02115
kokar@northeastern.edu

spyros@nueng.coe.northeastern.edu

1 Introduction

Constructing an intelligent agent, i.e., a computer system able to perform tasks that are
normally attributed to humans, has been an objective for researchers in several disciplines
— artificial intelligence, intelligent control, robotics — to mention just a few. The approach
to building such an agent is to equip a computer system with sensors and actuators, and
let it execute an infinite sense-reason-act loop (the main paradigm of intelligent control').
This approach distinguishes two primary entities: the agent and its environment, called
the world. Typically, the world is a dynamical system whose behavior is a function of its
previous state, actions exerted upon it by the agent, and time. We presume that the agent
attempts to satisfy an externally defined goal through appropriate selection of actions.
Actions are generated based upon agent’s sensory inputs, goals, and its internal state
(knowledge). The performance of an agent can be measured in terms of a performance

index, which includes the quality of goal satisfaction and possibly the cost of the actions.

The intelligence of such an agent is incorporated in the software of its knowledge
base and sense-reason-act decision procedures. These procedures associate actions with
sensory inputs based on the internal knowledge of the agent. The two principal means of
providing these procedures and internal knowledge to the agent are through programming
and through learning. In this paper we are interested in agents with learning capabilities.
In a very general sense, learning means creating knowledge structures. In this context,
therefore, learning is the capability of the agent to modify its knowledge and/or decision
procedures based on past experience, so that its future performance is improved.

Learning has been studied in many research communities, among them, cognitive
science, control, artificial intelligence, each with its own foci. Learning agents can be
classified according to the form of feedback they receive from the world in response to

their previous actions.

Learning from examples (learning with a teacher). The learning algorithm is trained
on a series of instances classified by the teacher as either positive examples, i.e.,
belonging to the concept to be learned, or negative examples, which do not belong
to the concept. The goal of the learner is to generate a concept description that
correctly classifies the seen instances and generalizes effectively as to future unseen
instances. The feedback received by the learner can be interpreted as an error
associated with the learner’s internal representation of the learned concept; we call

it instructive feedback.

Reinforcement learning (RL) (learning with a critic). The learner receives as feed-
back a scalar signal, called reinforcement, which provides evaluation of its perfor-
mance with respect to the preset goals. The reinforcement feedback does not give
any direct error information on the learner’s internal representations; we call it

evaluative feedback.

Learning by observation (unsupervised learning, learning by discovery). This type

of learning program does not have any direct input on what it should focus its
attention, which observations are positive/negative instances, or which direction to
follow in search of better descriptions. The learner collects observations and derives

generalized concepts according to its own internal rules.

The first method, learning from examples, requires the most external guidance. The
training of intelligent agents requires an extremely well informed teacher, a requirement
that is very difficult to meet. Learning by discovery, on the other hand, does not require
any feedback; but the result of this is that the learner does not receive any external guid-
ance and thus, is inefficient. This seems to be the reason that more researchers, interested
in learning capabilities of intelligent agents, have recently turned to the reinforcement
learning paradigm.

Our objective in this paper is to show the evolution of the reinforcement learning
methods and some of the contributions of Al to this paradigm. The starting point of our
analysis is the thesis that more structure is needed to make learning more efficient. We
believe that this need for structure was the driving force behind the Al-based research
on reinforcement learning. Therefore, this paper will focus on structural solutions to
reinforcement learning developed in the Al machine learning community.

In the following section, we introduce the main ideas behind reinforcement learning.
To illustrate the primary concepts of the RL paradigm we use a simple example of the
maze world. We also briefly discuss the foundations of the field. In section 3, we give a
formal specification of the RL paradigm. We also present a general architecture of a RL
agent and its primary components. In section 4, a number of developed algorithms are
discussed in the context of this architecture. The intent is to identify the motivation for
developing those algorithms and to show their principal features. This includes enhance-
ments to the basic reinforcement learning architecture, which are shown to improve the

efficiency of the learner. Section 5 is devoted to architectural aspects of active percep-

tion. Finally, in section 6, we discuss possible directions and constraints for applications

of reinforcement learning techniques in modern technological areas.

2 Learning Through Reinforcement

The term reinforcement learning has been borrowed from the area of behavioral psychol-
ogy, where it has been used to describe some models of behavior-learning in humans and
animals. The primary feature of those models is that they describe the behavior-learning
process as a sequence of trial and error steps resulting in the formation of an action map,
which defines an appropriate action for each specific situation in which the agent finds
itself.

The need for reinforcement learning occurs naturally in situations where agents, sim-
ilarly to humans, must derive actions (decisions) while their knowledge is incomplete
and uncertain. This might be due to limited (a priori) knowledge of the agent’s world,
the increased complexity of the world and/or the agent which does not allow detailed
analytical study of their behavior, or the extensive variation of the world and/or agent
dynamics with time. As a result, the agent does not have (and it cannot synthesize) any
error feedback on its internal knowledge. However, in many cases an evaluative feedback
is available and thus can be utilized to improve the agent’s future performance.

One of the consequences of the evaluative feedback is that the reinforcement learning
algorithm is never certain of the correctness of any of its learned behaviors. Having a
high evaluation for a behavior at a particular situation does not mean that there does
not exist a better one, which has not yet been discovered. As a result, a RL algorithm
must always include a search in the space of possible behaviors, in which the tradeoff
between the best known behavior and the need to explore the unknown behaviors takes
place. The design and analysis of algorithms to organize this experimentation efficiently

and in an incremental (on-line) mode, is one of the major topic of reinforcement learning.

We will elucidate the previous discussion through the following example. Although
this example is based on an agent operating in an artificial “maze world” and thus cannot
be representative of the real world, we believe that it is easier to interpret than the
examples coming from the psychological literature, due to the explicitness of knowledge
possessed by artificial agents. Rats, the most typical subject of reinforcement learning
in psychology, may have some knowledge that they use in their learning process, the
amount of which and the kind are not known to us, and thus, it is difficult to analyze
and evaluate their learning behavior.

Consider a mobile robot learning to navigate through the two-dimensional world? of
Figure 1. The robot can be in any of the unmarked locations of the grid, defining the
world. The position of the robot defines the world state. The robot is able to perceive
the state of the world, and change it by performing actions (steps). The allowed actions
are UP, DOWN,RIGHT, and LEFT and take the robot to corresponding contiguous
locations. Locations marked by an ‘X’ are inaccessible; they act as barriers or obstacles.
If the robot selects an action which would lead into a barrier or outside of the world the
state does not change. One of the locations, marked with a ‘D’ in Figure 1, is called the
destination. The state of the world in which the robot has reached the destination is the

goal state; whenever this happens, the robot is relocated to an arbitrary new state.

@)
os]

Figure 1: A world example

The learning task is to find the steps that can take the robot from any location in

the world to destination using the shortest possible path. In this learning, the robot is

guided by the reinforcement, which is either received as a special scalar input directly
from the world, or is synthesized from the state input by a robot’s reinforcement cal-
culation procedure. The robot knows that it is supposed to maximize the cumulative
reinforcement received over the time of its operation. There are two basic schemes for
receiving the reinforcement: immediate reinforcement and delayed reinforcement. In the
former case, the robot receives a reinforcement signal (say 0 or 1) depending on whether
or not the step is a part of the shortest path from the robot’s location to the destination.
The robot then associates the returned reinforcement value with the state-action pair. In
the latter case, the reinforcement signal of 1 is received by the robot whenever it enters
the destination location. In all other situations the reinforcement is 0. This means that
the robot is not provided with any discriminative feedback until it transitions to the des-
tination location. This reinforcement scheme makes the task of learning much harder. In
the following we show a possible strategy for learning an optimal path under the delayed
reinforcement scheme.

Initially, the robot does not have any values associated with steps that it could take
at particular locations. It does not even know the range of possible values of the rein-
forcement. It simply performs a random walk in the world. Eventually, it reaches the
destination and receives a reinforcement of 1. At this moment, the robot knows that
whenever it is at ‘A’ it can go to ‘D’ in one step to receive reinforcement of 1. Suppose
that it has an algorithm which divides the received reinforcement by 2 (discounting) and
associates it with the previous state-action pair. We refer to this procedure as backing-
up of the reinforcement. According to this procedure, the robot associates the value of
1/2 with the pair < ‘A, RIGHT >. Suppose that during the two consecutive trials the
robot first reaches ‘A’ from ‘C’ and then ‘C’” from ‘B’. The robot associates the discounted
values of 1/4 with < ‘C", DOWN > and 1/8 with < ‘B, LEFT >. If the robot were

always taking the best known path (greedy policy), it would never be able to find that

there exists a better path. However, by using exploratory search, it will eventually find
out that there is a better path B-D, since the discounted value 1/2 of the backed-up
reinforcement after taking this path is greater than the best known (i.e., 1/8) before this
exploration. It stores this information about the best step to be taken at location ‘B’
(i.e., go to ‘C’) and the new value of 1/2 in its internal data structure. Through this
mechanism, the information about the best steps is propagated back to the states that
are more distant from the goal state and eventually the robot learns shortest paths to
the destination from all locations.

The formal mathematical foundations of reinforcement learning can be traced back
to statistics, the theory of learning automata, and dynamic programming. The “Bandit
Problem” was an attempt to cope with reinforcement learning initiated in the field of
statistics; the “Tsetlin Automaton” was a similar attempt to solve the problem through
the theory of learning automata® . Narendra and Thathachar? give an extended review
of the work done in the field of learning automata until the mid-seventies. The close
relationship between reinforcement learning techniques and dynamic programming (DP)
has recently been established®, with interesting theoretical ramifications for the field.
Genetic algorithms provide a different approach to the problem of reinforcement learning.
They use the mechanisms of mutation and crossing-over, inspired by biological models,
to generate the set of the “fittest” production rules that define the function that maps

external inputs to actions.

3 Modeling the Reinforcement Learning Problem

3.1 A Reinforcement Learning Framework

The two primary entities of the reinforcement learning framework (Figure 2) are the

learning agent and the world. The world is modeled by a dynamic system whose transi-

tions among different states are caused by the agent’s actions. The agent consists of three
functional parts: the behavior B, the input function I, and the reinforcement function
R. The input function translates the world’s outputs, which represent world states, into
agent’s inputs. The reinforcement function assigns a value to every state of the world.
The behavior function updates the agent’s knowledge and generates agent’s actions. The

above description is formalized as follows®.

r==-=-=============-= 1

1 1

1 1

S 1 J 1

i W :

1 < T

1 1

1 1

! Theworld:

L e e e e e e e e e e == — - J
(TSt TT TS TTTTTTTTTTT T
1 1
1 1
T E
1 B 1 a
1 1

r
— R > |
1 1
1 1
1 1
1 1
| The agent |
L e e e e e e e e e e e e e e e e e e e - == J

Figure 2: A reinforcement learning framework

The world is modeled as a triple

W=< S, AW >,

where S is the set of possible states, A is the set of possible actions, and W is the state

transition function of the world,

W:S5xA—S.

The agent is modeled as a 4-tuple

A=<TZ, I R B>,

where 7 is the set of possible inputs to the agent, [is a mapping

[1:5—=7

that corresponds world states to agent’s inputs, R is the reinforcement function of the

agent that maps states into real numbers,

R:S— R,

and B is the behavior of the agent mapping strings of inputs into actions,

B:IT"x R— A~

Typically, worlds are modeled by automata, either deterministic or stochastic. De-
signing agents that are able to deal with stochastic worlds make it possible to apply
reinforcement learning methods to worlds with apparent inconsistency, i.e., cases where
although the agent generates the same action in response to the same world’s state, the
resulting transitions and/or reinforcement values differ. There are a number of reasons
that the world might be perceived as apparently inconsistent: stochastic behavior is an
intrinsic characteristic of the world; the correspondence of world states to inputs for the
agent is not one-to-one, and thus, the same input may be assigned to more than one
world state; the agent’s interface with the world does not function properly, resulting in
misleading effects. In its most general formulation, the problem of reinforcement learning
in a stochastic world is too complex to be solved. Most of the algorithms discussed in
this paper work under the assumption that the world is globally consistent, which means
that the expected value of the reinforcement given input ¢ and action a remains constant
over time.

The problem of learning how to reach the goal state(s) with a minimum number
of actions, can be restated within this framework as the problem of adjustment of the

agent’s behavior so that the reinforcement it receives over a prespecified time period is

maximized. In the case of autonomous agents acting over a long time in an unsupervised
mode, this time period can be considered infinite. To satisfy the learning goal, the agent
keeps updating its behavior towards the world, based on the received reinforcement.
Ideally, the result of the updating is an optimized action map, i.e., a function (in the
general case this is a relation) which assigns actions to incoming input strings in such a

way that cumulative reinforcement is maximized.

3.2 The Learning Behavior

The general mechanism according to which the agent adapts its behavior to the incom-
ing information from the world, i.e., to reinforcement values and (possibly) world-state
relevant information, is called a learning behavior. Its general scheme is presented in
Figure 3. The behavior consists of three parts: the internal state x, the update function
u, and the evaluation function e. The internal state x expresses (summarizes) the level
of knowledge that the agent possesses about the world; it does not relate explicitly to the
world states. At every cycle, the evaluation function e determines the agent’s response a

to the received input 7, based on the internal state x,

e: X x7T — A.

-
Y
&

Y
Y
Y

Figure 3: The learning behavior scheme

The selected action brings the world to a new state, which results in a new input ¢’

10

and a reinforcement value r. The agent’s internal state z is then updated by the update

function

u:IxXxAxR—=X

so that it better approximates the agent’s knowledge about the world.

4 Implementations of the Learning Behavior:
Variations and Extensions

Having described a general mechanism of reinforcement learning behaviors, we can con-
sider specific implementations of this mechanism in a number of algorithms known in
the literature. The algorithms have been selected as representatives of some broader
classes of algorithms in the field. Each of them is the result of a different implementation
of, and/or extension to, the general scheme. In the presentation of the algorithms, the
emphasis will be on the way in which they implement the various parts (z, u, e) of the
general mechanism, on the way they address the learning efficiency problems through

architectural variations, and on their extented applicability.

4.1 Probability-Vector Algorithms

These algorithms have been developed by the learning automata community?. The main
characteristic of these algorithms with respect to the general framework discussed in
the previous section, is that in their evaluation and update functions, they do not use
information about the state of the world; the only input to these algorithms from the
world is the reinforcement.

At every step, the agent selects an action according to a probability distribution. This
distribution is stored as a probability vector p, which associates with every action a; the

probability value p; that this action will be selected. In terms of the learning behavior

11

described in the previous section, the internal state = of the agent is the probability
vector p, and the evaluation function e is based solely on these probabilities. The update
function adjusts these probabilities based on the actions performed on the world and on
the returned reinforcement. The resulting agent is a stochastic learning automaton.

As a characteristic example, consider the Linear Reward-Penalty (Lrp) algorithm?.
To update the probabilities in response to an action a; and positive reinforcement, this
algorithm first decreases the probability values of all the other actions by an amount
which is proportional to their current values, and then it updates the probability p;
associated with action a; so that the sum of all probability values adds up to unity.
When the reinforcement is negative, the respective probabilities are increased instead of
decreased.

In a variation of the Lgp algorithm, known as Linear Reward-Inaction (Lgy) algo-
rithm, probability values are updated only when the agent receives positive reinforcement
after taking an action. Although this algorithm exhibits a significant structural similarity
to Lrp, the two algorithms have significantly different behaviors in terms of convergence
and overall performance. Many other versions of these algorithms have been obtained by
using different nonlinear updating policies. They have been proposed to improve learning
performance in particular applications.

Another algorithm that can be classified in this category, since it uses only reinforce-
ment information received from the world, is the Interval Estimation (IE) algorithm,
developed by Kaelbling®. This algorithm’s internal state consists of the upper bounds
of the confidence intervals of positive reinforcement received in response to actions «a;.
The algorithm utilizes statistical methods to update these bounds. More specifically,
for every action in the agent’s action set, the returned reinforcement is monitored, and
from the collected data, the upper bound of a confidence interval of the probability of

receiving positive reinforcement in response to this action, is estimated. In the evalu-

12

ation function, the action with the highest upper bound is selected. The upper bound
of the confidence interval for a particular action may be high either because this action
has a high probability of receiving positive reinforcement or because the collected data
is insufficient for an accurate evaluation. In this way, the trade-off between following
the greedy policy and performing further exploration is done automatically. The level
of confidence for which the intervals are estimated is predefined; it constitutes a tuning
parameter of the algorithm. This algorithm is conceptually simple, yet it has been shown
to outperform many other algorithms from the same class®.

The main problem with the probability-vector algorithms is that they are designed to
search for the globally best action based upon received reinforcement, and are thus they
not able to associate a locally optimal action with each state of the world. Consequently,
these algorithms either continuously change their internal state, i.e., are unstable in terms
of convergence to optimal behavior, or when they are designed to enforce convergence,

they may get stuck in nonoptimal states (absorbing states).

4.2 Associative Algorithms

In contrast to the previous class, associative algorithms take into consideration not only
the reinforcement returned by the world, but also information about its internal state
perceived through the input function I. They associate action-probability vectors with
the states. A trivial way to solve this problem would be to use a separate stochastic
learning automaton for each state. However, such a representation would not allow the
association of one action-probability distribution with a set of states. In other words, such
a representation would not allow for generalization. This problem was solved® by using
parameterized classes of distribution functions to represent action-probabilities. Under
this representation, learning the optimal behavior is equivalent to learning an optimal

set of parameters for the distribution functions.

13

Associative RL algorithms are most typically implemented in a neural net architec-
ture. A neural net consists of layers of processing units, including an input layer, an
output layer and possibly a number of hidden layers. The input vector ¢ is passed to the
first layer for processing; the output from each layer is passed to the consecutive layer for
further processing. Each unit within a layer, multiplies its input vector by the weighting
vector associated with this unit and filters this result through a decision making function
to produce an output for the next layer. The outputs from the network are interpreted
as parameters of single-parameter action-probability distribution functions. The evalu-
ation function of an associative RL agent uses these distributions to generate actions.
The probabilistic interpretation of the evaluation function provides the exploration in
the search for better behaviors of the associative RL algorithms.

The internal state s of the agent consists of the network’s weights. The update
function updates the weights based on the received input vector ¢ and reinforcement.
The updating process can be interpreted as stochastic hill-climbing, i.e., an incremental
movement in the weight space from the current point towards the steepest increase of
the expected value of the returned reinforcementz.

Since the focus of this paper is on the structural aspects of the reinforcement learning
algorithms rather than their hardware implementations, we present a rather simple, but
quite representative associative reinforcement learning algorithm developed by Sutton®.
It is called Linear-Associator Reinforcement-Comparison algorithm (LARC). A distin-
guishing feature of LARC'is that in addition to the returned value r of the reinforcement,
it also uses a predicted value p, and that the updating mechanism uses the difference
r — p to determine the direction and degree of change for the values of the weights. This
kind of algorithms are called Reinforcement-Comparison algorithms.

The implementation of LARC consists of two networks. Both of them receive the

same input vector z, consisting of external signals describing the world state. The first

14

network computes the predicted value p of the reinforcement as the inner product of the
input vector ¢ and its weight vector v. The second network implements the evaluation
function. It computes the inner product of its weight vector w and the input vector ¢,
adds a random number n to the previous result, and selects one of two possible actions
(producing an output of 0 or 1), depending on whether the resulting sum is greater or
less than a threshold §. The update function v adjusts the components v; and w; of the
two weight vectors on the basis of the action taken at the previous step and the difference

between the received reinforcement and the predicted reinforcement r — p.
Aw = a(r = p)(y — 1/2)i

Av = 3(r —p)i

The coefficients a and in the above formulas are called learning rates. Setting a
high value for the learning rates may increase the speed of convergence of the learning
algorithm, but it may also increase the probability that the algorithm becomes unstable
or gets stuck in a locally optimal solution.

By utilizing classification abilities of neural nets, associative algorithms are able to
associate optimal actions with whole classes of the world states, or in other words, they
are able to generalize from their past experience with interactions with the world. This
ability is a very important feature for learning algorithms with respect to time and space
complexity. However, like many connectionist algorithms, they converge rather slowly
and are unstable when applied to more complicated learning tasks. Furthermore, the
distributed representation used by these algorithms, although an effective generalization
mechanism, makes it very difficult to interpret the learned structure and to prove its
validity; the learned concepts are represented by weight vectors, which do not have any

direct meaning.

15

4.3 Learning with Delayed Reinforcement

All of the algorithms described above work under the assumption that the world returns a
reinforcement value in response to every single action taken by the agent. However, there
are a number of application tasks in which the agent receives evaluation of its behavior
following an entire sequence of steps (for example, the problem shown in Figure 1). This
kind of reinforcement scheme is called delayed reinforcement. In this section we discuss
how the problem of learning with delayed reinforcement can be solved using variations
of dynamic programming.

Dynamic programming (DP) techniques compute the optimal action map, given a
complete state transition model of the world and the credit (in our case, reinforcement)
associated with each transition. In their computation they use the notion of state values.
The value e(s) of state s is associated with an action map p and defined as the cumulative
reinforcement collected by the agent provided it starts from state s and follows the action
map pu thereafter. Since the actual value of cumulative reinforcement is not known, it
is estimated as the sum of the immediate reinforcement received after executing a single
action, plus the current value of the state resulting from this action. The optimal action
map maximizes the value of every state. DP techniques compute the optimal value
for each state s by iteratively comparing the estimated cumulative reinforcement for all
possible actions at state s and replacing the state value e(s) with the maximum. We
say that the state values are backed up during these iterations. The optimal action map
assigns to every state the action that was used in the backing-up of the optimal state
value.

A variation of the previous backing-up algorithm, proposed by Watkinsz keeps a value
()sq for every state-action pair, in addition to the state value e(s). For a state-action pair
< s,a > and an action map p, (s, 1s defined as the cumulative reinforcement collected

by performing action a while in state s, and following the action map p thereafter. In

16

this approach, the value of a state s, e(s), is defined as the maximal @), value over the
set of possible actions for this state. Watkins has proven that if, in lack of knowledge of

a complete world model, the (), values are updated according to the formula

Q' = (1= B5,)Qu, + Bulr + 7 e(suce(s, a))]

they will converge to the optimal ones, provided that each transition is tried an infinite
number of times, and ¥ — 0, when k — oco. In this formula, e(suce(s,a)) is the value
of the state resulting from action a, $* is the learning rate of the algorithm, 4* is the
discounting factor of the future reinforcement, and r is the immediate reinforcement.
Since this result allows for updating only the (), value of the current action, the updates
can be done in real time. The resulting algorithm is known as ()-Learning.

In this section we describe an extension of the Q-Learning algorithm, developed by
Sutton?®, which is known as Dyna-Q+. Dyna-Q+ introduces two major extensions to the
QQ-Learning algorithm. The first one is an enhancement of the exploration component of
the algorithm. Specifically, the value assigned to a state-action pair is not based only
upon the expected cumulative value of the reinforcement received after taking this action
(transition), but also includes a term which expresses the uncertainty related to this (-
value. Sutton calls this term exploration bonus, and defines it to be a very small fraction
of the square root of the elapsed time steps ng, since action a was tried in world-state ¢.
The introduction of this term in the credit estimation renders the algorithm sensitive to
possible structural changes taking place in the world.

The second extension is of greater architectural interest, as it demonstrates an inte-
gration of world modeling with reactive reinforcement learning techniques. The learned
model of the world is used for more systematic planning of future actions. This results
in an increased speed of convergence of the QQ-Learning algorithm. The Dyna-Q+ ar-
chitecture is presented in Figure 5. The major difference between this architecture and

the general scheme presented in Figure 1 is the introduction of a world model. In this

17

"@
] L
|

Figure 4: The Dyna-@Q)+ architecture

implementation the model is a look-up table indexed by the state-action pairs. It pro-
vides the next state and reinforcement values, given an action and the current state.
This table is filled incrementally every time a new transition (state-action pair) is exe-
cuted. The information in the model is used for learning purposes between every two
successive interactions with the world. State-action pairs and associated reinforcement
values, which have been previously experienced and stored in the model, are randomly
selected and passed as input to the learning algorithm. The net effect of this technique
is a faster convergence of the)4,-values, because the reinforcement information recently
experienced by the agent through its interaction with the world is safely propagated to
the rest of state-action pairs during those “dummy” iterations. Sutton also suggests?
that the modeling technique can be extented to cover stochastic behavior of the world,
and that in the case of nontrivial world structures, special strategies for selecting the

state-action pairs could be used in the learning steps (search control).

18

The state = of the learner is implemented in this algorithm by the ()4,-value matrix,
the values of the ng, matrix, and the knowledge captured in the world model. The
updating function is implemented by the Q-Learning algorithm with the maximal-credit
estimator, modified to incorporate the exploration-bonus term. The evaluation function

probabilistically selects the next action according to the Boltzmann distribution.
Qea/T

pr(asls) = m

According to this formula, the action with the highest (), value has the highest prob-

ability of being selected. The parameter T' of the distribution regulates the degree of

exploration in the algorithm. A smaller value of T" means a closer following of the greedy

policy.

4.4 Model-based Algorithms

The algorithms discussed in previous sections are reactive or direct in the sense that
they learn to relate incoming information concerning the world states directly to actions
executed by the agent. Another approach to learning how to act in a world consists of
building internal representations of the world, i.e., models, and then utilizing the learned
models to select appropriate actions. In this approach, the goal of learning is to generate
such models that give the best approximation (best fit) to the description of the behavior
of the world. Since the world is viewed as an automaton, the models should be able to
correctly predict the transitions of the world for given initial states and applied actions.

Similarly as in associative algorithms, input to the learning agent includes world
states. However, it does not include explicit reinforcement. The value of reinforcement
is calculated by the reinforcement function R (Figure 2). Since the selection of an ap-
propriate action is strongly dependent on the correctness of the model, the reinforcement
value is a measure of how well the working model fits (predicts) the real world behavior.

The internal state x of the learning behavior encodes a model of the world.

19

Models created by the agent can be of two kinds: parametric or non-parametric.
Parametric models describe the world behavior in terms of parametrized procedures
(equations) which can be used to calculate the world’s transitions given an initial state
and an action. The learning task is the adjustment of the parameter values so that
the transitions predicted by the model are as consistent as possible with the actual
transitions observed in the world. Non-parametric models, on the other hand, do not
utilize analytical equations. Instead, they consist of a number of initial-state/action /final-
state triples — instances of the world transitions. For worlds with infinite number of states,
the continuity property of the world is utilized for predicting world transitions. In the
prediction procedure the methods of interpolation and extrapolation are used. Learning
of non-parametric models consists of either adding more transition instances to the model,
if its predictive power is not satisfactory, or removing redundant transition instances, if
they can be interpolated from the remaining points of the model.

In the following we present an example of a reinforcement learning system which learns
multiple non-parametric models in the context of a restructurable control application®
(Figure 4). In this kind of application, the goal is to control the value of an output
variable of a plant which undergoes structural changes in its behavior. Structural changes
in the plant’s behavior mean that it is described by different models at different times
(different sets of variables and relationships). Since the plant’s behavior can change in an
unpredictable fashion, no assumption can be made about the model equations, and thus
non-parametric representation of models is well suited for this kind of application. The
agent must learn the possible plant behaviors from observational data. Due to the high
computational cost of learning, when the plant switches to another behavioral pattern
the learned model is not discarded, but is stored in the agent’s database, so that it can
be used if the plant returns to this behavior at some time in the future. Thus, in addition

to learning correct models for the plant behaviors, the agent must also learn to select

20

the appropriate model from the model database. The system presented in this section?

learns such a selection policy.

5 W
—p
> > a
> > C
u € >
] I, B oo —- Qi
> R| . og%y
—>]
D
Don
Dgo

Figure 5: A multiple non-parametric model-based RL architecture

The central data structure implementing the internal state = of the learner is the
database of state transitions of the plant, (). This database consists of a number of
blocks @ = {Q1,...,Q,}, with each block being associated with a different qualitative
behavior of the plant (i.e., with one model). More specifically, an element ¢ of a block @;
is an instance of the plant’s state transition function represented by the previous state
S0 € S, the next state s, € 9, the value of action @ € A exerted upon the plant during
the time-interval [0, 7], the value of the time interval 7, and the parameters of the i-th

model P;

q =< 80,87, Tya, P, > .

In the discussed system, generalization over the state transition instances is imple-
mented through two mechanisms: interpolation and the principle of physical similarity.

First of all, only some of the transitions are stored; transitions which can be recov-

21

ered through interpolation are discarded. The principle of physical similarity allows for
grouping of similar transitions into classes; the whole class can be generated from one
representative using this theory.

The evaluation function selects the working model from the model database on the
basis of the accuracy with which the existing models predict the observed plant behavior.
The update function has a dual role: it must adjust the evaluation function so that it
selects the correct model for every state of the plant, and it must also adjust the selected
(working) model so that its predictive accuracy is increased. In case that none of the
existing models is judged appropriate for the description of the current plant behavior,
the update function may initiate the creation of a new plant model.

The main advantage of this kind of algorithm is that the learned models are stored
in the database. Thus the effort of re-learning the models when the world returns to a
previously learned behavioral pattern is avoided. In such a case, the previously learned
model is retrieved. Parametric models represent knowledge in a concise form and there-
fore require less memory. One of the disadvantages of such models is the need to search
for the most appropriate models in a potentially large database. In addition, such algo-
rithms should have a function that determines whether a given model should be updated

or another model should be selected.

5 Reinforcement Learning Through Active
Perception

There is an implicit assumption in the algorithms discussed in the previous sections, that
the world inputs given to the learning agent include complete information about the state
of the world. Although this looks like a natural requirement from a theoretical point of

view, it is unnecessary or impossible in many practical situations. Humans, for instance,

22

act in the world with only partial information about its state. Not only would such
complete information be unnecessary for making decisions about actions, but it would
also overload the information processing system, both in terms of memory capacity and
computational time requirements. A possible solution is in selective acquisition of only
relevant information about the world.

To implement a reinforcement learning system able to deal with the problems of time
and space complexity resulting from the richness of the world state space, Whitehead and
Ballard'® have proposed an extension of the basic architecture presented in Section 3.
The main idea behind this architecture (see Figure 6) is to incorporate an active sensory-
motor system able to focus the attention of the learning system on inputs relevant to
the decision making process; the authors call this perceptual scheme active perception.
Instead of defining the input space, Z, of the agent in such a way that it captures every
detailed piece of information about the world, indexical representation registers only such
information about the key (indexed) objects that is relevant to the current task. Such an
approach leads to a more compact input space for the agent, but demands the integration
of an active sensory-motor system in the overall reinforcement learning framework.

.. —

<
d

g
< '

Fr--—------

- B aj

Figure 6: An active perception RL architecture

23

In this particular architecture, the world is modeled in the same way as in the frame-
work presented in section 3. However, the agent model is broken down explicitly into
three components: (1) the sensory-motor subsystem, (2) the reward (reinforcement) cen-
ter, and (3) the decision subsystem. The novel part is the sensory-motor subsystem,
whose distinguishing feature is that it is active, i.e., it is able to change its internal
configuration, C', of the sensors and actuators. The sensory-motor system consists of a
perceptual function, P, mapping world states S, into agent’s internal representations 5;,

according to its internal configuration C,
P Se x C — SZ',

and a motor function M, mapping (transducing) agent’s decisions (internal motor com-

mands) A; into external actions A.,
M: A xC — A..
The sensory-motor system is a dynamic system with the state transition function
1: A, xC—C.

The reward center R composes the returned value of the reinforcement r from the percep-
tion of the current state of the world s, € S, in a fashion similar to the one described in the
discussion about learning world models. Finally, the decision subsystem B corresponds to
the learning behavior of the framework of Section 3, with the incoming/outgoing signals
being received from/sent to the sensory-motor subsystem.

The space of internal representations is considerably reduced by focusing attention
only on a limited amount of the state information. This gain, however, does not come for
free. Under the indexical representation, the correspondence of world states to internal
inputs becomes many-to-many, destroying the global consistency of the world. This is

called perceptual aliasing'®. Since perceptual aliasing introduces local maxima in the

24

evaluation function, it thereby renders the reinforcement learning algorithms previously
described inappropriate for application in this architecture. These tend to confuse the
learning behavior in its search for the optimal policy. This problem is solved by intro-

10 This cycle, called perceptual cycle,

ducing an internal cycle in the learning behavior
identifies the correct (unambiguous) representation for the perceived world state from an
entire set of candidate representations.

The distinguishing feature of the active perception approach is that, in addition to
learning how to act correctly in the world, the agent also learns to focus its attention
on the objects which are relevant to a specific task. Preliminary results of experiments

0

with this architecture!® are promising. Tasks at which the general algorithms presented

in earlier sections failed have been successfully completed using this approach.

6 Applicability of Reinforcement Learning

Although considerable progress in theoretical work on reinforcement learning algorithms
and architectures has been achieved, there is much to be done in the area of application
of these methods to real-world problems. The problems with the applications can be
attributed mainly to the high complexity of the learning algorithms, both in terms of
time and memory, and to the fact that in the general case, they converge very slowly to
the optimal behavior, especially if the set of possible states of the world is large.

Time complexity is a very important factor in the evaluation of reinforcement learning
algorithms since reinforcement learning is an iterative real-time process. A reinforcement
learning algorithm performs the same computation in every loop and, therefore, its time
complexity issue can be reduced to the time complexity of a single iteration. Thus,
in designing an RL algorithm, it is essential that every iteration remains bounded .
Accepted values for these bounds vary from application to application. They should

be estimated on the basis of the time constraints of a specific application. Most of the

25

update and evaluation functions of the learning behavior involve processing the entire
volume of information stored in the agent’s database. As a result, setting bounds on the
space for storing agent’s data is as important as bounding the execution time of each
iteration. In the reinforcement learning literature, an algorithm that keeps bounded its
time, as well as its space needs, is called strictly incremental. It should be made clear,
however, that many of the existing algorithms do not obey such a restriction.

A great deal of theoretical analysis has been performed on the asymptotic behavior
of the RL algorithms, mostly for stationary worlds. Algorithms have been classified with
respect to how nearly they ultimately achieve the optimal behavior, i.e., the behavior that

maximizes the returned reinforcement over the considered time horizon™

11 However, for
real-world problems, optimal behavior may not be easily identifiable. This is especially
crucial in the case of time-varying worlds where the world changes its behavior, sometimes
drastically, so that the assumption of stationarity is not justified. As a consequence, the
quality of the transient behavior of these algorithms is critical.

In spite of all of the abovementioned problems, the field of reinforcement learning has
recently experienced a resurgence of interest by researchers. There are many different for
this turn. For one, the computational power available through modern computer tech-
nology, in terms of both execution rate and storage capacity, has considerably increased.
The advent of parallel computation seems very promising for RL algorithms, since many
of them have an inherently parallel structure.

A second reason comes from the kind of problems in modern applications. For in-
stance, many of them involve the control of large complex physical, technological, or
even socio-economic systems, whose structures are dynamically-varying and intractable
in terms of more classical control paradigms. Learning control is the most powerful mod-

ern tool for dealing with high levels of uncertainty. Even if the application of RL does

not result in an optimal behavior of the controlled plant, due to the large-scale nature

26

of these systems and/or the very low error-tolerance allowed for the controlled processes
and their results, even small improvements of the system’s overall performance can be
economically significant.

As an example of the application of reinforcement learning in an otherwise intractable
problem, consider the high-precision control of a robot manipulator'2 . Typically such
a system has strong local nonlinearities which cannot be modeled and compensated by
standard feedback control techniques. These nonlinearities severely affect the accuracy
of the positioning and/or motion of the end-effector. Since in many robotic applications
this accuracy is of primary importance, the application of RL control, on top of the
conventional (feedback) controller, is highly justified. In this combined scheme, the
control generated by a conventional feedback controller is adjusted by the RL controller
in order to compensate for local nonlinearities.

Narendra!! discusses application of RL in large-scale systems. These systems quite
often consist of a large number of semi-autonomous components performing a limited
number of functions. Typical examples are communication networks, computer net-
works, and economic networks. Theoretical analysis and simulation have shown that RL
techniques can be applied for the control of these systems in a distributed fashion. A
RL controller can be developed for each node of the network. Each controller is ignorant
of the existence of the other controllers and their behaviors. However, the reinforcement
value returned by the world is based on the overall (net) effect they have upon the sys-
tem. The analysis of such a scheme falls in the area of game theory. An interesting result
of the study of these systems is that whatever learning behavior is applied, the overall
performance of the system, in terms of returned reinforcement, is improved compared to
random behavior. Economies of scale make any prospect of performance improvement
look significant in this kind of large system.

Finally, a very promising step for future development of the field, in both theoretical

27

results and realistic applications, is the fact that RL researchers have made significant
attempts to summarize and organize the work carried out in the field during the past
decades. A more formal, theoretical approach is being developed. This approach allows a
more systematic study of a number of interesting aspects of the RL task, like concurrent
learning of policies satisfying multiple goals, cooperation and transfer of knowledge among
a group of learning agents, as well as conditions and schemes for effective decomposition
of the learning task into a number of simpler tasks. The relationship of RL to other
scientific disciplines is being analyzed, and comparative studies between RL algorithms
and algorithms developed in other areas are being carried on. The merits and pitfalls
of RL algorithms are becoming clearer, highlighting the applicability and limitations of
these methods to contemporary control applications. They also set the problems and
goals for future research in the field. In this paper, we have given a general framework
for theoretical analysis of the developed algorithms, and outlined the major issues of

future research as they emerge from current theoretical studies and applications in RL.

Acknowledgements

This work has been partially funded by the NSF grant IRI-8915057.

References

[1] H. E. Stephanou, A. Meystel, and J. Y. S. Luh. Intelligent control: From percep-
tion to action. In Proceedings of the IEFE International Symposium on Intelligent

Control, 1988.

[2] R. S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynaming programming. In Proceedings of the 7th International

Conference on Machine Learning, pages 216-224, 1990.

28

3]

[10]

[11]

L. P. Kaelbling. Learning in embedded systems. Technical Report TR-90-04, Teleos

Research, CA, 1990.

K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. [FEE

Transactions on Systems, Man, and Cybernetics, 4:323-334, 1974.

C. J. C. H. Watkins. Learning with Delayed Rewards. PhD thesis, Cambridge

University, Psychology Department, 1989.

A. G. Barto, R. 5. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man,

and Cybernetics, 13:834-846, 1983.

R. J. Williams. A class of gradient-estimating algorithms for reinforcement learning
in neural networks. In Proceedings of the IEEE First Annual International Confer-

ence on Neural Networks, pages 601-608, 1987.

R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,

University of Massachusetts, Amherst, Amherst, MA, 1984.

M. M. Kokar and S. A. Reveliotis. Integrating qualitative and quantitative methods
for model validation and monitoring. In Proceedings of the 1991 IEEFE International

Symposium on Intelligent Control, pages 286-291, 1991.

S. D. Whitehead and D. H. Ballard. Active perception and reinforcement learning.
In Proceedings of the Tth International Conference on Machine Learning, pages 179—

188, 1990.

K. S. Narendra. Large stochastic systems: Learning automata. In Singh M., edi-
tor, Systems and Control Encyclopedia: Theory, Technology and Applications, pages

2714-2719. Pergammon Press, 1987.

29

[12] J. A. Franklin. Refinement of robot motor skills through reinforcement learning. In

Proceedings of the 27th Conference on Decision and Control, pages 1096-1101, 1988.

30

